
The Nramp (Slc11) proteins regulate development,
resistance to pathogenic bacteria and iron
homeostasis in Dictyostelium discoideum

Barbara Peracino, Simona Buracco and Salvatore Bozzaro*
Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano, Italy

*Author for correspondence (salvatore.bozzaro@unito.it)

Accepted 22 August 2012
Journal of Cell Science 000, 1–11
� 2013. Published by The Company of Biologists Ltd
doi: 10.1242/jcs.116210

Summary
The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from
bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and

manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes,
such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its
mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by
generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which

is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile
vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H+-ATPase, which can provide
the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila.

Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and
multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or
depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H+-ATPase, synergistically regulate iron

homeostasis, with the contractile vacuole possibly acting as a store for metal cations.

Key words: Dictyostelium discoideum, Iron transporter, Nramp1, Nramp2, V-H+-ATPase, Iron homeostasis, Cell growth, Development, Legionella
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Introduction
The natural resistance-associated macrophage protein (Nramp) or

solute carrier 11 (Slc11) family includes functionally related

proteins defined by a conserved hydrophobic core of ten-twelve

transmembrane domains. All members are proton-coupled

transporters that facilitate absorption of divalent metal ions,

including Fe2+, Mn2+, Zn2+, Co2+ and Cd2+ (Courville et al., 2006;

Forbes and Gros, 2001; Nevo and Nelson, 2006;). In mammals two

homologs are found, Nramp1 (Slc11a1) and Nramp2 (Slc11a2 or

DMT1). Nramp1 is found exclusively in macrophages and

granulocytes, is localized in vesicles of the endosomal pathway

and recruited to the phagosomal membrane upon phagocytosis

(Canonne-Hergaux and Gros, 2004; Gruenheid et al., 1997). By

controlling divalent metal concentrations, Nramp1 regulates the

intracellular replication of pathogens. In mice, naturally occurring

or experimentally induced mutations in Nramp1 cause

susceptibility to infections by invasive bacteria. Mutations in

humans may genetically predispose an individual to diseases,

including tuberculosis, leishmaniasis and autoimmune diseases

(Courville et al., 2006; Li et al., 2011; Malik et al., 2005; Nevo and

Nelson, 2006; Taylor and Kelly, 2010; Velez et al., 2009; Wick,

2011). In contrast to Nramp1, Nramp2 is localized in the plasma

membrane of cells in several tissues, particularly the apical

membrane of intestinal and renal epithelial cells, and is the major

transferrin-independent iron uptake system in mammals (Canonne-

Hergaux et al., 1999; Courville et al., 2006; Theil, 2011).

Alternative splicing gives rise to Nramp2 isoforms, which are

mainly found in recycling endosomes, and are required in

combination with Nramp1 for efficient iron recycling (Lam-

Yuk-Tseung and Gros, 2006; Soe-Lin et al., 2010). Mutations in

Nramp2 are responsible for microcytic anemia and serum and

hepatic overload (Iolascon and De Falco, 2009). Genetic studies in

rodents have shown that Nramp2 is essential for survival and a

critical threshold of the protein is necessary to protect against

disorders of iron and manganese homeostasis (Fleming et al.,

1997; Gunshin et al., 2005).

Nramp proteins are widely distributed in eukaryotes and

prokaryotes (Courville et al., 2006). Based on sequence analysis

Richer et al. (Richer et al., 2003) have distinguished prototypical

Nramps, present in amoebae, yeasts, plants and invertebrates,

from archetypical Nramps, which can be also found in these

species but are the only homologs present in vertebrates,

including mammalian Nramp1 and 2. In Gram-positive and

Gram-negative bacteria, the Nramp superfamily is represented by

the proton-dependent manganese transporter (MntH) family

(Papp-Wallace and Maguire, 2006; Richer et al., 2003).

The genome of the social amoeba Dictyostelium discoideum

harbours two nramp genes. The first gene product that was
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characterized was called Nramp1, as it displayed all the
properties of the mammalian ortholog (Peracino et al., 2006).

Similarly to mammalian Nramp1, Dictyostelium Nramp1 was
expressed in vesicles of the endolysosomal pathway, was
recruited to phagosomes, and its inactivation affected
susceptibility to infection by Legionella and Mycobacterium.

The protein was found to be required for H+-dependent iron
export in isolated phagosomes (Peracino et al., 2006), favoring
the notion of iron depletion from the phagosome, as originally

suggested for mammalian Nramp1 (Forbes and Gros, 2001).
Although Fe2+ in phagolysosomes can produce hydroxyl radicals
via Fenton reaction, thus potentially killing bacteria, depletion of

the iron pool from the phagosome deprives pathogenic bacteria of
metal ions that are critical for their survival. Invasive bacteria,
such as Legionella pneumophila, Mycobacterium tuberculosis or
Salmonella enterica serovar Typhimurium are known to absorb

large amounts of iron, while at the same time they are resistant to
oxygen radicals (Henard and Vazquez-Torres, 2011; Johnson and
Wessling-Resnick, 2012; Kortman et al., 2012; Moalem et al.,

2004; Robey and Cianciotto, 2002; Slauch, 2011). Recently, we
also showed that L. pneumophila hinders recruitment of the V-
H+-ATPase, but not Nramp1, in the Legionella-containing

vacuole in a process apparently involving inhibition of
phosphatidylinositol-3-phosphate formation. By avoiding
colocalization of V-H+-ATPase with Nramp1 in the same

vesicle, Legionella neutralizes the proton-driven iron export via
Nramp1, and may even turn the protein activity to its advantage
(Peracino et al., 2010).

Nramp1 is one of a few genes that have been implicated in

Dictyostelium innate immunity against pathogenic bacteria
(Bozzaro and Eichinger, 2011; Chen et al., 2007; Cosson and
Soldati, 2008; Sillo et al., 2008; Steinert, 2011). Dictyostelium

cells are professional phagocytes that live in the forest soil as
solitary amoebae and grow by grazing on different species of
bacteria (Bozzaro et al., 2008; Kessin, 2001). Depending on

bacteria as the obligate source of food, Dictyostelium can also be
a natural host of pathogenic bacteria, and several pathogens that
only occasionally infect humans, including L. pneumophila, M.

tuberculosis, Salmonella typhimurium, Neisseria meningitidis or

Pseudomonas aeruginosa, have been shown to be pathogenic also
for Dictyostelium (Bozzaro and Eichinger, 2011; Colucci et al.,
2008; Hagedorn et al., 2009; Lima et al., 2011; Sillo et al., 2011;

Steinert, 2011). The solitary Dictyostelium amoebae enter a
social phase of life upon depletion of the food source. Starvation
induces a developmental process, whereby cells assemble into

multicellular aggregates by chemotaxis, giving rise to elongated
slugs, where cells undergo differentiation into prestalk and
prespore cells. After a period of migration, the slugs culminate

and form fruiting bodies, each consisting of a stalk of vacuolated
dead cells, bearing at the top a ball of mature spores (Kessin,
2001). During development, cells do not ingest external nutrients
and are bound to recycle intracellular material, mostly by

autophagy and protein degradation, for acquiring the energy and
synthesizing all the cellular components required for
development and cell differentiation (Kessin, 2001; Otto et al.,

2003).

In this paper, we have characterized the second nramp gene of
Dictyostelium, thus called nramp2. The nramp2 gene is

maximally expressed during the aggregation phase of
development. We show that the protein is exclusively localized
in the contractile vacuole network, a tubular-vesicular network

regulating osmolarity (Clarke et al., 2002; Clarke and Heuser,
1997; Heuser et al., 1993). By generating single and double
nramp1/nramp2 knockout mutants, we show that Nramp2, like

Nramp1, is required for resistance to invasive bacteria, and that
the double mutation leads additionally to a strong delay in
aggregation and to formation of multi-tipped aggregates. Under

conditions of iron overload or depletion, growth of single or
double KO mutants is differentially affected, suggesting that the
Nramp proteins regulate synergistically iron homeostasis.

Results
Characterization and developmental expression of the
nramp2 gene

The Dictyostelium genome contains two genes, both located in
chromosome 2, with evident sequence homology to genes of the
Nramp superfamily. The nramp1 gene (DDB_G0276973) is the

ortholog of mammalian nramp1 and was characterized previously
(Peracino et al., 2006; Peracino et al., 2010). The nramp2 gene
(DDB_G0275815) encodes a putative integral membrane protein

with 12 transmembrane domains and a Mr of 70 kDa, 10 kDa
larger than Nramp1 (Fig. 1). The DNA sequence is intronless, in
contrast to nramp1, which harbours an intron at position 199–

309. The protein sequence shares 38% identity and 75%
similarity with Nramp1, and the similarity, as expected, is low
in the N- and C-terminal outer membrane sequences (Fig. 1).
Blast analysis against reference proteins placed Nramp2 within

the Nramp superfamily (Fig. 2). It is phylogenetically closer to a-
proteobacteria MntH and to Nramp proteins from yeast, fungi and
protists than to the Slc11 family, to which instead Nramp1

belongs (Fig. 2) (Richer et al., 2003). We extended this analysis
to include all Nramp1 and Nramp2 homologs encoded in
sequenced genomes of Dictyosteliaceae. As shown in Fig. 2,

Nramp1 and Nramp2 homologs from D. discoideum, D.

purpureum, D. fasciculatum, D. lacteum and Polysphondylium

pallidum cluster in two relatively distinct groups. This is in sharp
contrast with other lower eukaryotes, such as Chlamydomonas

rheinardtii, and Saccharomyces cerevisiae, which harbor
respectively 2 and 3 Nramps, forming in both cases, however,
a single group (Fig. 2). Arabidopsis thaliana possesses 6 Nramps

clustering in two groups, both of which are more closely related
to Dictyostelium Nramp1 than Nramp2.

Whereas nramp1 gene expression is higher during growth and
declines upon starvation remaining at low level during

development (Fig. 3) (Peracino et al., 2006), nramp2 gene
expression was very low during growth, increased during the
first 6 hours of development and declined after formation of tight

aggregates (Fig. 3). This pattern is similar to that revealed by
RNA-seq analysis, available from the Dictyostelium webpage
(www.dictybase.org).

Nramp2 is a resident membrane protein of the
contractile vacuole

To determine the cellular localization of Nramp2 we cloned the
gene and generated a chimeric protein with green fluorescence
protein (GFP) fused at the C-terminus. Nramp2(C)-GFP

homogeneously labeled the membrane of the contractile
vacuole (CV) network (Fig. 4A). In living cells plated on glass,
the CV network, made of branched vesicles and tubules, is

typically located near the ventral surface of the cell, and extends
over a large area close to the plasma membrane, as can be better
appreciated in a 3D reconstruction (supplementary material
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Movie 1). In higher confocal sections, no labeling was observed,

except for peripheral vesicles of the CV adjacent to the plasma

membrane (Fig. 4A). These results suggest that Nramp2 is a

selective marker of the contractile vacuole. For comparison, cells

expressing GFP-fused Nramp2 or Nramp1 and stained with

antibodies against the vatA subunit of the V-H+-ATPase are

shown (Fig. 4C). The V-H+-ATPase is a major component of the

CV membrane, besides being also transiently recruited to

endolysosomes (Bracco et al., 1997; Clarke et al., 2002;

Gerisch et al., 2002; Peracino et al., 2006), whereas Nramp1 is

not expressed in the CV, but in the Golgi, in tiny vesicles

trafficking between Golgi and plasma membrane, and transiently

in endo- and phagosomes (Peracino et al., 2006). Accordingly,

Nramp1 colocalized with VatA in some vesicles in upper

sections, but not in the lower CV (Fig. 4B), whereas there was

full colocalization of VatA and Nramp2 in the CV, not however

in VatA-positive vesicles in the upper sections (Fig. 4B).

The plasma membrane was usually devoid of Nramp2-GFP,

although a clearly labeled rim all over the membrane was

observed in some cells (Fig. 4C). This is very likely an artifact

due to overexpression of the GFP-fused protein or to the cell

adhering strongly to the substratum, as it was observed only in a

minority of such cells. To further exclude in any case the

possibility that Nramp2 is a plasma membrane protein, we

incubated cells with TRITC-dextran for 5 min, washed the cells

and followed macropinosome formation, with particular attention

to cells expressing Nramp2-GFP in the plasma membrane. When

macropinocytic cups and vesicles are formed, most membrane

proteins are entrapped, at least transiently, in the endocytosed

membrane. We never observed Nramp2-GFP decorating TRITC-

filled macropinosomes, whether or not there was any Nramp2-

GFP labeling of the plasma membrane (Fig. 4C,D). This is in

sharp contrast with Nramp1 or the VatA subunit of the vacuolar

ATPase, which were transiently recruited from internal stores to

TRITC-containing vesicles shortly after uptake (Fig. 4C,D)

(Clarke et al., 2002; Clarke et al., 2010; Peracino et al., 2006).

Cells were also incubated with neutral red, which stains acidic

vesicles. As shown in Fig. 4E, no Nramp2-GFP decorated

vesicles turned red, in contrast to Nramp1-GFP. Thus we

conclude that Nramp2 expression is confined to the contractile

vacuole, and the protein is in any case excluded from the endo-

lysosomal pathway.

Differential effects of single and double nramp gene

disruption on development

We generated single nramp2 and double nramp1/2 KO mutants

by using the Cre-loxP system (Kimmel and Faix, 2006) as

detailed in supplementary material Fig. S1. The mutants were

tested for growth in axenic medium and on N-agar with

Escherichia coli B/r or for development on phosphate agar.

Growth was not affected. All mutants were able to develop and

form fruiting bodies, but developmental timing and fruiting body

morphology were altered, particularly in the double mutant.

Compared to the parental AX2 strain, the Nramp1 KO (HSB60)

mutant (Peracino et al., 2006) started to aggregate at about the

same time, but completed aggregation and formed tip mounds

about 3 hours earlier, whereas the timing of postaggregative

development was unaltered (Fig. 5). The Nramp2 KO mutant

started aggregation and formed tip mounds with a 2 hour delay,

but postaggregative development occurred with about the same

timing as the parental strain. The double knockout mutant

displayed a 6 hour delay in the beginning of aggregation till tip

mound formation. Postaggregative development was also slowed

down but to a lesser extent. In contrast to all other strains, the
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Fig. 1. Aminoacid sequence homology of Dictyostelium discoideum

Nramp1 and Nramp2. Both sequences were aligned using the

MacVector ClustalW program (Blosum matrix). Identical residues are

marked by asterisks and residues with strongly or weakly similar

properties with double and single points, respectively. Consensus

transmembrane domains, inferred from alignment with other Nramp

proteins (Czachorowski et al., 2009), are indicated by black bars.
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double mutant formed larger aggregating streams on phosphate

agar, which led to formation of large multitipped aggregates

(Fig. 5A,B). Despite aggregate fragmentation due to multiple tip

formation, the density of fruiting bodies was markedly reduced

compared to the parental strain, and the fruiting bodies were on

the average taller, though the proportion between sori and stalks

was maintained (Fig. 5C,D). Expressing either Nramp1 or

Nramp2-GFP in the double mutant led to rescue of both

developmental timing and aggregate morphology compared to

the single mutants expressing either Nramp1- or Nramp2-GFP,

respectively.

Differential effects of iron depletion or overload on mutant

growth in minimal medium

The Nramp proteins are proton-driven divalent metal

transporters, with a preference for iron and manganese. We

have shown this to apply also for Dictyostelium Nramp1

(Peracino et al., 2006), and we assume that Nramp2 also

displays this function, based on the conserved protein sequence

and general protein structure. As a first step to assess potential

effects of nramp1 or nramp2 gene disruption on iron

homeostasis, we tested the effects of iron on cell growth, by

assaying growth in a minimal FM medium, containing

aminoacids, vitamins, glucose and essential trace elements,

previously shown to support Dictyostelium cell growth (Franke

and Kessin, 1977). The FM medium contained 0.1 mM FeCl3.

We used the same recipe, but either omitted iron or added 0.01,

0.1 or 0.2 mM FeCl3. AX2 or mutant cells exponentially growing

in AX2 medium were diluted 100-fold in minimal medium to an

initial concentration of 3–56104 cells per ml, and growth was

assessed under shaking over a period of 2 to 4 weeks. Despite

variability in the absolute values from experiment to experiment,

the trend was similar. In culture medium without added iron, only

the parental AX2 cells displayed steady though slow growth, with

a doubling time of about 35–40 hours, reaching a density of

16106 cells per ml after 168624 hours (Fig. 6). The AX2 cells

underwent on the average five to six duplications before reaching

a plateau. The single as well as the double nramp1/nramp2 KO

mutants grew only up to 1–26105 cells per ml during the first 72

to 96 hours incubation (doubling time: 36 to 45 hours), but then

stopped growing (Fig. 6). Minimal medium supplemented with

0.01 (not shown) or 0.1 mM iron (Fig. 6) supported growth of

AX2, single and double-null mutants, with all strains reaching a
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Fig. 2. Phylogenetic relationship of Dictyostelium discoideum Nramp1

and Nramp2. Dictyostelium discoideum Nramp1 and Nramp2 sequences

were compared to similar sequences using the MacVector software and

performing multiple sequence alignment with the program ClustalW program

(Blosum matrix). The evolutionary distance was inferred using the neighbor

joining method. The percentage of replicate trees in which the associated taxa

clustered together in the bootstrap test (1000 replicates) are shown next to the

branches. Only a few selected sequences close to each protein are shown.

Dictyostelium Nramp1 and Nramp2, together with homologs from the other

Dictyosteliaceae, whose genomes have been sequenced, cluster in two

different groups, the first closer to Nramp proteins of the Slc11a family and

the second to yeast SMF and a-proteobacteria MntH family.

Fig. 3. Nramp1 and nramp2 gene expression during Dictyostelium

development. Axenically growing AX2 cells were washed (t0) and starved in

Sorensen phosphate buffer under shaking for 6 hours (t6 corresponding to the

aggregation stage) or plated on Sorensen phosphate agar. Cells were collected

at t0 and t6 from shaking cultures or from agar at: (m) mound stage, (ff) first

finger stage, and (pc) preculminant stage. RNA was extracted and amplified

with appropriate primers as described in Materials and Methods. Fold changes

at each time point are relative to the constitutively expressed histone H3 gene

as internal control. Mean values of three experiments with error bars.
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concentration of 16107 cells per ml after 168 to 196 hours

incubation. At a concentration of 0.2 mM iron, growth was

inhibited in all strains, more strongly in the parental strain, but

remarkably less so in the double null mutant, which was the only

one able to steadily grow to 36106 cells per ml after 168 hours of

incubation, with an average doubling time of about 26 hours

(Fig. 6). After two doublings in the first 48 hours, the Nramp2

KO mutant strain took a further 120 hours to undergo a third

doubling. The Nramp1 mutant and the parental AX2 strain

doubled once in the first 24 hours and then needed about 100 and

140 hours, respectively, to double a second time. Thus it appears

that 0.2 mM iron is somewhat toxic, particularly for wild type

cells, whereas the double null mutant is relatively resistant. In

contrast, all three mutants are much more sensitive to iron

shortage than the parental strain. Cells transferred from axenic to

the minimal medium contain iron released from digestion of

peptone and yeast extract, and traces of iron are possibly

available in the minimal medium even without added iron, thus it

is not surprising that cells may undergo some duplication rounds.

The results suggest nevertheless that inactivating either nramp1
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Fig. 4. Dynamics of Nramp2 and Nramp1 in cells visualized with GFP fusion protein. (A) Confocal GFP fluorescence sections merged with corresponding

phase contrast through living AX2 cells expressing Nramp2(C)-GFP. The numbers indicate distance from the bottom surface of the cell. Nramp2(C)-GFP labels

homogeneously vesicles interconnected by tubules and localized at the bottom region of the cell close to the substratum, which is typical of the contractile vacuole.

In upper regions no labeling independent of the contractile vacuole is observed. (B) Confocal GFP fluorescence sections merged with corresponding phase

contrast of methanol-fixed AX2 cells expressing either Nramp2(C)- or Nramp1(C)-GFP and costained with antibodies against the VatA subunit of the V-H+-

ATPase. The Nramp2-decorated vesicles in the bottom region colocalize fully with the VatA-labeling, confirming that this structure is the contractile vacuole. The

V-H+-ATPase subunit is also found in endolysosomal vesicles in the upper region that are not labeled by Nramp2(C)-GFP, indicating that Nramp2 is not expressed

in endolysosomes. Nramp1 is not found in the contractile vacuole but in a cluster around the nucleus (Golgi) and in some vesicles colabeled with anti-VatA

antibodies. Notice that methanol fixation affects in part Nramp1 and Nramp2-GFP fluorescence. Bars: 5 mm. (C) Confocal GFP fluorescence merged with

corresponding phase contrast of living AX2 cells expressing either Nramp2(C)- or Nramp1(C)-GFP. The cells were incubated for 5 minutes with TRITC-dextran,

washed and plated on glass coverslips for the indicated chase time. In contrast to Nramp1-GFP, which decorates TRITC-dextran containing vesicles (arrowheads),

Nramp2-GFP fails to colocalize with TRITC-dextran, even in cells with a thin fluorescent rim of Nramp2-GFP on the plasma membrane. (D)The number of

TRITC-dextran positive vesicles decorated with GFP-fused Nramp1, Nramp2 or the vatB subunit of the vacuolar ATPase was plotted over time. For each time

point an average of 50 macropinosomes and 15 cells were counted. Mean values of three independent experiments with error bars are shown (data for the VatB

subunit and Nramp1 are reported from Peracino et al. (Peracino et al., 2006). (E) Confocal sections of cells expressing Nramp1(C)- or Nramp2(C)-GFP incubated

with neutral red, a marker of acidic vesicles. Red, green fluorescence and merge with corresponding phase-contrast are shown sequentially. Nramp2 fails to

colocalize with acidic vesicles, in contrast to Nramp1, which decorates some vesicles (arrowheads). Bars: 5 mm.
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or nramp2 renders the cells more sensitive than wild type cells to

conditions of iron depletion. In contrast, inactivating both genes

results in increased resistance to iron overload.

Nramp2, like Nramp1, is required for resistance to L.

pneumophila infection

We showed previously that Nramp1 KO mutants were more

susceptible to infection by L. pneumophila and Mycobacterium

avium (Peracino et al., 2006; Peracino et al., 2010). This

prompted us to test whether disrupting Nramp2 also affected

resistance to invasive bacteria and whether the double mutation

resulted in any additional effect. Cells were incubated with L.

pneumophila and the rate of bacterial growth was assessed by the

CFU (Colony Forming Unit) method. Despite high variation in

the absolute values from experiment to experiment, the trend was

similar in four different tests, as shown in the representative

experiment in Fig. 7. The bacteria proliferated as well in the

single nramp2- as in the nramp1-null mutant, and significantly

better than in the parental AX2 strain. The double mutant

behaved similarly to the single mutants up to 72 hours of

infection, thereafter bacterial proliferation consistently declined.

Visual examination showed, however, that at 96 hours there were

clearly more extracellular bacteria in the medium containing cells

of the double mutant than the single mutants, yet this finding

escaped CFU detection. Since CFU measures viable bacteria, and

the culture medium used for the infection assay does not support

bacterial proliferation (Fig. 7) (Hägele et al., 2000; Peracino et al.,

2006), these results are consistent with the hypothesis that

between 72 and 96 hours of infection a higher number of cells

undergo lysis in the double knockout than in the single mutants,

releasing more bacteria into the medium. Because the released

bacteria die in the assay medium, their higher number is not

reflected in the subsequent CFU counts. Attempts to measure

bacterial proliferation using GFP-labeled bacteria in

fluorescence-activated flow cytometry failed, as GFP

expression diminished drastically after 48 h of incubation.
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Fig. 5. Effects of single or double gene disruption on development.

Starving cells of parental strain and mutants were plated on non-

nutrient Sorensen-phosphate agar and development was monitored

over time in a stereomicroscope. Top panel: the time (in hours) needed

for beginning of stream formation (aggregation) or appearance of

tipped aggregates, first fingers, pre-culminants and mature fruiting

bodies is indicated for each mutant. (Mean of two experiments. The

standard deviation was of61 hour or 2 hours for aggregation or the

other developmental stages, respectively.) Bottom panels:

developmental phenotype of the double mutant. (A) Cells aggregating

after 12 hours starvation formed very large streams and (B) multi-

tipped aggregates. (C) On the average taller fruiting bodies, but of

reduced number, were formed, compared with (D) AX2 parental

strain. Bars: 1 mm.

Fig. 6. Effects of single or double gene disruption on growth in minimal

medium with or without FeCl3 supplementation. Exponentially growing

cells were diluted in minimal medium with or without the indicated amount of

iron chloride, incubated under shaking and counted for growth at the indicated

times. In the absence of iron, cell growth was blocked after 1 or 2 generations

in all mutants, whereas the parental AX2 strain was able to replicate for 4–5

generations, albeit very slowly. All strains grew well with 0.1 mM iron,

whereas with 0.2 mM iron growth was depressed in all strains, but much less

so in the double mutant. Mean values of at least three experiments with s.e.m.

are shown. The asterisks denote significant difference (one-tailed t-test

assuming unequal variance: P,0.05) between AX2 versus the double mutant

in the first graph (no iron) or the double mutant versus AX2 in the third graph

(0.2 mM iron).
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Discussion
The strong conservation in sequence and overall transmembrane

structure in the Nramp family reflects the fact that proton-driven

metal cation transport is conserved from prokaryotes to higher

eukaryotes (Courville et al., 2006; Czachorowski et al., 2009).

Iron is vital for all cells, as it modulates the cellular redox

potential and regulates key cellular processes, from electron and

oxygen transport to energy metabolism and DNA synthesis

(Hentze et al., 2010; Kakhlon and Cabantchick, 2002; Schaible

and Kaufmann; 2004). Despite the phylogenetic conservation of

the Nramp proteins, D. discoideum is unusual in that it contains

to distant Nramp proteins, Nramp1 in the Slc11 family, and

Nramp2 which is more closely related to yeast SMF, C.

rheinardtii Nramp and to a-proteobacteria MntH proteins. We

have shown this to be true for all five Dictyostelids whose

genomes have been sequenced. This is in sharp contrast with

other lower eukaryotes harbouring more than one Nramp

paralogs, such as C. rheinardtii, S. cerevisiae or A. thaliana,

whose Nramp proteins form in each case a single cluster or, in the

case of A. thaliana, two different, but very closely related

clusters. It has been suggested that Nramp proteins originated in

prokaryotes and were transferred endosymbiotically to the

eukaryotic nucleus. Horizontal gene transfer from eukaryotes to

prokaryotes has also been hypothesized to justify unexpected

sequence diversity in MntH phyletic groups (Richer et al., 2003),

and could explain the surprisingly closer similarity of

Dictyostelid Nramp2 to a-proteobacterial homologs than to

other bacterial MntH sequences. If the Slc11 Nramp family

derived from a duplication from an ancient Nramp, as is likely

(Richer et al., 2003), then Dictyostelium offers a unique

opportunity to study the evolutionary divergence of these two

types of Nramp proteins coexisting in a single organism.

The cellular localization of the Nramp1 and Nramp2 is very

different. Like mammalian Nramp1, Dictyostelium Nramp1

shuttles from the Golgi to the endolysosomal pathway, being

recruited to phagosomes and macropinosomes shortly after their

closure and recruitment of the V-H+-ATPase. Colocalization of
V-H+-ATPase and Nramp1 in the membrane generates the right

conditions for proton-driven transport of iron and other metals
from such vesicles to the cytosol, exactly as occurs for vertebrate

Nramp1 (Courville et al., 2006; Peracino et al., 2006). Nramp2 is
instead expressed selectively in the membrane of the contractile
vacuole network, which regulates osmolarity. As soil amoebae

living in the forest Dictyostelium cells are exposed to sudden
changes of osmotic conditions, so that water regulation is critical

for their survival. The contractile bladder and tubular network
fills with water and swells under hypoosmotic conditions, giving

rise to larger vacuoles that fuse with the plasma membrane to
discharge excess fluid. Under hyperosmotic conditions, the
cisternae flatten and the tubules get narrow (Clarke and Heuser,

1997; Gerisch et al., 2002; Heuser et al., 1993). With a
functioning CV, cells submerged in water survive, acquire the

typical amoeboid shape and can also undergo development,
whereas they rapidly round up and lyse if the CV cannot fulfil its
function (Du et al., 2008; Gerald et al., 2002; Myre et al., 2011).

The CV membrane is studded with vacuolar H+-ATPase, which
pumps protons into the lumen. Cells possess also a cytoplasmic

carboanhydrase and a bicarbonate transporter in the CV
membrane (Giglione and Gross, 1995; Heuser et al., 1993). It

has been suggested that production of bicarbonate from CO2 by
the carbonic anhydrase and cotransport of the anion with protons
into the lumen of the CV generate osmotically active carbonic

acid that could draw water into the vacuole (Clarke and Heuser,
1997; Heuser et al., 1993).

The finding that V-H+-ATPase and Nramp2 co-localize in the
CV membrane is suggestive of a potential role of the contractile
vacuole in homeostasis of iron, and possibly other divalent

metals. In the wild the major source of iron for Dictyostelium

cells is very likely the engulfed bacteria. We propose that iron,

released after phagocytosis and digestion of bacteria (or ingested
with peptone and yeast extract by macropinocytosis, in the case

of laboratory axenic strains) is reduced to Fe2+ in phago- or
macropinolysosomes and transported via Nramp1 to the cytosol,
where it can be used for cellular functions. Excess free iron could

be transported in the CV that could thus function as a store or
sink for the labile iron pool. The colocalization of Nramp1 or

Nramp2 with the V-H+-ATPase in phagolysosomes or the
contractile vacuole, respectively, could explain vectorial
transport by a common mechanism, namely electrogenic

potential driven by the proton pump (Fig. 8). It is established
for mammalian Nramp1 and Nramp2 (Courville et al., 2006),

Dictyostelium Nramp1 (Peracino et al., 2006), and for bacterial
and yeast homologs of Dictyostelium Nramp2 (Courville et al.,

2006), that the proton gradient generated by the vacuolar ATPase
favors iron export from vesicles, such as phagolysosomes or
yeast vacuoles, via Nramp. In the case of Dictyostelium Nramp2,

this mechanism of action would imply iron efflux from the
contractile vacuole into the cytosol (Fig. 8). One objection to this

mechanism is that the pH in the CV lumen is neutral, possibly
due to proton buffering by cotransported bicarbonate (Clarke and

Heuser, 1997; Giglione and Gross, 1995). It is possible however
that a slight DpH across the CV membrane is present, which
could be sufficient for iron efflux via Nramp2. In this context it is

worth mentioning that a P-type Ca2+ ATPase (PAT1) is also
localized to the CV and is involved in V-H+-ATPase-dependent

Ca2+ sequestration (Moniakis et al., 1999), as well as efflux to the
cytoplasm, although it is unclear how the latter is regulated
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Fig. 7. Effects of single or double gene disruption on infection by

Legionella pneumophila. AX2 parental strain and mutants were infected with

L. pneumophila (L.p.) and intracellular growth of the bacteria was assessed by

the CFU assay at the time indicated in the abscissa. In medium without cells,

the bacteria do not survive. Mean values of a representative experiment in

duplicate with error bars are shown. The asterisks denote significant

differences compared to the parental strain for all three mutants at times 48

and 72 hours, and at time 96 hours for the Nramp1- and Nramp2-null mutant

only (one-tailed t-test assuming unequal variance: P,0.05). The trend in four

different experiments was similar, although the absolute values varied

strongly from experiment to experiment.
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(Malchow et al., 2006). In any case a role for Nramp2 in

mobilizing iron from the contractile vacuole is suggested by the

iron-limited growth as well as the developmental delay of the

nramp2-null mutant. If the model in Fig. 8 is correct, it can be

speculated that Dictyostelium Nramp2 plays a role similar to the

Nramp homologs in yeast (SMF3) or A. thaliana (AtNramp3 and

AtNramp4), which mobilize iron from their respective vacuoles

(Portnoy et al., 2000; Lanquar et al., 2005).

We have shown that disrupting nramp1, nramp2 or both has

pleiotropic effects on development, cell growth under iron

overload or shortage and on resistance to L. pneumophila. The

developmental phenotypes are more difficult to correlate with

specific defects in iron homeostasis, as very little is known in this

regard in Dictyostelium. Development occurs in a simple salt

solution made of Na- and K-phosphate, and can also occur in

water. Exogenous iron or other metals are not essential, thus iron

that is certainly required for mitochondrial activity and other

iron-linked enzymatic activities is all fuelled by endogenous

store. It is of interest that Nramp1 gene expression is

downregulated during development, whereas Nramp2

expression is upregulated during the first 6 hours of

development, coincident with the aggregation stage, and

downregulated after formation of tight aggregates. Consistent

with this regulation, Nramp1 gene disruption has little effect on

development, resulting only in a slight acceleration of

development, whereas inactivating Nramp2 delays the

beginning of aggregation by 2 hours. Inactivating both genes

results in a much stronger delay in cell aggregation, in large

streaming aggregates and multitipped mounds. Despite

fragmentation following multitip formation, fewer but on
average taller fruiting bodies are formed in the double mutant

compared to the parental strain. This phenotype can be explained
by assuming that development of the aggregation competence is
inhibited in the double mutant, such that fewer cells in the
population are able to initiate autonomous cell-cell signaling that

is required for chemotaxis and aggregation. It can be speculated
that altered iron homeostasis affects mitochondrial activity which
is necessary for proceeding in development. It is worth

mentioning that starvation induces upregulation of
mitochondrial enzymes, such as the citrate synthase. In
addition, many Krebs cycle as well as oxidative

phosphorylation enzymes and the iron-sensing aconitate
hydratase are strongly upregulated during stream formation and
aggregation up to the mound stage (Czarna et al., 2010). Thus,
reduced mitochondrial efficiency, as a consequence of defective

iron storage during growth and/or mobilization during
development, could explain the delay of the single Nramp2
mutant and the developmental phenotype of the double mutant. It

is suggestive that large streams and multitipped aggregates are
also a common phenotype of autophagy mutants (Otto et al.,
2003; Tung et al., 2010). Defective autophagy could also result in

altered oxidative phosphorylation, as autophagy is required for
recycling of intracellular components during Dictyostelium

development (Otto et al., 2003).

The major effect of nramp1 inactivation is increased

susceptibility to infection by L. pneumophila and M. avium

(Peracino et al., 2006), resembling in this regard the effects of
mutated mammalian Nramp1 (Cellier et al., 2007). Inactivating

nramp2 or both genes also leads to increased sensitivity to
Legionella infection compared to the parental strain, with the
double mutant being very likely more affected, although this was

not reflected in increased bacterial proliferation when measured
by the CFU method. As mentioned in the results, this may be due
to the CFU assay measuring bacteria that were viable at the time

of the assay and not bacteria that had been released prior to the
assay but subsequently died in the inhospitable culture medium.
Thus it appears that any alteration of iron homeostasis via
Nramp1 or Nramp2 disruption facilitates intracellular growth of

Legionella. Whether this holds true also for M. avium is currently
under study. In the absence of Nramp1, iron export from
phagosomes or macropinosomes is strongly reduced (Peracino

et al., 2006), thus it is conceivable that disruption of the nramp1

gene will lead to increased iron accumulation in the Legionella-
containing macropinosome, a condition favoring Legionella

growth (Robey and Cianciotto, 2002). How can inactivation of
Nramp2, which is localized in the contractile vacuole, have a
similar effect, if Nramp1 is active? We have recently shown that

Legionella effectively hinders recruitment of the V-H+-ATPase,
but not Nramp1, to the Legionella-containing macropinosome
(Peracino et al., 2010). In the absence of the vacuolar ATPase,
Nramp1 pumping activity is neutralized, and iron may be

sequestered by the Legionella (Peracino et al., 2006). Under
these conditions, if Nramp2 is not functioning it is possible that
cytosolic iron deficiency may affect basic cell functions, favoring

Legionella growth.

In contrast to pathogens, non-pathogenic bacteria, such as E.

coli, are taken up and digested at about the same rate by the

mutants as well as the parental strain. Cell growth in either axenic
medium, presumably containing about 0.05 mM Fe (Franke and
Kessin, 1977), or minimal medium supplemented with 0.01 to
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Fig. 8. Model for the function of Nramp1 and Nramp2 and of the

contractile vacuole (CV) in iron homeostasis. Nramp1 is recruited to

phagosomes after bacterial uptake and recruitment of the V-H+-ATPase to the

phagosomes, whereas Nramp2 and the V-H+-ATPase are resident proteins of

the CV network. Acidification by the V-H+-ATPase leads to a proton gradient

in the phagosome that favors cotransport to the cytosol of ferrous ions

deriving from bacterial degradation (or digestion of peptone and yeast extract

in case of growth in axenic medium). Iron is required for cellular functions,

particularly in mitochondria. We suggest that the contractile vacuole act as a

store/sink for labile iron, with sporadic or induced CV fusion with the plasma

membrane leading to iron excretion. Iron can be transported across the CV

membrane via Nramp2, and the directionality of this transport is regulated by

the V-H+-ATPase, which can provide the electrogenic potential across the

membrane for iron influx into the cytosol, similar to what occurs in the

phagosome. It is worth mentioning however that the pH in the CV lumen is

mostly neutral (Giglione and Gross, 1995), therefore it is open to what extent

this mechanism is constitutively active or efficient.
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0.1 mM iron chloride, is also not dramatically affected by

nramp1 or nramp2 gene inactivation. In contrast, the single and

double mutants are much more sensitive than the wild type strain

to iron depletion and less sensitive, particularly the double

mutant, to iron overload. Both results are consistent with the

assumption that inactivating Nramp1, Nramp2 or both leads to

lower accumulation of cytosolic iron, decreasing iron availability

for cellular functions. As a consequence, when shifted from

axenic medium to conditions of iron shortage the mutant cells

deplete their free iron reserves more rapidly and stop growing

after 1–2 duplications, whereas the parental wild type strain is

able to sustain about 5–6 duplication rounds. In the case of iron

overload, growth is strongly reduced in all strains, but the double

mutant is more resistant to excess iron than the wild type strain

and is able to grow, albeit slowly. Indeed, under the experimental

conditions of this study most iron is very likely taken up via

macropinocytosis, a process that is not affected by disruption of

nramp1 or nramp2. However, Nramp1 loss is expected to

strongly reduce iron release from the macropinosomes to the

cytosol, as iron transport across the phagosomal membrane was

found to be inhibited in nramp1-KO mutant (Peracino et al.,

2006). In contrast to many mammalian cells, in Dictyostelium the

endolysosomes are not the dead-end of endosomal traffic. Instead

they mature into neutral post-lysosomal vesicles that fuse with

the plasma membrane, releasing their contents. Thus, if Nramp1

is inactive, iron will remain in large part entrapped in

macropinosomes and could be excreted. This can explain the

phenotype of both the single Nramp1 and the double Nramp1/

Nramp2 KO mutant. The higher resistance of the latter to iron

overload, compared to the parental AX2 strain and to the single

mutants, could depend both on less iron leaking from

macropinosomes and from the contractile vacuole, due to

absence of Nramp1 and Nramp2. However, disruption of both

genes may also affect expression of other potential regulators of

iron homeostasis, such as ferritin-like proteins, which appear to

be encoded in the Dictyostelium genome. Cloning and analysis of

these genes will be required for a better understanding of iron

homeostasis in Dictyostelium.

In summary, the described phenotypes can be explained by the

model presented in Fig. 8, according to which Nramp1 and

Nramp2, due to their conserved function, distinct intracellular

location and to colocalization with the vacuolar ATPase,

synergistically regulate proton-driven iron transport across the

phagosomal/macropinosomal membrane and the membrane of

the contractile vacuole.

Material and Methods
Cell and bacterial strains and culture methods

Dictyostelium discoideum parental strain AX2 was used. The Nramp1-null mutant
HSB60 and AX2 cells expressing Nramp1-GFP had been generated previously

(Peracino et al., 2006).

All strains were cultured axenically in either AX2 medium (Watts and
Ashworth, 1970) or minimal medium (Franke and Kessin, 1977), with or without
FeCl3. In both cases, cells were grown in Erlenmayer flasks at 23 C̊ under shaking
at 150 r.p.m. on a gyratory shaker in a climatic cabinet (Kuehner, Basel,

Switzerland) as described (Bussolino et al., 1991). Blasticidin at a concentration of
10 mg/ml was added to knockout mutants. Cells expressing GFP-fused proteins
were cultured in the presence of 10 or 20 mg/ml G418.

For growth and development on nutrient agar, cells were mixed with
Escherichia coli B/2, plated on nutrient agar plates containing peptone and

glucose in Soerensen phosphate buffer and incubated at 23 C̊ (Sillo et al., 2008).
Growth and development were observed in a Wild M3Z stereomicroscope and
pictures were taken with a Bresser PC-Microcular 3.0 MP webcam connected to a
PC-computer, using Webcam Companion 1 software.

Legionella pneumophila Corby expressing GFP was grown on buffered charcoal
yeast extract agar (BYCE) containing 5 mg/ml chloramphenicol and incubated for
72 hours at 37 C̊ and 5% CO2 (Fajardo et al., 2004).

Cell development on non-nutrient agar plates

For synchronizing development, exponentially growing cells were harvested from
culture medium, washed twice in 0.017 M Soerensen Na/K phosphate buffer,
pH 6.0 and resuspended in the same buffer at a concentration of 16107 per ml.
Aliquots of 0.05 ml were plated on agar plates buffered with Soerensen phosphate
buffer at a density of about 36105 cells per cm2, and incubated at 23 C̊ (Bozzaro
et al., 1987).

Infection assays with L. pneumophila

Exponentially growing AX2 and mutant cells were washed, incubated in AX2
medium without maltose and aliquots of 16105 cells were plated in 96-well tissue
culture plates. Freshly collected L. pneumophila were added at a MOI of 1:1 and
immediately centrifuged at 600 g for 10 min at room temperature to synchronize
infection. The number of viable bacteria was calculated by counting the colony
forming units (CFU) per ml immediately after centrifugation and during the
subsequent 96 hours (Bozzaro et al., 2012).

Gene cloning, vector construction for GFP expression and
cell transformation

The nramp2 gene (DDB_G0275815) was cloned starting from the genomic DNA
fragment JC2a11a12 amplified with appropriate primers and cloned in pGEM-
TEasy (Promega, Madison, WI, USA), according to Sambrook et al. (Sambrook
et al., 1989). For fusion with GFP, the Nramp2-coding sequence was amplified
from pGEM-Teasy-Nramp2 and inserted into the EcoRI site of the pDEX-GFPC
vector with Nramp2(C) connected to S65T-GFP by the linker EFKKLK (Westphal
et al., 1997). Cell transformation was done by electroporation (Pang et al., 1999)
and transformants were selected on plates with nutrient medium containing 10 mg/
ml G418.

Construction of single nramp2 and double nramp1/2 knockout mutants

The blasticidin cassette was excised from the pLPBLP(floxed Bsr) vector (Faix
et al., 2004) in SmaI, purified and inserted in the single EcoRV site of the Nramp
gene in pGEM-TEasy-Nramp2. The vector carrying the selectable marker was
linearized from the pGEM-TEasy vector with EcoRI, purified and electroporated in
AX2 cells. The transformed cell population was splitted in 96-well plates and
grown in the presence of 10 mg/ml of blasticidin. Resistant clones were screened
by PCR using appropriate primers. Positive clones were subject to Southern blot
analysis as described (Bracco et al., 1997). After a preliminary phenotypic analysis
of three clones, one clone was treated with pDEX-NLS-cre to transiently express
the CRE recombinase and remove the blasticidin cassette (Kimmel and Faix,
2006). To generate the double mutant, one clone was further transformed with the
linearized Nramp1 gene containing the bsr cassette from the Nramp1-KO vector
(Peracino et al., 2006). Clones were analyzed by PCR and positive ones further
confirmed by Southern blot analysis.

Gene expression analysis by quantitative PCR

Total RNA was extracted with TRIzol, according to manufacturer instructions
(Invitrogen, Carlsbad, CA, USA) from cells at different developmental times and
analyzed by quantitative PCR The RNA was treated with Dnase and retrotranscribed
with random hexamer primers and Multiscribe Reverse transcriptase (High Capacity
cDNA Archive Kit; Applied Biosystems, Foster City, CA), in accordance with
manufacturer’s instructions. Expression levels of nramp1, nramp2 and reference
histone H3 were evaluated with SYBR technology with optimized PCR conditions
and primer concentrations. Primer sequences were as follows: nramp1 FW:
CATCGGCTGCTGATTTCCTTAT, nramp1 RW ATAAACCGATTGCCCAA-
ATGTATT; nramp2 FW: CGAGGTTTTCTCTGGTTTCG, nramp2 RW:
CCAACGATGCCAGTTGCA, H3 FW: CGCACGTAAATCAACTGGTG, H3

RW: GGAAACGAAGATCGGTTTTG. Melting curve analysis and efficiency
evaluation were performed for all the amplicons. Quantitative PCR (qPCR) was
carried-out on an ABI PRISM 7900HT Sequence Detection System (Applied
Biosystems) in 384-well plates assembled by Biorobot 8000 (Qiagen, Germantown,
ML, USA). Baselines and thresholds for Ct calculation were set up manually with
the ABI Prism SDS 2.1 software.

In vivo microscopy, fluorescence imaging and immunofluorescence

Living cells expressing Nramp1(C)- or Nramp2(C)-GFP were incubated with
1 mg/ml TRITC-dextran for 5 min under shaking, washed and plated on 666 cm
glass coverslip equipped with a 5-cm diameter Plexiglas ring. For staining acidic
vesicles, cells were incubated with 0.1 mM Neutral Red. Confocal series images
were taken on an inverted Zeiss LSM510 microscope as described (Peracino et al.,
2006). For immunofluorescence studies, cells were fixed with cold methanol,
incubated with antibodies against the V-H+-ATPase subunit vatA and mounted
with Gelvatol as described (Peracino et al., 1998). TRITC-labeled goat anti-mouse
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(Jackson ImmunoResearch, West Grove, PA, USA) was used as secondary
antibody.
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J. M., Marriott, G. and Gerisch, G. (1997). Microfilament dynamics during cell

movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 7,

176-183.

Wick, M. J. (2011). Innate immune control of Salmonella enterica serovar

Typhimurium: mechanisms contributing to combating systemic Salmonella infection.

J. Innate Immun. 3, 543-549.

Journal of Cell Science JCS116210.3d 28/1/13 10:07:50
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 7.51n/W (Jan 20 2003)

Nramp and iron homeostasis 11

http://dx.doi.org/10.1146/annurev.micro.60.080805.142149
http://dx.doi.org/10.1146/annurev.micro.60.080805.142149
http://dx.doi.org/10.1083/jcb.141.7.1529
http://dx.doi.org/10.1083/jcb.141.7.1529
http://dx.doi.org/10.1083/jcb.141.7.1529
http://dx.doi.org/10.1083/jcb.141.7.1529
http://dx.doi.org/10.1111/j.1600-0854.2005.00356.x
http://dx.doi.org/10.1111/j.1600-0854.2005.00356.x
http://dx.doi.org/10.1111/j.1600-0854.2005.00356.x
http://dx.doi.org/10.1242/jcs.072124
http://dx.doi.org/10.1242/jcs.072124
http://dx.doi.org/10.1242/jcs.072124
http://dx.doi.org/10.1128/MCB.20.21.7893-7902.2000
http://dx.doi.org/10.1128/MCB.20.21.7893-7902.2000
http://dx.doi.org/10.1128/MCB.20.21.7893-7902.2000
http://dx.doi.org/10.1007/s00239-003-2472-z
http://dx.doi.org/10.1007/s00239-003-2472-z
http://dx.doi.org/10.1128/IAI.70.10.5659-5669.2002
http://dx.doi.org/10.1128/IAI.70.10.5659-5669.2002
http://dx.doi.org/10.1038/nrmicro1046
http://dx.doi.org/10.1038/nrmicro1046
http://dx.doi.org/10.1186/1471-2164-9-291
http://dx.doi.org/10.1186/1471-2164-9-291
http://dx.doi.org/10.1186/1471-2164-9-291
http://dx.doi.org/10.1111/j.1462-5822.2011.01662.x
http://dx.doi.org/10.1111/j.1462-5822.2011.01662.x
http://dx.doi.org/10.1111/j.1462-5822.2011.01662.x
http://dx.doi.org/10.1111/j.1365-2958.2011.07612.x
http://dx.doi.org/10.1111/j.1365-2958.2011.07612.x
http://dx.doi.org/10.1016/j.exphem.2010.04.003
http://dx.doi.org/10.1016/j.exphem.2010.04.003
http://dx.doi.org/10.1016/j.exphem.2010.04.003
http://dx.doi.org/10.1016/j.semcdb.2010.11.003
http://dx.doi.org/10.1016/j.semcdb.2010.11.003
http://dx.doi.org/10.1017/S0031182009991880
http://dx.doi.org/10.1017/S0031182009991880
http://dx.doi.org/10.3945/jn.110.127639
http://dx.doi.org/10.3945/jn.110.127639
http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x
http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x
http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x
http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x
http://dx.doi.org/10.1016/S0960-9822(97)70088-5
http://dx.doi.org/10.1016/S0960-9822(97)70088-5
http://dx.doi.org/10.1016/S0960-9822(97)70088-5
http://dx.doi.org/10.1016/S0960-9822(97)70088-5
http://dx.doi.org/10.1159/000330771
http://dx.doi.org/10.1159/000330771
http://dx.doi.org/10.1159/000330771

	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Fig 7
	Fig 8
	Ref 1
	Ref 2
	Ref 3
	Ref 4
	Ref 5
	Ref 6
	Ref 7
	Ref 8
	Ref 9
	Ref 10
	Ref 11
	Ref 12
	Ref 13
	Ref 14
	Ref 15
	Ref 16
	Ref 17
	Ref 18
	Ref 19
	Ref 20
	Ref 21
	Ref 22
	Ref 23
	Ref 24
	Ref 25
	Ref 26
	Ref 27
	Ref 28
	Ref 29
	Ref 30
	Ref 31
	Ref 32
	Ref 33
	Ref 34
	Ref 35
	Ref 36
	Ref 37
	Ref 38
	Ref 39
	Ref 40
	Ref 41
	Ref 42
	Ref 43
	Ref 44
	Ref 45
	Ref 46
	Ref 47
	Ref 48
	Ref 49
	Ref 50
	Ref 51
	Ref 52
	Ref 53
	Ref 54
	Ref 55
	Ref 56
	Ref 57
	Ref 58
	Ref 59
	Ref 60
	Ref 61
	Ref 62
	Ref 63
	Ref 64
	Ref 65
	Ref 66
	Ref 67
	Ref 68
	Ref 69
	Ref 70
	Ref 71
	Ref 72
	Ref 73



