Large sample properties of Gibbs-type priors

Pierpaolo De Blasi, Antonio Lijoi and Igor Prünster

Abstract In this paper we concisely summarize some recent findings that can be found in [1] and concern large sample properties of Gibbs-type priors. We shall specifically focus on consistency according to the frequentist approach which postulates the existence of a "true" distribution P_0 that generates the data. We show that the asymptotic behaviour of the posterior is completely determined by the probability of obtaining a new distinct observation. Exploiting the predictive structure of Gibbs-type priors, we are able to establish that consistency holds essentially always for discrete P_0 , whereas inconsistency may occur for diffuse P_0 . Such findings are further illustrated by means of three specific priors admitting closed form expressions and exhibiting a wide range of asymptotic behaviours.

Key words: Asymptotics, Bayesian nonparametrics, Gibbs-type priors

1 Gibbs-type priors

In this paper we sketch results that are extensively presented and proved in [1] about the asymptotic posterior behaviour of Gibbs-type priors, a class of discrete nonparametric priors recently introduced in [5]. Gibbs-type priors can be defined through the system of predictive distributions they induce. To this end, let $(X_n)_{n\geq 1}$ be an (ideally) infinite sequence of observations, with each X_i taking values in a complete and separable metric space X. Moreover, \mathbf{P}_X is the set of all probability measures on X endowed with the topology of weak convergence. In the most commonly employed Bayesian models $(X_n)_{n\geq 1}$ is assumed to be *exchangeable* which means there exists a

Antonio Lijoi (lijoi@unipv.it)

University of Pavia, Department of Economics and Business, via San Felice 5, Pavia 27100, Italy

Pierpaolo De Blasi (pierpaolo.deblasi@unito.it), Igor Prünster (igor@econ.unito.it) University of Torino, Department of Economics and Statistics, corso Unione Sovietica 218/bis, Torino 10134, Italy

probability distribution Q on $\mathbf{P}_{\mathbb{X}}$ such that $X_i | \tilde{p} \sim \tilde{p}$, $\tilde{p} \sim Q$. Hence, \tilde{p} is a random probability measure on \mathbb{X} whose probability distribution Q is also termed *de Finetti measure* and acts as a prior for Bayesian inference. Given a sample (X_1, \ldots, X_n) , the predictive distribution coincides with the posterior expected value of \tilde{p} , that is

$$\operatorname{pr}(X_{n+1} \in \cdot | X_1, \dots, X_n) = \int_{\mathbf{P}_{\mathbb{X}}} p(\cdot) Q(\mathrm{d}p | X_1, \dots, X_n).$$
(1)

A prior Q that selects, almost surely, discrete distributions is said discrete and, in this case, a sample (X_1, \ldots, X_n) will feature ties with positive probability: X_1^*, \ldots, X_k^* denote the $k \leq n$ distinct observations and n_1, \ldots, n_k their frequencies for which $\sum_{i=1}^k n_i = n$. Gibbs-type priors are discrete and characterized by predictive distributions (1) of the form

$$\operatorname{pr}(X_{n+1} \in \cdot | X_1, \dots, X_n) = \frac{V_{n+1,k+1}}{V_{n,k}} P^*(\cdot) + \frac{V_{n+1,k}}{V_{n,k}} \sum_{i=1}^k (n_i - \sigma) \delta_{X_i^*}(\cdot), \quad (2)$$

where $\sigma \in (-\infty, 1)$, $P^*(dx) := E[\tilde{p}(dx)]$ is a diffuse probability measure representing the prior guess at the shape of \tilde{p} and $\{V_{n,k} : k = 1, ..., n; n \ge 1\}$ is a set of nonnegative weights satisfying the recursion

$$V_{n,k} = (n - \sigma k)V_{n+1,k} + V_{n+1,k+1}.$$
(3)

Therefore, Gibbs-type priors are characterized by predictive distributions, which are a linear combination of the prior guess and a weighted version of the empirical measure. The most widely known priors within this class are the Dirichlet process [3] and the two-parameter Poisson-Dirichlet process [8].

2 Consistency results

We address posterior consistency according to the "what if" approach of [2], which consists in assuming that the data $(X_n)_{n\geq 1}$ are independent and identically distributed from some "true" $P_0 \in \mathbf{P}_X$ and in verifying whether the posterior distribution $Q(\cdot|X_1,...,X_n)$ accumulates in any neighborhood of P_0 , under a suitable topology. Since Gibbs-type priors are defined on \mathbf{P}_X and are discrete, the appropriate notion of convergence is convergence in the weak topology. Therefore, we aim at establishing whether $Q(A_{\varepsilon}|X_1,...,X_n) \to 1$, a.s. P_0^{∞} , as $n \to \infty$ and for any $\varepsilon > 0$, where A_{ε} denotes a weak neighborhood of some $P' \in \mathbf{P}_X$ of radius ε and P_0^{∞} is the infinite product measure. Clearly, consistency corresponds to $P' = P_0$.

We prove a general structural result on Gibbs-type priors showing that the posterior distribution converges to a point mass at the weak limit, in an almost sure sense, of the predictive distribution (2). To this aim, we shall assume that the probability of recording a new distinct observation at step n + 1

Large sample properties of Gibbs-type priors

$$\frac{V_{n+1,\kappa_n+1}}{V_{n,\kappa_n}} \quad \text{converges} \quad \text{a.s.-} P_0^{\infty} \tag{H}$$

as $n \to \infty$, and the limit is identified by some constant $\alpha \in [0, 1]$. We use the notation κ_n in order to make explicit the dependence on *n* of the number of distinct observations in a sample of size *n*. Different choices of P_0 yield different limiting behaviours for κ_n : if P_0 is discrete with *N* point masses, then $P_0^{\infty}(\lim_n n^{-1}\kappa_n = 0) = 1$ even when $N = \infty$; if P_0 is diffuse, $P_0^{\infty}(\kappa_n = n) = 1$ for any $n \ge 1$. The following theorem shows that (H) is actually sufficient to establish weak convergence at a certain *P'* that is explicitly identified. The key ingredient for the proof is represented by an upper bound on the posterior variance $Var[\tilde{p}(A) | X_1, \ldots, X_n]$, which is of independent interest. See [1].

Theorem 1. Let \tilde{p} be a Gibbs-type prior with prior guess $P^* = E[\tilde{p}]$, whose support coincides with X, and assume condition (H) holds true. If $(X_i)_{i\geq 1}$ is a sequence of independent and identically distributed random elements from P_0 then the posterior converges weakly, a.s.- P_0^{∞} , to a point mass at $\alpha P^*(\cdot) + (1 - \alpha)P_0(\cdot)$.

According to Theorem 1, weak consistency is achieved in the trivial case of $P^* = P_0$, which will be excluded henceforth, and when $\alpha = 0$: therefore, it is sufficient to check whether the probability of obtaining a new observation, given previously recorded data, converges to 0, a.s.- P_0^{∞} . One might also wonder whether there are circumstances leading to $\alpha = 1$, which corresponds to the posterior concentrating around the prior guess P^* , a situation we refer to as "total" inconsistency.

Since a few particular cases of Gibbs-type priors with $\sigma \in (0,1)$ have already been considered in [7] and [6], attention is focused on the case of $\sigma \in (-\infty, 0)$ for which nothing is known to date. We recall here that, if $\sigma < 0$, Q is a mixture of Poisson-Dirichlet processes with parameters $(\sigma, k|\sigma|)$ and the mixing distribution for k, say π , is supported by the positive integers. Since in the case of negative σ the two-parameter model coincides with a *x*-variate symmetric Dirichlet distribution, one can describe such Gibbs-type priors as

$$(\tilde{p}_1, \dots, \tilde{p}_k) \sim \text{Dirichlet}(|\sigma|, \dots, |\sigma|)$$

$$k \sim \pi(\cdot)$$
(4)

We shall restrict attention to Gibbs-type priors whose realizations are discrete distributions whose support has a cardinality that cannot be bounded by any positive constant, almost surely. This is the same as assuming that the support of π in (4) is \mathbb{N} . Note that for the "parametric" case of $\sigma < 0$ and π supported by a finite subset of \mathbb{N} one immediately has consistency for any P_0 in its support by the results of [4]. Theorem 2 gives neat sufficient conditions for consistency in terms of the tail behaviour of the mixing distribution π on the positive integers \mathbb{N} in (4).

Theorem 2. Let \tilde{p} be a Gibbs-type prior with parameter $\sigma < 0$, mixing measure π and prior guess P^* whose support coincides with \mathbb{X} . Then the posterior is consistent

(i) at any discrete P_0 if for sufficiently large x

$$\pi(x+1)/\pi(x) \le 1; \tag{T1}$$

(ii) at any diffuse P_0 if for sufficiently large x and for some $M < \infty$

$$\pi(x+1)/\pi(x) \le M/x. \tag{T2}$$

Note that condition (T1) is an extremely mild assumption on the regularity of the tail of the mixing π : it requires $x \mapsto \pi(x)$ to be ultimately decreasing, a condition met by the commonly used probability measures on \mathbb{N} . On the other hand, condition (T2) requires the tail of π to be sufficiently light. This is indeed a binding condition and it is particularly interesting to note that such a condition is also close to being necessary. In [1], three different Gibbs-type priors with $\sigma = -1$ are considered, each prior characterized by a specific choice of the mixing distribution π . These examples show that, according as to heaviness of the tails of π , the value of α in Theorem 1 may actually span the whole interval [0,1], from situations where consistency holds true ($\alpha = 0$) to cases where "total" inconsistency occurs ($\alpha = 1$). In particular, the heavier the tail of π and the larger α , i.e. the lighter is the weight assigned to the "true" P_0 in the limiting distribution identified in Theorem 1. The first prior is characterized by a heavy-tailed mixing distribution π , which does not admit a finite expected value: condition (T2) is not met and it turns out that $\alpha = 1$ so that the posterior concentrates around the prior guess P^* ("total" inconsistency). The second specific prior, where the mixing π has light tails that satisfy (T2) in Theorem 2, results in a consistent asymptotic behaviour. In the third case α takes values over the whole unit interval [0,1] according to a parameter that determines the heaviness of the tail of π .

References

- De Blasi, P., Lijoi, A., Prünster, I.: An asymptotics analysis of a class of discrete nonparametric priors. Technical Report (2012)
- Diaconis, P., Freedman, D.: On the consistency of Bayes estimates. Ann. Statist. 14, 1-26 (1986)
- Ferguson, T. S.: A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230 (1973)
- Freedman, D.: On the asymptotic behavior of Bayes' estimates in the discrete case. Ann. Math. Statist. 34, 1386-1403 (1963)
- Gnedin, A., Pitman, J.: Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical Sciences 138, 5674-5685 (2006)
- James, L. F.: Large sample asymptotics for the two parameter Poisson Dirichlet process. In: B. Clarke and S. Ghosal (eds.) Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Gosh, pp. 187-199. IMS, Harward (2008)
- Jang, G. H., Lee, J., Lee, S.: Posterior consistency of species sampling priors. Statistica Sinica 20, 581-593 (2010)
- Pitman, J.: Some developments of the Blackwell-MacQueen urn scheme. In: Ferguson, T.S., Shapley, L.S., MacQueen, J.B. (eds.) Statistics, Probability and Game Theory. Papers in honor of David Blackwell, pp. 245-267. Lecture Notes, Monograph Series, 30, IMS, Harward (1996)