Extensible Objects: a Tutorial*

Viviana Bono

Universita di Torino, Dipartimento di Informatica
corso Svizzera 185, 10149 Torino, Italy
bono@di.unito.it

Abstract. In the object-oriented realm, class-based languages dominate
the world of production languages, but object-based languages have been
extensively studied to provide the foundations of the object-oriented
paradigm. Moreover, object-based languages are undergoing a Renais-
sance thanks to the growing popularity of scripting languanges, which
are essentially object-based.

We focus on extensible object-based calculi, which feature method ad-
dition, together with classical method override and method invocation.
Extensible objects can be seen as a way to bridge the gap between the
class-based setting and the pure object-based setting.

Our aim is to provide a brief but rigorous view on extensible objects, fol-
lowing a thread suggested by the concept of “self” (which is the reference
to the executing object) and its related typing problems.

This tutorial may be seen as a complementary contribution to the lit-
erature which has explored and compared extensively pure object-based
and class-based foundations (for example, as in the books by Abadi and
Cardelli, and Bruce, respectively), but which generally neglected exten-
sible objects.

Keywords: object-oriented calculi, object-based calculi, extensible ob-
jects, types

1 Introduction

Object-oriented programming languages enjoy an ever growing popularity, as
they are a tool for designing maintainable and expandable code, and are also
suited for developing web applications and mobile code. It is possible to distin-
guish among class-based languages and object-based languages. Class-based ones
relies on class hierarchies and objects are the class instances, while object-based
ones offer objects as the only computational entities, on which also inheritance
is defined. Production languages, such as Java [AG96], are usually class-based.
They are considered suited to design software in-the-large, because they are well-
coupled with software engineering principles, thanks to the abstraction mecha-
nism offered by the class hierarchies. In object-based languages (such as Self

* This work has been partially supported by EU FET - Global Computing initiative,
project DART IST-2001-33477, and by MIUR project NAPOLI. The funding bodies
are not responsible for any use that might be made of the results presented here.

https://core.ac.uk/display/301885221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 V. Bono

[US87], Obliq [Car95], or Cecil [CG]), new objects may be constructed from al-
ready existing objects, inheriting properties from the latter, so inheritance plays
its role directly at the object level. Most object-based languages and calculi offer
an override operation (to modify the components of the parent object), while few
of them feature also an addition operation (to add new components to the parent
object), giving rise to extensible objects and to a more complete form of inheri-
tance which resembles class-based inheritance. Object-based languages have not
been popular thus far as production languages, but have been the basis of more
than fifteen years of study on the theoretical foundations of object-oriented lan-
guages. Object-oriented languages have introduced a number of ideas, concepts
and techniques, which have proved to be useful and effective in programming,
but which needed (and some of them still need) to be fully formalized, in order
to understand, exploit and ameliorate them. Many techniques to prove program
soundness have been developed in the object-based setting, because the concept
of “object” is seen as more primitive from a formal-mathematical point of view
than the concept of “class”.

However, object-based languages, and in particular the ones featuring ex-
tensible objects, nowadays are becoming interesting also for practical purposes,
thanks to the new challenges that come from the Internet. The growing use of a
network as a primary environment for developing, distributing and running pro-
grams requires new supporting infrastructures. In particular, there is the need
of a greater flexibility, allowing software to execute in different environments
essentially without changes, and the requirement to develop working prototypi-
cal applications in a relatively short time. That is why scripting languages, like
JavaScript [Fla99], that offer a set of easy-to-use primitives to program web
applications, are becoming increasingly popular. There is a number of ongoing
researches on foundations for scripting languages [BDG02,DG03], as well as for
prototyping delegation-based languages [AD02b,ABDD03] (whose objects’ main
feature is to keep a link to the objects they were created from, which gives them
the ability to delegate the execution of a method to another object). Research in
these fields is especially oriented towards the design of type systems, balancing
the need of a certain degree of safety during the program execution (in the style
of “a well-typed program cannot go wrong”) and the requirement of flexibility
(not to restrain reusability and not to slow down the design of prototypes).

Extensible objects are the right tool to formalize both scripting and fast-
prototyping calculi, as well as hybrid object-based/class-based languages (which
try to exploit the best of both approaches as in, for instance, [AD02a]), and to
experiment with appropriate type systems: therefore, extensible objects are back
in use. With this tutorial we would like to give an essential survey on the basics
of the topic, which is lacking in the object-oriented literature, that generally
focused on pure object-based calculi (a reference on this topic is the book by
Abadi and Cardelli [AC96a]), and on class-based languages (a reference on this
other topic is the book by Bruce [Bru02]).

In this tutorial we present a functional object-based calculus with fields (oth-
erwise called instance variables) and methods, equipped with method and field

Extensible Objects: a Tutorial 3

invocation, method and field addition and method and field override, and we
analyze it in a classical way, that is, from the point of view of its type system.
Prerequisites for this tutorial are a general knowledge of the object-oriented ter-
minology and of functional calculi and their type systems. A book that may
provide the appropriate background is the one by Pierce [Pie02]. Another ref-
erence that is useful to grasp the basics of the object-based language approach
(also from an implementation point of view) is Chapter 4 of [AC96a].

The tutorial is structured as follows. Section 2 discusses extensible objects
from the point of view of their typing, and presents some informal examples
motivating the introduction of MyType inheritance. Section 3 introduces the
calculus Obj™*, through its syntax and operational semantics, then in Section 4
0bj™’s type system is illustrated. Section 5 gives an overview on a semantics
by encoding of Obj™, casting some light on the formal meaning of extensible
objects. Section 6 present a way of modelling classes following the “Classes =
Extensible Objects + Encapsulation” model of [Fis96]. Finally, in Sections 7 we
discuss some related work.

This paper is partly based on the material for the lectures given by the author
at the “Mini-Ecole Chambéry-Turin d’Informatique Théorique” (29 January —
1 February 2003).

2 An Overview of MyType

A type discipline is important for object-oriented languages to ensure safety
(i.e., absence of message-not-understood run-time errors), and the design of safe
type systems depends on the knowledge of the semantics of the object-oriented
language in question. In fact, safety is proved via a Subject Reduction theorem
based on a (usually intuitive) operational semantics that mimic program execu-
tion. Subject Reduction states that if a program is well-typed (with type 7), then
the result of its computation is well-typed (with type 7). From this theorem, it
is possible to prove a formal safety property ensuring that “well-typed programs
cannot go wrong”.

Typing object-oriented programs is an hard task, because one must take in
account many features which may be in conflict with each other. We will hint at
the well-known conflict between inheritance and subtyping in Section 4.2, and
instead discuss in this section some other important issues about the typing of
object-oriented calculi. In particular, we will concentrate on the concept of self
(sometimes called this, e.g., in Java, and here denoted with SELF), which is of
paramount importance in object-oriented languages. SELF is a special variable
that allows reference to the object executing the current method, and therefore
permits the invocation of the sibling methods and the access to the object’s
fields.

We now overview briefly some concepts that will lead us to understand how
to treat SELF in a functional object-based calculus with extensible objects.

Objects. Records are an intuitive way to model objects since both are collections

4 V. Bono

of name/value pairs. The records-as-objects approach was in fact developed in
the pioneering work on object-oriented calculi [CW85], in which inheritance was
modeled by record subtyping. Unlike records, however, object methods should
be able to modify fields and invoke sibling methods [Coo89]. To be capable
of updating the object’s internal state, methods must be functions of the host
object (SELF). Therefore, objects must be recursive records. Moreover, SELF must
be appropriately updated when a method is inherited, since new methods and
fields may have been added and/or old ones redefined in the new host object.

Object updates. If all object updates are imperative, SELF can be bound to
the host object when the object is instantiated from the class. We refer to this
approach as early SELF binding. SELF then always refers to the same record, which
is modified imperatively in place by the object’s methods. The main advantage
of early binding is that the fixed-point operator (which gives to methods the
possibility to reference the host object, i.e., SELF) has to be applied only once,
at the time of object instantiation. If functional updates must be supported —
which is, obviously, the case for purely functional object calculi — early binding
does not work (see, for example, [AC96a], where early binding is called recursive
semantics). With functional updates, each change in the object’s state creates
a new object. If SELF in methods is bound just once, at the time of object
instantiation, it will refer to the old, incorrect object and not to the new, updated
one. Therefore, SELF must be bound each time a method is invoked. We refer to
this approach as late SELF binding.

Object extension. Object extension in an object-based calculus is typically
modelled by an operation that extends objects by adding new methods and fields
to them. There are two constraints on such an operation: (i) the type system
must prevent addition of a component to an object which already contains a
component with the same name, and (i) since an object may be extended again
after addition, the actual host object may be larger than the object to which a
method was originally added. Thus, method bodies must behave correctly in any
extension of the original host object. Therefore, they must have a polymorphic
type with respect to sELF. The fulfillment of the two constraints can be achieved,
for instance, via polymorphic types built on row schemes [BF98] that use kinds to
keep track of methods’ presence. Even more complicated is the case when object
extension must be supported in a functional calculus. In the functional case,
all methods modifying an object have the type of SELF as their return type.
Whenever an object is extended or has its components redefined (overriden),
the type given to sELF in all inherited methods must be updated to take into
account new and/or redefined components. Therefore, the type system should
include the notion of the “type of seLF”, called MyType (a.k.a. SelfType), so
that the inherited methods can be specialized properly. Support for MyType
generally leads to more complicated type systems, in which forms of recursive
types are required. My Type can be supported by using row variables combined
with recursive types [FHM94,FM95,Fis96], by means of special forms of second-

Extensible Objects: a Tutorial 5

order quantifiers such as the Self quantifier of [AC96a], or with match-bound
type variables as in [BB99,BBC02] and in the calculus presented in this tutorial.

Our calculus 0bj™, which will be introduced in Section 3, is chosen to give a
complete example of a calculus with extensible objects and a functional semantics
of method addition. This is, in our opinion, the most difficult semantics to grasp,
and should serve the purpose of giving the reader enough tools to tackle other
calculi.

We now introduce two examples to show the gain of introducing an appro-
priate type MyType for the host object sSELF. The examples are expressed in
a syntactic-sugared functional object-based pseudo-language (which offers the
same features of the formal calculus we will introduce in Section 3) where:

1. we distinguish among fields and methods — in particular, each method uses
SELF (i.e., it is a implicit function of SELF);

2. a dot ‘.’ represents component selection;

3. the symbol ‘:=’ stands for (functional) field override, and the keyword extends
represents component, addition;

4. ¢;” indicates concatenation of statements. This is codifiable in any functional
language'.

The first example we present is a simple and standard one.

let Point = (x =0, move(d) = (SELF.x := (SELF.x + d); return SELF))
in let (Color Point extends Point) = (color = blue,
setcolor(c) = (SELF.color := ¢;return SELF),
)

in /*main x / ColorPoint.move.setcolor

The object ColorPoint inherits the methods from Point; in particular, it in-
herits the method move which returns a modified SELF (i.e., a new object is
created from the host object by modifying the field x through an update of the
field x itself with a value computed from its current value plus a displacement
d). The main program executes without errors, but within traditional type sys-
tems it is not typable, since C'olor Point.move would either be of type of Point,
and Point does not have a setcolor method, or of the most general type pos-
sible (e.g., in Java it would be Object), again making impossible calling the
specific methods of ColorPoint. The solution adopted in traditional program-
ming languages to make this program type check is to use typecasts, which are
explicit declarations made by the programmer on the expected actual type of
the method result according to the type of the object the method is invoked
upon. Typecasts are unsafe—the programmer must be “sure” about the actual
type of the returned object, since little or even no static checking is performed
on typecasts, as happens, respectively, in Java or in C++. Moreover typecasts
certainly do not improve readability of code, which has a negative impact on the
debugging phase. An alternative to typecasts is the introduction of selftype (oth-
erwise known as MyType), with the meaning “the type of the current object”,

1 Of course in call-by-value calculi codification of statement concatenation is easier.

6 V. Bono

i.e., “the type of self”. If we annotate move with the MyType as its return type,
then ColorPoint.move and ColorPoint will have the same type and the main
program will typecheck and work without typecasts, because MyType specialize
along the Point/ColorPoint hierarchy (that is why the use of MyType is also
known as MyType specialization).

The second example defines a linked /double-linked list, and it is largely in-
spired to a class-based example that can be found in Bruce’s book [Bru02] on
page 41.

let Node = (val =0, next = null,
getVal = (return SELF.val),
setVal(nv) = (SELF.val := nv; return SELF),
getNext = (return SELF.next),
setNext(nn) = (SELF.next := nn;return SELF),
attachRight(nn) = (return SELF.setNext(nn);)
in let (DbleNode extends Node) = (prev = null, getPrev = (return SELF.prev),
setPrev(np) = (SELF.prev := np; return SELF),
attachRight(nn) =
(return nn.set Prev(SELF.setNext(nn))))
in /* main */
We type this example by giving MyType as the type for the fields nezt and prev?,
as the return type of setVal, get Next, set Next, attachRight, get Prev, set Prev,
and also as the type of the parameters nn of setNext and attachRight, and
np of set Prev. Therefore, setNext has type MyType— MyType, with MyType
“changing of meaning” according to the object the method is invoked upon:
Node.getNext has type Nodetype — Nodetype, and DbleNode.getNext has
type DbleNodetype — DbleN odetype. The same “changing of meaning” is re-
produced for attachRight.

Note that in an imperative setting, where the update of the fields can be done
by side-effects, there is no need to return SELF, and, as a consequence, the return
types of setVal, setNext, attachRight, setPrev can be a “void” type without
losing expressive power. However, it would be impossible to give a sensible type
to parameters such as nn, since setNext’s parameter must have the same type
as the object on which setNext is invoked upon (i.e., it must have a Node type
if it is invoked on a Node, or a DbleNode type if it is invoked on a DbleNode).
Methods such as setNext are called binary methods [BCC195]. Being able to
type binary methods is a special feature of functional calculi supporting My Type.

3 The Calculus

Our specimen calculus is called 0bj ™, and is a fully fledged object-based calculus
that supports message passing and constructs for object update and extension.
Obj™ is a variant of the Lambda Calculus of Objects of [FHM94], the first cal-
culus that provided a formal type system for extensible objects. The differences

2 We assume to have a term constant null whose type is MyType.

Extensible Objects: a Tutorial 7

from the original proposal of [FHM94] are as follows: (i) method bodies are ¢-
abstractions over a SELF variable rather than A-abstractions, and (#4) methods
are distinguished from fields, both syntactically and semantically. The use of
¢-binders eases the comparisons between our calculus and related calculi in the
literature (with ¢-binders, the syntax of Obj™ is a proper extension of the un-
typed ¢-calculus [AC96a]). As for the distinction between methods and fields, a
part from being a common practice in object-oriented languages and calculi, it
arises as a result of a retrospective analysis of the interpretation of objects and
object types. In fact, as proven in [BBC02], the qualitative nature of the target
theory used in the interpretation changes significantly depending on the kind
of overrides (otherwise called updates in the literature) supported by the source
calculus. Specifically, recursive types suffice for the interpretation of external and
self-inflicted field updates, and external method updates®. On the other hand,
self-inflicted method updates require a non-trivial extension of the target theory,
one in which recursion and least fixed points are available not only for types,
but also for type operators.

Obj* is an untyped version of the calculus 0b™ presented in [BBC02]. 0b*
served the purpose of being the source calculus of a type preserving and compu-
tationally adequate interpretation into a functional calculus. 0b™ was explicitly
typed for a technical reason: to ensure that well-typed objects had unique types,
a property that was missing in [FHM94] and necessary to have a fully formal
encoding. We will give an overview of such encoding results in Section 5, but,
since we are not going into technical details in the present tutorial, we preferred
to use as a tutorial example an untyped calculus, which is easier to describe and
work with.

The syntax of 0bj T terms is defined by the following productions:

a,b, c::= Terms
T ' variable
(00 = i1 m; = o(a)b; (2}<) object
(vi’s and m;’s distinct)

awv field selection

av — b field update

aw «—+ b field addition
aom method invocation
aom «— ¢(x)b{z} method update
aom —+ ¢(z)b{x} method addition

Terms of the form (v; = ¢;¢1, m; = ¢(2)b; {2}7%7) denote objects, i.e., collec-
tions of named fields and methods that can be selected, updated, or added. As in
[AC96a], each method is an abstraction of the host object SELF, represented by
the ¢-bound variable x. The notation b{z} emphasizes that the variable z may

3 The adjective external refers to invocation /override operations performed on objects,
while the adjective self-inflicted refers to invocation/override operations performed
on SELF, inside a method body.

8 V. Bono

occur free in b. Given b{z}, we write b{a} (or, equivalently b{x := a}) to denote
the term that results from substituting the term a for every free occurrence of
x in b.

Each of the primitive operations on objects come in two versions, for fields
and methods. a.m invokes the method associated with the label m in a, while
aw selects the field v; aom «— ¢(x)b{x} replaces the current body of m in a with
¢(z)b{zx}, while a.w « b performs the corresponding operation on the field wv;
finally, aom «—+ ¢(x)b{x} extends a by adding a new method m with associated
body <(z)b{z}, and a.v <+ b does the same with the field v.

Terms that differ only for renaming of bound variables, or for the relative
order of method and field labels are considered equal, i.e., syntactically identical:
we write a = b to state that a and b are equal. To ease the notation, we use £
to denote method or field labels whenever the distinction between methods and
fields may be disregarded soundly, and write a - £ to denote ao£ or a.f.

The evaluation of Obj™ expressions is defined by a big-step operational se-
mantics that rewrites closed terms into results®. A result r is defined to be a
term in object form. We write a |}, 7 to denote that evaluating a closed term
a returns the result r, and say that a converges — written a |, — if there exists
a result r such that a |}, r. The operational semantics is defined below, rule by
rule, and it is an extension of the corresponding semantics in [AC96a] that han-
dles field and method addition. The following notation is used in the operational
semantics rules:

(6 = bifa} 1Y) 2 (o, = ¢ m, = (a)by {2}
a-l2a.loral
a-l—blx} 2 a.l — ¢(x)b{x} or a.l — b
a-l++ bz} 2 acl «+ ¢(x)b{z} or al «+ b
The rules are rather intuitive, and for the ones dealing with updates and addi-
tions we do not need to distinguish among fields and methods.

Results: r = (v; = Ciiel,mj = C(x)bj{x}jeJ>

alo (...,vj=cj,...) ¢ Yor
aw; o 7

al,a bi{a} Jor (@=(..,m; =c(x)bj{z},...))

aomj o

(Selecty)

(Select,y,)

alo (ti=b{x} "y keruJ
a by — b{z} U, (& =b{a}' Y g = bla})

(Update)

a o ;= bi{x}’EIUJ> x: {gi}ieIuJ
a-0—+ b{z} o (¢ =b{a}, t; = b;{x}')

4 The definition of a small-step operational semantics can be found in Appendix A.3.

(Extend)

Extensible Objects: a Tutorial 9

Field selection and method invocation (rules (Select,) and (Select,,)) are com-
puted by evaluating the recipient of the selection/invocation to a result (that
is, to an object), then by selecting and evaluating the sought component body.
The only difference is that a retrieved method body must have the host object
substituted for the SELF variable (represented formally in the calculus by z) be-
fore being evaluated, to accomplish with the intended semantics of objects, so
to make it possible to invoke sibling methods and access object fields. Updating
(rule (Update)) must ensure that the component we want to update exists in
the object which the recipient of the updating operation evaluates to, before
updating the component. Vice-versa, for the extension (rule (Extend)) we must
ensure that the component is not present yet before adding it.

3.1 Formalized Examples

In this section, we present some examples illustrating the behavior of the calculus
Obj*. We start from an expression representing an infinite computation:

R =(m=cq¢(x)xrom)om
This expression reduces to itself forever, therefore never to a result r (i.e., it does

not converge), as the following derivation in the big-step semantics shows.

(m = s(z)zom) o (m =<
(zom){(m =¢(x)xom)} = 2
(xom){(m =g(z)xom)} {77

Q.77

(Selectyy,)

It is possible to show formally that Obj™ is Turing-complete (that is, it can
codify all partial recursive functions). In [FHM94], an encoding in the Lambda
Calculus of Objects of Object numerals, Zero test, Predecessor and fixed-point
operator (using the {2 expression shown above, written in their syntax) is pre-
sented. We prefer to take the Abadi-Cardelli’s approach (presented on pages
66-67 of [AC96a)), that is, encoding the untyped lambda calculus in 0bj™ (we
recall that the symbol “:=’ denotes a substitution):

[z] =z (variable);

[ab] = [a] e [b] (application), where p e ¢ = (p.arg «— q)oval;

[Az.a{z}] = (arg =y,val =¢(z) [a{z}] {z := z.arg}) (lambda abstraction),
with y a fresh variable.

The reader may want to check that this encoding preserves G-reduction.

Since Obj T is Turing-complete, we can add integers as shortcuts for numerals
to Obj™ terms, in order to ease the task of writing examples. An example that
we could not left out is the Point/ColorPoint one, expressed in the O0bj™ syntax:

Point = (pos = 0, move = ¢(z)(z.pos — ((x.pos) + 1)))
ColorPoint = Point.c «—+ = blue

10 V. Bono

It is possible to note that a move is performed by a self-inflicted field selec-
tion (z.pos), that returns the value of pos which is then incremented by 1,
and through an updating of pos with the new value via a self-inflicted override
(zpos < (...)). Let us consider now some computations:

ColorPoint reduces in few operational big-steps to the object:
(pos = 0, move = ¢(x)(zpos «— ((xz.pos) + 1)), c = blue);

ColorPoint.move reduces in few operational big-steps to the object:
(pos = 1,move = ¢(x)(z.pos — ((x.pos) + 1)), c = blue).

We advise the reader to perform both of the above reductions in detail. The
second one, in particular, shows how the host-object SELF-substitution works.

4 Types and Typing Rules

In this section we describe the type system of the calculus Obj™. The syntax of
types is as follows.

A, B,C ::= Types
X, U ‘ variable
pro(X)(v; : C;'<1 m; : Bj{X}jEJ>> object type (v;’s and m;’s distinct)

An object type A = pro(X)(v; : C;i"S! m; : Bj{X}J€J>> is the type of all the
objects with fields v; (i € I), and methods m; (j € J). The keyword pro ® binds
all free occurrences of X in the B;{X}7S/. When invoked, each field v; returns
a value of type C;, and each method m; returns a value of type B,;{A}, that is
the type B; with every free occurrence of the variable X substituted by the type
A itself. This type substitution reflects the self-substitution semantics of method
invocation. As in the syntax of terms, we use the notation pro(X){¢; : B;{X}'<")
for pro-types, whenever there is no reason to distinguish methods from fields.
Object types that differ in the order of the component labels, or for the names
of bound variables are considered equal: we write A = B to state that the types
A and B are equal.

As hinted in Section 2, functional method addition needs a form of MyType
inheritance, in order to specialize the method types as methods are inherited.
The typing rules for Obj* rely on the form of match-bounded polymorphism
that was studied in [BB99] for the Lambda Calculus of Objects [FHM94]. Poly-
morphic types arise in the typing of methods as a result of (i) method bodies
being dependent on SELF, and (i7) the possibility for a method to be invoked
on extensions of the object where it was first installed. To ensure sound typing
of method invocation, method bodies are typed in a context that assumes the
so-called MyType for the SELF variable x. In this context, MyType is a match-
bounded type variable representing the types of the objects resulting from all the

® The notation pro was introduced in [FHM94] and it is maintained here for historical
reasons.

Extensible Objects: a Tutorial 11

possible extensions of the host object with new methods and fields. The match-

ing relation (<) was introduced in [Bru94]. A full study about matching and

its various application other than MyType inheritance can be found in [Bru02].
The most significative rule for matching in our context is the following:

(Match pro)
rEpro(X)i BAXYy
I' pro(X)({¥; : Bi{X}zel..n+k>#pro(X)<<gi - B{X}E

This rule superficially looks like the subtyping-in-width rule, but the use of match-
ing in place of the more standard relation of subtyping is central to the type sys-
tem, because matching, unlike subtyping, does not support subsumption: since
objects are extensible, absence of subsumption on pro-types is crucial for type
soundness (see Section 4.2 for a quick overview on the problem, and [BB99] for
a deeper discussion).

All of the typing rules for Obj* are collected in Appendix A.4. The most
interesting rules are given and commented below.

(Val Object: A = pro(X)(v; : C;*!,m; : Bj{X}jEJ>>)
Fbe:Ci LU#Az:UFb{e):B{UY Vieljeld
I'F (v, =¢ ¥ mj = g(x)bj{x}je‘]> DA

(VAL OBJECT) is the rule for object formation. MyType is the type variable
U match-bounded in the context of the typing judgements of method bodies, and
it is given to the SELF variable x as its type (x:U). Note that the return type
of each method depends polymorphically on MyType: this allows the (return)
type of methods to be soundly specialized upon method addition. The rule also
emphasizes the distinction between methods and fields: since the latter do not
depend on SELF, their type need not depend on MyType.

(Val Select)

I'ta:A T'FA<tpro(X)(¢: B{X})
I'Fa-:B{A}

(VAL SELECT) is the rule for field and method invocation. An invocation for
(the field or) method ¢ on an object a requires a to have a pro-type containing
the label £. The result of the call has the type B listed in the pro-type of a, with
A substituted for X (if ¢ is a field, this substitution is vacuous). Note that A
may either be a pro-type matching pro(X)(¢: B{X}), or else an unknown type
(i.e., a type variable) occurring (match-bounded) in the context I". Rules like the
one above are sometimes referred to as structural rules [AC96a], and their use is
critical for an adequate rendering of MyType polymorphism: it is the ability to
refer to possibly unknown types that allows methods to act parametrically over
any U<d# A, where U is the type of SELF, and A is a given pro-type.

12 V. Bono

(Val Field Addition: AT = pro(X)(¢: B{X},¢; : B{{X}'})

FFa:pro(X)((Ki:Bi{X}ieI>) I'tc:B ((#4Viel)
I'kad «+c: AT

(Val Method Addition: AT = pro(X)(¢: B{X},¢; : B{X}'¢))

I'ta:pro(X){l; : B{X}€"Y IU<#A' z:UFb{z}: B{U}
(LA Viel)

I'taol «—+ g(z)b{z}: AT

(VAL FIELD ADDITION) and (VAL METHOD ADDITION) are the typing rules
for field and method additions. The label ¢ is assumed to be different from all of
the ¢;’s, ¢ € 1, and the type of the object a being extended to be a pro-type: since
no subtyping is available on pro-types, this implies that an object extension is
typed with ezact knowledge of the type of a. Note that in rule (Val Method
Addition) the return type of the added method depends polymorphically on
MyType, while in the rule (Val Field Addition) the field type is not required to
depend on MyType.

(Val Field Update)

I''ta:A T'rAtpro(X){(v:C) I'bke:C
I'Faw«—c: A

(VAL FIELD UPDATE) is a structural rule: as in (Val Select), the type A of
the object a being updated may either be a type variable, or a pro-type. When
it is a pro-type, the update is external; when it is a type variable, the update is
self-inflicted. The judgement I' = A<#pro(X)(v : C) requires A (hence a : A)
to have a field v with type C, and the remaining judgement ensures that the
update preserves the type of the object.

(Val Method Update (external only): A = pro(X)(v; : C;*',m; : Bj{X}jeJ>>)
I'ta:A TNU<#Ax:UFblz}: B {U} keJ
I'taomy — s(z)b{z}: A

(VAL METHOD UPDATE) handles the case of updates for methods: unlike the
corresponding rule for fields, (Val Method Update) is non-structural, as the type
A of the object being updated is required to be a pro-type. As a consequence,
method updates may not be self-inflicted; instead, it is available as an external
operation which can only be performed from outside the object. This restriction
could safely be lifted, without consequences on the operational behavior of the
source calculus or on the operational soundness of the type system. The rule

Extensible Objects: a Tutorial 13

accounting both for external and self-inflicted method updates would have the
following form:

(Val Method Update’ (external and self-inflicted))
I'Fa:A TI'tA<#tpro(X)(my: Bp{X}) LLU<#Az:UFb{z}:B{U}
I'taomy — g(x)b{z}: A

On the one hand, type soundness in the presence of both external and self-
inflicted method updates can be proved as in the calculus described in [BB99).
On the other hand, as we mentioned, self-inflicted method updates do have
significant impact on the semantic interpretation, so, since we want to account
for the semantics by encoding (in Section 5), is worth to present the two rules
separately.

We conclude the presentation of the source calculus stating the main prop-
erties of the type system. Proofs for the results below are essentially the same
as those given in full detail in [BB99].

Theorem 1 (Subject Reduction). If ' - a: A in 0bj™, and a |, r, then
also I' =1 : A.

Theorem 2 (Soundness). Let ¢ be a closed expression such that &+ ¢: A for
some type A. Then:

1. if ¢ is one of: aol — ¢(x)b{a}, al — b, a-L , and a |, 7, then r is an
object containing a label £.

2. if ¢ is one of: aol «—+ <(x)b{z}, al —+ b, and a |, r, then r is an object
that does not contain a label £.

The soundness theorem states that if an expression is well-typed, no message-
not-understood error will arise at run-time.

4.1 Some Examples of Typing
As we added integers to the 0bj™ terms, we now consider also their type int to
type the Point/ColorPoint example:

Point = (pos = 0, move = ¢(x)(z.pos «—x ((z.pos) +1))) :

pro(X)(pos:int, move: X);
ColorPoint = Point.c «+—+ = blue : pro(X)(pos:int, move:X, c:color)
The type derivation is left to the reader as an exercise. We will show, instead, the
type derivation for (m = ¢(x)z.m) : pro(X)(m:X) ({ m = ¢(x)z.m) is part
of §2, presented in Section 3.1). We need basically® a (Val Object) application
and a (Val Select) application (from bottom to top).

5 We omit checking well-formedness for x : U and U<# pro(X){m:X) in the derivation.

14 V. Bono

2:Ukxz:U U<#pro(X)(m:X)F U<#pro(X){(m:X)
Utpro(X)(m:X),z: Ukt zom: X{U}=U
I'{m=g¢(@)xom): pro(X)(m:X)

4.2 Subtyping

A concept of paramount importance in the object-oriented realm is subtyping:
A is a subtype of B, written A <: B, iff a value of type A can be used in any
context expecting a value of type B. Connected to the notion of subtyping is the
subsumption rule: if P:A and A <: B, then P:B. If A <: B, a value of type A can
be: (¢) used for a parameter of type B; and (i7) assigned to a variable of type
B, so that the value of an expression can correspond to a subtype of its static
type. We discuss briefly subtyping for the most common structures used in the
object-oriented setting, and then some anomalies by showing three examples.

Subtype for records (co-variant) If r : {I; : B;}*€!"** then r.l; : B;. When
is {l; + A;PElm < {l; + B} €LR? Assume ' ¢ {l; @ A;}€Lm We still need
r'.0; : B, i € 1..k. Therefore, {l; : A;}E-" <:{l; : B;}'€1-F if k < n (subtyping-
in-width) and ¥V i € 1.k, A; <: B; (subtyping-in-depth).

Subtype for functions (co/contra-variant) If ' : A — B and a : A then
F(a): B.Whenis A’ - B'<:A— B?If F': A’ — B’, we still need F'(a) : B.
Therefore, A’ — B'<:A — B if A<:A’ and B’ <: B, i.e., subtyping behaves
contra-variant for parameters and co-variant for results. This rather counter-
intuitive behavior is source of “troubles” when subtyping on function types,
obviously applied to methods, meets inheritance.

Example 1: inheritance is not subtyping [CHC90]. Can inherited methods
break when called on “subobjects”? Unfortunately, yes. Let us consider this
fragment of pseudo-code that we assume inserted in a program let-defining two
Node’s called ndl,nd2 and a DbleNode called dnd (Node and DbleN ode where
introduced in Section 2).

..in
let Break = (breakit(nl,n2) = nl.attachRight(n2))
in /* main */Break.breakit(ndl, nd2); Break.breakit(dnd, ndl)

The first call Break.breakit(ndl,nd2) is safe, but a problem arises from the
second call Break.breakit(dnd, ndl) because it triggers dnd.attachRight(ndl),
which in turn tries to set the non-existing prev of ndl, making the program
crash (since the invoked attachRight is the one of DbleNode). This happens

Extensible Objects: a Tutorial 15

being DbleNode not a subtype of Node, because of MyType appearing in a
contra-variant position in attachRight (i.e., as the type of its parameter)”.

We can conclude that pro(X)(m; : A, {X Y "™) <:pro(X){m; : B{{X}'€"")
if and only if £ < n and for all i € 1..k, 4;{X} <: B;{X}, but no B;{X} has
a contra-variant occurrence of X, that is, no parameters in the methods of the
supertype can have the same type MyType of SELF.

Therefore, if two object types are subtypes, then they match, but not vice-
versa. For example (using the usual informal notation), Dble N odetype<d# N odetype
but not DbleNodetype <: Nodetype. For a careful study of the conflict between
inheritance and subtyping, see the work of Castagna et al. (for instance, in
[Cas96]), where, among other things, another approach for object-oriented lan-
guages is presented, alternative to the “objects-as-records” one: the “methods-
as-overloaded-functions” model.

Example 2: subtyping-in-width versus method/field addition. In an
object with two components ¢; and f5 of types A; and As, the component ¢y
may require {5 to be of type As. “Forgetting” ¢o by subtyping may result in
a possible re-addition of /5 with another, incompatible, type Az, making the
invocation of £; fail (even though the whole expression is well-typed).

Example 3: subtyping-in-depth versus method/field override. Consider
the following object:

UseLog = (n = 10, m = ¢(z)Log(xz.n)) : pro(X)(n : posint, m : int)

The method m selects the value of the field n and calculates its base-10 logarithm.
Now, by subtyping, posint <:int, so we may have UseLog : pro(X){n : int,m :
int), which would allow to update n with a negative value. This clearly would
make the invocation of m fail (even though the whole expression is well-typed).

In the literature, there are two main ways to make subtyping and operations
on objects living together harmlessly.

— Limiting subtyping, for instance by collecting the mutual dependencies among
methods and allowing subtyping applications only if they involve methods
that are not used by other methods [BL95,Rém98].

— Defining two states in which an object can be. In state 1, objects can be
extended/overridden (i.e., in this state, objects play a role similar to the one
of classes), while in state 2, objects can be subtyped.

The solution of [FM95] belongs to the second “family”, and it is formalized by
the following rule:

(Sub probjFM95)
LY, X<YFB{X}<:B{Y} (i=1.n)
I'F probj(X)(£; : BAX ") <iobj(YV){4; : B{Y} ")

" These problems are well-known in the recursive type setting, and MyType is nothing
else than a form of recursive type.

16 V. Bono

When an object is in its pro-totypical state, it can be modified by override and
addition, but subtyping does not apply. When an object changes state, becoming
a “true” obj-ect, it is as “sealed” and cannot be modified anymore, but then
subtyping (both in-width and in-depth, as the above rule shows) applies. The
drawback of this approach is that, since the passage from the pro-state to the
obj-state is done by using the same subtyping rule, when an object contains a
binary method it cannot be “promoted” from pro- to obj-, otherwise we run
into the problem described in the Example 1 above.

5 Semantics by Encoding

Interpretations of object-oriented programming are typically defined in terms of
reductions to procedural or functional programming, and help provide sound and
formal foundations to object-oriented languages and their specific constructs and
techniques. The reduction is not straightforward: difficulties ar