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Abstract. The greater and greater availability of services over the web motivates the growing interest in techniques that facilitate
their re-use. A web service specification can be quite complex, including various operations and message exchange patterns. In
this work, we propose a rule-based declarative representation of services, and in particular of WSDL operations, that enables the
application of techniques for reasoning about actions and change, that are typical of agent systems. The representation allows
reasoning on choreography roles and on possible role players, to the aim of selecting services which match in a flexible way
with the specification. Flexible matches are an important tool that allows web service re-use but the proposals in the literature
do not guarantee the preservation of those goals, that can be proved over the role specification. We show how to enrich various
well-known matches so as to produce substitutions that preserve goals and that do not require service rollback. We also discuss
the problem of the joint achievement of the individual goals of a group of choreography role players.

Keywords: Goal-driven reasoning, Semantic Matchmaking, Web Service Selection, Choreography

1. Introduction

Distributed applications over the World-Wide Web
have obtained wide popularity. Uniform mechanisms
have been developed for handling computing prob-
lems, which involve a large number of heterogeneous
components, that are physically distributed and that in-
teroperate. These developments coalesced around the
web service paradigm [1] that, thanks to its platform-
independent nature, allows enterprises to develop new
business processes by combining existing services, of
their own or retrieved over the web. For allowing the
composition of a new business process, it is suffi-
cient to have the public interfaces of services, with-
out any need of disclosing internal implementations or
the business logic. All these characteristics are particu-
larly appealing in B2B scenarios, where it is desirable
to have tools for creating cross-business applications,
which require the least possible effort of harmoniza-
tion of internal procedures.

*Corresponding author. E-mail: schi@di.unito.it.

Service selection plays an important role in the
achievement of this result. In this respect, many ad-
vancements have been made. Semantic Web Services
overcame the limits of the pure syntactical approaches,
like UDDI, by adding to service descriptions a se-
mantic layer, based on ontologies and rules. Further
along this line, initiatives like OWL-S [32] and the
Web Service Modeling Ontology (WSMO) [20] pro-
posed richer annotations, aimed at supplying a seman-
tic representation of the so called IOPEs (inputs, out-
puts, preconditions and effects of the service). These
richer descriptions better support software re-use be-
cause they enable flexible forms of matchmaking, i.e.,
the retrieval of services whose descriptions do not ex-
actly match with the corresponding queries— leading
to the introduction of the concept of degree of match
[33,29,20,9].

In many scenarios, however, the selection of single
services, provided by the various partners, is not suf-
ficient because services are to be coordinated, possi-
bly avoiding to the parties the need to engage into ex-
pensive negotiations. Languages like WS-CDL [45] or
WS-BPEL [30] fit this need, by allowing the defini-
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tion of patterns of interactions in the form of chore-
ographies (orchestrations, respectively), which repre-
sent the desired interaction from a global (or individ-
ual) perspective. In this context, a fundamental issue,
that is typically left aside, is the definition of intelligent
mechanisms for deciding whether to adopt a choreog-
raphy. In our opinion, this choice should encompass
two intertwined factors: (i) the possibility of achieving
goals of interest when performing a role in a choreog-
raphy, and (ii) the already mentioned flexible match-
matching capabilities. For instance, consider a medi-
cal centre which needs to decide whether becoming a
check-up center in a consortium, asking its associates
to act according to a given choreography. The decision
would depend on whether the operations it provides
fit the choreography specification, and also on whether
the participation will still allow it to achieve some goal
of its own interest, e.g. to ask patients to collect re-
sults at the office rather than on-line. By reasoning on
the role specification the centre can check whether this
goal is achievable.

What happens, however, when the specification is
instantiated by using service operations which do not
precisely match with it? Will the desired goals remain
achievable? For instance, what if a specific service that
plays the role of booking centre offers to the patients
the additional option to receive results in their e-mail?
What will the impact on the medical centres, which
play the complementary role in the interaction, be?
Current (flexible, semantic) matchmaking techniques
work on a single operation at a time. Since each oper-
ation can influence the executability and the outcomes
of the subsequent ones in the choreography, in general,
a sequence of individually identified operations might
not work [6,8].

This work addresses the above issues by adopting
the agent paradigm [35,42,5], and by showing that
choreographies provide a precise context for the se-
lection of services, that should be taken into account
during the matchmaking process. The agent paradigm
offers proper abstractions to articulate a model of the
interaction among services in two different levels: the
choreography level, where shared patterns of interac-
tion are described from a global and public perspec-
tive, and the interaction policy level, where the in-
teractive behavior of the single service is represented
from a local perspective. Agents show the ability of
performing goal-driven forms of reasoning, and they
also show autonomy and pro-activity, which are help-
ful characteristics when dealing with open environ-
ments [14,17,37,19].

Original Contribution. We define a declarative frame-
work which: (i) provides reasoning techniques that
support a goal-driven selection of choreography roles;
(ii) enables the definition of an enhanced notion of
flexible semantic matchmaking, in the context pro-
vided by a choreography. The representation is based
on the rule-based language described in [4,3]. The de-
scription of roles and of service policies builds upon
WSDL2 exchange patterns, represented as atomic ac-
tions with preconditions and effects.

This framework, allows for reasoning on operations,
on goal achievement, and on choreographies, and it al-
lows the design of services with a much higher de-
gree of autonomy with respect to the existing ones and
whose behavior resembles more closely the behavior
of autonomous agents. Reasoning itself becomes a ba-
sis for fostering the re-use of services, by identifying
also services which match only to some degree with
the specifications [46,41]. Since services play roles for
achieving goals, we introduce the notion of conserva-
tive substitution, to denote substitutions that preserve
the goals of interest. We also characterize the class of
flexible matches that are conservative.

Each party involved in a choreography may have its
own goals, that it tries to pursue. Parties individually
check for the possibility to achieve the goals of their
own interest, identifying subsets of choreography en-
actments they will try to perform. One further ques-
tion to answer, therefore, is: will such individually re-
trieved enactments be compatible? We discuss the is-
sue and draft a simple technique that allows the joint
achievement of the parties goals, without the need of
disclosing them.

Organization. Section 2 sets the representation of
services and of choreographies that we adopt, and ex-
plains how it is possible to reason on such a repre-
sentation to allow each service to check the reacha-
bility of its goals locally, i.e. by using only the spec-
ification of the desired choreography role. Section 3
discusses various kinds of match, that can be applied
for selecting the service operations that come in handy
for implementing the specifications supplied by the
choreography, and reports our proposal for verifying
whether a match is conservative. Section 4 tackles the
joint achievement of personal goals. A running exam-
ple concerning a healthcare system is used to better ex-
plain the proposed notions and mechanisms. Conclu-
sions and related works end the paper.
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2. Reasoning about services

This section introduces the notation used to repre-
sent services and discusses the problem of verifying
a global goal. The notation is based on a logical the-
ory for reasoning about actions and change in a modal
logic programming setting and on the language DY-
namics in LOGic1, described in details in [4]. This lan-
guage is designed for specifying agents behaviour and
for modeling dynamic systems. It is fully set inside the
logic programming paradigm by defining programs by
sets of Horn-like rules and giving a SLD-style2 proof
procedure. The capability of reasoning about interac-
tion protocols, supported by the language, has already
been exploited for customizing web service selection
and composition w.r.t. to the user’s constraints, based
on a semantic description of the services [4]. The lan-
guage is based on a modal theory of actions and men-
tal attitudes where modalities are used for represent-
ing primitive and complex actions as well as the agent
beliefs. Complex actions are defined by inclusion ax-
ioms [2] and by making use of action operators from
dynamic logic, like sequence “;" and test “?”.

In this framework, the problem of reasoning amounts
either to build or to traverse a sequence of transitions
between states. A state is a set of fluents, i.e., proper-
ties whose truth value can change over time, due to the
application of actions. In general, we cannot assume
that the value of each fluent in a state is known: we
want to have both the possibility of representing un-
known fluents and the ability of reasoning about the
execution of actions on incomplete states. To explic-
itly represent unknown fluents, we use an epistemic
operator B, to represent the beliefs an entity has about
the world: Bf means that the fluent f is known to be
true, B¬f means that the fluent f is known to be false.
A fluent f is undefined when both ¬Bf and ¬B¬f
hold (¬Bf ∧ ¬B¬f ): this is represented by the op-
erator U. Thus each fluent in a state can have one of
the three values: true, false or unknown. Moreover, the
epistemic operator M is defined as the dual of B, i.e.
Mf is ¬B¬f . Mf means that f is considered to be
possible. For the sake of readability, we will add as a
superscript of B and M the name of the service that
has the belief.

Services exhibit interfaces, called port-types, which
make a set of operations available to possible clients.
In our proposal, a service description is defined as a

1http://www.di.unito.it/∼alice/dynamicslogic/index.html
2Selective Linear Definite clause resolution.

pair 〈O,P〉, where O is a set of basic operations, and
P (policy) is a description of the complex behavior of
the service. Analogously to what happens for OWL-S
composite processes, P is built upon basic operations
and tests, that control the flow of execution.

2.1. Basic operations

The main languages for representing web services
identify different kinds of operations. According to
WSDL and OWL-S, for instance, there are four main
kinds of operations [1] (or atomic processes, in OWL-
S terminology [32]). In this work we consider both
standard operations and message exchange patterns as
defined in WSDL 2.0 3), which include but are not lim-
ited to the four cases of OWL-S:

– in-only (or one-way) involves a single message
exchange, a client invokes an operation by send-
ing a message to the service;

– out-only (or notify) involves a single message ex-
change, the client receives a message from the
service;

– in-out (or request-response) involves the ex-
change of two messages, initiated by the invoker
of the operation, which sends a message to the
service and then waits for a response;

– out-in (or solicit-response) involves the exchange
of two messages, the order of the messages is in-
verted w.r.t. a request-response: first the invoker
waits for a message from the service and then it
sends an answer.

– in-optional-out involves the exchange of one or
two messages. The operation is initiated by the
invoker which sends a message to the service and
then may receive an optional response;

– out-optional-in involves the exchange of one or
two messages. First the invoker waits for a mes-
sage from the supplier and then it can send an op-
tional answer.

A basic operation is described in terms of its exe-
cutability preconditions and effects. The former is a
set of fluents (introduced by the keyword possible if)
which must be contained in the service state in order
for the operation to be applicable. The latter is a set
of fluents (introduced by the keyword causes) which

3More details can be found in http://www.w3.org/TR/wsdl20-
adjuncts/ and http://www.w3.org/TR/wsdl20-additional-meps/
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will be added to the service state after the operation
execution. Formally, the syntax is:

operation(content) possible if Ps (1)

operation(content) causes Es (2)

Es and Ps respectively denote the fluents which are
expected as effect of the execution of the operation,
and the precondition to its execution; content denotes
possible additional data that is required by the opera-
tion. Notice that an operation can also be implemented
as an invocation to some other service.

When executed, operations trigger a revision pro-
cess on the actor’s beliefs. Since we describe web ser-
vices from a subjective point of view, we distinguish
the case when the service is the initiator (the operation
invoker) from the one in which it is the servant (the
operation supplier) by further decorating the operation
name with a notation inspired by [10]: operation�

denotes the operation from the point of view of the in-
voker, while operation� denotes the operation from
the point of view of the supplier. The two views are
complementary, so if one view includes the act of
sending a message, the other correspondingly includes
the act of receiving the message.

Operations are defined in terms of their inputs, out-
puts, preconditions, and effects, as usual for semantic
web services [32]. In the case of the invoker, precondi-
tions Ps in (1) and effects Es in (2) are respectively the
conditions required by the operation for being invoked,
and the expected effects of its execution. In the case
of the supplier, we represent the conditions that enable
the executability of the operation and the side effects
of its execution. In order to distinguish them from the
above, we use Rs instead of Ps in (1) to denote pre-
conditions, calling them requirements. To denote side
effects we use Ss instead of Es in (2).

For example, a buy operation of a selling service
has as a precondition the fact that the invoker has a
valid credit card, as inputs the credit card number of
the buyer and its expiration date, as output it generates
a receipt, and as effect the credit card is charged. From
the point of view of the supplier, the requirement to the
execution is to have an active connection to the bank,
and the side effect is that the store availability is de-
creased while the service bank account is increased of
the perceived amount.

Let us now introduce the formal representation of
basic operations and of message exchange patterns.
For each case we report both views. Inputs and out-
puts are represented as single messages for simplicity

Invoker Supplier

operation in

Bm in

Preconditions

Bsent(m   )in

Effects

Requirements

Bm in

Side effects

Invoker Supplier

m in

Bm in

Preconditions

Bsent(m   )in

Effects

Requirements

Bm in

Side effects

Fig. 1. The in-only basic operation: UML sequence diagram (top)
representation and corresponding message exchange (bottom).

but the representation can easily be extended to sets of
exchanged data, as in Example (2.1).

2.1.1. In-only
The invoker (see Figure 1) requests an execution

which involves sending an information min to the sup-
plier; the invoker must know the information to send
(BInvokermin) before the invocation, see (a) in Ta-
ble 1. The invoker can execute the operation only if
the preconditions to the operation (Ps) are satisfied in
its current state (a). The execution of the invocation
brings about the effects Es of the operation (c), and
the invoker will know (BInvokersent(min)) that it has
sent an information to the supplier (b). Using OWL-S
terminology, min is the input of the operation, while
Ps and Es are its preconditions and effects. One-way
operations have no output.

On the other hand, the supplier, which exhibits the
one-way operation as one of the services that it can
execute, has the requirements Rs (d). The execution
of the operation causes the fact that the supplier will
know (BSuppliermin) the information sent by the in-
voker (e). We also allow the possibility of having some
side effects (Ss) on the supplier’s state (f). These are
not to be confused with the operation effects described
by IOPE, and were added for the sake of completeness.

2.1.2. Out-only
The invoker requests an execution which involves

receiving an information mout from the supplier. The
invoker can execute the operation only if the precon-
ditions Ps to the operations are satisfied in its current
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Operation Views Representation
In-only Invoker (a) operation�in(min) possible if BInvokermin ∧ Ps

(One-Way) (b) operation�in(min) causes BInvokersent(min)

(c) operation�in(min) causes Es

Supplier (d) operation�in(min) possible if Rs

(e) operation�in(min) causes BSuppliermin

(f) operation�in(min) causes Ss

Out-only Invoker (a) operation�out(mout) possible if Ps

(Notify) (b) operation�out(mout) causes BInvokermout

(c) operation�out(mout) causes Es

Supplier (d) operation�out(mout) possible if Rs

(e) operation�out(mout) causes BSuppliermout

(f) operation�out(mout) causes BSuppliersent(mout)

(g) operation�out(mout) causes Ss

In-out Invoker (a) operation�io (min,mout) possible if BInvokermin ∧ Ps

(Request- (b) operation�io (min,mout) causes BInvokersent(min)

response) (c) operation�io (min,mout) causes BInvokermout

(d) operation�io (min,mout) causes Es

Supplier (e) operation�io (min,mout) possible if Rs

(f) operation�io (min,mout) causes BSuppliermin

(g) operation�io (min,mout) causes BSuppliermout

(h) operation�io (min,mout) causes BSuppliersent(mout)

(i) operation�io (min,mout) causes Ss

Out-in Invoker (a) operation�oi (min,mout) possible if Ps

(Solicit- (b) operation�oi (min,mout) causes BInvokermout

response) (c) operation�oi (min,mout) causes BInvokermin

(d) operation�oi (min,mout) causes BInvokersent(min)

(e) operation�oi (min,mout) causes Es

Supplier (f) operation�oi (min,mout) possible if Rs

(g) operation�oi (min,mout) causes BSuppliermout

(h) operation�oi (min,mout) causes BSuppliersent(mout)

(i) operation�oi (min,mout) causes BSuppliermin

(l) operation�oi (min,mout) causes Ss

Table 1
Representation of the first four basic operations; for each of them we
report both the invoker’s and the supplier’s view.

state (a). The execution brings about the effects Es of
the operation (c), and the invoker will know the re-
ceived information (b). mout is the output of the op-
eration, while Ps and Es are its preconditions and ef-
fects. Out-only operations have no input. The supplier
must meet the requirements Rs (d). The execution of
the operation causes the supplier to know the message
to send (e) and that it has sent some information to the
invoker (f). The message mout the supplier sends to the
invoker is built during the internal execution of the op-
eration. Finally, (g) accounts for possible side effects
on the supplier’s state.

2.1.3. In-out
The invoker requests an execution which involves

sending an information min (the operation input) and
then receiving an answer mout from the supplier (the
operation output).

The invoker can execute the operation only if the
precondition Ps is satisfied in its current state and if
it owns the information to send (a) (see Table 1). The
invocation brings about the effects Es (d), and the fact
that the invoker knows it has sent the input min to
the supplier (b). One further effect is that the invoker
knows the answer returned by the operation (c). This
representation abstracts away from the actual message
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Operation Views Representation
In-optional-out Invoker (a) operation�

io?
(min,mout) possible if BInvokermin ∧ Ps

(b) operation�
io?

(min,mout) causes BInvokersent(min)

(c) operation�
io?

(min,mout) causes MInvokermout

(d) operation�
io?

(min,mout) causes Es

Supplier (e) operation�
io?

(min,mout) possible if Rs

(f) operation�
io?

(min,mout) causes BSuppliermin

(g) operation�
io?

(min,mout) causes MSuppliermout

(h) operation�
io?

(min,mout) causes MSuppliersent(mout)

(i) operation�
io?

(min,mout) causes Ss

Out-optional-in Invoker (a) operation�
oi?

(min,mout) possible if Ps

(b) operation�
oi?

(min,mout) causes BInvokermout

(c) operation�
oi?

(min,mout) causes MInvokermin

(d) operation�
oi?

(min,mout) causes MInvokersent(min)

(e) operation�
oi?

(min,mout) causes Es

Supplier (f) operation�
oi?

(min,mout) possible if Rs

(g) operation�
oi?

(min,mout) causes BSuppliermout

(h) operation�
oi?

(min,mout) causes BSuppliersent(mout)

(i) operation�
oi?

(min,mout) causes MSuppliermin

(l) operation�
oi?

(min,mout) causes Ss

Table 2
Representation of basic operations with optional messages.

Invoker Supplier

Bm in

Preconditions

Bsent(m   )in

Bm out

Effects

Requirements

Bm in

Bm out

Bsent(m     )out

Side effects

Invoker Supplier

m in

m out

Bm in

Preconditions

Bsent(m   )in

Bm out

Effects

Requirements

Bm in

Bm out

Bsent(m     )out

Side effects

computation

operation in-out

Fig. 2. The in-out basic operation: UML sequence diagram (top) rep-
resentation and corresponding message exchange (bottom).

exchange mechanism, which is implemented. The aim
is to reason on the effects of the execution on the men-
tal state of the parties [3].

As for one-way operations, the supplier has the re-
quirements Rs to the operation execution (e). It re-
ceives an input min from the invoker (f). The execution
of the operation produces an answer mout (g), which
is sent to the invoker (h). As usual, possible side ef-
fects on the supplier’s state are accounted for(i). On the
supplier’s side, we can notice more evidently the ab-
straction of the representation from the actual execu-
tion process. In fact, we do not model how the answer
is produced but only the fact that it is produced.

2.1.4. Out-in
The invoker requests an execution which involves

receiving an information mout (the operation output)
and then sending a message min to the supplier (the
input). The operation can be invoked only if the pre-
condition Ps is satisfied in its current state (a). The in-
vocation brings about the effects Es (e). The invoker
receives a message mout from the supplier (b) then, it
produces the input information min which is sent to
the supplier, see (c) and (d). As for notify operations,
the supplier must fulfill the requirements Rs (f). The
execution of the operation causes the supplier to know
the information to send (g) and that it has sent such
information to the invoker (h). Moreover, it produces
also the knowledge on the information min received
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from the invoker (i). As above, we allow the possibility
of having some side effects on the supplier’s state (l).

2.2. In-optional-out and Out-optional-in

The In-optional-out and Out-optional-in operations
share the same representation with the correspond-
ing In-out and Out-in operations: the only difference
is the use of the epistemic operator M to represent
optional messages (see Table 2). We also slightly
change the decorations to visually remark the differ-
ence with exchange patterns with no optionality. So
we use operation�io? and operation�io? to respectively
denote the invoker’s and the supplier’s views of in-
optional-out operations, while we use operation�oi? and
operation�oi? to denote the invoker’s and the supplier’s
views of out-optional-in operations.

Example 2.1 Healthcare reservation service run-
ning example (I part). We use a running example
taken from the healthcare domain, nowadays one of
the most interesting and growing application fields for
service technology [11,43]. Medical centres more and
more frequently get associated into consortia, offering
to patients comprehensive sets of services. When this
happens, patients no longer interact with the single
structure but through a unified interface which, behind
the scenes, relies on the services and on the capabili-
ties provided by the various associates. The interesting
point is that medical centers do not need to harmonize
their procedures, as long as the interface of the ser-
vices they provide fits the specifications supplied by the
unified reservation system.

Let us define searchExamination, an operation of
kind in-out, offered by a healthcare reservation system.
This operation can be invoked by a patient to search
for information about available time slots for booking
a medical examination in registered medical centres.
From the point of view of the patient, the operation is:

(a) searchExamination�io (examination, exmList)
possible if Bpatientexamination ∧
Bpatient¬listObtained

(b) searchExamination�io (examination, exmList)
causes Bpatientsent(examination)

(c) searchExamination�io (examination, exmList)
causes BpatientexmList

(d) searchExamination�io (examination, exmList)
causes BpatientlistObtained

The input of the operation is examination, its output
is exmList, i.e. the list of the available dates. The pre-

condition Ps is the belief Bpatient¬ listObtained while
the Es is the belief Bpatient listObtained.

From the point of view of the healthcare system, in-
stead, the operation is represented as:

(a) searchExamination�io (examination, exmList)
possible if true

(b) searchExamination�io (examination, exmList)
causes Bhrrexamination

(c) searchExamination�io (examination, exmList)
causes BhrrexmList

(d) searchExamination�io (examination, exmList)
causes Bhrrsent(exmList)

In this case the sets Rs and Ss of requirements and
side effects are empty. The operation expects as input
the requested medical examination, and it produces an
exmList, which is sent to the patient, so after the op-
eration the belief Bhrrsent(exmList) will be in its
belief state.

2.3. Service policies and choreography roles

The framework also accounts for behaviors that re-
quire the execution of many operations. A behavior is
a collection of clauses of kind:

p0 is p1, . . . , pn (3)

where p0 is the name of the procedure and each pi, i =
1, . . . , n, is either an operation, a test action (denoted
by the symbol ?), or a procedure call. Procedures can
be recursive and are executed in a goal-directed way,
similarly to standard logic programs. Their definitions
can be non-deterministic as in Prolog. Behaviors also
allow the representation of choreography roles.

We represent a choreography C as a tuple (R1, . . .,
Rn) of interacting and complementary roles, each role
Ri being a subjective view of the encoded interac-
tion. A role R is represented by a pair 〈O,P〉, simi-
larly to services. The difference with services is that it
composes specifications of operations and not imple-
mented operations. The player of each role must sup-
ply appropriate implementations. We call such spec-
ifications unbound operations and formally represent
them as basic operations, in terms of their precon-
ditions and effects. This is one of the advantages of
adopting a logic language: it allows handling imple-
mentations and specifications in the same way.

Example 2.2 Healthcare reservation (II part). As an
instance, let us consider the bookExamination pro-
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Patient HRR

chosenExm=askChosenExm    ()

exmList=searchExamination   (examination)

chosenMethod=

choosePayment    (payMethods)

resNum=doPayment    (credentials)

io

out

io

io

noBusiness  ()
in

proceed  ()
in

exmList=proposeExamination   (medicalCenter,

examination)
io

alt

alt

X

Fig. 3. Example of a simple interaction protocol, for booking a med-
ical examination, expressed as a UML sequence diagram.

cedure of the healthcare reservation system, as imple-
mented by a possible patient service.

(a) bookExamination is
?(UmedicalCenter ∨B¬medicalCenter);
searchExamination�io (examination, exmList);
askChosenExm�

out(chosenExm);
evaluateAndReserve.

(b) bookExamination is
?(¬UmedicalCenter);
proposeExamination�io ((medicalCenter,
examination), exmList)
askChosenExm�

out(chosenExm);
evaluateAndReserve.

(c) evaluateAndReserve is
noBusiness�in().

(d) evaluateAndReserve is
proceed�in();
choosePayment�io (payMethods, chosenMethod);
doPayment�io ((credential, payInfo), resNum).

If the patient does not have a specific medical centre to
look for (?(UmedicalCenter∨B¬medicalCenter)),
she invokes an operation for searching a list of
available places and slots (searchExamination�io ). In-
stead, if she is interested in a specific medical cen-

ter (?(¬UmedicalCenter)), e.g. because it is cov-
ered by her medical insurance, she invokes a different
operation provided by the healthcare reservation role
(proposeExamination�io ). This returns only the slots
available at the specified medical center. After that,
the patient waits for being asked about her choice
(askChosenExm�

out): if the patient returns to the book-
ing service an empty selecttion, the interaction is in-
terrupted (noBusiness�in), otherwise it continues with
the proceed�in message followed by the selection of
the payment method (choosePayment�io ). Finally, the
patient performs the payment (doPayment�io ). In Ap-
pendix 6 the reader can find all the missing operations.

2.4. Reasoning on goals

In the outlined framework, it is possible to reason
about goals by means of queries of the form

Fs after p (4)

where Fs is the goal (represented as a conjunction of
fluents), that should hold after the execution of the pol-
icy p. Checking if a formula of this kind holds amounts
to answering the query: “Is it possible to execute p
in such a way that the condition Fs is true in the fi-
nal state?”. When the answer is positive, the reason-
ing process returns a sequence of atomic actions that
allows the achievement of the desired condition. The
sequence is an execution trace of p and can be seen
as a plan to bring about Fs. This form of reasoning is
known as temporal projection. Reasoning is done by
exploiting a goal-directed proof procedure (denoted by
“`”) designed for the language DYnamics in LOGic
[3,4], which supports both temporal projection and
planning and allows the proof of existential queries
of kind (4). The definition of p constrains the search
space. For what concerns planning, the proof proce-
dure allows the automatic extraction of linear or condi-
tional plans for achieving the goal of interest from an
incompletely specified initial state.

Let 〈O,P〉 be a service description. Let p ∈ P be
a specific procedure and let us denote by Q the query
Fs after p. Given a state s0, containing all the flu-
ents that are true in the beginning, we denote the fact
that the query Q is successful in the service description
by (〈O,P〉, s0) ` Q. The execution of the query re-
turns as a side-effect an execution trace σ of p, which
is a sequence a1, . . . , an of operations after which Fs
holds. We denote this by:

(〈O,P〉, s0) ` Q w.a. σ (5)
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where “w.a.” stands for with answer. The same reason-
ing can be applied to choreography roles. In this case,
the answer will contain unbound operations.

A service can use temporal projection to decide
whether it is possible to play a given role in a way that
achieves a goal of interest.

Example 2.3 Healthcare reservation (III part). Let
us suppose that p1 is a service willing to play the Pa-
tient role. Suppose that its initial state is:

s0 =


Bpatientexamination,

BpatientdeferredPaymentPos,
Bpatient¬listObtained,
Bpatientcredentials


the truth value of all the other fluents is “unknown”.
In words, p1 knows the kind of medical examination
to book, the needed credentials (i.e. the medical insur-
ance id or the credit card number), the fact that it is
possible to defer the payment directly to the medical
center, and that no reservation process has started yet.
The goal of p1 is to achieve the condition:

Q = {BpatientreservationComplete,
BpatientresNum} after bookExamination

Intuitively, the patient wants to have a reservation
number after the interaction. By reasoning on the role
and by using the definitions of the unbound operations
that are given by the choreography, p1 can identify an
execution trace, that leads to a state where Q holds:

σ = searchExamination�io (examination, exmList);
askChosenExm�

out(chosenExm);
proceed�in();
choosePayment�io (payMethods, chosenMethod);
doPayment�io ((credential, payInfo), resNum)

This is possible because in a declarative representa-
tion specifications are executable. This execution does
not influence the belief about the deferred payment,
which persists from the initial through the final state
and is not contradicted.

3. Goal-driven selection

This section shows how to leverage the choreogra-
phy role descriptions to the aim of selecting the ser-
vices, that will play them, and the operations that will
be invoked, in a way that preserves the achievement of
the goals of interest. To this aim, we need to introduce

the notion of flexible match (of a service operation to
a choreography unbound operation), to discuss its im-
pact on goal achievement, and to define the new notion
of conservative substitution. We also report decidabil-
ity results.

3.1. Matching unbound operations

A choreography role composes all unbound opera-
tions. In order for a service to play it, it is necessary
to bind them to service operations, which will either
be supplied by the role player or by its interlocutors.
Specifically, given a role, the operations invoked over
the player, i.e. those that are decorated by the symbol
� (operation�), must be bound to operations of the
player. The others, that are decorated by the symbol �
(operation�), must be bound to operations of its in-
terlocutors. For instance, the Patient role of Figure 3
specifies operations, like payment, which are to be sup-
plied by the role player, and others, like searchExam-
ination, which are to be supplied by its interlocutor,
i.e. the healthcare reservation system. The binding is
possible only when all the partners in the interaction
have been found. Notice that, in general, a service will
have more than one operation matching with a single
specification.

Let 〈O,P〉 be a role description, and let Oi
u ⊆ O be

the set of unbound operations that are to be supplied
by the role player Si. Let OSi be the set of operations
that Si provides. In case Si is the player of the role
〈O,P〉, they will be operations decorated by �, other-
wise they will be � operations. We represent the bind-
ing of service operations to unbound operations by the
substitution θ = [OSi/Oi

u]
4 applied to 〈O,P〉. The

application of the substitution is denoted by 〈Oθ,Pθ〉,
where every element of Oi

u is substituted by/bound to
an element of OSi .

In the above definition, θ can be any kind of asso-
ciation between the operations of a service with the
unbound operations of a choreography role. In prac-
tice it is the result of a matching process. In the lit-
erature it is possible to find many match algorithms,
mostly based on the seminal work by Zaremski and
Wing [46] on software components, and surveyed in
[41]. Specifically, given a software component I , with
precondition Ipre and postcondition Ipost, and a spec-
ification (or query, as it is called in the match-making
community) Q, with precondition Qpre and postcondi-

4Notice that [OSi
/Oi

u] is actually a set of substitutions [o/ou] of
single service operations to single unbound operations.
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Fig. 4. Lattice of the local matches: on top the strongest. The dashed
line highlights re-use ensuring matches. SM and GGP are in same
node because logically equivalent.

tion Qpost, the most important kinds of relaxed match
between Q and I are:

– EM (Exact Pre/Post Match): Qpre ⇔ Ipre ∧
Qpost ⇔ Ipost;

– EPREM (Exact Pre Match): Qpre ⇔ Ipre ∧
Ipost ⇒ Qpost;

– EPOM (Exact Post Match): Qpre ⇒ Ipre ∧
Qpost ⇔ Ipost;

– PIM (Plugin Match): Qpre ⇒ Ipre ∧ Ipost ⇒
Qpost;

– POM (Plugin Post Match): Ipost ⇒ Qpost;
– GPIM (Guarded Plugin Match, a.k.a. Weak-

Plugin [34]): Qpre ⇒ Ipre ∧ ((Ipre ∧ Ipost) ⇒
Qpost);

– SM (Satisfies Match, a.k.a. relaxed plug-in in
[18], plug-in compatibility [21]): Qpre ⇒ Spre ∧
(Qpre ∧ Ipost ⇒ Qpost);

– GPOM (Guarded Post Match, a.k.a. Weak-Post
[34]): ((Ipre ∧ Ipost) ⇒ Qpost);

– GGP (Guarded-Generalized Predicate): (Qpre ⇒
Ipre) ∧ ((Ipre ⇒ Ipost) ⇒ (Qpre ⇒ Qpost)).

The different matches can be organized according to
a lattice [41], that we reported in Figure 4. On top,
there is the Exact pre/post match, which states the
equivalence of Q and I . Moving down in the lattice
weaker and weaker match conditions are found. So, for
the Plugin match it is sufficient that I is behaviorally
equivalent to Q in the context where it replaces Q. The
Plugin post match relaxes this requirement by consid-
ering only postconditions. Guarded matches, instead,

focus on guaranteeing that the desired postcondition
holds when the precondition of I holds, not in general.

In our application domain, Q is an unbound opera-
tion, while I is a service operation. When needed, we
decorate substitutions with an acronym denoting the
applied match (e.g. θEM is a substitution obtained by
applying the exact match).

Particularly interesting is the family of the so-called
re-use ensuring matches. In the following, M(I,Q)
represents that a service I matches with a specification
Q according to the specification match M .

Definition 1 (Re-use ensuring match [18]) A specifi-
cation match M is re-use ensuring iff for any I and Q,
M(I,Q) ∧ {Ipre}I{Ipost} ⇒ {Qpre}I{Qpost}

In the above definition, {Cpre}C{Cpost} denotes a
Hoare triple and is informally interpreted as the truth
of “program C started with Cpre satisfied will ter-
minate in a state such that Cpost holds” [26]. No-
tice that this is a local property, in fact, it only ac-
counts for the specification of a single component.
However, when a match is re-use ensuring, its execu-
tion in a state that contains the precondition expressed
in the query produces the postcondition expressed in
the query. Considering the lattice in Figure 4, re-use
ensuring matches are all those inside the dashed line.
Only POM and GPOM are not re-use ensuring because
no assumption is made on their preconditions, which
can be wider than those expressed by the query.

3.2. Conservative re-use ensuring matches

When the matching process is applied for deciding
if a service could play a role in a (partially instantiated)
choreography, the desire is that the substitution pre-
serves the properties of interest, i.e. the goals that can
be entailed by reasoning on each role description sepa-
rately, should still be achievable after the substitution.
We formalize this notion in the following way.

Definition 2 (Conservative substitution) Consider a
role 〈O, P〉 of a choreography, a query Q, and an ini-
tial state s0 of a service, candidate to play the role,
such that (〈O,P〉, s0) ` Q w.a. σ. A substitution θ is
conservative when (〈Oθ,Pθ〉, s0) ` Q w.a. σθ.

All the matches described in the previous section
(including also the re-use ensuring matches) were de-
fined for the retrieval of single components, and have
a local nature, i.e. they compare a single requirement
(an unbound operation) to a single software specifica-
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tion (a service operation) independently of the context
of usage. Therefore, substitutions produced by apply-
ing one of the described flexible matches generally are
not conservative, i.e. goals that can be achieved when
using the specification cannot be achieved anymore af-
ter the substitution. Intuitively, the reason is that be-
sides a few special cases (EM and EPOM are the only
matches which, by their own nature, are conservative),
the identified operation can produce additional effects
w.r.t. Qpost. When the operation is inserted in the con-
text of a role execution, the additional effects may in-
hibit the preconditions of operations that follow. This
is a problem because the choice of playing a role bases
on the proof that the adoption of that role allows the
achievement of a goal of interest for the player.

Example 3.1 Healthcare reservation (IV part). The
example shows how an implementation that does not
exactly match with a specification may (or may not)
prevent the applicability of other operations. Given the
goal and service description specified in the previous
parts of the example, suppose the unbound operation
choosePayment of the role Patient is defined as:

(a) choosePayment�io (payMethods, chosenMethod)
possible if Bpatientexamination∧

BpatientexmSelected∧
BpatientdeferredPaymentPos

(b) choosePayment�io (payMethods, chosenMethod)
causes BpatientpayMethods

(c) choosePayment�io (payMethods, chosenMethod)
causes BpatientchosenMethod

(d) choosePayment�io (payMethods, chosenMethod)
causes Bpatientsent(chosenMethod)

The precondition Bpatient deferredPaymentPos amo-
unts to the possibility of paying the service directly at
the medical center. Now, consider a service, that could
possibly play the role Patient. Suppose that it imple-
ments the operation searchExamination as follows,
while all other operations exactly match with the cor-
responding specifications:

(a) searchExamination�io (examination, exmList)
possible if Bpatientexamination∧

Bpatient¬sellingStarted
(b) searchExamination�io (examination, exmList)

causes Bpatientsent(examination)
(c) searchExamination�io (examination, exmList)

causes BpatientexmList
(d) searchExamination�io (examination, exmList)

causes BpatientlistObtained

(e) searchExamination�io (examination, exmList)
causes ¬BpatientdeferredPaymentPos

This operation matches with the corresponding un-
bound operation according to many of the re-use en-
suring matches (e.g. EPREM, PIM, GPIM, SM). How-
ever, it has an additional effect which negates the pos-
sibility of paying at the medical center (¬Bpatient

deferredPaymentPos), and which prevents the exe-
cutability of the operation choosePayment, as de-
fined above.

If the additional effect of searchExamination were,
instead, Bpatient resultsAtHome, supplying an addi-
tional information concerning the possibility of send-
ing results directly at the patient’s home, the achieve-
ment of the goal would not be compromised.

We now show how it is possible to enrich the re-
use ensuring matches in a way that guarantees the
production of conservative substitutions. We do so by
exploiting only constraints that can be inferred from
the choreography –which supplies the global execution
context, in which unbound operations are immersed–
without modifying the local nature of the matches.

The approach takes into account the causal depen-
dencies between operations, where, intuitively, an op-
eration depends on another when the latter produces
some effect which is, then, used as a precondition by
the former. The idea is to verify if the substitution
breaks the “causal chain” which allows the execution
of the sequence of operations of an execution σ, which
originally brought to the achievement of a goal of in-
terest. We use σ for defining a set of constraints that,
whenever satisfied by a substitution obtained by a re-
use ensuring match, guarantee that the substitution is
also conservative. This is a sufficient condition because
there might exist conservative substitutions that do not
satisfy this set of constraints.

Given a role (or a service) description 〈O,P〉,
suppose that in the initial state s0, the query Q =
Fs after p succeeds with answer σ = a1; a2;
. . . ; an. Let σ be the sequence of operations a0; a1;
a2; . . . ; an; an+1, i.e. σ completed by adding two fic-
titious operations a0 and an+1, that respectively rep-
resent the initial state s0 and the goal Fs, which must
hold after σ. Let us respectively denote by the func-
tions Precs(a) and Effs(a) the preconditions and the
effects of an action a: Precs(a0) = ∅, Effs(a0) = s0,
while Effs(an+1) = ∅ and Precs(an+1) = Fs.

Definition 3 (Action dependency) Given a completed
execution trace σ = a0; . . . aj ; . . . ai; . . . ; an+1, where
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j < i, we say that in σ the operation ai depends on
aj for the fluent Bl iff Bl ∈ Effs(aj), Bl ∈ Precs(ai),
and ¬∃k, j < k < i, such that Bl ∈ Effs(ak). We
denote this dependency by: aj  〈Bl,σ〉 ai.

Intuitively, operation ai cannot be executed in the con-
text of σ if the effects of aj do not hold. Algorithm 1
verifies the dependency of an action ai on an action aj .

Algorithm 1 Action dependency algorithm
Require: j < i ∧Bl ∈ Effs(aj) ∧Bl ∈ Precs(ai)

1: function ACTIONDEP(σ, i, j, Bl)
2: for all ak ∈ aj+1, . . . , ai−1 do
3: if Bl ∈ Precs(ak) then
4: return false
5: end if
6: end for
7: return true
8: end function

Definition 4 (Dependency set of a fluent) Given a flu-
ent Bl and a sequence of operations σ, we de-
fine the dependency set of Bl as Deps(Bl, σ) =
{(j, i) | aj  〈Bl,σ〉 ai}.

This notion captures the set of actions that, within an
execution trace, cannot be executed if Bl does not
hold. Algorithm 2 computes the dependency set of a
given Bl within the completed execution trace σ.

Algorithm 2 Dependency set algorithm
1: function DEPS(σ, Bl)
2: ds← ∅
3: for all j ∈ 0 . . . , n+ 1 do
4: for all i ∈ 0 . . . , n+ 1 do
5: if actionDep(σ, j, i,Bl) then
6: ds← ds ∪ {(j, i)}
7: end if
8: end for
9: end for

10: return ds
11: end function

Definition 5 (Uninfluential fluent) Let Bl be an ad-
ditional effect of an operation s that substitutes an un-
bound operation ou (i.e., Bl ∈ Effs(s)−Effs(ou)), oc-
curring at position k of a completed execution trace
σ = a0; . . . (ou)k; . . . ; an+1. We say that Bl is an un-
influential fluent w.r.t. the sequence σ iff for all pairs
(j, i) ∈ Deps(B¬l, σ), we have that k < j or i ≤ k.

Intuitively, this means that the fluent will not break any
dependency between the operations which involve the
inverse fluent because either it will be overwritten or
it will appear after its inverse has already been used.
When this holds for all additional fluents of a substitu-
tion, the substitution is said to be uninfluential.

Example 3.2 Healthcare reservation (V part). In
Example 3.1, the additional effect resultsAtHome
would be uninfluential, while the additional effect
¬Bpatient deferredPaymentPos would not.

Algorithm 3 verifies if an additional fluent is uninflu-
ential.

Algorithm 3 Uninfluential fluent algorithm
Require: Bl ∈ Effs(s)− Effs(ou)

1: function UNINFFLUENT(σ, Bl, s, ou, k)
2: for all (j, i) ∈ deps(σ,Bl) do
3: if ¬(k < j ∨ i ≤ k) then
4: return false
5: end if
6: end for
7: return true
8: end function

Definition 6 (Uninfluential substitution) A substitu-
tion θ is called uninfluential iff for all operation sub-
stitutions [s/ou] in θ, all beliefs in Effs(s) − Effs(ou)
are uninfluential fluents w.r.t. σ.

Algorithm 4 verifies if a substituion is uninfluential.

Algorithm 4 Uninfluential substitution algorithm
1: function UNINFSUB(σ, θ)
2: for all [s/ou] ∈ θ do
3: for all Bl ∈ Effs(s)− Effs(ou) do
4: k ← position of ou in σ
5: if ¬uninfF luent(σ,Bl, s, ou, k) then
6: return false
7: end if
8: end for
9: end for

10: return true
11: end function

Theorem 3.1 The problem of determining whether a
substitution is uninfluential w.r.t. an execution trace is
decidable.

Proof 3.1 All the reported algorithms rely on nested
for-loops, thereby they always end.
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Finally, the following theorem relates the notion of
uninfluential substitution and the notion of conserva-
tive substitution, showing that uninfluential substitu-
tions are also be conservative.

Theorem 3.2 Let M be a re-use ensuring match, any
substitution θM that is uninfluential is also conserva-
tive.

Proof 3.2 The proof is by absurd and it uses the
proof theory introduced in [3]. Let us assume that
(〈O,P〉, s0) ` Q w.a. σ = a0, a1, . . . , ai−1, ai, . . . , an
but (〈OθM ,PθM 〉, s0) 6` Q w.a. σθM .

This means that there exists a fluent F such that
a0, a1, . . . , ai−1 ` F but (a0, a1, . . . , ai−1)θM 6` F ,
where F ∈ Precs(ai), i.e. ai is not executable because
one of its preconditions does not hold.

Now, since a0, a1, . . . , ai−1 ` F , there exists j ≤
i − 1, such that a0, a1, . . . , aj ` F and F ∈ Effs(aj)
but (a0, a1, . . . , aj)θM 6` F . Let us assume that j is
the last operation to produce F before ai. There are
two possible cases, either F 6∈ Effs(ajθM ) or there is
another operation akθM , with j < k < i, such that
¬F is one of its effects.

The first case is absurd because, by hypothesis,
the match is re-use ensuring, therefore (a0, a1, . . . ,
ai−1, ai)θM ` F , for any fluent F in Effs(ai). The
second is absurd as well, since j is the last operation
to produce F , the effect ¬F of akθM should be one
of its additional effects but this is absurd because by
hypothesis θM is an uninfluential substitution.

Theorem 3.2 provides a sufficient condition for prov-
ing that a substitution is conservative. Indeed, an oper-
ation may have additional effects that break some de-
pendency which are compensated by additional effects
of other operations.

3.3. Remarks

The choice of not considering more complex forms
of dependencies is motivated by the fact that in this
way the substitution of a single operation can be kept
local because it does not depend on other substitutions.
The important consequence is that conservative substi-
tutions can be built by applying a linear, feedforward
process without the need of backtracking. In fact, it is
sufficient to verify for each [s/ou] that the additional
fluents introduced by s with respect to ou are uninflu-
ential, and this can be done simply by considering the
dependency sets of the unbound operations that follow
s along the considered σ. This is a fundamental prop-

erty that allows operations to be executed as soon as
they are selected with the guarantee that it will not be
necessary to perform any backtracking – which would
require the rollback of all the operations executed up
to that point.

The framework can also be used to allow a service
to select a possible partner. Let us show this with an
example. Consider a choreography with two roles C =
(R1, R2) and a service S1 that wishes to play role R1

with the aim of achieving a personal goal Fs1 starting
from the initial state s0. Assume that p1 is the top level
procedure of R1 and that S1 verified that 〈R1, s0〉 `
Fs1 after p1 w.a. σ. Now consider a service S2 that
ideally could play the role R2 and that published the
interface of the operations that it provides. S1 can use
this description to start a matching procedure, aimed
at identifying a substitution θR2 , which provides the
necessary bindings of operations provided by S2 to un-
bound operations that are up to R2 in p1. Moreover, S1

can verify if substitutions θR1 and θR2 are uninfluen-
tial w.r.t. σ (see Definition 6) and therefore also con-
servative (by Theorem 3.2), i.e. if 〈R1θ

R1θR2 , s0〉 `
Fs1 after p1θ

R1θR2 w.a. σθR1θR2 . When this hap-
pens, S1 has found a partner to interact with in a way
that respects the choreography and that allows it to
achieve its goal.

4. Joint achievement of individual goals

So far, we have motivated the participation of a ser-
vice to a choreography, saying that the service will take
on a role only if by doing so it will have the possi-
bility of satisfying its purposes. The issue that we dis-
cuss in this section is whether it is possible for a team
of services, which would play different roles, to reach
an agreement about their possible executions so that
all of them will achieve their individual goals. To have
an intuition of the problem, consider a choreography
C = (R1, R2). Consider also two services, S1 and S2,
with goals G1 and G2, which are interested in play-
ing respectively R1 and R2. Suppose that the first ser-
vice identifies the execution trace σ1 of R1 as allowing
it to achieve its goal, while the second service identi-
fies the execution trace σ2 of R2. Intuitively, the issue
is that σ1 and σ2 might not be complementary views
of a same execution, so σ1 may include the invoca-
tion of operation� when σ2 does not include the cor-
responding execution of operation�. This is a limit
case. When a party identifies not just a single execu-
tion but a set of alternatives σi, part of them may be
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compatible with some of the executions traces identi-
fied by the other agents. The problem, in this case, is
to converge to a common solution, that is to identify
the subset of the identified executions which allows the
achievement of all goals.

The coordination of a set of autonomous, cooperat-
ing parties is a well-known issue in multi-agent sys-
tems research [44]. Approaches include, among others,
coordination as a post-planning process [39], where
constraints are checked after the plan was found, and
the use of conversation moderators [38], that guaran-
tee that the shared objectives will be reached. In gen-
eral, the reasoning applied in these cases has a local na-
ture because the parties do not have complete knowl-
edge about one another. On the contrary, approaches
which rely on classical game theory [31], assume com-
plete knowledge about all of the parties: a quite unre-
alistic assumption, especially if one considers applica-
tions. The approach that we outline implements a sim-
ple form of negotiation, inspired by [23,24]. Let us ex-
plain it, focussing on two-role choreographies. To this
aim, we introduce a few useful notions.

Given an operation a, we denote by a its com-
plementary operation. For instance, in Example 2.1
searchReservation�

rr is complementary to search-
Reservation�

rr . This notion can easily be extended to
execution traces:

Definition 7 (Compatible execution traces) Let σ =
a0; . . . ; an and σ′ = a′0; . . . ; a

′
n be two execution

traces, we say that σ is compatible with σ′ iff for each
operation ai in σ the corresponding a′i in σ′ is its com-
plementary view.

Let us consider a two-role choreography and see
how two services S1 and S2 can identify a set of com-
patible traces, whose execution allows the achievement
of both their personal goals. Suppose (i) that S1 has
identified the execution trace σ of the top procedure
p1 of R1, that allows the achievement of its goal Fs1,
(ii) that it can implement the operations that should be
supplied by the player of R1 by using the substitution
θR1 , (iii) that it has identified in S2 a possible partner
and in θR2 a possible substituion for the operations that
are to be supplied by the player of R2, and (iv) that
S1 verified that the substitutions θR1 and θR2 are con-
servative5. As a result, S1 now has an execution trace
σθR1θR2 that does not contain unbound operations.

5The two substitutions involve disjoint sets of unbound operations
by construction.

Before executing it, its candidate partner S2 must
agree on executing the complementary trace σθR1θR2 .
Of course, S2 might have its own goal Fs2 which
should be achieved with the execution of the top level
procedure of the role R2, that we here call p2. There-
fore, the following conditions must be verified:

1. σθR1θR2 must be an execution trace of p2;
2. after executing σθR1θR2 the goal Fs2 must hold.

The first condition is guaranteed by the assumption
that the choreography is well-defined, i.e., that its roles
are by construction interoperable and, therefore, for
any execution trace that a role can enact, the other role
supplies a complementary trace6

The second condition is to be verified by S2 by
checking if 〈R2θR1θR2 , s20〉 ` Fs2 after σθR1θR2 ,
where s20 is the initial state of S2 and θR1θR2 is the
substitution obtained from θR1θR2 by using the com-
plementary views of the involved operations. If the an-
swer is positive, the two partners will have identified
an execution that fits both their goals. Notice that the
reasoning applied by S2 is much simpler than the one
executed on p1 because S2 only has to check if the
goal is satisfied, while the reasoning applied to p1 was
aimed at identifying such a trace.

More in general, S1 will identify a set Σ of alterna-
tive execution traces, each of which allows the achieve-
ment of Fs1, and then propose Σ to S2. S2 will re-
strict them to a set Σ′ ⊆ Σ, whose elements satisfy the
goals of both parties. Notice that none of the services
is requested to disclose its goal to its partner.

This interaction procedure, that we have described
informally, allows the joint achievement of goals and
can be seen as a kind of negotiation [31,44]. If no
other preference criterion is specified, it is not impor-
tant which execution trace in Σ′ will be enacted, and
it is not necessary to perform any further negotiation
step because both the choreography and Σ′ are known
to the partners: whoever the initiator of the interaction
will be, each partner knows how to behave. Each part-
ner also has the means for understanding when the in-
teraction takes an unagreed path and decide accord-
ingly, for instance by stopping the interaction.

It is worth noting that, in general, the set of alterna-
tive execution traces might not be finite. Moreover, the
derivation (`) is semidecidable unless the choreogra-
phies are properly restricted, for instance by focussing

6Discussing interoperability is out of the scope of this work but
the interested reader can check [36,13,15,7].
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onto regular sets [3]. Indeed, many choreographies are
of this kind [22]. As a final remark, the fact that the
two services converged to a set of promising execu-
tion traces does not imply that, at execution time, they
will be able to stick to them. The reason is that those
traces were identified by making assumptions on the
values returned by tests and conditions, which cannot
be known in advance. The actual results of such tests,
obtained at execution time, could be different than the
assumed ones.

5. Conclusions and Related Work

This article surveys and extends the proposal in
[6,8], a work that concerns the use of rule-based chore-
ography specifications in the process of performing
a goal-driven selection of services which should act
as role players. This activity is quite complex and in-
volves many steps, including the verification of the
possible achievement of individual goals when playing
roles, the matchmaking of operations against specifi-
cations contained in the choreography, and the identi-
fication of a joint working plan, that allows all the par-
ticipants to pursue their individual goals collectively.

For what concerns matchmaking, we show that for
any re-use ensuring match, as defined in [18], it is de-
cidable to verify if a substitution is uninfluential and,
therefore, conservative w.r.t. a goal, which can be sat-
isfied when using the unbound operations given by a
choreography. This result allows the enrichment of the
matches with a test that can be applied locally, i.e. op-
eration by operation, while the search of all the neces-
sary operations progresses along the examined execu-
tion trace. The test guarantees that any goal that can be
achieved by reasoning on a role specification will still
be achievable after the role players have been selected.
This approach is made possible by the availability of
the choreography, which supplies the execution context
of the various operations.

The literature on matchmaking is wide and it is re-
ally difficult to be exhaustive. Most of the matchmak-
ing techniques that were proposed concern the selec-
tion of a service (or a service operation) as if it had to
be used alone. The matches proposed by Zaremski and
Wing in [46] inspired most of the semantic matches
for web service discovery. Amongst them, Paolucci
et al. [33] propose four degrees of match (exact, plu-
gin, subsumes, and fail). Differently than in our pro-
posal, these matches tackle DAML-S representations,
in which services are described by means of inputs

and outputs; specifically, matches are computed on the
ontological relations of the outputs of a service ad-
vertisement and a query. This approach is refined in
[29], which describes a service matchmaking proto-
type, which uses a Description Logic reasoner to com-
pare ontology-based service descriptions. As in [33],
the matchmaking process produces a discrete scale of
degrees of match. Approaches along this line are or-
thogonal to our work. The framework WSMO [20], in-
stead, does not suggest a specific matching rule, which
is up to the specific implementations, although in [28]
the authors propose an approach that, as well as the
previous ones, relies on [46,29].

Recently some approaches that take into account
also the execution context were proposed [25,40]. Our
proposal can be placed in this category but differs
from the cited works in many respects. The approach
in [25] is inserted in a top-down specification pro-
cedure which starts from the specification of a busi-
ness template (something analogous to a choreogra-
phy) and ends with the retrieval of the needed services.
The perspective is the one of the designer. The issue
of whether deciding to play a role is not posed, and
consequently no notion of goal is introduced. The ap-
proach is “contextual” in that it uses the abstract spec-
ification of the business template for producing the de-
sired service specifications: using our terminology, it
builds a choreography including a characterization of
unbound operations. On the other hand, [40] faces a
problem that is complementary to the one we faced,
because it supplies a formal setting, based on colored
Petri nets, for building mediators between services that
must interact but whose interfaces and message flows
do not precisely match. The two services are seen as
immersed in a BPEL specification.

The approach we propose, for performing goal-
driven service selection, is based on techniques for
reasoning about actions and change, in a framework
where choreography roles and service policies are
modeled as procedures based on atomic operations.
In particular, the technical framework enables the use
of procedural planning techniques [4]. Planning tech-
niques have been successfully used in the web service
domain for building goal-driven adaptable composi-
tions [12,27,16,35] but in ways that differ from our
proposal. For instance, in [12,35] planning techniques
are used for producing service orchestrations, start-
ing from a set of process-level service descriptions,
without reference to any choreography. In our pro-
posal, instead, the specification of an abstract chore-
ography already provides a composition pattern to re-



16 M. Baldoni et al. / Flexible Choreography-driven Service Selection

fer to, and drives the service selection process: the
joint use of reasoning about actions and of seman-
tic matchmaking plays a crucial role in the defini-
tion of flexible selections, adapted to given sets of re-
quirements (the goals). Within the community of re-
searchers who study the service composition problem
by using planning, the value of semantic matchmaking
is highlighted in [35,16], where ontology-based ser-
vice descriptions are functional to the definition of lo-
cal matches. Our work does exploit semantic descrip-
tions, but with the significant difference of scaling up
from a local to a global perspective, once again thanks
to the availability of choreographies.

For what concerns the joint achievement of goals,
the discussion in Section 4 is inspired by [23,24] but
there are some important differences that character-
ize and distinguish the two proposals. The first is that
in our proposal the behavior of services is ruled by
a choreography, which specifies all the possible inter-
actions. When services play choreography roles, they
commit to keep their behavior adherent to the speci-
fication. The proposal by Ghaderi et al., instead, does
not rely on choregraphies (nor on any other kind of
interaction specifications). The reasoning process con-
siders all the possible executions that can be composed
out of a set of atomic actions. Due to the lack of a
choreography, when an execution trace, that allows the
joint achievement of goals, is identified, there is still
the need of adding a coordination mechanism that en-
ables its actual execution. This step is not necessary in
our case.

Another difference is that in [23,24] each agent rea-
sons also for its partner, because the two share a com-
mon goal and a common state. The identified joint
plans correspond to the agents preferred strategies and
are obtained by the iterative elimination of dominated
strategies. In our framework, partners does not have
any knowledge about the others’ goals, as it is reason-
able to suppose for web services. Therefore, the exe-
cution traces that we identify are not necessarily dom-
inant. For example, a greedy partner, at some point of
its execution, may take an action (if the protocol in-
cludes it) that is not in the agreement but that allows
the immediate achievement of its own goal. This be-
havior is, however, not convenient over the long run
because since its interlocutor knows the choreography
and knows the agreed traces, it has a way for monitor-
ing the on-going course of interaction. As soon as it re-
alizes that there is a deviation from the agreed traces, it
can take an appropriate action, e.g. interrupt the inter-
action or compensate certain executed actions, or even

publish a low reputation rate for the partner. This sit-
uation corresponds, in game theory, to a game iterated
forever, i.e. a game in which each round is followed by
another one [44].

Another interesting issue concerns preference crite-
ria that services may apply in order to rank strategies.
Supposing that the two services decide to behave well
and to execute a trace which is in the agreement, how
can they converge to a best-compromise agreement?
One criterion could be to select the trace which en-
tails the minimum number of effects. For example, one
can imagine that a patient prefers a trace at the end of
which it has simply booked the desired medical exam-
ination w.r.t. one in which it has additionally been reg-
istered in the advertisement mailing list of the medi-
cal centre. We mean to investigate this issue as part of
future works.
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6. Medical examination reservation example

For the sake of completeness, this appendix reports
in details all operations of the running example.

Operation searchExamination, patient’s view:

(a) searchExamination�io (examination, exmList) possible if
Bpatientexamination ∧Bpatient¬listObtained

(b) searchExamination�io (examination, exmList) causes

Bpatientsent(examination)
(c) searchExamination�io (examination, exmList) causes

BpatientexmList
(d) searchExamination�io (examination, exmList) causes

BpatientlistObtained

Operation searchExamination, healthcare reservation
service’s view:

(a) searchExamination�io (examination, exmList) possible if
true

(b) searchExamination�io (examination, exmList) causes

Bhrrexamination
(c) searchExamination�io (examination, exmList) causes

BhrrexmList
(d) searchExamination�io (examination, exmList) causes

Bhrrsent(exmList)

Operation askChosenExm, patient’s view:

(a) askChosenExm�
out(chosenExm) possible if

BpatientexmList
(b) askChosenExm�

out(chosenExm) causes

BpatientchosenExm
(c) askChosenExm�

out(chosenExm) causes
Bpatientsent(chosenExm)

Operation askChosenExm, healthcare reservation ser-
vice’s view:

(a) askChosenExm�
out(chosenExm) possible if

BhrrexmList
(b) askChosenExm�

out(chosenExm) causes
BhrrchosenExm

Operation noBusiness, patient’s view:

(a) noBusiness�in() possible if true
(b) noBusiness�in() causes BpatientreservationAborted

Operation noBusiness, healthcare reservation service’s
view:

(a) noBusiness�in() possible if BhrrchosenOffer
(b) noBusiness�in() causes BhrrreservationAborted

Operation proceed, patient’s view:

(a) proceed�in() possible if true

(b) proceed�in() causes BpatientexaminationSelected

Operation proceed, healthcare reservation service’s
view:

(a) proceed�in() possible if Bhrroffer

(b) proceed�in() causes BhrrexaminationSelected

Operation proposeExamination, patient’s view:

(a) proposeExamination�io ((medicalCenter, examination),
exmList) possible if
BpatientmedicalCenter ∧Bpatientexamination∧
Bpatient¬listObtained

(b) proposeExamination�io ((medicalCenter, examination),
exmList) causes
Bpatientsent(medicalCenter)∧
Bpatientsent(examination)

(c) proposeExamination�io ((medicalCenter, examination),
exmList) causes BpatientexmList

(d) proposeExamination�io ((medicalCenter, examination),
exmList) causes BpatientlistObtained

Operation proposeExamination, healthcare reservation
service’s view:

(a) proposeExamination�io ((medicalCenter, examination),

exmList) possible if true
(b) proposeExamination�io ((medicalCenter, examination),

exmList) causes
BhrrmedicalCenter ∧Bhrrexamination

(c) proposeExamination�io ((medicalCenter, examination),
exmList) causes BhrrexmList

(d) proposeExamination�io ((medicalCenter, examination),

exmList) causes Bhrrsent(exmList)

Operation choosePayment, patient’s view:

(a) choosePayment�io (payMethods, chosenMethod)
possible if BpatientchosenExm∧

BpatientexaminationSelected∧
BpatientdeferredPaymentPos

(b) choosePayment�io (payMethods, chosenMethod)
causes BpatientpayMethods

(c) choosePayment�io (payMethods, chosenMethod)

causes BpatientchosenMethod
(d) choosePayment�io (payMethods, chosenMethod)

causes Bpatientsent(chosenMethod)

Operation choosePayment, healthcare reservation ser-
vice’s view:

(a) choosePayment�io (payMethods, chosenMethod)

possible if BhrrpayMethods∧
BhrrexaminationSelected

(b) choosePayment�io (payMethods, chosenMethod)
causes Bhrrsent(payMethods)

(c) choosePayment�io (payMethods, chosenMethod)
causes BhrrchosenMethod

Operation doPayment, patient’s view:
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(a) doPayment�io ((credential, payInfo), resNum)
possible if Bpatientcredentials∧

BpatientchosenExm ∧BpatientchosenMethod

(b) doPayment�io ((credential, payInfo), resNum)
causes BpatientresNum

(c) doPayment�io ((credential, payInfo), resNum)
causes BpatientreservationComplete

Operation doPayment, healthcare reservation service’s
view:

(a) doPayment�io ((credential, payInfo), resNum)

possible if BhrrchosenExm ∧BhrrchosenMethod
(b) doPayment�io ((credential, payInfo), resNum)

causes Bhrrcredentials

(c) doPayment�io ((credential, payInfo), resNum)
causes BhrrresNum

(d) doPayment�io ((credential, payInfo), resNum)
causes Bhrrsent(resNum)

(e) doPayment�io ((credential, payInfo), resNum)
causes BhrrreservationComplete


