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AMBIGUITY IN THE SMALL AND IN THE LARGE

BY PAOLO GHIRARDATO AND MARCIANO SINISCALCHI1

This paper considers local and global multiple-prior representations of ambiguity
for preferences that are (i) monotonic, (ii) Bernoullian, that is, admit an affine utility
representation when restricted to constant acts, and (iii) locally Lipschitz continuous.
We do not require either certainty independence or uncertainty aversion. We show that
the set of priors identified by Ghirardato, Maccheroni, and Marinacci’s (2004) “unam-
biguous preference” relation can be characterized as a union of Clarke differentials.
We then introduce a behavioral notion of “locally better deviation” at an act and show
that it characterizes the Clarke differential of the preference representation at that
act. These results suggest that the priors identified by these preference statements are
directly related to (local) optimizing behavior.

KEYWORDS: Ambiguity, Clarke differential, optimization, unambiguous preference.

1. INTRODUCTION

SEVERAL POPULAR MODELS of choice under ambiguity represent preferences
over uncertain prospects (acts) via some function of their expected utilities,
computed with respect to a distinguished set of probabilities. For instance, the
maxmin-expected utility (MEU) model of Gilboa and Schmeidler (1989) ranks
acts according to V (h) = minQ∈D EQ[u ◦ h], where D is a set of priors over the
state space S. For multiplier preferences (Hansen and Sargent (2001)), V (h)=
minQ∈Δ(S) EQ[u ◦h] + θ ·R(Q ‖ P), where R(Q ‖ P) is the relative entropy of Q
with respect to an approximating model P . In the smooth ambiguity model of
Klibanoff, Marinacci, and Mukerji (2005), V (h) = ∫

Δ(S)
φ(EQ[u ◦ h])dμ(Q),

where μ is a second-order belief over all priors.
The same preference may admit multiple representations that employ dif-

ferent sets of priors (see Siniscalchi (2006) for examples). Despite this fact,
Ghirardato, Maccheroni, and Marinacci (2004; GMM henceforth) showed that
a preference can be associated with a canonical set of priors that is indepen-
dent of its functional representation. Their identification strategy is as follows.
Let � be the individual’s preference; say that act f is unambiguously preferred
to act g, written f �∗ g, if f � g and this ranking is preserved across mixtures:

λf + (1 − λ)h � λg + (1 − λ)h for all λ ∈ (0�1] and all acts h�(1)

1We thank a co-editor and two anonymous referees, as well as Simone Cerreia-Vioglio, Theo
Diasakos, Fabio Maccheroni, Mark Machina, Pietro Ortoleva, Daniele Pennesi, Tomasz Strza-
lecki, and audiences at the 2009 RUD and SAET conferences, the Workshop in honor of Daniel
Ellsberg (Vienna, May 2010), and at seminars at Rice, Northwestern, Penn, Princeton, and Mon-
treal for helpful comments. The usual disclaimer applies. Ghirardato is also grateful to the Italian
MIUR for financial support. A version of Theorem 2 in this paper first appeared in the working
paper “A More Robust Definition of Multiple Priors” (Ghirardato and Siniscalchi (2010)).
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GMM showed that, under suitable assumptions, there exist a utility function u
and a unique set C of priors such that, for all acts f and g, f �∗ g if and only
if EP[u ◦ f ] ≥ EP[u ◦ g] for all P ∈ C (a representation introduced by Bewley
(2002)). Furthermore, under the assumptions in GMM, the representation V
of the individual’s preferences � can be written as V (h) = I(u ◦ h) for a suit-
able real functional I; GMM then showed that C is the Clarke (1983) differ-
ential of I, evaluated at the constant function 0. This characterization makes it
practical to compute the set C for many decision models, including MEU and
Choquet-expected utility (CEU) (Schmeidler (1989)). Notably, these results
are not restricted to preferences that satisfy uncertainty aversion in the sense
of Schmeidler’s (1989) Uncertainty Aversion axiom.2

However, the analysis in GMM has two limitations. First, GMM’s differen-
tial characterization of the set C depends crucially on the assumption that pref-
erences satisfy the Certainty Independence axiom of Gilboa and Schmeidler
(1989).3 This axiom restricts ambiguity attitudes and rules out several recent
models of choice under ambiguity, including multiplier and smooth ambiguity
preferences.4 Second, the results in GMM do not fully reveal the usefulness
and economic significance of the set of priors C, beyond the fact that it char-
acterizes the unambiguous preference �∗.

The objective of this paper is to address both limitations. To begin, we do
not assume certainty independence; as a result, our analysis does not impose
any restriction on ambiguity attitudes, and accommodates virtually all classical
and recent decision models under ambiguity, including those discussed above
or referenced in footnote 4. Our first main result generalizes GMM’s differ-
ential characterization of the set C: writing the representation of preferences
as V (h) = I(u ◦ h), we show that, up to convex closure, C is the union of all
(suitably normalized) Clarke differentials of the functional I, computed at all
interior points rather than just at zero.

The Clarke differential of nonsmooth functions plays a similar role in opti-
mization problems as the gradient of smooth functions. In particular, a func-
tion attains a local extremum at a point only if its Clarke differential at that
point contains the zero vector—an analog of the familiar first-order conditions.
Our result then implies that the probabilities in the set C are (up to convex
closure) those that identify candidate solutions to optimization problems. Ex-
ample 3 below illustrates this in a canonical portfolio choice application.

2Uncertainty aversion has been questioned both theoretically and experimentally: compare
Epstein (1999), Ghirardato and Marinacci (2002), and Baillon, L’Haridon, and Placido (2012).

3On the other hand, the existence of a set C of priors that characterizes the unambiguous
preference �∗ follows under minimal regularity assumptions: see Section 3.

4Other models that do not assume certainty independence include variational preferences
(Maccheroni, Marinacci, and Rustichini (2006)), confidence-function preferences (Chateauneuf
and Faro (2009)), uncertainty-averse preferences (Cerreia-Vioglio, Maccheroni, Marinacci and
Montrucchio (2011)), vector expected utility (Siniscalchi (2009)), and mean-dispersion prefer-
ences (Grant and Polak (2011), Chambers, Grant, Polak, and Quiggin (2011)).
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Our second main result has no counterpart in GMM and sheds further light
on the role of priors in C in the individual’s choices. To illustrate, think of
acts f�g as representing the state-contingent consequences of two actions the
individual may choose, and think of act h as the status quo. Then Eq. (1) states
that choosing the f action with some probability λ, thereby moving from h
toward f in utility terms, is always at least as good as moving toward g, no
matter what is the initial status quo point h and how far one moves away from
h. That is, f is a uniformly better deviation than g. However, one is typically
interested in optimality conditions at a specific status quo point h. With this in
mind, we localize Eq. (1); that is, we apply it to a small neighborhood around
a single status quo point h, and only consider small (but discrete) movements
away from the status quo. Say that f is a better deviation than g near h, written
f �∗

h g, if

λf + (1−λ)h′ � λg+ (1−λ)h′ for all λ small and all acts h′ near h(2)

(see Sec. 4.3 for details). This definition is naturally related to optimizing be-
havior at a point h: it identifies small profitable and unprofitable deviations
away from the status quo. Our second result shows that the relation �∗

h char-
acterizes the normalized Clarke differential C(h) of the functional I at the
point h.5 In our view, this result illustrates the connection between priors and
optimizing behavior in a clearer and more direct way than GMM’s global re-
sult (and our generalization thereof). That said, the local and global results are
closely related: f �∗ g if and only if f �∗

h g for all acts h, and C is the union of
all sets C(h).

Finally, a caveat. GMM suggested that the set C may represent ambiguous
beliefs or perceived ambiguity. However, they also discussed (GMM, p. 137)
potential difficulties with this interpretation; in particular, C may incorporate
aspects of ambiguity attitude. We prefer to emphasize the connection between
the priors in the set C and optimizing behavior, and do not take a stand as to
whether such priors reflect beliefs, ambiguity attitudes, or both.

1.1. Intuition for the Results and Examples

For simplicity, let the state space be S = {s1� s2} and assume linear utility.
To make the intuition as sharp as possible, we assume that I is continuously
differentiable, so its Clarke differential at a point h is the gradient ∇I(h), and,
importantly, the map h 	→ ∇I(h) is continuous.

Under these assumptions, C is the convex closure of the set of all the prob-
abilities ∇I(k)

∇I(k)·[1�1] for all k ∈ R
2. To see that, for every f�g ∈ R

2, P · f ≥ P · g
for all P ∈ C implies Eq. (1), fix h ∈ R

2 and λ ∈ (0�1]. By assumption,

5�∗
h is not a Bewley preference, and its connection with C(h) is more subtle than the relation-

ship between �∗ and C; see Section 4.3 for details.
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∇I(k) · (f − g) ≥ 0 for all k ∈ R
2: then, by the mean value theorem, there

is a point k∗ in the segment joining λf + (1 − λ)h and λg+ (1 − λ)h such that
I(λf +(1−λ)h)−I(λg+(1−λ)h) = ∇I(k∗) ·[λf +(1−λ)h−λg+(1−λ)h] =
∇I(k∗) · λ(f − g) ≥ 0, so Eq. (1) holds. This argument generalizes to the non-
smooth case.

For the converse implication, suppose that P∗ · f < P∗ · g for some P∗ ∈ C,
and hence ∇I(k∗) · (f − g) < 0 for some k∗. Then, since ∇I(k) is continuous
in k, ∇I(k) · (f − g) < 0 for all k in some neighborhood N of k∗. But then we
can let h= k∗ and choose λ sufficiently small so that the segment joining λf +
(1 − λ)k∗ and λg + (1 − λ)k∗ lies entirely in N ; thus, the mean value theorem
implies that I(λf + (1 − λ)k∗) − I(λg + (1 − λ)k∗) < 0, so Eq. (1) does not
hold. This argument relies crucially on the fact that there is a unique gradient
at every point k and that the gradient is continuous in k. Both properties fail
in the nonsmooth case, so our proof of Theorem 2 takes a different approach.

Turn now to our local characterization result: C(h) = {P(h)}, where P(h) =
∇I(h)

∇I(h)·[1�1] . Assume that Eq. (2) holds and, in particular, consider the sequence
hn = 1

1−λn
h. Then it is easy to see that, for all n large, I(λf+h)−I(h)

λn
≥ I(λg+h)−I(h)

λn
;

since I is differentiable, this implies that ∇I(h) · f ≥ ∇I(h) · g. Thus, f �∗
h g

implies that P(h) · f ≥ P(h) · g. Here, differentiability allows us to focus on a
specific sequence (hn) and directly to link Eq. (2) to a property of the unique
differential of I at h. The nonsmooth case again requires a different approach.

The converse implication is more delicate, even in the smooth case. By dif-
ferentiability, if ∇I(h) · f >∇I(h) ·g, then I(λf+h)−I(h)

λn
> I(λg+h)−I(h)

λn
for n large,

so Eq. (2) holds for the sequence hn = 1
1−λn

h considered above. To extend this
conclusion to other sequences, one needs to invoke the fact that a continu-
ously differentiable function is strictly differentiable (Clarke (1983, Proposi-
tion 2.2.1)). But if ∇I(h) · f = ∇I(h) · g, this argument clearly does not apply.
Example 4 in Section 4.3 illustrates further subtleties. Theorems 6 and 7 cir-
cumvent these issues.

EXAMPLE 1—Nonsmooth Preferences: Example 17 in GMM characterizes
the set C for Choquet preferences on a finite state space S = {s1� � � � � sn}. We
briefly discuss the characterization of the local priors C(h). For any permu-
tation σ of {1� � � � � n}, a Choquet preference with capacity ν admits an ex-
pected utility (EU) representation on the set Fσ of acts h such that h(sσ(1)) �
h(sσ(2))� · · · � h(sσ(n)), with prior Pσ given by Pσ(sσ(i))= ν({sσ(1)� � � � � sσ(i)})−
ν({sσ(1)� � � � � sσ(i−1)}). Fix an act h that belongs only to Fσ ; preferences are ef-
fectively EU in a neighborhood of h, so C(h) = {Pσ}. If instead h belongs to
Fσ1� � � � � Fσk , then, by Theorem 2.5.1 in Clarke (1983), C(h) is the convex hull
of {Pσ1� � � � �Pσk}. This result extends to piecewise linear preferences (defined
in GMM, Section 5.2).

EXAMPLE 2—Local versus Global Priors: Let S = {s1� s2}, X = R+, and the
risk-neutral preference be represented by I(h) = max( 1

2h(s1) + 1
2h(s2)�ε +
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min(h(s1)�h(s2))) for some small ε > 0.6 For acts h such that |h(s1)−h(s2)| ≥
2ε, preferences are consistent with EU, with a uniform prior P on S; if ε is
small, this is the case for most acts. However, for acts close to the diagonal,
this preference behaves like MEU, with set of priors Δ(S).

Our generalization of GMM’s result implies that the preference �∗ defined
in Eq. (1) is represented by C = Δ(S), despite the fact that I is consistent with
EU for most acts; we view this as a stark demonstration of the global nature of
GMM’s approach. By way of contrast, C(h) = {P} if |h(s1) − h(s2)| > 2ε and
C(h) = Δ(S) if |h(s1) − h(s2)| < 2ε, and our second main result implies that
Eq. (2) correctly reflects the local behavior of this preference.

EXAMPLE 3—Based on Dow and da Costa Werlang (1992): An investor with
wealth W and preferences characterized by the functional I and the utility
u :X → R (where X ⊂ R) considers buying or selling an asset with uncertain
returns R :Ω → R on the finite state space S, at a price p. Thus, the agent’s
utility if she buys t ∈ R units of the asset is I(u(W + t[R − p])). Dow and
da Costa Werlang (1992) assumed that I is an uncertainty-averse (i.e., concave)
Choquet functional (Schmeidler (1989)) and that u is strictly increasing and
continuously differentiable; they showed that the agent will optimally choose
t = 0 (i.e., no trade) if and only if (iff) I(R) ≤ p ≤ −I(−R).

We now generalize this result. Assume that I is locally Lipschitz contin-
uous; then (see Clarke (1983, Proposition 2.3.2)), a necessary condition for
no trade to be optimal is that 0 be an element of the Clarke differential of
the real function t 	→ I(u(W + t[R − p])) at t = 0. By the chain rule for
nonsmooth functions (see Clarke (1983, Proposition 2.3.9)), this translates to
EQ[u′(W )(R−p)] = 0 for some Q ∈ ∂I(u(W )), the Clarke differential of I at
u(W ). This generalizes the familiar first-order condition with EU preferences.
Moreover, since W is constant and u′(W ) > 0, we obtain

min
P∈C(1SW )

EP[R] ≤ p ≤ max
P∈C(1SW )

EP[R]�

where C(1SW ) is the normalized Clarke differential characterized by Eq. (2),
at h= 1SW .

If, furthermore, the functional I and the function u are concave, this con-
dition is also sufficient. This generalizes the result of Dow and Werlang to a
broad class of uncertainty-averse preferences. Indeed, the above condition is
also sufficient as long as the composite map t 	→ I(u(W +t[R−p])) is concave,
even though I is not. For instance (cf. Heath and Tversky (1991)), the investor
may be uncertainty-averse with respect to R, yet feel “competent” enough to
evaluate other prospects in a manner consistent with uncertainty appeal.

Finally, if I is an uncertainty-averse Choquet functional, by Corollary 5,
C(1SW ) = C(0S) = C, the GMM set of priors. But since uncertainty-averse

6We thank an anonymous referee for suggesting this example.



2832 P. GHIRARDATO AND M. SINISCALCHI

Choquet preferences are MEU, I(u ◦ h) = minP∈C EP[u ◦ h]. This yields Dow
and Werlang’s original result as a special case.

1.2. Related Literature

As noted above, GMM is the starting point of our work. The discussion of
Corollaries 3–5 in Section 4.2 explains how our result specializes to GMM’s
under certainty independence. Nehring (2002) also identified the set C from
behavior; our paper thus also extends his results.

Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) considered a deci-
sion maker (DM) who is endowed with a possibly incomplete preference over
acts reflecting objective information, and a complete preference reflecting her
actual behavior. The objective preference has a Bewley-style representation
via a set C of priors. Thus, while there are natural similarities, our objectives
are clearly different. We do not posit the existence of objective information.
Moreover, our main contribution is the operational characterization of the sets
C and C(h).

Siniscalchi (2006) proposed a related notion of “plausible priors.” The main
difference with the present paper, and with the GMM approach is the fact that
plausible priors are identified individually, rather than as elements of a set.
This requires restrictions on preferences that we do not need (in addition to
certainty independence).

Klibanoff, Mukerji, and Seo (2011; KMS henceforth) considered infinite
repetitions of an experiment with outcomes in some set S and imposed a
“symmetry” requirement on preferences. They showed that, in this setting,
C = {∫ 
∞ dm(
) :m ∈ M}, where 
∞ denotes the independent and identically
distributed (i.i.d.) product of 
 ∈ Δ(S) and M ⊂ Δ(Δ(S)). KMS proposed a
“relevance” condition that identifies measures in the support of some m ∈ M .
This approach differs substantially from GMM’s identification strategy. For
instance, consider an EU preference with a prior P that, by the symmetry
requirement, satisfies P = ∫


∞ dm for some m ∈ Δ(Δ(S)). KMS’s definition
deems relevant all measures in the support of m, whereas GMM (and we) find
that C = {P}.

None of the above papers provides a counterpart to our local characteriza-
tion result.

Rigotti, Shannon, and Strzalecki (2008) proposed different, equivalent no-
tions of belief at an act h in a setting with monetary outcomes and preferences
represented by a quasiconcave function V , and used them to analyze efficiency
and trade in a competitive environment. When V (h) = I(u(h)) and I and u
are suitably regular,7 their beliefs at h can be computed from the set C(h) that

7In particular, if I is locally Lipschitz and nice in the sense of Section 4.1, and u is differen-
tiable.
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we characterize and the derivative of u via an appropriate chain rule (cf. Ex-
ample 3). Thus, up to marginal utilities, our Eq. (2) provides a complementary
behavioral interpretation of Rigotti, Shannon, and Strzalecki’s (2008) beliefs
at h and relates these to the GMM set of priors C. On the other hand, our
results do not require quasiconcavity.

Finally, Machina (2005) defined “event derivatives” of a representation V (·),
a subjective counterpart to derivatives with respect to lotteries in Machina
(1982). A representation is event-smooth if it admits suitably regular event
derivatives. Machina showed how to generalize EU-based characterizations of,
for example, likelihood rankings or comparative risk aversion to event-smooth
representations of preferences; however, his paper does not provide a prefer-
ence foundation for event smoothness. Instead, our paper focuses on the be-
havioral properties that characterize the normalized Clarke differential C(h)
at an act h. At a formal level, we consider Clarke derivatives with respect to
outcomes, rather than events, and do not assume smoothness.

2. NOTATION AND PRELIMINARIES

We consider a state space S, endowed with a sigma-algebra Σ. The notation
B0(Σ�Γ ) indicates the set of simple Σ-measurable real functions on S with val-
ues in the interval8 Γ ⊂ R, endowed with the topology induced by the supre-
mum norm; for simplicity, write B0(Σ�R) as B0(Σ). Recall that since Σ is a
sigma-algebra, B(Σ) is the closure of B0(Σ), and it is a Banach space.

The set of finitely additive probabilities on Σ is denoted ba1(Σ). ba1(Σ) is
endowed with the (relative) weak∗ topology; that is, σ(ba(Σ)�B0(Σ)) (equiv-
alently, σ(ba(Σ)�B(Σ))). We identify elements of ba(Σ) and the linear func-
tionals they identify; if a ∈ B(Σ) and Q ∈ ba(Σ), then Q(a) = ∫

adQ.
If B is one of B0(Σ�Γ ) for some interval Γ or B(Σ), a functional I :B → R is

monotonic if I(a) ≥ I(b) for all a ≥ b, continuous if it is sup-norm continuous,
isotone if, for all α�β ∈ Γ , I(α1S) ≥ I(β1S) if and only if α ≥ β, normalized if
I(α1S)= α for all α ∈ Γ , constant-additive if I(a+α1S)= I(a)+α for all a ∈ B
and α ∈ R such that a+α1S ∈ B, positively homogeneous if I(αa) = αI(a) for all
a ∈ B and α ∈ R+ such that αa ∈ B, and constant-linear if it is constant-additive
and positively homogeneous.

Finally, fix a convex subset X of a vector space. (Simple) acts are Σ-
measurable functions f :S → X such that f (S) = {f (s) : s ∈ S} is finite; the set
of all (simple) acts is denoted by F . We define mixtures of acts pointwise: for
any α ∈ [0�1], αf +(1−α)g is the act that delivers the prize αf(s)+(1−α)g(s)
in state s. Given a preference � on F , we say that an act h ∈ F is interior if
there exist prizes x� y ∈ X such that x � h(s) � y for all s ∈ S, and we denote
the set of interior acts by F int. (The dependence of F int on �, while not made
explicit, should be kept in mind.)

8That is, Γ ⊂ R is one of [α�β], [α�β), (α�β], or (α�β), where α = −∞ and β= ∞ are allowed
where applicable.
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3. PREFERENCES

The main object of study is a binary relation � on F . As usual, � (resp. ∼)
denotes the asymmetric (resp. symmetric) component of �. With a small abuse
of notation, we denote with the same symbol the prize x and the constant act
that delivers x for all s. We assume throughout that the preference � admits a
numerical representation that satisfies a regularity property:

DEFINITION 1: A preference relation � is (nontrivial) monotonic, Bernoul-
lian, and locally Lipschitzian (henceforth MBL) if there exists a nonconstant,
affine function u :X → R and a monotonic, isotone functional I :B0(Σ�u(X))
→ R that is locally Lipschitz in the interior of its domain, and such that, for all
f�g ∈ F ,

f � g ⇐⇒ I(u ◦ f )≥ I(u ◦ g)�(3)

MBL preferences admit certainty equivalents: for any f ∈ F , there is xf ∈ C
such that xf ∼ f .

Most preference models considered in the classic and recent literature
on ambiguity belong to this class. Virtually all have monotonic, isotone,
Bernoullian, and continuous representations; Cerreia-Vioglio, Ghirardato,
Maccheroni, Marinacci, and Siniscalchi (2011) provided an axiomatization
of preferences satisfying these assumptions. Furthermore, if the representing
functional is also constant-additive, it is globally Lipschitz; this applies to the
preferences considered by GMM (including MEU, α-MEU, and CEU), as well
as multiplier, variational, vector expected utility (VEU) and mean-dispersion
preferences (Grant and Polak (2011)). Alternatively, if the representing func-
tional is concave or convex, then it is locally Lipschitz on the interior of its
domain by a classic result of Roberts and Varberg (1974); this includes smooth
uncertainty-averse preferences and the confidence-function preferences stud-
ied by Chateauneuf and Faro (2009). Also, if I is continuously Frechet differen-
tiable, then again it is locally Lipschitz (see Clarke (1983, Proposition 2.2.1 and
Corollary)).

In addition, Appendix S.A in the Supplemental Material (Ghirardato and
Siniscalchi (2012)) introduces a novel axiom that is equivalent to the existence
of a locally Lipschitz, normalized representation for monotonic, Bernoullian,
and continuous preferences. This enables us to apply our results below even
to preferences that do not fall into any of the above categories; for instance,
uncertainty-averse preferences that are not “concavifiable” or the generalized
mean-dispersion preferences of Chambers et al. (2011).

Though MBL preferences are more general than those considered in GMM,
these authors’ notion of unambiguous preference still identifies a unique set of
priors via a Bewley-like representation. The proof is a straightforward adapta-
tion of GMM’s and hence is omitted. As we argued in the Introduction, it is
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useful to interpret GMM’s definition as stating that an act f is a better devi-
ation than another act g regardless of what the status quo h is and regardless
of how far one moves away from h (i.e., how much weight one places on f or,
respectively, g).

DEFINITION 2: Let f�g ∈ F . We say that f is a uniformly (weakly) better
deviation than g, denoted by f �∗ g, if and only if, for each h ∈ F and each
λ ∈ (0�1], λf + (1 − λ)h � λg + (1 − λ)h.

PROPOSITION 1—GMM, Propositions 4 and 5: Let � be an MBL preference.
Then there exists a nonempty, unique, convex, and closed set C ⊂ ba1(Σ) such
that for each f�g ∈ F ,

f �∗ g ⇐⇒
∫

u ◦ f dP ≥
∫

u ◦ gdP for all P ∈ C�(4)

where u is the function in Definition 1 and the set C is independent of the choice
of normalization of u.

The set C in Proposition 1 is the set of relevant priors for the preference �.
The following terminology is convenient: a binary relation �̂ on F admits a
Bewley representation (and hence is a Bewley preference) if there are an affine
function v :X → R and a set D ⊂ ba1(Σ) such that f �̂g if and only if P(v ◦
f ) ≥ P(v ◦ g) for all P ∈ D.9 Thus, Proposition 1 states that �∗ is a Bewley
preference represented by u and C.

4. RELEVANT PRIORS: CHARACTERIZATIONS

4.1. Clarke Differentials

DEFINITION 3—Clarke (1983, Sec. 2.1); Lebourg (1979, Sec. 1): Let B de-
note either B0(Σ) or B(Σ). Consider a locally Lipschitz functional I : U → R,
where U ⊂ B is open. For every c ∈ U and a ∈ B(Σ), the Clarke (upper) deriva-
tive of I in c in the direction a is

I◦(c;a)= lim sup
b→c�t↓0

I(b+ ta)− I(b)

t
�

The Clarke (sub)differential of I at c is the set

∂I(c)= {
Q ∈ ba(Σ) :Q(a)≤ I◦(c;a)�∀a ∈ B

}
�

9Clearly, a set D ⊂ ba1(Σ) and its convex closure coD induce the same Bewley preference.
Proposition A.2 in GMM characterizes Bewley preferences.
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It is important to point out that, like the usual notion of gradient, the defini-
tion of Clarke differential is seldom used directly (although we do so in proving
the results in this section). It is useful chiefly because of its convenient calculus
properties (see, e.g., Clarke (1983)).

Consider an MBL preference with representation (I�u). Given an interior
act h, the functionals in ∂I(u◦h) are linear, but in general not normalized. For
consistency with the GMM approach, we normalize the elements of ∂I(u ◦ h)
to obtain

C(h) =
{

Q

Q(S)
:Q ∈ ∂I(u ◦ h)�Q(S) > 0

}
�(5)

Given C(h) �= ∅ and u, we can define a Bewley preference �C(h) on F as

f �C(h) g ⇐⇒ P(u ◦ f )≥ P(u ◦ h) ∀P ∈ C(h)�(6)

Say that the functional I is nice at c ∈ intB0(Σ�Γ ) if the zero measure
Q0 ∈ ba(Σ) is not an element of ∂I(c). This condition strengthens monotonic-
ity and loosely speaking, requires that preferences remain nontrivial in arbi-
trarily small neighborhoods of an act. It plays a role in our local results (Propo-
sitions 6 and 7), though not in our global result (Theorem 2). All preferences
considered by GMM and, more generally, all MBL preferences represented
by a constant-additive functional I, are everywhere nice; the same is true for
concave preferences; see Supplemental Material Appendix S.B. To cover the
remaining cases, Appendix S.B also provides an axiom for arbitrary MBL pref-
erences that ensures the existence of a nice representation.

4.2. Global Characterization

We are ready to state our first main result.

THEOREM 2: For any MBL preference � with representation (I�u) and rele-
vant priors C,

C = co
( ⋃

h∈F int

C(h)

)
�

For the proof, see Appendix A.2.
Thus, up to convex closure, the set C can be computed by considering the

normalized Clarke differentials C(h) for all interior acts h and then taking the
union of such objects. Equivalently, f �∗ g if and only if P(u ◦ f ) ≥ P(u ◦ g)
for all P ∈ C(h) and h ∈ F int.

We now review specific independence properties of the preference � that
have been analyzed in the literature. This will also clarify the relationship be-
tween Theorem 2 and its counterpart in GMM. First, if preferences satisfy the
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weak certainty independence axiom of Maccheroni, Marinacci, and Rustichini
(2006), the functional I is constant-additive, and all elements Q ∈ ∂I(e) satisfy
Q(S) = 1 (see part 2 of Proposition A.3 in GMM). Thus, C(h) = ∂I(u ◦ h),
and we obtain the following corollary.

COROLLARY 3: If I is normalized and constant-additive, then

C = co
( ⋃

h∈F int

∂I(u ◦ h)
)
�

If instead an MBL preference satisfies the homotheticity axiom of Cerreia-
Vioglio et al. (2011), I is positively homogeneous. If I is normalized and there
is a prize z ∈ X with u(z) = 0 ∈ intu(X), then ∂I(u◦h) ⊂ ∂I(0) for all h ∈ F int

(cf. part 1 of Proposition A.3 in GMM). We obtain another corollary.

COROLLARY 4: If I is normalized and positively homogeneous, and z is as
above, then C = coC(z).

Finally, GMM considered preferences that satisfy certainty independence,
and hence admit a representation with I normalized and constant-linear. With
z as above, we obtain an additional corollary.

COROLLARY 5—GMM, Theorem 14: If I is constant-linear, then

C = ∂I(0)= C(z)�

Notice that, if I is constant-linear, the Clarke upper derivative at 0 in the
direction a ∈ B takes a particularly simple form (cf. GMM, Proposition A.3),
which GMM exploited in their proofs:

I◦(0;a)= sup
b∈B

I(b+ a)− I(b)�

4.3. Local Characterization

We turn to the behavioral characterization of locally relevant priors. Recall-
ing the discussion in the Introduction, the definition of locally better deviation
concerns the behavior of � near an interior act h.10 Thus, its formal statement
requires a notion of convergence for acts. We say that a sequence (f n) ⊂ F

10Clearly, given a representation (I�u) of �, h ∈ F int if and only if the function u ◦ h is in the
interior of B0(Σ�u(X)).
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converges to an act f ∈ F , written f n → f , iff, for all prizes x� y ∈X with x � y ,
there exists K such that k ≥K implies

∀s ∈ S�

1
2
f (s)+ 1

2
y ≺ 1

2
f k(s)+ 1

2
x and

1
2
f k(s)+ 1

2
y ≺ 1

2
f (s)+ 1

2
x�

This corresponds to uniform convergence in B0(Σ�u(X)).
Intuitively, we then apply Definition 2 to a neighborhood of an interior act

h: we consider mixtures of the acts f and g with an act near h, assigning most
of the weight to the latter.

DEFINITION 4: For any triple of acts f�g�h ∈ F , say that f is a (weakly)
better deviation than g near h, written f �∗

h g, if, for every (λn)n≥0 ⊂ [0�1] and
(hn)n≥0 ⊂ F such that λn ↓ 0 and hn → h,

λnf + (
1 − λn

)
hn � λng + (

1 − λn
)
hn eventually.(7)

Unlike �∗, the relation �∗
h is not always a Bewley preference, because it may

fail continuity (Supplemental Material Appendix S.E indicates the properties
it does satisfy). Our first main result in this section shows that it nonetheless
uniquely identifies the set C(h).

THEOREM 6: For any MBL preference � with representation (I�u), and any
interior act h ∈ F , the following statements hold:

(i) For all f�g ∈ F , f �∗
h g implies that P(u ◦ f )≥ P(u ◦ g) for all P ∈ C(h).

(ii) If I is nice at u ◦ h, then the preference �C(h) is the unique minimal Bew-
ley preference that extends �∗

h (i.e., the intersection of all Bewley preferences that
contain �∗

h).

See Appendix A.1 for the proof.
Thus, f �∗

h g always implies f �C(h) g; moreover, if I is nice at u ◦h, then �∗
h

fully identifies the set C(h). There is, however, a different, more direct, way to
identify C(h) from �∗

h. The following example illustrates this idea, as well as
the role of the niceness assumption.

EXAMPLE 4: Let S = {s1� s2}, let X = R, and let u be the identity. Thus,
F = B0(2S�u(X)) = R

2, and we identify acts h with vectors [h1�h2] ∈ R
2. Fix

p ∈ ( 1
2 �1), let P1 = [p�1 − p] and P2 = [1 − p�p], and consider the smooth

ambiguity preference represented by u and by the strictly increasing and con-
tinuously differentiable (hence, locally Lipschitz) function I : R2 → R defined
by I(h) = ∑

i=1�2(P
i · h)3. For any h, the Clarke differential ∂I(h) coincides

with the gradient ∇I(h) = 3(P1 · h)2P1 + 3(P2 · h)2P2. Therefore, for h �= 0,
C(h) = { 1

3∇I(h)}, while C(0)= ∅ since ∇I(0)= 0.
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As expected, f �∗
h g implies f �C(h) g. As to the opposite implication, we

argue in Supplemental Material Appendix S.C that if f �C(h) g (i.e., ∇I(h) ·f >
∇I(h) · g), then Eq. (7) eventually holds for all sequences λk ↓ 0 and hn →
h. We now show that if f ∼C(h) g or C(h) = ∅, Eq. (7) does not necessarily
hold. Again, details and proofs of all claims below are found in Supplemental
Material Appendix S.C.

Let f = [1�0] and g = [0�1]. Fix h ∈ R
2 arbitrarily and define sequences

(λn)� (hn)� (kn) by

λn = 1
n
� hn = 1

1 − λn

(
λn[2�1] + h

)
� kn = 1

1 − λn

(
λn[1�2] + h

)
�

Notice that as n → ∞, λn ↓ 0, hn → h and kn → h. Then f �∗
h g requires that,

for n large,

λnf + (
1 − λn

)
hn � λng + (

1 − λn
)
hn and(8)

λnf + (
1 − λn

)
kn � λng + (

1 − λn
)
kn�

We focus on three cases (we omit the other cases for brevity).
Case 1—h1 > h2 ≥ 0. In this case, f �C(h) g. As noted above, this implies

f �∗
h g.

Case 2—h1 = h2 = γ > 0. In this case, ∇I(h) ·f = ∇I(h) ·g, that is, f ∼C(h) g.
Then, for n large, the second preference in Eq. (8) is violated, so it is not the
case that f �∗

h g. However, clearly ∇I(h) · (f + ε) > ∇I(h) · (g − ε) for any
ε > 0. As noted above, this implies that f + ε �∗

h g − ε.
Case 3—h1 = h2 = 0. Since ∇I(0) = 0, I is not nice at h = 0. Then Eq. (8)

does not hold, and continues to be violated if f and g are replaced with f + ε
and g − ε for ε > 0 sufficiently small. Thus, neither f �∗

h g nor f + ε �∗
h g − ε

holds.

Example 4 suggests that while f �C(h) g may not imply f �∗
h g, it may still

imply that f ′ �∗
h g

′ for all f ′� g′ with f ′(s) � f (s) and g(s) � g′(s) for all s ∈
S; we call such a pair of acts (f ′� g′) a spread of (f�g). The following result
confirms that this is indeed the case and provides a direct characterization of
C(h) in terms of �∗

h.

THEOREM 7: Consider an MBL preference � and a representation (I�u). Fix
an interior act h ∈ F and assume that I is nice at u ◦ h. Then C(h) is the only
weak∗-closed, convex set D⊂ ba1(Σ) for which the following statements are equiv-
alent for every pair (f�g) of interior acts:

(i) f ′ �∗
h g

′ for all spreads (f ′� g′) of (f�g).
(ii) P(u ◦ f )≥ P(u ◦ g) for all P ∈D

See Appendix A.1 for the proof.
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Case 3 in the Example 4 shows that niceness is required in Theorems 6
and 7.11

Finally, as noted in the Introduction, there is a tight connection between the
global preference �∗ and the local preferences �∗

h:

COROLLARY 8: For all f�g ∈ F , f �∗ g if and only if f �∗
h g for all interior

h ∈ F .

See Appendix A.2 for the proof.

5. EXTENSIONS

All the results in this paper apply verbatim if preferences are defined on the
set of bounded (rather than simple) acts, as defined, for example, in Gilboa
and Schmeidler (1989).

Theorem 2 can be generalized to preferences that are continuous but possi-
bly not locally Lipschitz. For details, see Ghirardato and Siniscalchi (2010).

Supplemental Material Appendix S.D shows that, given an interior act h,
whether a given probability P ∈ ba1(Σ) belongs to the set C(h) can be directly
ascertained using the DM’s preferences without invoking Theorems 6 or 7.

Finally, for preferences that satisfy the weak certainty independence axiom
of Maccheroni, Marinacci, and Rustichini (2006) (e.g., multiplier, variational,
or vector expected utility preferences) and under additional regularity con-
ditions (in particular, concavity or continuous differentiability of I suffice),
the sets C(h) pin down the preference � uniquely. This follows from non-
smooth analogs of the fundamental theorem of calculus (cf. Ngai, Luc, and
Théra (2000)). We leave a fuller investigation of this fact to future research.

APPENDIX: PROOFS OF THE MAIN RESULTS

A.1. Proof of Theorems 6 and 7, and Corollary 4

Throughout, � is an MBL preference with representation (I�u) and relevant
priors C. For any D ⊂ ba1(Σ), we also use the notation f �D g to mean that
P(u ◦ f )≥ P(u ◦ g) for all P ∈D.

We use freely the following facts. (i) Since I is monotonic, ∂I(u ◦h) consists
of positive linear functionals (Rockafellar (1980, Theorem 6, Corollary 3)), and
consequently a 	→ I◦(c;a) is monotonic. (ii) a 	→ I◦(u ◦ h;a) is continuous by
Rockafellar (1980, Corollary 1, p. 268).

LEMMA 9: C is the smallest weak∗-compact, convex set D⊂ ba1(Σ) such that,
for all f�g ∈ F , f �D g implies f � g.

11 In Example 4, ∂I(0) contains only the zero vector. However, we show in Supplemental Mate-
rial Appendix S.C how to modify preferences so that ∂I(0) contains vectors other than 0 without
changing the conclusions of the example.
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PROOF: That C satisfies this property is clear, because f �C g implies f �∗ g
by Proposition 1, and hence f � g. Now suppose another set D ⊂ ba1(Σ) also
satisfies this property. If f �D g, then, for all λ ∈ (0�1] and h ∈ F , also λf +
(1−λ)h �D λg+(1−λ)h. Then, by assumption, λf +(1−λ)h � λg+(1−λ)h
for all λ ∈ (0�1] and h ∈ F ; that is, f �∗ g. But by Proposition 1, this implies
that f �C g. By Proposition A.1 in GMM, this implies that C ⊂ coD. Q.E.D.

LEMMA 10: f �∗
h g implies that, for all μ ∈ (0�1] and c ∈ B0(Σ), I◦(u◦h;μu◦

f + (1 −μ)c)≥ I◦(u ◦ h;μu ◦ g + (1 −μ)c).12

PROOF: Step 1. Fix (λn) and (hn) as in Definition 4. Functionally, Eq. (7) is
equivalent to I(λnu◦f +(1−λn)u◦hn)≥ I(λnu◦g+(1−λn)u◦hn) eventually;
in other words,

I(λnu ◦ f + cn) ≥ I(λnu ◦ g + cn) eventually

for all sequences (λn) ↓ 0 and (cn) such that cn = (1 − λn)u ◦ hn for some se-
quence (hn)⊂ F with hn → h.

Step 2. For any sequence (λn) ↓ 0 and (cn) → u ◦ h, and for any μ ∈ (0�1]
and c ∈ B0(Σ),

λn

[
μu ◦ f + (1 −μ)c

] + cn = (λnμ)u ◦ f + [
λn(1 −μ)c + cn

]
≡ (λnμ)u ◦ f + dn�

and analogously λn[μu◦g+ (1−μ)c]+ cn = (λnμ)u◦g+dn. Since cn → u◦h,
eventually (1−λnμ)

−1dn ∈ intB0(Σ�u(X)) because h is interior, λn(1−μ)c →
0, and 1 − λnμ → 1; also, dn → u ◦ h. Therefore, there is a sequence (hn) ⊂ F
such that (1 − λnμ)u ◦ hn = dn; this sequence necessarily satisfies hn → h, and
so, by Step 1, eventually

I
(
λn

[
μu ◦ f + (1 −μ)c

] + cn
)

= I
(
(λnμ)u ◦ f + dn

) ≥ I
(
(λnμ)u ◦ g + dn

)
= I

(
λn

[
μu ◦ g + (1 −μ)c

] + cn
)
�

Subtracting I(cn) from both sides and dividing by λn > 0 yields

I(λn[μu ◦ f + (1 −μ)c] + cn)− I(cn)

λn

≥ I(λn[μu ◦ g + (1 −μ)c] + cn)− I(cn)

λn

eventually

12By Lemma S5, �∗
h is independent. Thus, just showing that f �∗

h g implies I◦(u ◦ h;u ◦ f ) ≥
I◦(u ◦ h;u ◦ g) would be enough to establish the claim in this lemma for c ∈ B0(Σ�u(X)). How-
ever, the proof of Theorem 6 requires that the claim hold for all c ∈ B0(Σ).
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for all (λn) ↓ 0, μ ∈ (0�1], c ∈ B0(Σ), and (cn)→ u ◦ h.
Step 3. Finally, fix μ, c, and ε > 0. By the definition of I◦(u ◦ h;μu ◦ g +

(1 − μ)c), there are sequences (λn) ⊂ [0�1], (cn) ⊂ B0(Σ�u(X)) such that
λn ↓ 0, cn → u ◦ h, and limn

I(λn[μu◦g+(1−μ)c]+cn)−I(cn)

λn
≥ I◦(u ◦ h;μu ◦ g + (1 −

μ)c) − ε. Taking a subsequence if necessary,13 it follows from Step 2 that
limn

I(λn[μu◦f+(1−μ)c]+cn)−I(cn)

λn
≥ I◦(u ◦h;μu ◦ g+ (1 −μ)c)− ε. This implies that

I◦(u ◦h;μu ◦ f + (1 −μ)c)≥ I◦(u ◦h;μu ◦ g+ (1 −μ)c)− ε. Since ε > 0 was
arbitrary, the claim follows. Q.E.D.

COROLLARY 11: If ∂I(u ◦ h) �= {Q0} (the zero measure), then �∗
h agrees with

� on X .

PROOF: By monotonicity of �, x� y implies x�∗
h y , so it is enough to prove

that x � y implies that y �∗
h x does not hold. By contradiction, suppose that

x� y (hence, x�∗
h y) and y �∗

h x. Then, by Lemma 10, for every c ∈ B0(Σ) and
μ ∈ (0�1], y �∗

h x implies I◦(u ◦ h;μu(y)+ (1 −μ)c)≥ I◦(u ◦ h;μu(x)+ (1 −
μ)c). Now let c = 1S and choose μ> 0 small enough so that α≡ μu(x)+ (1 −
μ) > 0 and β ≡ μu(y)+ (1 −μ) > 0. Then I◦(u ◦h;α) = maxQ∈∂I(u◦h) αQ(S)=
αmaxQ∈∂I(u◦h) Q(S) ≡ αM and similarly I◦(u ◦ h;β) = βM , because α�β > 0.
By assumption, Q0 is not the only functional in ∂I(u ◦ h) and, therefore, since
I is monotonic, M > 0. But then α ≤ β, which contradicts the fact, so u(x) >
u(y). Q.E.D.

LEMMA 12: Assume that I is nice at u ◦ h. For any pair f�g ∈ F , f �C(h) g
implies that f ′ �∗

h g
′ for any spread (f ′� g′) of (f�g).

PROOF: The claim is vacuously true if f or g are not interior acts, because
in this case there is no spread of (f�g). Thus, consider a spread (f ′� g′) of an
interior pair of acts (f�g). Then there is ε > 0 such that u ◦ f ′ ≥ u ◦ f + ε and
u ◦ g′ ≤ u ◦ g − ε. Thus, P(u ◦ f ′) > P(u ◦ g′) for all P ∈ C(h).

Suppose there are sequences (λn) ⊂ [0�1] and (hn) ⊂ F such that λn ↓ 0,
hn → h and, by taking subsequences if necessary, λnf ′ + (1 − λn)hn ≺ λng′ +
(1 −λn)hn for all n. Passing to the functional representation of �, I(λnu ◦ f ′ +
(1 − λn)u ◦ hn) < I(λnu ◦ g′ + (1 − λn)u ◦ hn) for all n.

Let cn = λnu ◦ f ′ + (1 −λn)hn, so λnu ◦ g′ + (1 −λn)u ◦hn = cn +λn[u ◦ g′ −
u ◦ f ′] and cn → u ◦ h. Then I(cn) < I(cn + λn[u ◦ g′ − u ◦ f ′]) for all n, so
I(cn+λn[u◦g′−u◦f ′])−I(cn)

λn
> 0 for all n.

It follows that maxQ∈∂I◦(u◦h) Q(u ◦ g′ − u ◦ f ′) = I◦(u ◦ h;u ◦ g′ − u ◦ f ′) ≥ 0.
Hence, since I is nice at u ◦ h, there exists Q �= Q0 in ∂I(u ◦ h) such that

13The sequence I(λn[μu◦f+(1−μ)c]+cn)−I(cn)

λn
may fail to converge. However, since I◦(u ◦ h;μu ◦

f + (1 −μ)c) < ∞ as I is locally Lipschitz, this sequence must be bounded and hence contain a
convergent subsequence.
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Q(u ◦ g′) ≥ Q(u ◦ f ′); then, for P = Q

Q(S)
∈ C(h), P(u ◦ g′) ≥ P(u ◦ f ′)—a con-

tradiction. Q.E.D.

PROOF OF THEOREM 6: (i) If ∂I(u ◦h)= {Q0}, then C(h) = ∅, so the asser-
tion holds vacuously. Thus, assume henceforth that there is Q �= Q0 such that
Q ∈ ∂I(u ◦ h).

Define a relation ≥∗
h on B0(Σ) by letting a≥∗

h b iff I◦(u ◦h;λa+ (1 −λ)c)≥
I◦(u ◦ h;λb + (1 − λ)c) for all λ ∈ (0�1] and c ∈ B0(Σ). Since the map
a 	→ I◦(u ◦h;a) is monotonic and continuous, by adapting the proof of Propo-
sition 4 in GMM one can easily show that ≥∗

h is monotonic, reflexive, transi-
tive, continuous (if an → a, bn → b and an ≥∗

h b
n, then a ≥∗

h b), and conic (if
a ≥∗

h b, then λa + (1 − λ)c ≥∗
h λb + (1 − λ)c for all λ ∈ (0�1] and c ∈ B0(Σ)).

Finally, let α > β > 0 and suppose that ≥∗
h is trivial. Then, since α ≥∗

h β by
monotonicity, we must have β ≥∗

h α, so for all λ ∈ (0�1] and c ∈ B0(Σ), I◦(u ◦
h;λβ+(1−λ)c) ≥ I◦(u◦h;λα+(1−λ)c). Take c = 1S and any λ ∈ (0�1]; then
λα+ 1 − λ�λβ+ 1 − λ > 0, so I◦(u ◦ h;λβ+ (1 − λ)) = [λβ+ (1 − λ)]M and
I◦(u ◦ h;λα + (1 − λ)) = [λα + (1 − λ)]M , where M = maxQ∈∂I(u◦h) Q(S) > 0
because ∂I(u ◦ h) contains positive functionals other than Q0. Hence, β ≥∗

h α
requires λβ+ (1 − λ) ≥ λα+ (1 − λ), a contradiction. Thus ≥∗

h is nontrivial.
Proposition A.2 in GMM yields a unique weak∗-compact, convex set C(h) ⊂

ba1(Σ) such that a≥∗
h b iff P(a) ≥ P(b) for all P ∈ C(h). We claim that C(h) =

co{ Q

Q(S)
:Q ∈ ∂I(u ◦ h)�Q(S) > 0} ≡ D(h).

First, we show that C(h) is the smallest weak∗-compact, convex set D ⊂
ba1(Σ) with the following property, henceforth denoted (P): P(a) ≥ P(b) for
all P ∈ D implies I◦(u ◦ h;a)≥ I◦(u ◦ h;b). Clearly, C(h) satisfies (P), so con-
sider another set D that also satisfies (P). If P(a) ≥ P(b) for all P ∈ D, then,
for all λ ∈ (0�1] and c ∈ B0(Σ), also P(λa + (1 − λ)c) ≥ P(λb+ (1 − λ)c) for
all P ∈ D, so by assumption, I◦(u◦h;λa+ (1 −λ)c)≥ I◦(u◦h;λb+ (1 −λ)c).
But this means that a ≥∗

h b. In other words, the relation ≥D, defined by a ≥D b
iff P(a) ≥ P(b) for all P ∈ D, is a subset of ≥∗

h. By Proposition A.1 in GMM,
C(h) ⊂ coD, as claimed.

We now show that D(h) is also the smallest weak∗-compact convex set that
satisfies (P), which obviously implies the claim. First, suppose that P(a) ≥ P(b)
for all P ∈ D(h), so P(b− a) ≤ 0 for all P ∈ D(h). Then also Q(b− a) ≤ 0 for
all Q ∈ ∂I(u◦h) [this is trivially true for Q = Q0, in case Q0 ∈ ∂I(u◦h)]. Hence
I◦(u◦h;b) = I◦(u◦h;a+(b−a)) ≤ I◦(u◦h;a)+I◦(u◦h;b−a) ≤ I◦(u◦h;a),
because I◦(u ◦ h;b− a)= supQ∈∂I(u◦h) Q(b− a)≤ 0. Thus D(h) satisfies (P).

Let D⊂ ba1(Σ) be another weak∗-compact, convex set that satisfies (P). Sup-
pose there is P ∈ D(h) \ D. By the separating hyperplane theorem,14 there is

14For example, Aliprantis and Border (2007, Corollary 5.80 and Theorem 5.93). Note that since
the topologies σ(ba(Σ)�B(Σ)) and σ(ba(Σ)�B0(Σ)) coincide on ba1(Σ) (Maccheroni, Marinacci,
and Rustichini (2006, Appendix A)), we can restrict attention to σ(ba(Σ)�B0(Σ))-continuous
linear functionals on ba(Σ).
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a ∈ B0(Σ) and α ∈ R such that P(a) > α and P ′(a) ≤ α for all P ′ ∈ D. Let-
ting b = a− α, we have P(b) > 0 and P ′(b) ≤ 0 for all P ′ ∈ D. By assumption,
P ′(b) ≤ 0 for all P ′ ∈ D implies I◦(u ◦ h;0) ≥ I◦(u ◦ h;b); however, P(b) > 0
implies that there is15 Q ∈ ∂I(u ◦ h) with Q(S) �= 0 and Q(b) > 0, so I◦(u ◦
h;b) = supQ′∈∂I(u◦h) Q

′(b) ≥ Q(b) > 0 = supQ′∈∂I(u◦h) 0 · Q′(S) = I◦(u ◦ h;0)—
a contradiction. Thus, D(h) ⊂D.

To complete the proof, assume that f �∗
h g. Then, by Lemma 10, u ◦ f ≥∗

h

u ◦ g; hence P(u ◦ f ) ≥ P(u ◦ g) for all P ∈ C(h) =D(h).
(ii) Suppose that �D is another Bewley refinement of �∗

h; recall that, by
definition, �D on X is represented by u, but by Corollary 11, this must be
true for any Bewley refinement of �∗

h, because I is nice at u ◦ h and so a
fortiori ∂I(u ◦ h) �= {Q0}. Fix an interior act f ∈ F and let x be such that
u(x)= maxP∈C(h) P(u ◦ f ). We will show that u(x) ≥ maxP∈D P(u ◦ f ).

Clearly, P(u(x)) ≥ P(u ◦ f ) for all P ∈ C(h). Since f is interior and, by
monotonicity, so is x, there are ε > 0, y ∈ X , and g ∈ F with u(y) = u(x) + ε
and u ◦ g = u ◦ f − ε. Indeed, for all δ ∈ (0� ε), there are yδ and gδ such that
u(yδ) = u(x) + δ and u ◦ gδ = u ◦ f − δ. For each such δ ∈ (0� ε), (yδ� gδ) is a
spread of (x� f ). By Lemma 12, it must then be the case that yδ �∗

h gδ.
Since �D extends �∗

h, conclude that yδ �D gδ for all δ ∈ (0� ε); hence, u(yδ)=
P(u(yδ)) ≥ P(u ◦ gδ) for all P ∈ D. Therefore, u(x)+ δ ≥ P(u ◦ f )− δ for all
P ∈ D and all δ ∈ (0� ε). It follows that u(x) ≥ P(u ◦ f ) for all P ∈ D, that is,
u(x)≥ maxP∈D P(u ◦ f ), as claimed.

To sum up, for all interior f ∈ F , maxP∈C(h) P(u◦f )≥ maxP∈D P(u◦f ). Since
any a ∈ B0(Σ) can be written as αu ◦ f + β for some f ∈ F int and α�β ∈ R,
then maxP∈C(h) P(a) ≥ maxP∈D P(a) for all a ∈ B0(Σ). By standard results (e.g.,
Aliprantis and Border (2007, Theorem 7.51)), this implies that D ⊂ C(h), that
is, �D is a richer Bewley relation than �∗

h. Q.E.D.

PROOF OF THEOREM 7: Fix an interior pair (f�g). Assume that (i) holds
and fix ε > 0 such that u ◦ f + ε�u ◦ g − ε ∈ B0(Σ�u(X)). Then, for all δ ∈
(0� ε), there exist fδ� gδ ∈ F with u ◦ fδ = u ◦ f + δ and u ◦ gδ = u ◦ g − δ;
note that (fδ� gδ) is a spread of (f�g). Then fδ �∗

h gδ, so by (i) in Theorem 6,
P(u ◦ f ) + δ = P(u ◦ fδ) ≥ P(u ◦ gδ) = P(u ◦ g) − δ for all P ∈ C(h) and all
δ ∈ (0� ε). Therefore, (ii) with D = C(h) follows.

The converse, again with D = C(h), is established in Lemma 12. Finally, sup-
pose there is another set D for which (i) and (ii) are equivalent (again using
utility u in view of Corollary 11). Consider a pair (f�g) of interior acts. Suppose
that f �C(h) g: then (ii) holds for set C(h), hence (i) must hold. But by assump-
tion, this implies that (ii) must hold for set D as well: therefore, f �D g. Since

15This is immediate if P = Q
Q(S)

for some Q ∈ ∂I(u◦h). If not, there is a net (Pι) in co{ Q
Q(S)

:Q ∈
∂I(u ◦ h)�Q(S) > 0} that converges to P in the weak∗ topology. Then Pι(b) → P(b), so there is
ῑ such that Pι(b) > 0 for all ι following ῑ. Since any such Pι is a convex combination of elements
of { Q

Q(S)
:Q ∈ ∂I(u ◦ h)�Q(S) > 0}, the claim follows.
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Bewley preferences satisfy independence, �C(h) ⊂�D. By the same argument,
�D ⊂�C(h). It follows that D= C(h). Q.E.D.

A.2. Proof of Theorem 2 and Corollary 8

We must show that C is the closed convex hull of all C(h) for h ∈ F int.

CLAIM: For all f�g ∈ F , f �C(h) g for all h ∈ F int implies f � g.

PROOF: Assume first that f and g are interior. By Lebourg’s mean value
theorem (Lebourg (1979, Theorem 1.7)), there are μ ∈ (0�1) and Q ∈ ∂I(μu ◦
f + (1 − μ)u ◦ g) such that I(u ◦ f ) − I(u ◦ g) = Q(u ◦ f ) − Q(u ◦ g). Since
μf + (1 − μ)g is interior, the assumption that P(u ◦ f ) ≥ P(u ◦ g) for all P ∈
C(μf + (1 − μ)g) implies that Q(u ◦ f ) ≥ Q(u ◦ g) [if Q = Q0, this is trivially
true]. Hence, I(u ◦ f ) ≥ I(u ◦ g), that is, f � g, as claimed. If now f and g
are not interior, pick x interior and consider λx + (1 − λ)f�λx + (1 − λ)g. If
P(u ◦ f ) ≥ P(u ◦ g) for all interior h and all P ∈ C(h), then also P(λu(x) +
(1−λ)u◦f )≥ P(λu(x)+(1−λ)u◦g) for all such h and P . As was just shown,
this implies λx+ (1−λ)f � λx+ (1−λ)g. Since this holds for all λ, continuity
yields f � g, as required. Q.E.D.

By Lemma 9, the Claim implies that C ⊂ co
⋃

h∈F int C(h). Conversely, sup-
pose f �C g. Then f �∗ g; in particular, for every h ∈ F int, f �∗

h g. But then,
part (i) of Theorem 6 shows that f �C(h) g. Applying Proposition A.1 in GMM
to the Bewley preference �C(h) now implies that C(h) ⊂ C.

Note that the above also shows that f �C(h) g for all interior h if and only
if f �∗ g. Since f �∗ g directly and trivially implies that f �∗

h g, and part (i)
of Theorem 6 shows that f �∗

h g implies f �C(h) g, we can also conclude that
f �∗ g if and only if f �∗

h g for all interior h.
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