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Abstract

In questo articolo studiamo problemi di Dirichlet singolari, lineari
e semilineari, della forma −|x|2∆u = f(u) in Ω, u = 0 su ∂Ω, dove Ω
è un dominio in R2 e f(u) = λu o f(u) = λu + |u|p−2u con p > 2 (o
nonlinearità più generali). In tali problemi bidimensionali emergono al-
cune difficoltà a causa della non validità della disuguaglianza di Hardy
in R2 e a causa delle invarianze dell’equazione −|x|2∆u = f(u). Per-
tanto opportune condizioni su λ e Ω sono necessarie al fine di garantire
l’esistenza di una soluzione positiva. Per esempio, se Γ0 è una curva
non costante passante per l’origine e Γ∞ è una curva non limitata, al-
lora la disuguaglianza di Hardy vale su qualunque dominio Ω contenuto
in R2 \ (Γ0 ∪ Γ∞) e si possono ottenere alcuni risultati di esistenza.
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Introduction

In this paper we deal with the stationary singular Schrödinger equation in
the limit case of “strong force” (see [9])

−∆u = λ
u

|x|2
in Ω (0.1)

where Ω is a domain in R2 and λ ∈ R. We will also consider the nonlinear
version

−∆u =
λu+ g(u)

|x|2
in Ω (0.2)

where g ∈ C(R) is a superlinear function, e.g., g(u) = |u|p−2u with p > 2
(see Section 3 for the precise assumptions on g).

We focus our attention on two-dimensional domains since, as discussed
in [8], this case exhibits some special features that are not shared with any
other dimension. Let us note that some results concerning equation (0.2)
and the corresponding Dirichlet problem were already proved in [8], while
for variational, singular elliptic problems in dimensions different from two
we refer, e.g., to the papers [10], [2], [3], [12], [13], [5] and [7].

The most striking phenomena related to equations (0.1) and (0.2), that
appear only in dimension two, are:

• Failure of the Hardy-Sobolev inequality in R2 (see, e.g., [4]), in any
domain containing the origin and in any exterior domain, that is, a
domain with compact complement. This means that if Ω is a domain
containing 0 or if Ω is an exterior domain, then the value

Sp(Ω) = inf
{∫

Ω
|∇u|2 : u ∈ C∞

c (Ω \ {0}) ,
∫
Ω

|u|p

|x|2
= 1

}
(0.3)

turns out to be zero for every p ≥ 2.

• Invariance of the equation −∆u = f(u)
|x|2 with respect to dilations x 7→

rx (r > 0) and with respect to the Kelvin transform x 7→ x
|x|2 , whatever

f ∈ C(R) is.

A consequence of these facts is that when Ω is a domain containing the
origin or when Ω is an exterior domain, for λ > 0 equation (0.1) admits no
positive (super)solution, even in a very weak sense (precisely, in the sense
of distributions in Ω \ {0}, see Proposition 2.1).

These remarks lead us to start by examining the class of those two-
dimensional domains on which the Hardy inequality holds, i.e., such that
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S2(Ω) > 0, (that we call Hardy-admissible domains), and then by studying
the corresponding linear problem.

For instance, as already noted in [8], any proper cone in R2 turns out to
be a Hardy admissible domain. In fact, the property of Hardy-admissibility
depends just on the shape of the domain at the origin and at infinity. More
precisely, we can show that the Hardy inequality holds true in any domain
Ω contained in R2 \ (Γ0 ∪Γ∞) where Γ0 is a (non constant) curve such that
0 ∈ Γ0 and Γ∞ is an unbounded curve. Actually, more general situations
can be considered, see condition (H) stated in Theorem 1.4.

Whenever the domain Ω is Hardy-admissible, as it happens in the above
described situations, then one can study the minimization problem corre-
sponding to the definition of S2(Ω). However, the invariance properties
noted at the beginning reflect on phenomena of concentration at 0 or vanish-
ing, and then on a possible lack of compactness of the minimizing sequences
for S2(Ω). This lack of compactness depends again on the shape of Ω near
0 and at infinity.

In Theorem 2.3 we state a sufficient condition for compactness and hence
for existence of a positive eigenfunction for the problem{

−∆u = λ u
|x|2 in Ω

u = 0 on ∂Ω
(0.4)

on a Hardy-admissible domain. This condition fits into the spirit of the
concentration-compactness principle [11].

As a particular case we can prove that the eigenvalue problem (0.4)
admits a positive solution when Ω = R2 \ Γa,b and Γa,b = {x ∈ R2 : 0 ≤
x1 ≤ a, x1 ≥ b}, provided that a

b > 0 is small enough.
In the second part of the paper we deal with the semilinear Dirichlet

problem {
−∆u = λu+g(u)

|x|2 in Ω
u = 0 on ∂Ω .

(0.5)

As in the linear case, some non existence results are known when the
domain Ω contains the origin or it is an exterior domain. For example, as
proved in [3] and [8], because of the quadratic behaviour of the singularity
at the origin, for p > 2 and 0 ∈ Ω equation

−∆u =
|u|p−2u

|x|2
in Ω

has no positive solution, even in a very weak sense and also in higher dimen-
sions. In addition, by the Kelvin invariance, when Ω is an exterior domain
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in R2 the same non existence result holds (this occurs only in dimension
two). In these cases there is no variational setting suited to study the corre-
sponding Dirichlet’s problem, because there is an intrinsic lack of topology.

Therefore we restrict ourselves to study problem (0.5) assuming that the
domain Ω is Hardy-admissible. In this case, Sp(Ω) > 0 for every p > 2
and, for a nonlinearity g ∈ C1(R) of the form g(u) = |u|p−2u with p > 2,
we can introduce a nice variational setting suited to study problem (0.5).
Moreover, for λ < S2(Ω) the variational functional associated to (0.5) turns
out to have a mountain pass structure.

As for the eigenvalue problem, a lack of compactness may occur, because
of the dilation and Kelvin invariances. Nevertheless, we can state a criterion
ensuring that problem (0.5) admits a positive solution (Theorem 3.1). Let
us note that a similar argument to recover some compactness was already
used in [6] for a critical degenerate elliptic problem (see also [5]).

Finally, in Section 4 we illustrate some existence examples for problem
(0.5).

1 On the Hardy-Sobolev inequality in two dimen-
sions

Aim of this Section is to introduce a variational setting suited to study
problems (0.4) and (0.5). As already observed in the Introduction, some
difficulties arise because of the dimension two of the domain. Indeed, let us
remark that in the N -dimensional case with N ≥ 3 the Sobolev inequality
holds true and one can take advantage from that in order to define the
standard Sobolev space D1

0(Ω) as the completion of C∞
c (Ω) with respect

to the Dirichlet norm. It is known that D1
0(Ω) turns out to be a Hilbert

space endowed with the norm ‖∇u‖L2 . Moreover, for every α ∈ [0, 2] the
space D1

0(Ω) is continuously embedded into the weighted Lebesgue space
Lpα(Ω, dx

|x|α ), where pα = 2(N−α)
N−2 (see [4]). In particular, for α = 0 one

recovers the Sobolev embedding (p0 = 2N
N−2), while for α = 2 one gets the

Hardy inequality (p2 = 2).
All the above statements cannot be taken for granted at all when Ω is

an arbitrary domain in R2. More precisely the lack of a Sobolev embedding
in dimension two is an obstruction in order to define in a similar way the
space D1

0(Ω). Indeed, in general if Ω is an unbounded domain in R2, the
completion of C∞

c (Ω) with respect to the Dirichlet norm is not contained
in any space Lp(Ω) for p ∈ [1,+∞]. In addition, the Hardy inequality fails
in dimension two and the values Sp(Ω) defined in (0.3) turn out to be 0 for
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every p ≥ 2 if 0 ∈ Ω or if Ω is an exterior domain.
Our goal is to introduce a class of domains in R2 for which Sp(Ω) > 0

for every p ≥ 2. This will allow us to state a well-posed definition of the
space D1

0(Ω) as in the higher dimensional case.

Definition 1.1 We say that a domain Ω in R2 is Hardy-admissible if the
Hardy inequality holds in Ω, that is, there exists C > 0 such that for every
u ∈ C∞

c (Ω) ∫
Ω

u2

|x|2
≤ C

∫
Ω
|∇u|2 .

In this case we set

λH
1 (Ω) = inf

{∫
Ω
|∇u|2 : u ∈ C∞

c (Ω) ,
∫
Ω

u2

|x|2
= 1

}
.

Remark 1.2 Note that if 0 ∈ Ω then Ω is not Hardy-admissible. Moreover,
by the invariance with respect to the Kelvin transform, also in case Ω is an
exterior domain, Ω cannot be Hardy-admissible.

Lemma 1.3 If a domain Ω in R2 is Hardy-admissible, then the completion
of C∞

c (Ω) with respect to the Dirichlet norm, denoted D1
0(Ω), is a Hilbert

space endowed with the norm ‖u‖D1
0

= ‖∇u‖L2. Moreover D1
0(Ω) is contin-

uously embedded into Lp(Ω; dx
|x|2 ) for every p ∈ [2,+∞).

Proof. The fact that D1
0(Ω) is a Hilbert space endowed with the Dirichlet

norm immediately follows by the assumption that the Hardy inequality holds
in Ω. In order to prove that D1

0(Ω) is continuously embedded into Lp(Ω; dx
|x|2 )

for every p ∈ [2,+∞), first of all, we point out that Ω ⊂ R2 \ {0} (Remark
1.2). Setting φ(s, θ) = (es cos θ, es sin θ), we have that φ is a diffeomorphism
between R×S1 and R2 \{0}. Moreover, if u ∈ D1

0(Ω) and v = u◦φ = Φ(u),
then v ∈ H1

loc(R× S1), |∇u|2 = e−2s|∇v|2 a.e., and∫
Ω
|∇u|2 =

∫
Σ
|∇v|2 ,

∫
Ω

u2

|x|2
=
∫
Σ
v2 , (1.1)

where Σ = φ−1(Ω)∩ (R× [0, 2π)). Hence D1
φ(Σ) =: {(u ◦ φ)|Σ : u ∈ D1

0(Ω)}
is a Hilbert space endowed with the Dirichlet norm and is isomorphic to
D1

0(Ω), through the mapping Φ. In addition, since Ω is Hardy-admissible
and (1.1) holds true, the Poincaré inequality holds in D1

φ(Σ) and then D1
φ(Σ)

is a subspace of H1(Σ). In particular, by the classical Sobolev embedding
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Theorem, D1
φ(Σ) turns out to be continuously embedded into the spaces

Lp(Σ) for all p ∈ [2,+∞). Since for every u ∈ C∞
c (Ω)∫

Σ
|u ◦ φ|p =

∫
Ω

|u|p

|x|2

using the isomorphism Φ, we conclude that D1
0(Ω) is continuously embedded

into Lp(Ω; dx
|x|2 ) for every p ∈ [2,+∞).

As already noted, in order that a domain in R2 is Hardy-admissible, it
cannot contain the origin and it cannot be an exterior domain. In the next
Theorem we introduce a quite general condition on the domain ensuring
that it is Hardy-admissible.

Theorem 1.4 If Ω is a domain in R2 satisfying the condition:

(H) there exists a finite or countable family of connected sets Γn ⊂ R2 of
positive capacity such that:

(i) R2 \ Ω ⊃ Γ, where Γ =
⋃

n Γn,

(ii) Γ is unbounded and the origin is an accumulation point for Γ,

(iii) supn ρ(Γn,Γn+1) < +∞ where ρ(Γn,Γn+1) = inf{
∣∣∣log |x|

|y|

∣∣∣ : x ∈
Γn \ {0}, y ∈ Γn+1 \ {0}},

then Ω is Hardy-admissible.

Remark 1.5 According to Theorem 1.4, the Hardy inequality, that fails in
R2, in fact holds in any domain Ω contained in R2 \ (Γ0 ∪ Γ∞) where Γ0 is
a non constant curve passing through the origin and Γ∞ is an unbounded
curve. Clearly this includes every proper cone in R2 with vertex at the
origin.

Proof. Let φ be the diffeomorphism between R × S1 and R2 \ {0} intro-
duced in the proof of Lemma 1.3, and let Σ = φ−1(Ω). By (refE:change-of-
variable), Ω is Hardy-admissible if and only if the Poincaré inequality is sat-
ified in Σ with respect to the class of functions C∞

c (Σ) = {v ∈ C∞(R×S1) :
supp v ⊂ Σ}. Under the diffeomorphism φ, condition (H) is equivalent to:

(H)′ there exists a finite or countable family of connected sets Fn ⊂ R2×S1

of positive capacity such that:

(i)′ (R× S1) \ Σ ⊃ F , where F =:
⋃

n Fn,
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(ii)′ inf p1(F ) = −∞, sup p1(F ) = +∞, where p1:R× S1 → R is the
projection with respect to the first component,

(iii)′ supn d1(Fn, Fn+1) < +∞, where d1(Fn, Fn+1) = inf{|s − s′| :
(s, θ) ∈ Fn, (s′, θ′) ∈ Fn+1}.

Hence, if (H)′ is fulfilled, taking s̄ > supn d1(Fn, Fn+1) and Σj = ((js̄, (j +
1)s̄)× S1) ∩ Σ, then for every j ∈ Z there exists nj such that Fnj ∩ Σj is a
set of positive capacity. Therefore, we have that∫

Σj

v2 ≤ C

∫
Σj

|∇v|2 for any v ∈ C∞
c (Σ) ,

with C > 0 independent of v and j (C depends just on the diameter of Σj).
Adding on j we find∫

Σ
v2 ≤ C

∫
Σ
|∇v|2 for any v ∈ C∞

c (Σ) ,

that is, the Poincaré inequality on Σ holds.

2 The linear Dirichlet problem

In this Section we study the existence of positive solutions for the eigenvalue
problem {

−∆u = λ u
|x|2 in Ω

u = 0 on ∂Ω
(2.1)

with λ > 0.
First of all, we state a non existence result, concerning the case of do-

mains containing the origin and exterior domains.

Proposition 2.1 If Ω is a domain in R2 containing 0, or if Ω is an exterior
domain in R2, then for every λ > 0 the equation

−∆u = λ
u

|x|2

admits no non negative supersolution in the sense of distributions in Ω\{0},
namely there is no function u ∈ L1

loc(Ω \ {0}), u ≥ 0, u 6= 0 such that
−
∫
Ω u∆ϕ ≥ λ

∫
Ω

uϕ
|x|2 for every ϕ ∈ C∞

c (Ω \ {0}), ϕ ≥ 0.

Remark 2.2 The non existence result stated in Proposition 2.1 holds only
in dimension two. Indeed, in the N -dimensional case for every λ ≤ (N

2 −1)2

the equation −|x|2∆u = λu admits (very weak) positive solutions on RN \
{0} of the form u(x) = |x|−β for a suitable choice of β = β(N,λ).
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Proof. By the invariances of (0.1) with respect to dilations and to the Kelvin
transform, we may assume that B ⊂ Ω where B = {x ∈ R2 : |x| < 1}.
Suppose that there exists a positive supersolution to −∆u = λ u

|x|2 in the
sense of distributions in Ω\{0}. Then, by standard regularization arguments,
−
∫
Ω u∆ϕ ≥ λ

∫
Ω

uϕ
|x|2 for every ϕ ∈ C2

c (Ω \ {0}), ϕ ≥ 0. For every n ∈ N let

ψn(r) = π( log r
log n + 1) (r > 0) and

ϕn(x) =
{

(sinψn(|x|))3 as 1
n < |x| < 1

0 elsewhere.

Then ϕn ∈ C2
c (Ω \ {0}), ϕn ≥ 0 and, after calculations,

λ

∫
Ω

uϕn

|x|2
≤ −

∫
Ω
u∆ϕn ≤

3π
log n

∫
Ω

uϕn

|x|2
.

Since u ≥ 0 and u 6= 0 on any neighborhood of 0 (otherwise u ≡ 0 on Ω),∫
Ω

uϕn

|x|2 > 0 for every n ∈ N. Then λ ≤ 3π
log n for every n ∈ N, namely λ ≤ 0.

This concludes the proof.

The above non existence result leads us to study the eigenvalue problem
(2.1) when the domain Ω is Hardy-admissible. In this case the space D1

0(Ω)
is well defined (see Lemma 1.3) and we can look for positive solutions to
(2.1) as extremal functions corresponding to the continuous embedding of
D1

0(Ω) into L2(Ω; dx
|x|2 ), namely as minimizers for the problem

λH
1 (Ω) = inf

{∫
Ω
|∇u|2 : u ∈ D1

0(Ω) ,
∫
Ω

u2

|x|2
= 1

}
. (2.2)

Our first goal is to state a criterion ensuring that λH
1 (Ω) is attained in

D1
0(Ω). To this aim, let us introduce the values:

λH
1,0(Ω) = sup

r>0
λH

1 (Ω ∩Br) , λH
1,∞(Ω) = sup

r>0
λH

1 (Ω \Br) ,

with the agreement that λH
1 (U) = ∞ if U = ∅. Note that, since Ω is

Hardy-admissible, also Ω ∩ Br and Ω \ Br are (when they are non empty),
and λH

1 (Ω ∩ Br) > 0 and λH
1 (Ω \ Br) > 0 for every r > 0. Moreover

the mappings r 7→ λH
1 (Ω ∩ Br) and r 7→ λH

1 (Ω \ Br) are respectively non
increasing and non decreasing, and λH

1 (Ω) ≤ min{λH
1,0(Ω), λH

1,∞(Ω)}. The
following criterion holds.

Theorem 2.3 Let Ω be a Hardy-admissible domain in R2. If

λH
1 (Ω) < min{λH

1,0(Ω), λH
1,∞(Ω)} (2.3)

then λH
1 (Ω) is attained in D1

0(Ω).
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Proof. For every n ∈ N let Ωn = {x ∈ Ω : 1
n < |x| < n}. For n ∈ N

large enough Ωn is non empty and by standard arguments there exists un ∈
H1

0 (Ωn) such that∫
Ωn

u2
n

|x|2
= 1 ,

∫
Ωn

|∇un|2 = λH
1 (Ωn) ,

and un is a positive solution to{−∆u = λ u
|x|2 in Ωn

u = 0 on ∂Ωn
(2.4)

with λ = λH
1 (Ωn). Moreover one can easily verify that λH

1 (Ωn) ≥ λH
1 (Ωn+1)

for all n ∈ N and λH
1 (Ωn) → λH

1 (Ω) as n → ∞. Hence the sequence (un)
is bounded in D1

0(Ω) and, for a subsequence, converges to some u ∈ D1
0(Ω)

weakly in D1
0(Ω) and in L2(Ω; dx

|x|2 ), and pointwise a.e. in Ω. Then u ≥ 0

and, by weakly lower semicontinuity,
∫
Ω

u2

|x|2 ≤ 1 and
∫
Ω |∇u|2 ≤ λH

1 (Ω).

Clearly, if
∫
Ω

u2

|x|2 = 1, then by (2.2), one has
∫
Ω |∇u|2 = λH

1 (Ω), namely

λH
1 (Ω) is attained. If 0 <

∫
Ω

u2

|x|2 < 1, since

∫
Ω

(un − u)2

|x|2
=

∫
Ω

u2
n

|x|2
−
∫
Ω

u2

|x|2
+ o(1) = 1−

∫
Ω

u2

|x|2
+ o(1)∫

Ω
|∇(un − u)|2 =

∫
Ω
|∇un|2 −

∫
Ω
|∇u|2 + o(1) = λH

1 (Ω)−
∫
Ω
|∇u|2 + o(1)

we infer that

λH
1 (Ω) ≤

∫
Ω |∇(un − u)|2∫

Ω
(un−u)2

|x|2
=
λH

1 (Ω)−
∫
Ω |∇u|2

1−
∫
Ω

u2

|x|2
+ o(1)

and then

λH
1 (Ω) >

∫
Ω |∇u|2∫
Ω

u2

|x|2

in contradiction with (2.2). Hence the case 0 <
∫
Ω

u2

|x|2 < 1 cannot occur.

Finally, to exclude also the case
∫
Ω

u2

|x|2 = 0, namely u = 0, we use the
hypothesis (2.3). For every ε > 0 there exists r0 > 0 such that λH

1 (Ω∩Br0) ≥
λH

1,0(Ω) − ε, and r∞ > r0 such that λH
1 (Ω \ Br∞) ≥ λH

1,∞(Ω) − ε. We claim
that ∫

U
|∇un|2 → 0 ,

∫
U

u2
n

|x|2
→ 0 , (2.5)
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for every open, bounded set U ⊂ Ω such that 0 6∈ U . Assuming for a moment
that (2.5) is proved, we conclude that

λH
1 (Ω) =

∫
Ω
|∇un|2 + o(1)

=
∫
Ω∩Br0

|∇un|2 +
∫
Ω\Br∞

|∇un|2 + o(1)

≥ λH
1 (Ω ∩Br0)

∫
Ω∩Br0

u2
n

|x|2
+ λH

1 (Ω \Br∞)
∫
Ω\Br∞

u2
n

|x|2
+ o(1)

≥ (λH
1,0(Ω)− ε)

∫
Ω∩Br0

u2
n

|x|2
+ (λH

1,∞(Ω)− ε)
∫
Ω\Br∞

u2
n

|x|2
+ o(1)

≥ min{λH
1,0(Ω), λH

1,∞(Ω)} − ε+ o(1) .

Thus, for the arbitrariness of ε, we obtain λH
1 (Ω) ≥ min{λH

1,0(Ω), λH
1,∞(Ω)},

contrary to the assumption (2.3). Hence it remains to prove the claim (2.5).
Let U be an open, bounded subset of Ω with 0 6∈ U . Firstly, we have that∫
U

u2
n

|x|2 → 0 because (un) ⊂ H1(U), un → 0 weakly in H1(U) and then
strongly in L2(U). Secondly, let χ ∈ C∞

c (R2 \ {0}, [0, 1]) be such that χ = 1
on U . By (2.4) we have that∫

Ω
∇un · ∇(χun) = λH

1 (Ωn)
∫
Ω
χ
un

|x|2
.

By the previous part
∫
Ω χ

un
|x|2 → 0. Moreover the sequence (λH

1 (Ωn)) is
bounded and then ∫

Ω
∇un · ∇(χun) → 0 .

Hence ∫
U
|∇un|2 ≤

∫
Ω
χ|∇un|2

=
∫
Ω
∇un · ∇(χun)−

∫
Ω
un∇χ · ∇un

≤
(∫

Ω
u2

n|∇χ|2
) 1

2
(∫

Ω
|∇un|2

) 1
2

+ o(1)

= o(1) ,

because (un) is bounded and converges to 0 strongly in L2(supp χ). There-
fore (2.5) holds true and the proof is completed.
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In the second part of this Section we focus on the case Ω = R2 \ Γa,b,
where Γa,b = {x ∈ R2 : 0 ≤ x1 ≤ a, x1 ≥ b}, being b ≥ a > 0. As noted
in Remark 1.5, Ω satisfies the condition (H) and then, by Theorem 1.4, it is
Hardy-admissible. Moreover, by the dilation invariance, the minimization
problem (2.2) as well as the eigenvalue problem (2.1) are equivalent to the
corresponding problems for the domain R2 \ Γta,tb for every t > 0. Hence,
without loss of generality, we may reduce ourselves to consider the domains

Ωδ = R2 \ Γδ ,

where Γδ = {x ∈ R2 : 0 ≤ x1 ≤ δ, x1 ≥ 1
δ}, and δ ∈ (0, 1]. Our goal is to

show the following result.

Proposition 2.4 There exists δ0 ∈ (0, 1] such that for every δ ∈ (0, δ0) the
value λH

1 (Ωδ) is attained in D1
0(Ωδ). Moreover λH

1 (Ωδ) → 1
4 as δ → δ0.

The proof of Proposition 2.4, is based on the following auxiliary results.
The first one concerns the limit case δ = 1.

Lemma 2.5 λH
1 (Ω1) = 1

4 and it is not attained in D1
0(Ω1). Moreover

λH
1 (Ω1 ∩Br) = λH

1 (Ω1 \Br) = 1
4 for every r > 0.

Proof. With the change of variable φ(s, θ) = (es cos θ, es sin θ) we get that

λH
1 (Ω1) = inf

{∫
Σ
|∇v|2 : u ∈ H1

0 (Σ) ,
∫
Σ
v2 = 1

}
. (2.6)

It is known that the infimum in (2.6) is λ1(I), with I = (0, 2π), and it is
not attained in H1

0 (Σ). In addition λ1(I) = 1
4 . Let us prove that λH

1 (Ω1 ∩
Br) = λH

1 (Ω1). Clearly λH
1 (Ω1 ∩ Br) ≥ λH

1 (Ω1). Given ε > 0 there exists
u ∈ C∞

c (Ω1) such that
∫
Ω1

u2

|x|2 = 1 and
∫
Ω1
|∇u|2 ≤ λH

1 (Ω1)+ ε. Let uδ(x) =
u(x

δ ). Then for δ > 0 small enough uδ ∈ C∞
c (Ω1 ∩ Br) and, by the dilation

invariance
∫
Ω1

u2
δ

|x|2 =
∫
Ω1

u2

|x|2 and
∫
Ω1
|∇uδ|2 =

∫
Ω1
|∇u|2. Hence λH

1 (Ω1 ∩
Br) ≤ λH

1 (Ω1)+ε. By the arbitrariness of ε we conclude that λH
1 (Ω1∩Br) ≤

λH
1 (Ω1). Therefore we get the thesis. In a similar way one can prove that
λH

1 (Ω1) = λH
1 (Ω1 \Br).

The next result concerns some properties of the mapping δ 7→ λH
1 (Ωδ).

Lemma 2.6 The mapping δ 7→ λH
1 (Ωδ) is continuous and non decreasing

on (0, 1]. Moreover λH
1 (Ωδ) → 0 as δ → 0.

11



Proof. For 0 < δ < δ′ ≤ 1 we have Ωδ ⊂ Ωδ′ . This immediately implies
that the mapping δ 7→ λH

1 (Ωδ) is non decreasing on (0, 1]. To prove that
λH

1 (Ωδ) → 0 as δ → 0, one uses the fact that, setting Ω0 = R2 \ {0},

inf
{∫

R2
|∇u|2 : u ∈ C∞

c (Ω0) ,
∫
R2

u2

|x|2
= 1

}
= 0 .

Also to prove the continuity from the right it is enough to apply the definition
of λH

1 (Ωδ). Now let us show that the mapping δ 7→ λH
1 (Ωδ) is continuous

from the left at any δ ∈ (0, 1]. By contradiction, let ε > 0 and 0 < δ0 < δ ≤ 1
be such that

λH
1 (Ωδ′) ≤ λH

1 (Ωδ)− ε for every δ′ ∈ (δ0, δ) . (2.7)

Let (δn) ⊂ (δ0, δ) be such that δn → δ. By (2.7), λH
1 (Ωδn) < λH

1 (Ω1) for
every n ∈ N, and then, by Lemma 2.5 and by Theorem 2.3, λH

1 (Ωδn) is
attained in D1

0(Ωδn) by some un which satisfies∫
Ωδn

u2
n

|x|2
= 1 ,

∫
Ωδn

|∇un|2 = λH
1 (Ωδn) , (2.8)

and is a positive solution to{
−∆u = λH

1 (Ωδn) u
|x|2 in Ωδn

u = 0 on ∂Ωδn .
(2.9)

Since, by (2.8), the sequence (un) is bounded in D1
0(Ωδ0), there exists u ∈

D1
0(Ωδ0) and a subsequence of (un), still denoted (un), such that un → u

weakly in D1
0(Ωδ0) and pointwise a.e. in Ωδ0 . Hence u ≥ 0, u ∈ D1

0(Ωδ),∫
Ωδ

u2

|x|2 ≤ 1 and
∫
Ωδ
|∇u|2 ≤ λH

1 (Ωδ) − ε, because of (2.7). If
∫
Ωδ

u2

|x|2 = 1,

we obtain a contradiction with (2.2). Also the case 0 <
∫
Ωδ

u2

|x|2 < 1 can be
excluded, arguing as in the proof of Theorem 2.3. Let us consider the last
case

∫
Ωδ

u2

|x|2 = 0, namely u = 0. Arguing again as in the proof of Theorem
2.3, using (2.9), we can show that∫

U
|∇un|2 → 0 ,

∫
U

u2
n

|x|2
→ 0 , (2.10)

for every open, bounded set U ⊂ Ω such that 0 6∈ U . Then, taking r0 > 0
such that λH

1 (Ωδ ∩ Br0) ≥ λH
1,0(Ωδ) − ε

2 , and r∞ > r0 such that λH
1 (Ωδ \

Br∞) ≥ λH
1,∞(Ωδ)− ε

2 , we have that, by (2.10),

λH
1 (Ωδn) =

∫
Ωδ∩Br0

|∇un|2 +
∫
Ωδ\Br∞

|∇un|2 + o(1)

≥ min{λH
1,0(Ωδ), λH

1,∞(Ωδ)} −
ε

2
+ o(1) .

12



Thus, using (2.7) and Lemma 2.5, we obtain that λH
1 (Ωδ) ≥ λH

1 (Ω1) + ε
2 ,

a contradiction. Therefore also the case u = 0 cannot occur, and thus the
continuity from the left is proved.

Hence Proposition 2.4 immediately follows by Lemmata 2.5 and 2.6 and
by Theorem 2.3. Moreover, as a consequence of the above statements, we
plainly obtain the following result.

Corollary 2.7 For every λ ∈ (0, 1
4) there exists δ ∈ (0, 1) such that the

eigenvalue problem {−∆u = λ u
|x|2 in Ωδ

u = 0 on ∂Ωδ

admits a positive solution in D1
0(Ωδ).

Remark 2.8 One can easily check that δ0 > e−π. Indeed, consider the
function u:R2 → R defined as follows:

u(x) =
{

cos(1
2 log |x|) as e−π ≤ |x| ≤ eπ

0 elsewhere.

One can see that u ∈ D1
0(Ωδ̄) with δ̄ = e−π, and

∫
R2 |∇u|2/

∫
R2

u2

|x|2 = 1
4 .

Hence, if it were λH
1 (Ωδ̄) = 1

4 , then u should be a minimizer and conse-
quently should be a positive solution to (2.1) on Ωδ̄. In particular, by the
maximum principle, u(x) > 0 for every x ∈ Ωδ̄, contrary to the definition of
u. Therefore we conclude that δ0 > δ̄.

3 The semilinear Dirichlet problem

In this section we study the Dirichlet’s problem (0.5) assuming that Ω is a
Hardy-admissible domain in R2, λ < λH

1 (Ω) and g ∈ C1(R) satisfies:

(g1) there exists p > 2 such that |g′(u)| = O(up−2) as u→ +∞,

(g2) g(u) = o(u) as u→ 0,

(g3) there exists q > 2 such that 0 < qG(u) ≤ g(u)u for any u > 0,

(g4) g(u)
u < g′(u) for every u > 0,

being G(u) =
∫ u
0 g(t)dt. Note that the function u 7→ |u|p−2u verifies (g1)–

(g4) for p > 2.

13



Since we look for positive solutions to (0.5), following a standard proce-
dure, we may modify g on (−∞, 0) setting g(u) = 0 for u < 0.

In Theorem 3.1 we will state a criterion in order that problem (0.5)
admits a (weak) positive solution.

Since the domain Ω is Hardy-admissible, by Lemma 1.3 the space D1
0(Ω)

is well defined and λH
1 (Ω) > 0. Furthermore, since λ < λH

1 (Ω), we can take

‖u‖ =

(∫
Ω

(
|∇u|2 − λ

u2

|x|2

))1/2

as a norm in D1
0(Ω).

Thanks to (g1) and (g2), by Lemma 1.3, the functional I:D1
0(Ω) → R

defined by

I(u) =
1
2

∫
Ω
|∇u|2 − λ

2

∫
Ω

u2

|x|2
−
∫
Ω

G(u)
|x|2

is of class C2 on D1
0(Ω) and its critical points are weak solutions to (0.5).

Moreover, by (g2), one has that
∫
Ω

G(u)
|x|2 = o(‖u‖2), as ‖u‖ → 0. By (g3),

G(u) ≥ G(1)uq for u ≥ 1 and then I(su) → −∞ as s → +∞, for every
u ∈ D1

0(Ω), u ≥ 0, u 6= 0.
Hence the functional I has a mountain pass geometry. More precisely,

setting G = {γ ∈ C([0, 1], D1
0(Ω)) : γ(0) = 0, I(γ(1)) < 0} the class of the

mountain pass paths, and

c(Ω) = inf
γ∈G

max
s∈[0,1]

I(γ(s)) (3.1)

the corresponding minimax level of I, we have that c(Ω) > 0.
To check the Palais Smale (briefly PS) condition for I at level c(Ω), we

use a comparison estimate with the “problems at infinity”, that keeps into
account of possible concentration phenomena at 0, or vanishing at infinity.
This is accomplished similarly to what done for the eigenvalue problem (2.1).
Precisely, using the agreement that c(∅) = +∞, let us define

c0(Ω) = sup
r>0

c(Ω ∩Br) , c∞(Ω) = sup
r>0

c(Ω \Br) . (3.2)

Notice that c(Ω∩Br) and c(Ω\Br) are well defined for every r > 0. Indeed if
Ω∩Br (or Ω\Br) is non empty, then it is Hardy-admissible, λ < λH

1 (Ω∩Br),
because λH

1 (Ω) ≤ λH
1 (Ω∩Br), and then also the restriction of I toD1

0(Ω∩Br)
has a mountain pass geometry at a level c(Ω ∩ Br) ≥ c(Ω). Hence we have
that c(Ω) ≤ min{c0(Ω), c∞(Ω)}. The following existence criterion holds.
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Theorem 3.1 Let Ω be a Hardy-admissible domain in R2, λ < λH
1 (Ω), and

g ∈ C1(R) satisfy (g1)–(g4). If

c(Ω) < min{c0(Ω), c∞(Ω)} , (3.3)

then problem (0.5) admits a weak positive solution.

According to what stated before, in order to prove Theorem 3.1, we have
just to check that if (un) ⊂ D1

0(Ω) satisfies I(un) → c(Ω) and I ′(un) → 0,
then (un) is precompact in D1

0(Ω). This will be carried out in the next
Lemmata.

Let us first remark that, by (g2), for every u ∈ D1
0(Ω) we have

(
1
2
− 1
q
)‖u‖2 ≤ I(u) +

1
q
‖I ′(u)‖ ‖u‖ . (3.4)

In particular, (3.4) implies that any PS sequence for I is bounded and hence
it has a weakly convergent subsequence. Moreover, by (3.4) there is no PS
sequence for I at a level b < 0.

The next two Lemmata are standard and we omit the proof that can be
plainly obtained by following a procedure already used (see, e.g., [11]).

Lemma 3.2 Let (un) ⊂ D1
0(Ω) be a PS at level b such that un → u weakly

in D1
0(Ω) for some u ∈ D1

0(Ω). Then I ′(u) = 0 and (un−u) is a PS sequence
at level b− I(u).

By Lemma 3.2 we may restrict ourselves to study PS sequences weakly
converging to 0. We have the following result.

Lemma 3.3 Let (un) ⊂ D1
0(Ω) be a PS sequence weakly converging to 0.

Then:

(i)
∫
U |∇un|2 → 0 for every open bounded set U ⊂ Ω with 0 6∈ U ,

(ii) given a cut-off function χ ∈ C1
c (R2, [0, 1]) with χ = 1 in a neighborhood

of 0, then (χun) and ((1− χ)un) are PS sequences.

Now, let us state an auxiliary result concerning bounded sequences in
D1

0(Ω).

Lemma 3.4 Let (un) ⊂ D1
0(Ω) be a bounded sequence. Let Aj = {x ∈ R2 :

ρj < |x| < ρj+1} where j ∈ Z and ρ > 1 is fixed. For every p > 2, if
supj∈Z

∫
Ω∩Aj

|un|p
|x|2 → 0 as n→∞, then

∫
Ω
|un|p
|x|2 → 0.
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Proof. For every n ∈ N there exists rn > 0 such that∫
Ω∩Brn

|un|p

|x|2
=
∫
Ω\Brn

|un|p

|x|2
=

1
2

∫
Ω

|un|p

|x|2
.

For i = 1, 2 let φi ∈ C1([0,+∞), [0, 1]) satisfying: φ1(r) = 1 for 0 ≤ r ≤ 1
ρ

and φ1(r) = 0 for r ≥ 1, φ2(r) = 0 for 0 ≤ r ≤ 1 and φ2(r) = 1 for r ≥ ρ.
Now, for i = 1, 2 and n ∈ N set χi,n(x) = ϕi(

|x|
rn

), for every x ∈ RN . Then,
define ui,n = χi,nun. Firstly, let us prove that for i = 1, 2

1
2

∫
Ω

|un|p

|x|2
−
∫
Ω

|ui,n|p

|x|2
→ 0 (3.5)

as n → ∞. Indeed, for every n ∈ N there exists jn ∈ Z such that rn ∈
(ρjn , ρjn+1]. Then rn

ρ ∈ (ρjn−1, ρjn ] and thus

0 ≤ 1
2

∫
Ω

|un|p

|x|2
−
∫
Ω

|u1,n|p

|x|2
=
∫
Ω∩Brn

(1− χp
1,n)

|un|p

|x|2

≤
∫
Ω∩Ajn−1

|un|p

|x|2
+
∫
Ω∩Ajn

|un|p

|x|2
≤ 2 sup

j∈Z

∫
Ω∩Aj

|un|p

|x|2

and then, by the assumption, (3.5) holds true for i = 1. A similar argument
holds for i = 2. Secondly, we claim that for i = 1, 2∫

Ω
|∇χi,n|2u2

n → 0 (3.6)

as n→∞. Indeed∫
Ω
|∇χ1,n|2u2

n ≤ C

r2n

∫
Ω∩{ rn

ρ
<|x|<rn}

u2
n

≤ C

r2n

(∫
Ω∩{ rn

ρ
<|x|<rn}

|x|
4

p−2

)p−2
p
(∫

Ω∩{ rn
ρ

<|x|<rn}

|un|p

|x|2

)2
p

≤ C

(
sup
j∈Z

∫
Ω∩Aj

|un|p

|x|2

) 2
p

.

Hence, using again the assumption, (3.6) is proved for i = 1. Similarly it
holds also for i = 2. Now we show that∫

Ω
|∇un|2 ≥ 2Sp(Ω)

(
1
2

∫
Ω

|un|p

|x|2
) 2

p

+ o(1) (3.7)
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as n→∞, where Sp(Ω) is defined by (0.3). Indeed, setting χn = χ1,n +χ2,n,
we have ∫

Ω
|∇(χnun)|2 ≤

∫
Ω
|∇χn|2u2

n +
∫
Ω
χ2

n|∇un|2

+2
(∫

Ω
|∇χn|2u2

n

) 1
2
(∫

Ω
χ2

n|∇un|2
) 1

2

≤ o(1) +
∫
Ω
|∇un|2 (3.8)

because (un) is bounded in D1
0(Ω) and by (3.6). Then, using (0.3), we infer

that ∫
Ω
|∇un|2 ≥

∫
Ω
|∇u1,n|2 +

∫
Ω
|∇u2,n|2 + o(1)

≥ Sp(Ω)
(∫

Ω

|u1,n|p

|x|2
) 2

p

+ Sp(Ω)
(∫

Ω

|u2,n|p

|x|2
) 2

p

+ o(1)

≥ 2Sp(Ω)
(

1
2

∫
Ω

|un|p

|x|2
) 2

p

+ o(1)

because of (3.5). Now we observe that for i = 1, 2 the sequence (ui,n)
satisfies the same assumptions of (un), namely (ui,n) is bounded, by (3.8),
and clearly supj∈Z

∫
Ω∩Aj

|ui,n|p
|x|2 → 0 as n→∞. Hence we also have

∫
Ω
|∇ui,n|2 ≥ 2Sp(Ω)

(
1
2

∫
Ω

|ui,n|p

|x|2
) 2

p

+ o(1)

as n→∞. Then, using (3.5) and (3.8), we deduce that

∫
Ω
|∇un|2 ≥ 22Sp(Ω)

(
1
22

∫
Ω

|un|p

|x|2
) 2

p

+ o(1) .

By recurrence, for every k ∈ N we have that

∫
Ω
|∇un|2 ≥ 2kSp(Ω)

(
1
2k

∫
Ω

|un|p

|x|2
) 2

p

+ o(1)

as n→∞. Since p > 2 and (un) is bounded in D1
0(Ω), and since, by Lemma

1.3, Sp(Ω) > 0, we conclude that
∫
Ω
|un|p
|x|2 → 0.
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As a consequence of Lemma 3.4 we have the following result.

Lemma 3.5 Let (un) ⊂ D1
0(Ω) be a PS sequence weakly converging to 0.

Then the following alternative holds: either

(i) lim inf ‖vn‖ = 0, or

(ii) there exists a sequence (jn) ⊂ Z such that |jn| → ∞ and

lim inf
∫
Ω∩Ajn

|un|p
|x|2 > 0, where Aj is defined as in Lemma 3.4.

Proof. Suppose that (i) does not hold. By (g1)–(g3), for every ε > 0 there
exists Cε > 0 such that 0 ≤ g(t)t ≤ εt2 +Cε|t|p for any t ∈ R. Then, taking
ε < λH

1 (Ω)− λ we have

‖un‖2 = I ′(un)un +
∫
Ω

g(un)un

|x|2 ≤ I ′(un)un + ε‖un‖2 + Cε
∫
Ω
|un|p
|x|2 . (3.9)

Since lim inf ‖un‖ > 0 and I ′(un) → 0, fixing ε ∈ (0, λH
1 (Ω) − λ) small

enough, we obtain that lim inf
∫
Ω
|un|p
|x|2 > 0, and then, by Lemma 3.4,

lim inf
n→∞

sup
j∈Z

∫
Ω∩Aj

|un|p

|x|2
> 0 .

In particular there exists a sequence (jn) ⊂ Z such that

lim inf
∫
Ω∩Ajn

|un|p

|x|2
> 0 .

Since
∫
U
|un|p
|x|2 → 0 for every bounded open set U ⊂ Ω with 0 6∈ U , we have

that |jn| → ∞. Therefore (ii) follows. Conversely, suppose that (ii) does not
hold. Let (jn) ⊂ Z be such that supj∈Z

∫
Ω∩Aj

|un|p
|x|2 =

∫
Ω∩Ajn

|un|p
|x|2 . If (jn)

is bounded, since un → 0 weakly in D1
0(Ω), we have that

∫
Ω∩Ajn

|un|p
|x|2 → 0

and then, using Lemma 3.4, lim inf
∫
Ω
|un|p
|x|2 = 0. The same holds if (jn) is

unbounded, because we are assuming that (ii) does not hold. Hence, by
(3.9), lim inf ‖un‖ = 0, namely (i).
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In the next Lemma we show that, by the assumption (g4), there is no
PS sequence at levels b ∈ (0, c(Ω)).

Lemma 3.6 Let (un) ⊂ D1
0(Ω) be a PS sequence at level b, such that un → u

weakly in D1
0(Ω) for some u ∈ D1

0(Ω). If b < c(Ω) then u = 0, and un → 0
strongly in D1

0(Ω). In particular b = 0.

Proof. By (g4), for every u ∈ D1
0(Ω), u 6= 0, there exists a unique tu > 0

such that d
dtI(tu)|t=tu = 0. Moreover I(tuu) = maxt≥0 I(tu) ≥ c(Ω). In

particular, if I ′(u) = 0 then I(u) ≥ c(Ω). Let (un) be a PS sequence at level
b < c(Ω) such that un → u weakly in D1

0(Ω). By Lemma 3.2, I ′(u) = 0 and
(un − u) is a PS sequence at level b′ = b− I(u). If u 6= 0, then b′ < 0, which
is impossible, because of (3.4). Hence un → 0 weakly in D1

0(Ω). Suppose, by
contradiction, that for a subsequence, still denoted (un), lim ‖un‖ > 0 holds.
For any n ∈ N let tn > 0 be such that maxt≥0 I(tun) = I(tnun). We claim
that I(tnun) − I(un) → 0, and then I(tnun) → b, contradicting the fact
that I(tnun) ≥ c(Ω) > b. Therefore un → 0 strongly in D1

0(Ω). Hence, to
complete the proof, we have to show that I(tnun)− I(un) → 0. To this aim,
let us introduce for every n ∈ N the function jn(t) = I(tun). Note that jn ∈
C2(R+), with j′n(t) = t‖un‖2 −

∫
Ω

g(tun)un

|x|2 and j′′n(t) = ‖un‖2 −
∫
Ω

g′(tun)u2
n

|x|2 .
By (g4) we have that for any n ∈ N

j′′n(t) ≤ 1
t j
′
n(t) for every t > 0 . (3.10)

Moreover j′n(t) > 0 for t ∈ (0, tn), j′n(tn) = 0, and j′n(t) < 0 for t > tn.
Hence, by (3.10), we obtain that

|j′n(t)| ≤ t|j′n(1)| for every t ∈ [min{tn, 1},max{tn, 1}] . (3.11)

Let us prove that the sequence (tn) is bounded. By (g2) and (g3), fixing
ε > 0 there exists Cε > 0 such that g(u)u ≥ −εu2 + Cε|u|q for every u ∈ R.
Therefore

∫
Ω

g(tun)un

|x|2 ≥ −εtn
∫
Ω

u2
n

|x|2 + Cεt
q−1
n

∫
Ω
|un|q
|x|2 and then

(1 + ε)‖un‖2 ≥ Cεt
q−2
n

∫
Ω

|un|q

|x|2
. (3.12)

By Lemma 3.5, there exists a sequence (jn) ⊂ Z such that lim inf
∫
Ω∩Ajn

|un|p
|x|2

> 0, where Aj = {x ∈ R2 : ρj < |x| < ρj+1}. Then, lim inf
∫
Ω
|un|q
|x|2 > 0,

that, together with (3.12), implies that sup tn < +∞. Finally, we can show
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that jn(tn)− jn(1) → 0, that is the initial claim. Indeed, by (3.11) we have
that

0 ≤ jn(tn)− jn(1) ≤
∣∣∣∫ 1

tn
|j′n(t)| dt

∣∣∣ ≤ |j′n(1)|
∣∣∣∫ 1

tn
t dt

∣∣∣ = o(1)

because sup tn < +∞ and j′n(1) = I ′(un)un → 0. This concludes the proof.

Remark 3.7 If Ω is a proper cone in R2, then, under the assumptions (g1)–
(g4), for λ < λH

1 (Ω), the mountain pass level c(Ω) is always a critical value
for I. Indeed, given a PS sequence (un) ⊂ D1

0(Ω) at level c(Ω), thanks to
the invariance of the problem (0.5) with respect to dilation, we may suppose
that, up to dilations, lim inf

∫
Ω∩A0

|un|p
|x|2 > 0, where A0 = Bρ \ B1. Hence

there exists u ∈ D1
0(Ω), u 6= 0, such that, for a subsequence, un → u weakly.

By Lemmata 3.2 and 3.5, I ′(u) = 0 and I(u) = c(Ω) (in fact un → u strongly
in D1

0(Ω), see below). Note that in this case c(Ω) = c0(Ω) = c∞(Ω) (see
Lemma 4.1).

Lemma 3.8 Let (un) ⊂ D1
0(Ω) be a PS sequence weakly converging to 0.

Let (jn) ⊂ Z be such that |jn| → ∞ and lim inf
∫
Ω∩Ajn

|un|p
|x|2 > 0, where Aj

is defined as in Lemma 3.4. Then lim inf I(un) ≥ min{c0(Ω), c∞(Ω)}.

Proof. Let us suppose that, for a subsequence, jn → −∞. Let r > 0 and
χ ∈ C∞

c (R2, [0, 1]) be such that χ = 1 on B r
2

and χ = 0 outside Br. By
Lemma 3.3, (χun) is a PS sequence for I|D1

0(Ω∩Br) Then, by Lemma 3.6,
lim inf I(χun) ≥ c(Ω ∩ Br), because lim inf ‖χun‖ > 0. One can also see
that lim inf I(un) ≥ lim inf I(χun). Thus, by the arbitrariness of r > 0, we
infer that lim inf I(un) ≥ c0(Ω), by (3.2). Instead, if inf jn > −∞, then
jn → +∞, and, arguing as before, we conclude that lim inf I(un) ≥ c∞(Ω).
Hence, the Lemma is proved.

Conclusion of the proof of Theorem 3.1. Let (un) ⊂ D1
0(Ω) be a PS sequence

at level c(Ω). Up to a subsequence, un → u weakly in D1
0(Ω). If u 6= 0 we

have finished, because, by Lemma 3.2, (un − u) is again a PS sequence
at a level b ≤ c(Ω) − I(u) < c(Ω) and thus, un → u strongly in D1

0(Ω),
by Lemma 3.6. Hence, by contradiction, suppose that un → 0 weakly in
D1

0(Ω). Since lim inf ‖un‖ > 0 (otherwise I(un) → 0, while c(Ω) > 0),
by Lemma 3.5, there exists a sequence (jn) ⊂ Z such that |jn| → ∞ and
lim inf

∫
Ω∩Ajn

|un|p
|x|2 > 0, being Aj = {x ∈ R2 : ρj < |x| < ρj+1}. Then, by

Lemma 3.8, lim inf I(un) ≥ min{c0(Ω), c∞(Ω)}, contrary to the assumption
(3.3). This concludes the proof.
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Remark 3.9 In Theorem 3.1 the assumption (g1) on g can be slightly weak-
ened, by requiring just
(g1)′ log(|g′(u)|) = o(u2) as u→ +∞.
Indeed, since the Trudinger-Moser inequality holds in H1(Σ), where Σ =
R × (0, 2π) (see [1]), the condition (g1)′ is sufficient to guarantee that the
functional ϕ(u) =

∫
Ω

G(u)
|x|2 is well defined and of class C2 on D1

0(Ω), and ϕ′

maps weakly convergent sequences into weakly convergent ones. Moreover,
if U is an open bounded subset of Ω such that 0 6∈ U , denoting by ϕU the
restriction of ϕ to D1

0(U), then ϕU and ϕ′U are relatively compact mappings.

We conclude this Section by discussing the role of the assumption of
Hardy-admissibility of the domain. Consider the case of a domain Ω con-
taining 0. Then it is not Hardy-admissible and, if λ ≥ 0, it is known that
equation (0.2) admits no positive solution, even in a very weak sense, as
proved in [3] and in [8]. More precisely, the following non existence result
holds (see [8]).

Theorem 3.10 Let f ∈ C(R) be such that lim infu→+∞
f(u)
up > 0 for some

p > 1, and f(u) > 0 for every u > 0. If Ω is a domain in R2 containing 0,
or if Ω is an exterior domain in R2, then the equation

−∆u =
f(u)
|x|2

in Ω

admits no non negative supersolution in the sense of distributions in Ω\{0},
namely there is no function u ∈ L1

loc(Ω\{0}) such that f(u) ∈ L1
loc(Ω\{0}),

u ≥ 0, u 6= 0 and −
∫
Ω u∆ϕ ≥

∫
Ω

f(u)
|x|2 ϕ for every ϕ ∈ C∞

c (Ω \ {0}), ϕ ≥ 0.

Considering again a domain Ω containing 0, one could ask if there exists
a positive solution u to problem (0.5) for λ < 0, with

∫
Ω(|∇u|2 + u2

|x|2 ) <∞.
In general also in this case we have non existence. Precisely, let us recall the
following result, proved in [8].

Theorem 3.11 Let g ∈ C(R) satisfy (g1)–(g2), λ ∈ R, and let Ω be a
smooth, bounded, star-shaped domain in R2 containing 0. If u is a solution
to (0.5) such that

∫
Ω(|∇u|2 + u2

|x|2 ) <∞, then u = 0.

In this case the reason of non existence is the invariance under dilation
and a concentration phenomenon to the problem on the whole space R2,
which admits a positive solution radial solution for λ < 0 and g ∈ C(R)
satisfying (g1)–(g3) (see [8, Theorem 2.5]).
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4 Examples

As an application of Theorem 3.1, in this section we consider the case of
domains contained in R2 \ Γδ, where Γδ = {x ∈ R2 : 0 ≤ x1 ≤ δ, x1 ≥ 1

δ},
and δ ∈ (0, 1]. Let us introduce the cones

Ωθ = {(ρ cos τ, ρ sin τ) : ρ > 0, 0 < τ < θ}

where 0 < θ ≤ 2π. Note that, setting Iθ = (0, θ) and Σθ = R× Iθ, we have

λH
1 (Ωθ) = λ1(Σθ) = λ1(Iθ) =

π2

θ2
. (4.1)

We first discuss the case of a domain of the form Ω = Ωθ ∪ U , where U
is a bounded open set such that 0 6∈ U .

To evaluate c0(Ω) and c∞(Ω), the following result is useful.

Lemma 4.1 c(Ωθ) = c0(Ωθ) = c∞(Ωθ).

Proof. On one hand, the inequalities c(Ωθ) ≤ c0(Ωθ) and c(Ωθ) ≤ c∞(Ωθ) are
always true. To prove the opposite inequalities, let us consider the solution u
to (0.5) on Ωθ obtained as critical point of I in D1

0(Ωθ) at the mountain pass
level c(Ωθ) (see Remark 3.7). The sequence (un) defined by un(x) = u(nx)
satisfies the assumption of Lemma 3.8. Hence c0(Ωθ) ≤ lim inf I(un) =
c(Ωθ). A similar argument holds to prove that c∞(Ωθ) ≤ c(Ωθ).

Theorem 4.2 Let g ∈ C1(R) satisfy (g1)–(g4), and let Ω be a domain in
R2 of the form Ω = Ωθ ∪ U , where Ωθ is a cone of angle θ ∈ (0, 2π] and U
is a bounded open set such that 0 6∈ U . Then, for every λ < λH

1 (Ω), problem
(0.5) admits a weak positive solution.

Let us note that Theorem 4.2 applies in particular for Ω = R2 \ Γδ,
δ ∈ (0, 1].

Proof. If Ω = Ωθ then the result has been already discussed in Remark
3.7. Suppose that U \ Ωθ 6= ∅. By the assumptions on the domain, there
exist r0, r∞ > 0 such that Ω ∩ Br = Ωθ ∩ Br for every r ∈ (0, r0), and
Ω \Br = Ωθ \Br for every r > r∞. Hence, by Lemma 4.1 and by (3.2), we
obtain c0(Ω) = c∞(Ω) = c(Ωθ). We claim that c(Ω) < c(Ωθ), and therefore,
by the previous equalities, the result follows as an application of Theorem
3.1. Suppose by contradiction, that c(Ω) = c(Ωθ). Let uθ ∈ D1

0(Ωθ) be
the solution to (0.5) on Ωθ obtained as critical point of I in H1

0 (Ωθ) at the
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mountain pass level c(Ωθ). Then, setting M = {u ∈ D1
0(Ω) : I ′(u)u =

0, u 6= 0} and Mθ = {u ∈ D1
0(Ωθ) : I ′(u)u = 0, u 6= 0}, we have that

I(uθ) = c(Ωθ) = infMθ
I = infM I. Therefore, by (g4), uθ solves problem

(0.5) on Ω. In particular u = 0 in U \ Ωθ, contradicting the maximum
principle.

Let us consider now the case of a domain Ω such that 0 ∈ ∂Ω is a cusp
point, that is, there exists a unit versor ν ∈ R2 such that for every θ > 0
there exists r > 0 for which Ω ∩ Br ⊂ Ωθ,ν , where Ωθ,ν = {x ∈ R2 : x · ν >
|x| cos θ

2}. The estimate of c0(Ω) will be obtained by using the following
result.

Lemma 4.3 c(Ωθ) → +∞ as θ → 0+.

Proof. Firstly we note that, by (4.1) and by Remark 3.7, given λ ∈ R, there
exists θ0 ∈ (0, 2π] such that for θ ∈ (0, θ0], the functional I onD1

0(Ωθ) admits
a mountain pass geometry and a critical point uθ at the mountain pass level
c(Ωθ). By the dilation invariance, we may suppose that supj∈Z

∫
Ωθ∩Aj

|uθ|p
|x|2 =∫

Ωθ∩A0

|uθ|p
|x|2 , where Aj = {x ∈ R2 : ρj < |x| < ρj+1} . Using (3.1), we have

that for 0 < θ′ < θ, c(Ωθ) ≤ c(Ωθ′) and then limθ→0 c(Ωθ) = supθ>0 c(Ωθ).
Suppose by contradiction that supθ>0 c(Ωθ) < ∞. Then, by (3.4), we infer
that supθ>0 ‖uθ‖D1

0(Ωθ) <∞, and thus, up to a subsequence, uθ → u0 weakly
in D1

0(Ωθ0). Since supp uθ = Ωθ, and θ → 0, we have that u0 = 0. If
uθ → 0 strongly in D1

0(Ωθ0), then c(Ωθ) → 0, a contradiction. Hence,
lim inf ‖uθ‖D1

0(Ωθ) > 0, and then, arguing as in the proof of Lemma 3.5,

lim infθ→0

∫
Ωθ∩A0

|uθ|p
|x|2 > 0. This contradicts the fact that, since uθ → 0

weakly,
∫
Ωθ∩A0

|uθ|p
|x|2 → 0. This concludes the proof.

Hence we have the following result.

Proposition 4.4 If Ω is a domain in R2 with 0 ∈ ∂Ω and such that 0 is a
cusp point, then c0(Ω) = +∞.

Proof. By definition of cusp point, there exists a unit versor ν ∈ R2 such
that for every θ > 0 one can find r > 0 for which Ω ∩ Br ⊂ Ωθ,ν . Then
c(Ω ∩Br) ≥ c(Ωθ,ν) = c(Ωθ). Hence, by (3.2) and (4.1), c0(Ω) = +∞.

A result similar to Proposition 4.4 holds in the case of an unbounded
domain Ω such that Ω \Br is contained in a strip, for some r > 0.
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Proposition 4.5 Let Ω be a domain in R2 satisfying the following property:
there exist r > 0, unit versors ν0, ν1 ∈ R2 with ν0 · ν1 = 0, and a bounded
interval I such that Ω\Br ⊂ {aν0+bν1 : a ∈ R, b ∈ I}. Then c∞(Ω) = +∞.

The proof goes on as for Proposition 4.4. Hence, if Ω is a domain in R2

satisfying the assumptions of Propositions 4.4 and 4.5, for λ < λH
1 (Ω) and

g ∈ C1(R) satisfying (g1)–(g4), the existence of a weak positive solution to
(0.5) is guaranteed by Theorem 3.1.
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