
Extensible Objects: a Tutorial?

Viviana Bono

Università di Torino, Dipartimento di Informatica
corso Svizzera 185, 10149 Torino, Italy

bono@di.unito.it

Abstract. In the object-oriented realm, class-based languages dominate
the world of production languages, but object-based languages have been
extensively studied to provide the foundations of the object-oriented
paradigm. Moreover, object-based languages are undergoing a Renais-
sance thanks to the growing popularity of scripting languanges, which
are essentially object-based.
We focus on extensible object-based calculi, which feature method ad-
dition, together with classical method override and method invocation.
Extensible objects can be seen as a way to bridge the gap between the
class-based setting and the pure object-based setting.
Our aim is to provide a brief but rigorous view on extensible objects, fol-
lowing a thread suggested by the concept of “self” (which is the reference
to the executing object) and its related typing problems.
This tutorial may be seen as a complementary contribution to the lit-
erature which has explored and compared extensively pure object-based
and class-based foundations (for example, as in the books by Abadi and
Cardelli, and Bruce, respectively), but which generally neglected exten-
sible objects.

Keywords: object-oriented calculi, object-based calculi, extensible ob-
jects, types

1 Introduction

Object-oriented programming languages enjoy an ever growing popularity, as
they are a tool for designing maintainable and expandable code, and are also
suited for developing web applications and mobile code. It is possible to distin-
guish among class-based languages and object-based languages. Class-based ones
relies on class hierarchies and objects are the class instances, while object-based
ones offer objects as the only computational entities, on which also inheritance
is defined. Production languages, such as Java [AG96], are usually class-based.
They are considered suited to design software in-the-large, because they are well-
coupled with software engineering principles, thanks to the abstraction mecha-
nism offered by the class hierarchies. In object-based languages (such as Self
? This work has been partially supported by EU FET - Global Computing initiative,

project DART IST-2001-33477, and by MIUR project NAPOLI. The funding bodies
are not responsible for any use that might be made of the results presented here.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301885221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 V. Bono

[US87], Obliq [Car95], or Cecil [CG]), new objects may be constructed from al-
ready existing objects, inheriting properties from the latter, so inheritance plays
its rôle directly at the object level. Most object-based languages and calculi offer
an override operation (to modify the components of the parent object), while few
of them feature also an addition operation (to add new components to the parent
object), giving rise to extensible objects and to a more complete form of inheri-
tance which resembles class-based inheritance. Object-based languages have not
been popular thus far as production languages, but have been the basis of more
than fifteen years of study on the theoretical foundations of object-oriented lan-
guages. Object-oriented languages have introduced a number of ideas, concepts
and techniques, which have proved to be useful and effective in programming,
but which needed (and some of them still need) to be fully formalized, in order
to understand, exploit and ameliorate them. Many techniques to prove program
soundness have been developed in the object-based setting, because the concept
of “object” is seen as more primitive from a formal-mathematical point of view
than the concept of “class”.

However, object-based languages, and in particular the ones featuring ex-
tensible objects, nowadays are becoming interesting also for practical purposes,
thanks to the new challenges that come from the Internet. The growing use of a
network as a primary environment for developing, distributing and running pro-
grams requires new supporting infrastructures. In particular, there is the need
of a greater flexibility, allowing software to execute in different environments
essentially without changes, and the requirement to develop working prototypi-
cal applications in a relatively short time. That is why scripting languages, like
JavaScript [Fla99], that offer a set of easy-to-use primitives to program web
applications, are becoming increasingly popular. There is a number of ongoing
researches on foundations for scripting languages [BDG02,DG03], as well as for
prototyping delegation-based languages [AD02b,ABDD03] (whose objects’ main
feature is to keep a link to the objects they were created from, which gives them
the ability to delegate the execution of a method to another object). Research in
these fields is especially oriented towards the design of type systems, balancing
the need of a certain degree of safety during the program execution (in the style
of “a well-typed program cannot go wrong”) and the requirement of flexibility
(not to restrain reusability and not to slow down the design of prototypes).

Extensible objects are the right tool to formalize both scripting and fast-
prototyping calculi, as well as hybrid object-based/class-based languages (which
try to exploit the best of both approaches as in, for instance, [AD02a]), and to
experiment with appropriate type systems: therefore, extensible objects are back
in use. With this tutorial we would like to give an essential survey on the basics
of the topic, which is lacking in the object-oriented literature, that generally
focused on pure object-based calculi (a reference on this topic is the book by
Abadi and Cardelli [AC96a]), and on class-based languages (a reference on this
other topic is the book by Bruce [Bru02]).

In this tutorial we present a functional object-based calculus with fields (oth-
erwise called instance variables) and methods, equipped with method and field

Extensible Objects: a Tutorial 3

invocation, method and field addition and method and field override, and we
analyze it in a classical way, that is, from the point of view of its type system.
Prerequisites for this tutorial are a general knowledge of the object-oriented ter-
minology and of functional calculi and their type systems. A book that may
provide the appropriate background is the one by Pierce [Pie02]. Another ref-
erence that is useful to grasp the basics of the object-based language approach
(also from an implementation point of view) is Chapter 4 of [AC96a].

The tutorial is structured as follows. Section 2 discusses extensible objects
from the point of view of their typing, and presents some informal examples
motivating the introduction of MyType inheritance. Section 3 introduces the
calculus Obj+, through its syntax and operational semantics, then in Section 4
Obj+’s type system is illustrated. Section 5 gives an overview on a semantics
by encoding of Obj+, casting some light on the formal meaning of extensible
objects. Section 6 present a way of modelling classes following the “Classes =
Extensible Objects + Encapsulation” model of [Fis96]. Finally, in Sections 7 we
discuss some related work.

This paper is partly based on the material for the lectures given by the author
at the “Mini-Ecole Chambéry-Turin d’Informatique Théorique” (29 January –
1 February 2003).

2 An Overview of MyType

A type discipline is important for object-oriented languages to ensure safety
(i.e., absence of message-not-understood run-time errors), and the design of safe
type systems depends on the knowledge of the semantics of the object-oriented
language in question. In fact, safety is proved via a Subject Reduction theorem
based on a (usually intuitive) operational semantics that mimic program execu-
tion. Subject Reduction states that if a program is well-typed (with type τ), then
the result of its computation is well-typed (with type τ). From this theorem, it
is possible to prove a formal safety property ensuring that “well-typed programs
cannot go wrong”.

Typing object-oriented programs is an hard task, because one must take in
account many features which may be in conflict with each other. We will hint at
the well-known conflict between inheritance and subtyping in Section 4.2, and
instead discuss in this section some other important issues about the typing of
object-oriented calculi. In particular, we will concentrate on the concept of self
(sometimes called this, e.g., in Java, and here denoted with SELF), which is of
paramount importance in object-oriented languages. SELF is a special variable
that allows reference to the object executing the current method, and therefore
permits the invocation of the sibling methods and the access to the object’s
fields.

We now overview briefly some concepts that will lead us to understand how
to treat SELF in a functional object-based calculus with extensible objects.

Objects. Records are an intuitive way to model objects since both are collections

4 V. Bono

of name/value pairs. The records-as-objects approach was in fact developed in
the pioneering work on object-oriented calculi [CW85], in which inheritance was
modeled by record subtyping. Unlike records, however, object methods should
be able to modify fields and invoke sibling methods [Coo89]. To be capable
of updating the object’s internal state, methods must be functions of the host
object (SELF). Therefore, objects must be recursive records. Moreover, SELF must
be appropriately updated when a method is inherited, since new methods and
fields may have been added and/or old ones redefined in the new host object.

Object updates. If all object updates are imperative, SELF can be bound to
the host object when the object is instantiated from the class. We refer to this
approach as early SELF binding. SELF then always refers to the same record, which
is modified imperatively in place by the object’s methods. The main advantage
of early binding is that the fixed-point operator (which gives to methods the
possibility to reference the host object, i.e., SELF) has to be applied only once,
at the time of object instantiation. If functional updates must be supported —
which is, obviously, the case for purely functional object calculi — early binding
does not work (see, for example, [AC96a], where early binding is called recursive
semantics). With functional updates, each change in the object’s state creates
a new object. If SELF in methods is bound just once, at the time of object
instantiation, it will refer to the old, incorrect object and not to the new, updated
one. Therefore, SELF must be bound each time a method is invoked. We refer to
this approach as late SELF binding.

Object extension. Object extension in an object-based calculus is typically
modelled by an operation that extends objects by adding new methods and fields
to them. There are two constraints on such an operation: (i) the type system
must prevent addition of a component to an object which already contains a
component with the same name, and (ii) since an object may be extended again
after addition, the actual host object may be larger than the object to which a
method was originally added. Thus, method bodies must behave correctly in any
extension of the original host object. Therefore, they must have a polymorphic
type with respect to SELF. The fulfillment of the two constraints can be achieved,
for instance, via polymorphic types built on row schemes [BF98] that use kinds to
keep track of methods’ presence. Even more complicated is the case when object
extension must be supported in a functional calculus. In the functional case,
all methods modifying an object have the type of SELF as their return type.
Whenever an object is extended or has its components redefined (overriden),
the type given to SELF in all inherited methods must be updated to take into
account new and/or redefined components. Therefore, the type system should
include the notion of the “type of SELF”, called MyType (a.k.a. SelfType), so
that the inherited methods can be specialized properly. Support for MyType
generally leads to more complicated type systems, in which forms of recursive
types are required. MyType can be supported by using row variables combined
with recursive types [FHM94,FM95,Fis96], by means of special forms of second-

Extensible Objects: a Tutorial 5

order quantifiers such as the Self quantifier of [AC96a], or with match-bound
type variables as in [BB99,BBC02] and in the calculus presented in this tutorial.

Our calculus Obj+, which will be introduced in Section 3, is chosen to give a
complete example of a calculus with extensible objects and a functional semantics
of method addition. This is, in our opinion, the most difficult semantics to grasp,
and should serve the purpose of giving the reader enough tools to tackle other
calculi.

We now introduce two examples to show the gain of introducing an appro-
priate type MyType for the host object SELF. The examples are expressed in
a syntactic-sugared functional object-based pseudo-language (which offers the
same features of the formal calculus we will introduce in Section 3) where:

1. we distinguish among fields and methods — in particular, each method uses
SELF (i.e., it is a implicit function of SELF);

2. a dot ‘.’ represents component selection;
3. the symbol ‘:=’ stands for (functional) field override, and the keyword extends

represents component addition;
4. ‘;’ indicates concatenation of statements. This is codifiable in any functional

language1.

The first example we present is a simple and standard one.

let Point ≡ 〈 x = 0, move(d) = (SELF.x := (SELF.x + d); return SELF) 〉
in let (ColorPoint extends Point) ≡ 〈 color = blue,

setcolor(c) = (SELF.color := c; return SELF),
. . . 〉

in / ∗ main ∗ / ColorPoint.move.setcolor

The object ColorPoint inherits the methods from Point; in particular, it in-
herits the method move which returns a modified SELF (i.e., a new object is
created from the host object by modifying the field x through an update of the
field x itself with a value computed from its current value plus a displacement
d). The main program executes without errors, but within traditional type sys-
tems it is not typable, since ColorPoint.move would either be of type of Point,
and Point does not have a setcolor method, or of the most general type pos-
sible (e.g., in Java it would be Object), again making impossible calling the
specific methods of ColorPoint. The solution adopted in traditional program-
ming languages to make this program type check is to use typecasts, which are
explicit declarations made by the programmer on the expected actual type of
the method result according to the type of the object the method is invoked
upon. Typecasts are unsafe—the programmer must be “sure” about the actual
type of the returned object, since little or even no static checking is performed
on typecasts, as happens, respectively, in Java or in C++. Moreover typecasts
certainly do not improve readability of code, which has a negative impact on the
debugging phase. An alternative to typecasts is the introduction of selftype (oth-
erwise known as MyType), with the meaning “the type of the current object”,

1 Of course in call-by-value calculi codification of statement concatenation is easier.

6 V. Bono

i.e., “the type of self”. If we annotate move with the MyType as its return type,
then ColorPoint.move and ColorPoint will have the same type and the main
program will typecheck and work without typecasts, because MyType specialize
along the Point/ColorPoint hierarchy (that is why the use of MyType is also
known as MyType specialization).

The second example defines a linked/double-linked list, and it is largely in-
spired to a class-based example that can be found in Bruce’s book [Bru02] on
page 41.

let Node ≡ 〈 val = 0, next = null,

getV al = (return SELF.val),

setV al(nv) = (SELF.val := nv; return SELF),

getNext = (return SELF.next),

setNext(nn) = (SELF.next := nn; return SELF),

attachRight(nn) = (return SELF.setNext(nn); 〉
in let (DbleNode extends Node) ≡ 〈 prev = null, getPrev = (return SELF.prev),

setPrev(np) = (SELF.prev := np; return SELF),

attachRight(nn) =

(return nn.setPrev(SELF.setNext(nn))) 〉
in /* main */

We type this example by giving MyType as the type for the fields next and prev2,
as the return type of setV al, getNext, setNext, attachRight, getPrev, setPrev,
and also as the type of the parameters nn of setNext and attachRight, and
np of setPrev. Therefore, setNext has type MyType→ MyType, with MyType
“changing of meaning” according to the object the method is invoked upon:
Node.getNext has type Nodetype → Nodetype, and DbleNode.getNext has
type DbleNodetype → DbleNodetype. The same “changing of meaning” is re-
produced for attachRight.

Note that in an imperative setting, where the update of the fields can be done
by side-effects, there is no need to return SELF, and, as a consequence, the return
types of setV al, setNext, attachRight, setPrev can be a “void” type without
losing expressive power. However, it would be impossible to give a sensible type
to parameters such as nn, since setNext’s parameter must have the same type
as the object on which setNext is invoked upon (i.e., it must have a Node type
if it is invoked on a Node, or a DbleNode type if it is invoked on a DbleNode).
Methods such as setNext are called binary methods [BCC+95]. Being able to
type binary methods is a special feature of functional calculi supporting MyType.

3 The Calculus

Our specimen calculus is called Obj+, and is a fully fledged object-based calculus
that supports message passing and constructs for object update and extension.
Obj+ is a variant of the Lambda Calculus of Objects of [FHM94], the first cal-
culus that provided a formal type system for extensible objects. The differences

2 We assume to have a term constant null whose type is MyType.

Extensible Objects: a Tutorial 7

from the original proposal of [FHM94] are as follows: (i) method bodies are ς-
abstractions over a SELF variable rather than λ-abstractions, and (ii) methods
are distinguished from fields, both syntactically and semantically. The use of
ς-binders eases the comparisons between our calculus and related calculi in the
literature (with ς-binders, the syntax of Obj+ is a proper extension of the un-
typed ς-calculus [AC96a]). As for the distinction between methods and fields, a
part from being a common practice in object-oriented languages and calculi, it
arises as a result of a retrospective analysis of the interpretation of objects and
object types. In fact, as proven in [BBC02], the qualitative nature of the target
theory used in the interpretation changes significantly depending on the kind
of overrides (otherwise called updates in the literature) supported by the source
calculus. Specifically, recursive types suffice for the interpretation of external and
self-inflicted field updates, and external method updates3. On the other hand,
self-inflicted method updates require a non-trivial extension of the target theory,
one in which recursion and least fixed points are available not only for types,
but also for type operators.

Obj+ is an untyped version of the calculus Ob+ presented in [BBC02]. Ob+

served the purpose of being the source calculus of a type preserving and compu-
tationally adequate interpretation into a functional calculus. Ob+ was explicitly
typed for a technical reason: to ensure that well-typed objects had unique types,
a property that was missing in [FHM94] and necessary to have a fully formal
encoding. We will give an overview of such encoding results in Section 5, but,
since we are not going into technical details in the present tutorial, we preferred
to use as a tutorial example an untyped calculus, which is easier to describe and
work with.

The syntax of Obj+ terms is defined by the following productions:

a, b, c ::= Terms
x variable

〈vi = ci
i∈I ,mj = ς(x)bj{x}j∈J〉 object

(vi’s and mj ’s distinct)

a�v field selection
a�v ← b field update
a�v ←+ b field addition

a ◦m method invocation
a ◦m ← ς(x)b{x} method update
a ◦m ←+ ς(x)b{x} method addition

Terms of the form 〈vi = ci
i∈I ,mj = ς(x)bj{x}j∈J〉 denote objects, i.e., collec-

tions of named fields and methods that can be selected, updated, or added. As in
[AC96a], each method is an abstraction of the host object SELF, represented by
the ς-bound variable x. The notation b{x} emphasizes that the variable x may
3 The adjective external refers to invocation/override operations performed on objects,

while the adjective self-inflicted refers to invocation/override operations performed
on SELF, inside a method body.

8 V. Bono

occur free in b. Given b{x}, we write b{a} (or, equivalently b{x := a}) to denote
the term that results from substituting the term a for every free occurrence of
x in b.

Each of the primitive operations on objects come in two versions, for fields
and methods. a ◦m invokes the method associated with the label m in a, while
a�v selects the field v; a ◦m ← ς(x)b{x} replaces the current body of m in a with
ς(x)b{x}, while a�v ← b performs the corresponding operation on the field v;
finally, a ◦m ←+ ς(x)b{x} extends a by adding a new method m with associated
body ς(x)b{x}, and a�v ←+ b does the same with the field v.

Terms that differ only for renaming of bound variables, or for the relative
order of method and field labels are considered equal, i.e., syntactically identical:
we write a ≡ b to state that a and b are equal. To ease the notation, we use `
to denote method or field labels whenever the distinction between methods and
fields may be disregarded soundly, and write a · ` to denote a ◦` or a�`.

The evaluation of Obj+ expressions is defined by a big-step operational se-
mantics that rewrites closed terms into results4. A result r is defined to be a
term in object form. We write a ⇓o r to denote that evaluating a closed term
a returns the result r, and say that a converges – written a ⇓o – if there exists
a result r such that a ⇓o r. The operational semantics is defined below, rule by
rule, and it is an extension of the corresponding semantics in [AC96a] that han-
dles field and method addition. The following notation is used in the operational
semantics rules:

〈`i = bi{x}i∈I∪J〉 , 〈vi = ci
i∈I ,mj = ς(x)bj{x}j∈J〉

a · ` , a ◦` or a�`
a · ` ← b{x} , a ◦` ← ς(x)b{x} or a�` ← b

a · ` ←+ b{x} , a ◦` ←+ ς(x)b{x} or a�` ←+ b

The rules are rather intuitive, and for the ones dealing with updates and addi-
tions we do not need to distinguish among fields and methods.

Results : r = 〈vi = ci
i∈I ,mj = ς(x)bj{x}j∈J〉

(Selectv)
a ⇓o 〈. . . , vj=cj , . . .〉 cj ⇓o r

a�vj ⇓o r

(Selectm)
a⇓o â bj{â} ⇓o r (â ≡ 〈. . . , mj = ς(x)bj{x}, . . .〉)

a ◦mj ⇓o r

(Update)
a ⇓o 〈`i = bi{x}i∈I∪J〉 k ∈ I ∪ J

a · `k ← b{x} ⇓o 〈`i = bi{x}i∈I∪J−{k}
, `k = b{x}〉

(Extend)
a ⇓o 〈`i = bi{x}i∈I∪J〉 ` 6∈ {`i}i∈I∪J

a · ` ←+ b{x} ⇓o 〈` = b{x}, `i = bi{x}
i∈I∪J〉

4 The definition of a small-step operational semantics can be found in Appendix A.3.

Extensible Objects: a Tutorial 9

Field selection and method invocation (rules (Selectv) and (Selectm)) are com-
puted by evaluating the recipient of the selection/invocation to a result (that
is, to an object), then by selecting and evaluating the sought component body.
The only difference is that a retrieved method body must have the host object
substituted for the SELF variable (represented formally in the calculus by x) be-
fore being evaluated, to accomplish with the intended semantics of objects, so
to make it possible to invoke sibling methods and access object fields. Updating
(rule (Update)) must ensure that the component we want to update exists in
the object which the recipient of the updating operation evaluates to, before
updating the component. Vice-versa, for the extension (rule (Extend)) we must
ensure that the component is not present yet before adding it.

3.1 Formalized Examples

In this section, we present some examples illustrating the behavior of the calculus
Obj+. We start from an expression representing an infinite computation:

Ω ≡ 〈m = ς(x)x ◦m〉 ◦m

This expression reduces to itself forever, therefore never to a result r (i.e., it does
not converge), as the following derivation in the big-step semantics shows.

(Selectm)

〈m = ς(x)x ◦m〉 ⇓o 〈m = ς(x)x ◦m〉
(x ◦m){〈m = ς(x)x ◦m〉} ≡ Ω
(x ◦m){〈m = ς(x)x ◦m〉} ⇓o ??

Ω ⇓o ??

It is possible to show formally that Obj+ is Turing-complete (that is, it can
codify all partial recursive functions). In [FHM94], an encoding in the Lambda
Calculus of Objects of Object numerals, Zero test, Predecessor and fixed-point
operator (using the Ω expression shown above, written in their syntax) is pre-
sented. We prefer to take the Abadi-Cardelli’s approach (presented on pages
66–67 of [AC96a]), that is, encoding the untyped lambda calculus in Obj+ (we
recall that the symbol ‘:=’ denotes a substitution):

[[x]] ≡ x (variable);
[[a b]] ≡ [[a]] • [[b]] (application), where p • q ≡ (p�arg ← q) ◦val;
[[λx.a{x}]] ≡ 〈 arg = y, val = ς(x) [[a{x}]] {x := x�arg} 〉 (lambda abstraction),
with y a fresh variable.

The reader may want to check that this encoding preserves β-reduction.
Since Obj+ is Turing-complete, we can add integers as shortcuts for numerals

to Obj+ terms, in order to ease the task of writing examples. An example that
we could not left out is the Point/ColorPoint one, expressed in the Obj+ syntax:

Point ≡ 〈 pos = 0,move = ς(x)(x�pos ← ((x�pos) + 1)) 〉
ColorPoint ≡ Point�c ←+ = blue

10 V. Bono

It is possible to note that a move is performed by a self-inflicted field selec-
tion (x�pos), that returns the value of pos which is then incremented by 1,
and through an updating of pos with the new value via a self-inflicted override
(x�pos ← (. . .)). Let us consider now some computations:

ColorPoint reduces in few operational big-steps to the object:
〈 pos = 0,move = ς(x)(x�pos ← ((x�pos) + 1)), c = blue 〉;

ColorPoint ◦move reduces in few operational big-steps to the object:
〈 pos = 1,move = ς(x)(x�pos ← ((x�pos) + 1)), c = blue 〉.

We advise the reader to perform both of the above reductions in detail. The
second one, in particular, shows how the host-object SELF-substitution works.

4 Types and Typing Rules

In this section we describe the type system of the calculus Obj+. The syntax of
types is as follows.

A,B, C ::= Types
X, U variable

pro(X)〈〈vi : Ci
i∈I ,mj : Bj{X}j∈J〉〉 object type (vi’s and mj ’s distinct)

An object type A ≡ pro(X)〈〈vi : Ci
i∈I ,mj : Bj{X}j∈J〉〉 is the type of all the

objects with fields vi (i ∈ I), and methods mj (j ∈ J). The keyword pro 5 binds
all free occurrences of X in the Bj{X}j∈J . When invoked, each field vi returns
a value of type Ci, and each method mj returns a value of type Bj{A}, that is
the type Bj with every free occurrence of the variable X substituted by the type
A itself. This type substitution reflects the self-substitution semantics of method
invocation. As in the syntax of terms, we use the notation pro(X)〈〈`i : Bi{X}i∈I〉〉
for pro-types, whenever there is no reason to distinguish methods from fields.
Object types that differ in the order of the component labels, or for the names
of bound variables are considered equal: we write A ≡ B to state that the types
A and B are equal.

As hinted in Section 2, functional method addition needs a form of MyType
inheritance, in order to specialize the method types as methods are inherited.
The typing rules for Obj+ rely on the form of match-bounded polymorphism
that was studied in [BB99] for the Lambda Calculus of Objects [FHM94]. Poly-
morphic types arise in the typing of methods as a result of (i) method bodies
being dependent on SELF, and (ii) the possibility for a method to be invoked
on extensions of the object where it was first installed. To ensure sound typing
of method invocation, method bodies are typed in a context that assumes the
so-called MyType for the SELF variable x. In this context, MyType is a match-
bounded type variable representing the types of the objects resulting from all the

5 The notation pro was introduced in [FHM94] and it is maintained here for historical
reasons.

Extensible Objects: a Tutorial 11

possible extensions of the host object with new methods and fields. The match-
ing relation (<#) was introduced in [Bru94]. A full study about matching and
its various application other than MyType inheritance can be found in [Bru02].

The most significative rule for matching in our context is the following:

(Match pro)

Γ ` pro(X)〈〈`i : Bi{X}i∈1..n+k〉〉
Γ ` pro(X)〈〈`i : Bi{X}i∈1..n+k〉〉<# pro(X)〈〈`i : Bi{X}i∈1..n〉〉

This rule superficially looks like the subtyping-in-width rule, but the use of match-
ing in place of the more standard relation of subtyping is central to the type sys-
tem, because matching, unlike subtyping, does not support subsumption: since
objects are extensible, absence of subsumption on pro-types is crucial for type
soundness (see Section 4.2 for a quick overview on the problem, and [BB99] for
a deeper discussion).

All of the typing rules for Obj+ are collected in Appendix A.4. The most
interesting rules are given and commented below.

(Val Object: A ≡ pro(X)〈〈vi : Ci
i∈I ,mj : Bj{X}j∈J〉〉)

Γ ` ci : Ci Γ,U<# A, x : U ` bj{x} : Bj{U} ∀ i ∈ I, j ∈ J

Γ ` 〈vi = ci
i∈I ,mj = ς(x)bj{x}j∈J〉 : A

(Val Object) is the rule for object formation. MyType is the type variable
U match-bounded in the context of the typing judgements of method bodies, and
it is given to the SELF variable x as its type (x:U). Note that the return type
of each method depends polymorphically on MyType: this allows the (return)
type of methods to be soundly specialized upon method addition. The rule also
emphasizes the distinction between methods and fields: since the latter do not
depend on SELF, their type need not depend on MyType.

(Val Select)

Γ ` a : A Γ ` A<# pro(X)〈〈` : B{X}〉〉
Γ ` a · ` : B{A}

(Val Select) is the rule for field and method invocation. An invocation for
(the field or) method ` on an object a requires a to have a pro-type containing
the label `. The result of the call has the type B listed in the pro-type of a, with
A substituted for X (if ` is a field, this substitution is vacuous). Note that A
may either be a pro-type matching pro(X)〈〈` : B{X}〉〉, or else an unknown type
(i.e., a type variable) occurring (match-bounded) in the context Γ . Rules like the
one above are sometimes referred to as structural rules [AC96a], and their use is
critical for an adequate rendering of MyType polymorphism: it is the ability to
refer to possibly unknown types that allows methods to act parametrically over
any U<# A, where U is the type of SELF, and A is a given pro-type.

12 V. Bono

(Val Field Addition: A+ ≡ pro(X)〈〈` : B{X}, `i : Bi{X}i∈I〉〉)

Γ ` a : pro(X)〈〈`i : Bi{X}i∈I〉〉 Γ ` c : B (` 6= `i ∀i ∈ I)
Γ ` a�` ←+ c : A+

(Val Method Addition: A+ ≡ pro(X)〈〈` : B{X}, `i : Bi{X}i∈I〉〉)

Γ ` a : pro(X)〈〈`i : Bi{X}i∈I〉〉 Γ,U<# A+, x : U ` b{x} : B{U}
(` 6= `i ∀i ∈ I)

Γ ` a ◦` ←+ ς(x)b{x} : A+

(Val Field Addition) and (Val Method Addition) are the typing rules
for field and method additions. The label ` is assumed to be different from all of
the `i’s, i ∈ I, and the type of the object a being extended to be a pro-type: since
no subtyping is available on pro-types, this implies that an object extension is
typed with exact knowledge of the type of a. Note that in rule (Val Method
Addition) the return type of the added method depends polymorphically on
MyType, while in the rule (Val Field Addition) the field type is not required to
depend on MyType.

(Val Field Update)

Γ ` a : A Γ ` A<# pro(X)〈〈v : C〉〉 Γ ` c : C

Γ ` a�v ← c : A

(Val Field Update) is a structural rule: as in (Val Select), the type A of
the object a being updated may either be a type variable, or a pro-type. When
it is a pro-type, the update is external; when it is a type variable, the update is
self-inflicted. The judgement Γ ` A<# pro(X)〈〈v : C〉〉 requires A (hence a : A)
to have a field v with type C, and the remaining judgement ensures that the
update preserves the type of the object.

(Val Method Update (external only): A ≡ pro(X)〈〈vi : Ci
i∈I ,mj : Bj{X}j∈J〉〉)

Γ ` a : A Γ,U<# A, x : U ` b{x} : Bk{U} k ∈ J

Γ ` a ◦mk ← ς(x)b{x} : A

(Val Method Update) handles the case of updates for methods: unlike the
corresponding rule for fields, (Val Method Update) is non-structural, as the type
A of the object being updated is required to be a pro-type. As a consequence,
method updates may not be self-inflicted; instead, it is available as an external
operation which can only be performed from outside the object. This restriction
could safely be lifted, without consequences on the operational behavior of the
source calculus or on the operational soundness of the type system. The rule

Extensible Objects: a Tutorial 13

accounting both for external and self-inflicted method updates would have the
following form:

(Val Method Update’ (external and self-inflicted))

Γ ` a : A Γ ` A<# pro(X)〈〈mk : Bk{X}〉〉 Γ,U<# A, x : U ` b{x} : Bk{U}
Γ ` a ◦mk ← ς(x)b{x} : A

On the one hand, type soundness in the presence of both external and self-
inflicted method updates can be proved as in the calculus described in [BB99].
On the other hand, as we mentioned, self-inflicted method updates do have
significant impact on the semantic interpretation, so, since we want to account
for the semantics by encoding (in Section 5), is worth to present the two rules
separately.

We conclude the presentation of the source calculus stating the main prop-
erties of the type system. Proofs for the results below are essentially the same
as those given in full detail in [BB99].

Theorem 1 (Subject Reduction). If Γ ` a : A in Obj+, and a ⇓o r, then
also Γ ` r : A.

Theorem 2 (Soundness). Let c be a closed expression such that ∅ ` c : A for
some type A. Then:

1. if c is one of: a ◦` ← ς(x)b{x}, a�` ← b, a · ` , and a ⇓o r, then r is an
object containing a label `.

2. if c is one of: a ◦` ←+ ς(x)b{x}, a�` ←+ b, and a ⇓o r, then r is an object
that does not contain a label `.

The soundness theorem states that if an expression is well-typed, no message-
not-understood error will arise at run-time.

4.1 Some Examples of Typing

As we added integers to the Obj+ terms, we now consider also their type int to
type the Point/ColorPoint example:

Point ≡ 〈 pos = 0,move = ς(x)(x�pos ←X ((x�pos) + 1)) 〉 :
pro(X)〈〈pos:int,move:X〉〉;

ColorPoint ≡ Point�c ←+ = blue : pro(X)〈〈pos:int,move:X, c:color〉〉

The type derivation is left to the reader as an exercise. We will show, instead, the
type derivation for 〈 m = ς(x)x ◦m 〉 : pro(X)〈〈m:X〉〉 (〈 m = ς(x)x ◦m 〉 is part
of Ω, presented in Section 3.1). We need basically6 a (Val Object) application
and a (Val Select) application (from bottom to top).

6 We omit checking well-formedness for x : U and U<# pro(X)〈〈m:X〉〉 in the derivation.

14 V. Bono

x : U ` x : U U<# pro(X)〈〈m:X〉〉 ` U<# pro(X)〈〈m:X〉〉
U<# pro(X)〈〈m:X〉〉, x : U ` x ◦m : X{U} ≡ U

Γ ` 〈 m = ς(x)x ◦m 〉 : pro(X)〈〈m:X〉〉

4.2 Subtyping

A concept of paramount importance in the object-oriented realm is subtyping :
A is a subtype of B, written A <:B, iff a value of type A can be used in any
context expecting a value of type B. Connected to the notion of subtyping is the
subsumption rule: if P:A and A <:B, then P:B. If A <:B, a value of type A can
be: (i) used for a parameter of type B; and (ii) assigned to a variable of type
B, so that the value of an expression can correspond to a subtype of its static
type. We discuss briefly subtyping for the most common structures used in the
object-oriented setting, and then some anomalies by showing three examples.

Subtype for records (co-variant) If r : {li : Bi}i∈1..k then r.li : Bi. When
is {lj : Aj}j∈1..n <: {li : Bi}i∈1..k? Assume r′ : {lj : Aj}j∈1..n. We still need
r′.li : Bi, i ∈ 1..k. Therefore, {lj : Aj}j∈1..n <: {li : Bi}i∈1..k if k ≤ n (subtyping-
in-width) and ∀ i ∈ 1..k, Ai <:Bi (subtyping-in-depth).

Subtype for functions (co/contra-variant) If F : A → B and a : A then
F (a) : B. When is A′ → B′ <:A→ B? If F ′ : A′ → B′, we still need F ′(a) : B.
Therefore, A′ → B′ <:A → B if A <:A′ and B′ <:B, i.e., subtyping behaves
contra-variant for parameters and co-variant for results. This rather counter-
intuitive behavior is source of “troubles” when subtyping on function types,
obviously applied to methods, meets inheritance.

Example 1: inheritance is not subtyping [CHC90]. Can inherited methods
break when called on “subobjects”? Unfortunately, yes. Let us consider this
fragment of pseudo-code that we assume inserted in a program let-defining two
Node’s called nd1, nd2 and a DbleNode called dnd (Node and DbleNode where
introduced in Section 2).

. . . in

let Break ≡ 〈 breakit(n1, n2) = n1.attachRight(n2) 〉
in /* main */Break.breakit(nd1, nd2);Break.breakit(dnd, nd1)

The first call Break.breakit(nd1, nd2) is safe, but a problem arises from the
second call Break.breakit(dnd, nd1) because it triggers dnd.attachRight(nd1),
which in turn tries to set the non-existing prev of nd1, making the program
crash (since the invoked attachRight is the one of DbleNode). This happens

Extensible Objects: a Tutorial 15

being DbleNode not a subtype of Node, because of MyType appearing in a
contra-variant position in attachRight (i.e., as the type of its parameter)7.

We can conclude that pro(X)〈〈mj : Aj{X}j∈1..n〉〉<: pro(X)〈〈mi : Bi{X}i∈1..k〉〉
if and only if k ≤ n and for all i ∈ 1..k, Ai{X}<:Bi{X}, but no Bi{X} has
a contra-variant occurrence of X, that is, no parameters in the methods of the
supertype can have the same type MyType of SELF.

Therefore, if two object types are subtypes, then they match, but not vice-
versa. For example (using the usual informal notation), DbleNodetype<# Nodetype
but not DbleNodetype<:Nodetype. For a careful study of the conflict between
inheritance and subtyping, see the work of Castagna et al. (for instance, in
[Cas96]), where, among other things, another approach for object-oriented lan-
guages is presented, alternative to the “objects-as-records” one: the “methods-
as-overloaded-functions” model.

Example 2: subtyping-in-width versus method/field addition. In an
object with two components `1 and `2 of types A1 and A2, the component `1
may require `2 to be of type A2. “Forgetting” `2 by subtyping may result in
a possible re-addition of `2 with another, incompatible, type A3, making the
invocation of `1 fail (even though the whole expression is well-typed).

Example 3: subtyping-in-depth versus method/field override. Consider
the following object:

UseLog ≡ 〈 n = 10,m = ς(x)Log(x�n) 〉 : pro(X)〈〈n : posint, m : int〉〉

The method m selects the value of the field n and calculates its base-10 logarithm.
Now, by subtyping, posint <: int, so we may have UseLog : pro(X)〈〈n : int,m :
int〉〉, which would allow to update n with a negative value. This clearly would
make the invocation of m fail (even though the whole expression is well-typed).

In the literature, there are two main ways to make subtyping and operations
on objects living together harmlessly.

– Limiting subtyping, for instance by collecting the mutual dependencies among
methods and allowing subtyping applications only if they involve methods
that are not used by other methods [BL95,Rém98].

– Defining two states in which an object can be. In state 1, objects can be
extended/overridden (i.e., in this state, objects play a rôle similar to the one
of classes), while in state 2, objects can be subtyped.

The solution of [FM95] belongs to the second “family”, and it is formalized by
the following rule:

(Sub probjFM95)

Γ, Y,X <:Y ` B′
i{X}<:Bi{Y } (i = 1..n)

Γ ` probj(X)〈〈`i : B′
i{X}

i∈1..n+k〉〉<: obj(Y)〈〈`i : Bi{Y }i∈1..n〉〉
7 These problems are well-known in the recursive type setting, and MyType is nothing

else than a form of recursive type.

16 V. Bono

When an object is in its pro-totypical state, it can be modified by override and
addition, but subtyping does not apply. When an object changes state, becoming
a “true” obj-ect, it is as “sealed” and cannot be modified anymore, but then
subtyping (both in-width and in-depth, as the above rule shows) applies. The
drawback of this approach is that, since the passage from the pro-state to the
obj-state is done by using the same subtyping rule, when an object contains a
binary method it cannot be “promoted” from pro- to obj-, otherwise we run
into the problem described in the Example 1 above.

5 Semantics by Encoding

Interpretations of object-oriented programming are typically defined in terms of
reductions to procedural or functional programming, and help provide sound and
formal foundations to object-oriented languages and their specific constructs and
techniques. The reduction is not straightforward: difficulties arise principally at
the level of types, when trying to validate the subtyping properties of the source
languages. A number of object encodings for the so-called object-based calculi
have subsequently been proposed by [PT94,AC96a,ACV96,BCP97], and recently
by [Cra99]. These interpretations apply to a rich variety of object calculi with
constructs for object formation, message send and (functional) method update:
they succeed in validating the operational semantics of these calculi as well
as the expected subtyping relationships over object types; finally they extend
smoothly to the case of Self Types and other object-oriented constructs. None of
these proposals, however, appears to scale to calculi of extensible objects, where
there are two major difficulties in dealing with their interpretations. The first is
the presence of the MyType. The second difficulty arises from the co-existence
of subtyping and object extension, two mechanisms that we have seen being
essentially incompatible in Section 4.2, and hence difficult to combine in sound
and flexible type systems. Summarizing, the fact that inheritance and client-use
of the objects components happen both at the same level, that is, on the same
entities (i.e., the objects), complicates the semantics a great deal.

In this section, we summarize the paper [BBC02], where an interpretation of
extensible objects is presented that addresses both these problems. In particular,
subtyping is accounted for by distinguishing between extensible and nonexten-
sible objects, as proposed by [FM95] (their main rule is (Sub probjFM95), pre-
sented in Section 4.2). The interpretation is an encoding: the target calculus is
a polymorphic λ-calculus with records, recursive types and (higher-order) sub-
typing. Within this calculus, an extensible object is interpreted as a pair of two
components: the object generator, which is made available to contexts where
the structure of the object is extended with new methods or fields, and the
interface, a recursive record that provides direct access for the object’s clients
to the methods and fields of the object itself. Technically, the two components
are collectively grouped into a single recursive record by a technique which is
inspired by, and generalizes, the split-method interpretation of [ACV96]. The
resulting interpretation is faithful to the source calculus in that (i) it preserves

Extensible Objects: a Tutorial 17

the validity of typing judgements, and (ii) it validates the operational semantics,
i.e., the encoding is computationally adequate. Besides providing a fully formal
interpretation of extensible objects, the encoding of [BBC02] also clarifies the
relationship between calculi of extensible and nonextensible objects presented
in the recent literature. In fact, the encoding specializes smoothly to the case
of nonextensible objects and object types, validating the expected subtyping re-
lationships. Although the focus is one particular calculus – specifically, on one
approach to combining object extension with subtyping – the translation is suffi-
ciently general to capture other notions of subtyping over object types (a notable
example are the rules for covariant subtyping of [AC96a]).

5.1 The Target Calculus Fω<:µ

The target calculus of the translation is a variant of the polymorphic typed
λ-calculus Fω

<: . We briefly review the syntax, introducing notation and termi-
nology on type operators and recursive types.

K ::= Kinds
T type
K⇒ K type operator

A,B ::= Constructors
X constructor variable
Top greatest constructor of kind T
A→B function type
[m1 : B, . . . ,mk : B] record type
∀(X <:A :: K)A bounded universal type
µ(X)A recursive type
λ(X :: K)B operator
B(A) operator application

M,N ::= Expressions
x variable
λ(x : A)M abstraction
M N application
Λ(X <:A :: K)e type-abstraction
M A type-application
[m1 = M1, . . . ,mk = Mk] record
M.m record selection
fold(A,M) recursive fold
unfold(M) recursive unfold
let x = M in N local definition
letrec f(x : A) : B = M in N recursive local definition

A type operator is a function from types to types. Types and type operators are
collectively called constructors. The notation A :: K indicates that the constructor
A has kind K. The typing rules, found in the paper [BBC02], are standard (see

18 V. Bono

also Chapter 20 of [AC96a]). Type equality is defined by judgements of the form
Γ ` A ↔ B, modulo renaming of bound variables. The following notation is
used throughout: Op ≡ T ⇒ T is the kind of type operators, A ≤ B denotes
subtyping over type operators, whereas A<:B denotes subtyping over the kind
T of types. We also use the following shorthands from [AC95] to emphasize
the relationships between type operators and their fixed points. Given the type
operator A :: Op, A∗ ≡ µ(X)A(X) is the (least) fixed point of A; dually, given
the recursive type A :: T ≡ µ(X)B(X), Aop ≡ λ(X)B(X) :: Op is the type
operator whose (least) fixed point is A. As in [AC95], Aop is defined in terms of
the syntactic form µ(X)B(X) of A: the notation Aop is well-defined because we
rely on a weak notion of type equality whereby a recursive type is isomorphic,
rather than equal, to its unfoldings. Results, or values, are lambda abstractions,
records, and recursive folds. We write M ⇓f r to denote that M (a closed term)
evaluates to a result r, and say that M converges – written M ⇓f – if there exists
a result r such that M ⇓f r. A standard call-by-name operational semantics for
this target calculus can be found in [BBC02].

5.2 Encoding of Extensible Objects and Types: an Overview

To understand the encoding and its subtleties, it is useful to proceed by steps,
and first discuss solutions that are intuitively simple but do not give a correct
encoding. We keep the discussion informal, and look at a simplified case in which
objects have no fields, and for which the only available operators are method
addition and invocation. Then we extend the analysis to objects with fields,
and show how to account for field selection, addition and update. Finally we
look at method updates, distinguishing external from self-inflicted updates: we
show that the former can be encoded in Fω<:µ with no additional machinery,
and discuss the extensions to Fω<:µ required to handle the latter. The paper
[BBC02] presents the fully-formal encoding.

Failures of Self Application. We first consider objects without fields. Looking
at the reduction rules, it would be tempting to interpret these objects as in the
self-application semantics of [Kam88]. In this semantics, methods are functions of
the SELF parameter, objects are records of such functions, and method invocation
is field selection plus self-application. This semantics was originally proposed as
an interpretation of nonextensible objects, and its properties are well-known
[AC96a]: it works well in the untyped case, but fails in the typed case because
it does not validate the expected subtyping relationships over object types.

A similar problem arises for our extensible objects, even though pro-types can
not be subtyped. Following the self-application semantics, one would interpret
the type pro(X)〈〈m:B〉〉 as the recursive record type A ≡ µ(X)[m : X → B] which
solves the type equation A = [m : A→B]. Now, given (the interpretation of) an
object a : A, consider extending a with (the interpretation of) a new method
m′ = λ(s)b. The extension is interpreted as the formation of the new record [m =
a.m, m′ = λ(s)b], whose type is A+ ≡ µ(X)[m : X→B,m′ : X → B′]. Typing

Extensible Objects: a Tutorial 19

the new record requires the type of a.m to be subsumed to A+ → B, but the
subtype relationship A→B <:A+→B fails due to the contravariant occurrence
of the types A and A+.

To circumvent the use of subsumption, a seemingly correct solution would be
to refine the self-application semantics by using polymorphic methods and inter-
preting pro-types as recursive types of the form µ(X)[m : ∀(U<# X)U→B{U}].
Unfortunately this attempt fails when trying to reduce matching to subtyping in
Fω<:µ, as in [AC95]: the reason is essentially the same as before, as the universal
quantifier is again contravariant in its bound.

In both the previous attempts, the actual source of the problem is the poor
interaction between the subtyping rules for recursive types and the contravariant
occurrence of the recursion variable in the types of methods: we need to break
that problematic dependency.

Methods and Split Labels. Looking at the typing rules of Obj+ (cf. Section
4), one may identify two distinguished views of methods. The rule (Val Object)
shows this distinction clearly: in the premises, methods are viewed and typed
as concrete values – abstractions of SELF – whereas in the conclusion they are
seen as “abstract services” that can be invoked by messages. This observation
suggests an interpretation that splits methods into two parts, in ways similar
to, but different from, the translation of [ACV96] (see [BBC02]). In the untyped
case, the object8 〈mi = ς(x)bi

i∈1..n〉 can be interpreted as the recursive record
that satisfies the following equation:

M = [mgen
i = λ(x) [[bi]] i∈1..n, msel

i = M.mgen
i (M) i∈1..n]

Each method mi is represented by two components: the generator mgen
i , associ-

ated with a function representing the actual body of mi, and the selector msel
i ,

which results from self-applying mgen
i to the host object and can be directly in-

voked by selection, without self-application at selection time. Thus, clients of the
object can access the object’s methods by means of the selectors, while derived
objects, obtained by the addition of new methods, inherit the generators and
re-install the corresponding selectors to rebind SELF to the extended structure
of the host object. In other words, the set of selectors can be thought of as the
abstract interface that the object provides for its clients, while the generators
are available in contexts where the structure of the object needs to be extended
with new methods.

This idea works well also in the typed case. The interface associated with
an Ob+ type A ≡ pro(X)〈〈mi : Bi{X}i∈1..n〉〉 is represented by the type operator
Ain defined by Ain(X) ≡ [msel

i : Bi{X}
i∈1..n], that includes the method selectors

(here, and below, Bi is the translation of Bi). The type A, in turn, is interpreted
as the recursive record type that collects the components representing generators

8 The form 〈mi = ς(x)bi
i∈1..n〉 is a shortcut notation for the object expression

〈mi = ς(x)bi{x}i∈1..n〉.

20 V. Bono

and selectors for each of the mi:

A ≡ µ(X)[mgen
i : ∀(U ≤ Ain)U∗→Bi{U∗} i∈1..n,msel

i : Bi{X} i∈1..n].

The generators have polymorphic types corresponding to the match-bounded
types used in the typing rules of the source calculus: following [AC95], matching
is interpreted as higher-order subtyping.

The typed translation of terms derives immediately from the untyped transla-
tion and the translation of types. The object ς(X=A)〈mi = ς(x : X)bi{X}i∈1..n〉
is interpreted as the following recursive record, where Aop is the type operator
corresponding to A:

M = [mgen
i = Λ(U ≤ Ain)λ(x : U∗) [[bi{U}]] i∈1..n, msel

i = M.mgen
i (Aop)(M)

i∈1..n
]

Exposing the interface Ain in the (higher-order) subtype constraint U ≤ Ain of
the generators insures that each method may legally invoke its sibling methods
via SELF. The use of the interface Ain in the bounded quantifier is critical for
well-typedness: besides exposing the selectors for use within each method body,
it validates the subtyping relationships

∀(U ≤ Ain)U∗→Bi{U∗} ≤ ∀(U ≤ (A+)in)U∗→Bi{U∗}

needed to inherit the generators upon object extension, as well as the relationship
Aop ≤ Ain needed to type the self-application M.mgen

i (Aop). Note also that the
interface hides the generators to reflect that objects cannot be self-extended.

Fields and Field Update. Fields are handled easily in the interpretation: they
need no generator components gen, as they do not depend on SELF, and their
evaluation is independent of the structure of the object and of its extensions. On
the other hand, field updates require a different treatment (and interpretation) of
the recursive nature of SELF. The problem is well-known [AC96a]: defining objects
by direct recursion, as we did above, does not quite reflect their computational
behavior. Specifically, field updates do not work if the recursion freezes SELF

to be the object at the time of creation or extension: subsequent updates on
a field are not reflected in the invocation of a method that depended on that
field through SELF. The solution, as in [ACV96,AC96a], is to give a recursive
definition not of the object itself, but rather of the dependency of the object on
its methods. In the untyped case, this correspond to the following interpretation
of 〈mi = ς(x)bi

i∈1..n〉.

letrec mkobj(f1, . . . , fn) =
[mgen

i = fi
i∈1..n

, msel
i = fi(mkobj(f1, . . . , fn)) i∈1..n]

in mkobj(λ(x) [[b1]] , . . . , λ(x) [[bn]])

Now it is the definition of mkobj, i.e., of the function that creates the object,
that is recursive, not the object itself. This enables a correct interpretation of
field updates that uses the updaters of [ACV96]. The interpretation of a, now

Extensible Objects: a Tutorial 21

complete, object of the form 〈vi = ci
i∈1..n,mj = ς(x)bj

j∈1..m〉 can be defined as
follows:

letrec mkobj(wi
i∈1..n, fj

j∈1..m) =
[vsel

i = wi
i∈1..n

,

vupd
i = λ(z)mkobj(w1, . . . , wi−1, z, wi+1, . . . , wn, fj

j∈1..m)
i∈1..n

,

mgen
j = fj

j∈1..m
,

msel
j = fj(mkobj(wi

i∈1..n, fj
j∈1..m)) j∈1..m]

in mkobj([[ci]] i∈1..n
, λ(x) [[bj]] j∈1..m)

Fields are also split into two components: the selector vsel provides access to the
contents of the field, the updater vupd takes the new value and returns a new
object with the value installed in place of the original. A field update may then
be translated by a simple call to the updater associated with that field.

The translation extends smoothly to the typed case: to allow field selection
and update, the interface and the type of the object are extended with new
components corresponding to the selectors and updaters associated with the
object’s fields. If A ≡ pro(X)〈〈v : C, . . .〉〉, the type of the selector vsel is C, and
the type of the updater vupd is C→ A, that is the type of a function that, given
an argument with the same type as the value to be updated, returns an object
which has the same type as the object prior to the update.

Method Update. In the untyped case, method updates can be dealt with
in exactly the same way as field updates, by introducing an updater mupd

i for
each method, and interpreting a method update as a call to the correspond-
ing updater. Unfortunately, the typing of method updaters poses a non-trivial
problem.

Self-inflicted updates. Take A ≡ pro(X)〈〈m : B{X}〉〉 and a : A, and consider
updating the method m of a. Using method updaters, the translation of A would
be the recursive type:

A = µ(X)[mgen : ∀(U ≤ Ain)U∗→B{U∗},
mupd : (∀(U ≤ Ain)U∗→B{U∗})→ X,
msel : B{X}]

As in the case of fields, the updater mupd expects an argument of the same
type as the actual method body — the type of mgen — and returns a modified
copy of the object, preserving the original type. The problem is that to allow
self-inflicted method updates the updaters must be exposed in the interface Ain.
This leads to a new definition of the interface associated to the type A, as the
type operator that satisfies the following equation:

Ain(X) = [mupd
i : (∀(U ≤ Ain)U∗→Bi{U∗})→X, msel

i : Bi{X}]

22 V. Bono

The problem with this equation is that it involves type operators rather than
types: solving equations of this kind requires a significant extension to the target
theory Fω<:µ, one that allows fixed points to be taken not only at types, but
also at type operators. To our knowledge, this extended theory has not been
studied in the literature, and its soundness is still an open problem. For this
reason, in the formal treatment [BBC02], we disregard method updaters, and
focus attention on the simpler case in which method update is an operation that
may only be performed from outside the object. External updates, which are
legal in the source calculus, can still be accounted for in Fω<:µ, as we discuss
below.

External updates. The translation of external method updates relies on
the same technique discussed for method addition. Given the object a ≡
〈mi = ς(x)bi

i∈1..n〉, the interpretation of a ◦mj ← ς(x)b is the call

mkobj([[a]] .m gen
1 , . . . , [[a]] .m gen

j−1 , λ(x) [[b]] , [[a]] .m gen
j+1 , . . . , [[a]] .m gen

n)

which forms a new object containing new body for mj and the methods inherited
from a. Note that this interpretation of method updates does not work for the
self-inflicted case. As we already pointed out, the generators mgen

i cannot be
invoked from within a method body, as they are not exposed by the interface
of the object: on the other hand, exposing the generators in the interface (i.e.
using Aop in place of Ain) would break the subtyping required to type an object
extension (for (A+)op ≤ Aop fails due to the contravariant occurrence of the
universal quantifier in the type of the generators).

6 From Extensible Objects to Classes

The main insight of the object-based model is that class-based notions need not
to be assumed, but instead they can be emulated by more primitive notions.
Moreover, these more primitive notions can be combined in more flexible way
than in a strict class discipline. Therefore, one way to evaluate object-based
calculi is with respect to how well they support class-based programming. The
main contribution of the paper [BF98] is the formal study of a calculus of en-
capsulated extensible objects (that uses bounded existential quantifier), which
are used to model class hierarchies. This calculus is imperative, and simpli-
fies the type system for the calculus described in Fisher’s dissertation [Fis96]
(which is functional and supporting MyType). The paper [BF98] presents an
(imperative) operational semantics, and gives a sound and complete typing al-
gorithm. We summarize the paper in this tutorial and, to motivate the study,
we report a comparison between this approach to modeling classes and the well-
known record-of-premethods approach. This comparison, which is an overview of
[FM98], reveals why extensible calculi are relevant to class-based programming.

Extensible Objects: a Tutorial 23

6.1 Premethod Model

In the context of object calculi, it seems natural to define inheritance using
premethods, functions that are written with the intent of becoming object meth-
ods, but which are not yet installed in any object. Premethods are functions that
explicitly depend on the “object itself,” typically assumed to be the first param-
eter to the function. Following this idea, Abadi and Cardelli encoded classes
in a pure object system using records of premethods [AC96a]; these ideas are
also used by Reppy and Riecke [RR96]. In this approach, a class is an object
that contains a record of premethods and a constructor function used to package
these premethods into objects.

The primary advantage of the record-of-premethods encoding is that it does
not require a complicated form of object. All that is needed is a way of forming
an object from a list of component definitions. However, this approach has some
serious drawbacks. We discuss these drawbacks using a list of criteria [FM98]
that characterizes the rôle of classes in class-based languages.

Does the class construct provide a coherent, extensible collection?
The combination of a record of premethods and a constructor function may be
thought of as a coherent, extensible collection. Because premethods are simply
fields in a record, nothing requires that they be coherent until a constructor
function is supplied. Since the constructor function installs the premethods into
an object, however, the fact that a given constructor is typable implies that the
premethods it uses are coherent. Notice, however, that nothing requires a given
constructor to mention all of the premethods in a given premethod record.

Does the class construct guarantee initialization? In more elaborate
record-of-premethod models, the code to initialize private instance variables is
guaranteed to run if any of the associated premethods is installed into an object.
However, constructor functions cannot be reused usefully in derived classes. A
consequence is that if a class designer puts initialization code into a class con-
structor, that code will not be executed for derived classes. There are several
program-development scenarios where this weakness would be a serious problem.
For example, class designers may wish to perform some kind of bookkeeping
whenever objects are instantiated from a class or its descendants. To achieve
it, programmers need a place to put code that will execute whenever an object
is instantiated. With the record-of-premethods approach, however, there is no
appropriate place: no base class constructor function will be called for derived
classes, and a premethod function may be called without creating an object.

Does the class construct provide an explicit type hierarchy? In many
existing class-based languages, it is possible to restrict the subtypes of an “im-
plementation” object type (i.e., a class) to classes that inherit all or part of the
object’s implementation. This restriction may be useful for optimizing opera-
tions on objects, allowing access to argument objects in binary methods, and
guaranteeing semantic consistency beyond type considerations [KLM94]. A spe-

24 V. Bono

cial case of this capability is the ability to define final classes, as recognized
in work on Rapide [KLM94] and incorporated (presumably independently) as
a language feature in Java. This ability is lacking in the record-of-premethods
approach since any object whose type is a structural subtype of another type τ
can be used as an object of type τ .

Does the class mechanism automatically propagate base class changes?
Because derived class constructors must explicitly name the methods that they
wish to inherit, the record-of-premethods approach does not automatically prop-
agate base class method changes. In particular, if a derived class D is defined from
a base class B in Java or related languages, then adding a method to B will result
in an additional method of D, and similarly for every other class derived from
B (and there may be many). With the record-of-premethods approach, derived
class constructors must be explicitly rewritten each time base classes change.
Since object-oriented programs are typically quite large and maintenance may
be distributed across many people, the person who maintains a base class may
fail to inform those maintaining its derived classes of its change, causing unpre-
dictable errors. There is no mechanism in this approach to detect such errors
automatically.

6.2 Extensible Object Model

While we readily admit that its simplicity is a virtue, the above discussion re-
veals that several important and desirable features of class-based programming
are lost in the record-of-premethods model. Extensible objects provide a rich
alternative. A principled way to think about class-based object-oriented lan-
guages is as the combination of two orthogonal components [Fis96,FM98]: (i),
an object system that supports inheritance and message sending and (ii), an
encapsulation mechanism that provides hiding. We call this model of classes
the “Classes = Extensible Objects + Encapsulation” approach. Referring to the
class-evaluation checklist we used to evaluate the pre-methods model, we can
see that this approach successfully addresses each of the points listed there: it
provides an extensible coherent collection, guarantees initialization, supports an
explicit type hierarchy, and automatically propagates base class changes.

Extensible, coherent collection. Extensible objects obviate the need for pre-
methods, since collections of methods that are already installed in objects may
be extended. Because of this fact, we may impose static constraints on the ways
in which one method may be combined with others. For example, if an object
contains two mutually recursive methods, then we cannot replace one with an-
other of a different type. In contrast, in the record-of-premethods approach, it is
possible to form a record of premethods without a “covering” constructor that
checks to be sure that all of the premethods are coherent.

Guaranteed initialization. A second advantage of extensible objects is that
class constructors and initialization code can be inherited, i.e., reused in derived

Extensible Objects: a Tutorial 25

classes. For example, to create ColorPoint objects, we may invoke a Point
class constructor and add color methods to the resulting extensible object. This
process guarantees that the Point class has the opportunity to initialize any
inherited components properly. It also guarantees that the designers of the Point
class have the opportunity to update any bookkeeping information they may be
keeping about instantiations of Point objects.

Explicit type hierarchy. A further advantage is the rich subtyping structure
of this approach. In particular, it provides “implementation” types that subtype
along the inheritance hierarchy, “interface” types that subtype via structural
subtyping rules, and a hybrid subtyping relation that allows implementation
types to be subtypes of interface types. With this subtyping structure, program-
mers can use implementation types where the extra information is useful and
interface types where more generality is required.

Automatic propagation of changes. Another advantage arises with private
(or protected) methods. In the extensible-object formulation, methods always
remain within an object, even when it is extended. These hidden methods exist
in all future extensions, but they can only be accessed by methods that were
defined before the method became hidden. Furthermore, these private methods
need not be manipulated explicitly by derived class constructors to insure that
they are treated properly.

These advantages may be seen in the encoding of the traditional Point and
ColorPoint hierarchy, studied in the paper [BF98]. In this tutorial we present
it in its pseudo-type-theory version only, to develop intuitions for the formal
model.

6.3 Pseudo-Type-Theoretic Point, ColorPoint Hierarchy

In the “Classes = Extensible Objects + Encapsulation” model of classes
[Fis96,FM98], extensible objects support the inheritance aspects of classes, while
an encapsulation mechanism provides the hiding. We illustrate the ideas behind
this model by encoding the familiar Point, ColorPoint hierarchy in pseudo-type
theory. The code, which appears in Figure 1, contains two class declarations fol-
lowed by “Client Code.”

To explain the model, we focus on the Class encapsulation construct, which
provides the outer wrapping for each of the class declarations. In it, the Class
clause names the abstraction-as-class, Point in the first case, ColorPoint in
the second. The implements clause gives the public and protected interfaces
supported by the class, “Point public interface” and “Point protected interface,”
respectively, in the Point case. A public interface lists the methods available
from instances of its class. Such a list for a simple Point class might be of
the form 〈〈getX : int, setX : int→unit〉〉, revealing that objects of the class
contain getX and setX methods of the indicated types. At the discretion of the
class designer, a class’s public interface may explicitly name its parent class,

26 V. Bono

Class Declarations

Class Point implements “Point public interface”, “Point protected interface”

exports newP : int→ “extensible obj. type from Point class”

is

{|“Point private interface”; “code to implement newP” |}
end;

Class ColorPoint implements “CP public interface”, “CP protected interface”

exports newCP : color→ int→ “non-extensible obj. type from ColorPoint class”

is

{|“CP private interface”; “code to implement newCP” |}
end;

in

“If desired, restrict return types of non-final constructors;”

“Client Code”

end

Fig. 1. Point, ColorPoint hierarchy.

if one exists. For example, the ColorPoint public interface might be of the
form 〈〈Point | getC : color, setC : color→unit〉〉. The Point portion of this
interface indicates that objects created from the ColorPoint class were formed
via inheritance from the Point class; hence, they have the Point class methods.
In addition, by thus indicating the parent class, the ColorPoint class designer
declares that the “implementation type” associated with the ColorPoint class is
a subtype of the Point class’s “implementation type.” Through this declaration
mechanism, the model supports an explicit type hierarchy. The second half of
the ColorPoint public interface indicates that the ColorPoint class added getC
and setC methods.

The protected interface augments the public one with information for deriv-
ing classes. In this model, this information consists of method and field names
that may not be used in derived classes without introducing name clashes.

The exports clause of the encapsulation mechanism reveals the names and
types of the non-dynamically dispatched operations defined by the class. In gen-
eral, this clause lists constructor and “friend” functions. In the example, the
Point class designer chose to export a single constructor function, newP of type
int→ “extensible object type from Point class.” By making the return type an
extensible object type, the class designer enabled inheritance from this class: a
derived class calls newP to get the implementation of the Point class and then
adds and redefines components as necessary. Since the ColorPoint class designer
made newCP return a non-extensible object, the ColorPoint class is “final,” in
the sense that no other class can be formed by extending its implementation. The
Point class designer opted to make the return type of newP flag its defining class

Extensible Objects: a Tutorial 27

(via the “from Point class” annotation). Because this information is present
in the constructor type, the ColorPoint class designer can export its parent’s
identity. Without it, the derived class could reuse its parent’s implementation
but could not reveal this fact nor make the ColorPoint implementation type a
subtype of the Point implementation type.

The is clause of the encapsulation mechanism has two pieces. The first part,
the private interface, lists all the methods defined within the class. For a simple
Point class, this interface might be of the form 〈〈x : int, getX : int, setX :
int→unit〉〉, where x is a private field.

The second piece of a class implementation is the code to implement the
constructor and friend functions listed in the exports clause. In the Point class
case, this code simply defines an extensible object with field x and methods
getX and setX. For the ColorPoint class, the constructor implementation first
calls newP to inherit the Point class behavior and then adds color-related fields
and methods. If the ColorPoint class advertises the fact that it inherits from
Point in its public interface, then the type system insures that the ColorPoint
constructor function calls newP and returns an extension of the resulting object.
Thus the type system guarantees that the Point class has a chance to initialize
its private variables and set up its desired invariants for any object instantiated
from it, either directly or via a derived class.

Because the Class construct is an encapsulation mechanism, only the aspects
of the is code specifically mentioned in the implements and exports clauses
can be used in the rest of the program. Hence in the encoding, this mechanism
ensures the privacy of private methods and fields.

After we process all the class declarations in the pseudo-code, we are almost
ready to execute the “Client Code.” Without any further adjustment, however,
non-final classes have constructor functions that return extensible objects, which
enable run-time inheritance. If we wish to disable this feature, we may restrict
the return types of these constructor functions to return “non-extensible” objects
instead. This type restriction does not involve changing the values in any way; it
simply adjusts the types. The restriction is safe because every extensible object
type in the system is a subtype of the corresponding non-extensible version.

7 Related Work

In the Lambda Calculus of Objects [FHM94], MyType inheritance is rendered
via row variables (instead of being modelled by match-bound quantification as
it is for Obj+). The type of SELF is a partially non-defined row-type, where the
non-defined part is a row-variable representing all possible extensions that the
host object may be subjected to. Rows are validated by using kinds. Also the
calculus of [BF98] we presented informally in Section 6 is based on row-variables.

The work [Liq98] presents a detailed comparison among four type systems for
the Lambda Calculus of Objects: the original one [FHM94], the Fisher’s thesis
one [Fis96], an earlier version of Obj+ [BB99], and a system based on bounded
polymorphism.

28 V. Bono

In the literature, there are proposals that integrate extensible objects in
broader contexts. We mention three of them:

– Baby Modula 3 [Aba94] is a toy language that provides extensible objects. In
order to ensure safety with respect to subtyping, all of the object extensions
must be done before applying any form of subsumption. This language also
accounts for a notion of “incomplete objects”, for which completions are
fixed ahead of time, prior to any addition. A calculus that offers a more
complex form of incomplete objects is presented in [BBDCL99].

– The calculus presented in [Rém98] is a version of the Abadi and Cardelli
calculus [AC96b] equipped with extensible objects, as it is our Obj+, but
its type system is richer. The underlying idea is to trace subtyping, in such
a way method addition and subtyping-in-width can co-exists. This extra-
information allows also to model a form of virtual methods (i.e., it models
a form of incomplete objects). Moreover, when sufficient type information is
available, objects play a rôle similar to the one of classes; such information
can be then hidden progressively, objects regaining their proper rôle.

– The paper [DHL98] extends the Lambda Calculus of Objects with a form
of self-inflicted method addition. Relationships between this calculus and
foundations for dynamic re-classification of objects [DDDCG02] are under
study.

References

[Aba94] M. Abadi. Baby Modula–3 and a Theory of Objects. Journal of Functional
Programming, 4(2):249–283, 1994.

[ABDD03] C. Anderson, F. Barbanera, M. Dezani-Ciancaglini, and S. Drossopoulou.
Can addresses be types? (a case study: objects with delegation). In
WOOD’03, volume 82.8 of ENTCS. Elsevier, 2003.

[AC95] M. Abadi and L. Cardelli. On Subtyping and Matching. In Proceedings
of ECOOP’95: European Conference on Object-Oriented Programming,
volume 952 of LNCS, pages 145–167. Springer–Verlag, 1995.

[AC96a] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer, 1996.

[AC96b] M. Abadi and L. Cardelli. A Theory of Primitive Objects: Untyped and
First-Order System. Information and Computation, 125(2):78–102, March
1996.

[ACV96] M. Abadi, L. Cardelli, and R. Viswanathan. An Interpretation of Objects
and Object Types. In Proc. of POPL’96, pages 396–409, 1996.

[AD02a] C. Anderson and S. Drossopoulou. Babyj - from object based to class
based programming via types. In Proc. of WOOD’03, volume 82.8 of
ENTCS, 2002. Workshop of ETAPS’03.

[AD02b] C. Anderson and S. Drossopoulou. δ - an imperative object based calculus.
Presented at the workshop USE in 2002, Malaga, 2002.

[AG96] K. Arnold and J. Gosling. The Java Programming Language. Addison-
Wesley, 1996.

[BB99] V. Bono and M. Bugliesi. Matching for the Lambda Calculus of Objects.
Theoretical Computer Science, 212(1/2):101–140, 1999.

Extensible Objects: a Tutorial 29

[BBC02] V. Bono, M. Bugliesi, and S. Crafa. Typed interpretations of extensible
objects. ACM Transactions on Computational Logic, 2002.

[BBDCL99] V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. A Subtyping
for Extensible, Incomplete Objects. Fundamenta Informaticae, 38(4):325–
364, 1999.

[BCC+95] K.B. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group,
G. Leavens, and B. Pierce. On Binary Methods. Theory and Practice
of Software Systems, 1(3):217–238, 1995.

[BCP97] K.B. Bruce, L. Cardelli, and B. Pierce. Comparing Object Encodings. In
Proc. of TACS’97, volume 1281 of LNCS, pages 415–438. Springer-Verlag,
1997.

[BDG02] V. Bono, F. Damiani, and P. Giannini. A calculus for “environment-
aware” computation. In F-WAN’02, volume 66.3 of ENTCS. Elsevier,
2002.

[BF98] V. Bono and K. Fisher. An Imperative, First-Order Calculus with Object
Extension. In Proc. of ECOOP’98, volume 1445 of LNCS, pages 462–497,
1998. A preliminary version already appeared in Proc. of 5th Annual
FOOL Workshop.

[BL95] V. Bono and L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell
Lambda Calculus of Objects. In Proc. of CSL’94, volume 933 of LNCS,
pages 16–30. Springer-Verlag, 1995.

[Bru94] K.B. Bruce. A Paradigmatic Object-Oriented Programming Language:
Design, Static Typing and Semantics. Journal of Functional Program-
ming, 4(2):127–206, 1994.

[Bru02] K.B. Bruce. Foundations of Object-Oriented Languages – Types and Se-
mantics. The MIT Press, 2002.

[Car95] L. Cardelli. A Language with Distribuite Scope. Computing Systems,
8(1):27–59, 1995.

[Cas96] G. Castagna. Object-Oriented Programming: a Unified Foundation.
Birkauser, 1996.

[CG] UW Cecil Group. UW Cecil Group : Home. Cecil’s language home page.
[CHC90] W. Cook, W. Hill, and P. Canning. Inheritance is not Subtyping. In Proc.

of ACM Symp. POPL’90, pages 125–135. ACM Press, 1990.
[Coo89] W.R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown

University, 1989.
[Cra99] K. Crary. Simple, efficient object encoding using intersection types. Tech.

rep., CMU-CS-99-100, Cornell University, 1999.
[CW85] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction

and Polymorphism. Computing Surveys, 17(4):471–522, 1985.
[DDDCG02] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini.

More dynamic object re-classification: FickleII . ACM Transactions On
Programming Languages and Systems, 24(2):153–191, 2002.

[DG03] F. Damiani and P. Giannini. Alias types for “environment-aware” com-
putations. In WOOD’03, volume 82.8 of ENTCS. Elsevier, 2003.

[DHL98] P. Di Gianantonio, F. Honsell, and L. Liquori. A Lambda Calculus of Ob-
jects with Self-inflicted Extension. In Proc. of ACM-SIGPLAN OOPSLA,
International Symposium on Object Oriented, Programming, System, Lan-
guages and Applications, pages 166–178. The ACM Press, 1998.

[FHM94] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects
and Method Specialization. Nordic Journal of Computing, 1(1):3–37, 1994.
A preliminary version appeared in Proc. of IEEE Symp. LICS’93.

30 V. Bono

[Fis96] K. Fisher. Type Systems for Object-Oriented Programming Languages.
PhD thesis, Stanford University, 1996. Available as Stanford Computer
Science Technical Report number STAN-CS-TR-98-1602.

[Fla99] D. Flannanghan. JavaScript: The definitive guide. O’Reilly, 1999.

[FM95] K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with
Subtyping. In Proc. of FCT, volume 965 of LNCS, pages 42–61. Springer-
Verlag, 1995.

[FM98] K. Fisher and J.C. Mitchell. On the relationship between classes, ob-
jects, and data abstraction. Theory and Practice of Object Systems, 4(3),
1998. Special Issue on Third Workshop on Foundations of Object-Oriented
Languages (FOOL 3). Preliminary version appeared in Marktoberdorf ’97
proceedings.

[Kam88] S. Kamin. Inheritance in Smalltalk-80: a denotational definition. In Proc.
of POPL’88, pages 80–87. ACM Press, 1988.

[KLM94] D. Katiyar, D. Luckham, and J.C. Mitchell. A type system for proto-
typing languages. In Proc. 21st of Symp. on Principles of Programming
Languages. ACM, 1994.

[Liq98] L. Liquori. On Object Extension. In Proc. of ECOOP, European Confer-
ence on Object Oriented Programming, volume 1445 of Lecture Notes in
Computer Sciences, pages 498–552. Springer Verlag, 1998.

[Pie02] B.C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[PT94] B. Pierce and D. Turner. Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 4(2):207–248,
1994.

[Rém98] D. Rémy. From classes to objects via subtyping. In Proceedings of
ESOP’98, volume 1381 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[RR96] J.H. Reppy and J.G. Riecke. Classes in Object ML via modules. In Proc.
of FOOL3 Workshop, 1996.

[US87] D. Ungar and R. B. Smith. Self: the Power of Simplicity. In Proc. of
OOPSLA’87, pages 227–241. ACM Press, 1987.

A Obj+

A.1 Notation

〈`i = bi{x}i∈I∪J〉 , 〈vi = ci
i∈I , mj = ς(x)bj{x}j∈J〉

a · ` , a ◦ ` or a�`

a · ` ← b{x} , a ◦ ` ← ς(x)b{x} or a�` ← b

a · ` ←+ b{x} , a ◦ ` ←+ ς(x)b{x} or a�` ←+ b

Extensible Objects: a Tutorial 31

A.2 ⇓o : Big-Step Operational Semantics

Results : r = 〈vi = ci
i∈I , mj = ς(x)bj{x}j∈J〉

(Selectv)
a ⇓o 〈. . . , vj=cj , . . .〉 cj ⇓o r

a�vj ⇓o r

(Selectm)
a⇓o â bj{â} ⇓o r (â ≡ 〈. . . , mj = ς(x)bj{x}, . . .〉)

a ◦mj ⇓o r

(Update)
a ⇓o 〈`i = bi{x}i∈I∪J〉 k ∈ I ∪ J

a · `k ← b{x} ⇓o 〈`i = bi{x}i∈I∪J−{k}, `k = b{x}〉

(Extend)
a ⇓o 〈`i = bi{x}i∈I∪J〉 ` 6∈ {`i}i∈I∪J

a · ` ←+ b{x} ⇓o 〈` = b{x}, `i = bi{x}i∈I∪J〉

A.3 �o: Small-Step Operational Semantics

a ≡ 〈vi = ci
i∈I , mj = ς(x)bj{x}j∈J〉

(Selectv) a�vi �o ci i ∈ I

(Selectm) a ◦mj �o bj{a} j ∈ J

a ≡ 〈`i = bi{x}i∈I∪J〉
(Extend) ` 6∈ {`i}i∈I∪J

a · ` ←+ b{x} �o 〈` = b{x}, `i = bi{x}i∈I∪J〉

(Update) k ∈ I ∪ J

a · `k ← b{x} �o 〈`i = bi{x}i∈I∪J−{k}, `k = b{x}〉

A.4 Typing Rules

Context Formation

(Ctx ∅)

∅ ` ∗

(Ctx X)

Γ ` ∗ X 6∈ Dom(Γ)

Γ, X ` ∗

(Ctx Match)

Γ ` pro(X)〈〈`i : Bi{X}i∈I〉〉 U 6∈ Dom(Γ)

Γ, U<# pro(X)〈〈`i : Bi{X}i∈I〉〉 ` ∗

Type formation

(Type X)

Γ ′, X, Γ ′′ ` ∗
Γ ′, X, Γ ′′ ` X

(Type Match U)

Γ ′, U<# A, Γ ′′ ` ∗
Γ ′, U<# A, Γ ′′ ` U

(Type pro)

Γ, X ` Bi{X}
Γ ` pro(X)〈〈`i : Bi{X}i∈I〉〉

32 V. Bono

Term Formation

(Val x)

Γ ′, x : A, Γ ′′ ` ∗
Γ ′, x : A, Γ ′′ ` x : A

(Val Select)

Γ ` a : A Γ ` A<# pro(X)〈〈` : B{X}〉〉
Γ ` a · ` : B{A}

(Val Object: A ≡ pro(X)〈〈vi : Ci
i∈I , mj : Bj{X}j∈J〉〉)

Γ ` ci : Ci Γ, U<# A, x : U ` bj{x} : Bj{U} ∀ i ∈ I, j ∈ J

Γ ` 〈vi = ci
i∈I , mj = ς(x)bj{x}j∈J〉 : A

(Val Field Addition: A+ ≡ pro(X)〈〈` : B{X}, `i : Bi{X}i∈I〉〉)

Γ ` a : pro(X)〈〈`i : Bi{X}i∈I〉〉 Γ ` c : B (` 6= `i ∀i ∈ I)

Γ ` a�` ←+ c : A+

(Val Method Addition: A+ ≡ pro(X)〈〈` : B{X}, `i : Bi{X}i∈I〉〉)

Γ ` a : pro(X)〈〈`i : Bi{X}i∈I〉〉 Γ, U<# A+, x : U ` b{x} : B{U} (` 6= `i ∀i ∈ I)

Γ ` a ◦ ` ←+ ς(x)b{x} : A+

(Val Field Update)

Γ ` a : A Γ ` A<# pro(X)〈〈v : C〉〉 Γ ` c : C

Γ ` a�v ← c : A

(Val Method Update: A ≡ pro(X)〈〈vi : Ci
i∈I , mj : Bj{X}j∈J〉〉)

Γ ` a : A Γ, U<# A, x : U ` b{x} : Bk{U} k ∈ J

Γ ` a ◦mk ← ς(x)b{x} : A

Matching

(Match U)

Γ ′, U<# A, Γ ′′ ` ∗
Γ ′, U<# A, Γ ′′ ` U<# A

(Match Refl)

Γ ′, U<# A, Γ ′′ ` U

Γ ′, U<# A, Γ ′′ ` U<# U

(Match Trans)

Γ ` U<# B Γ ` B<# A

Γ ` U<# A

(Match pro)

Γ ` pro(X)〈〈`i : Bi{X}i∈1..n+k〉〉
Γ ` pro(X)〈〈`i : Bi{X}i∈1..n+k〉〉<# pro(X)〈〈`i : Bi{X}i∈1..n〉〉

