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Introduction

In this article we are concerned with the asymptotically periodic Duffing
equation in R, that is

−ü+ u = a(t)|u|p−1u (D)

where p > 1 and a: R → R satisfies:
(a1) a ∈ L∞(R), inf a > 0,
(a2) a = a∞ + a0, with a∞ T -periodic and a0(t) → 0 as t→ ±∞.

Noting that 0 is a hyperbolic rest point for (D), we look for homoclinic
orbits to 0, namely non trivial solutions to (D) such that u(t) → 0 and
u̇(t) → 0 as t→ ±∞.

The homoclinic problem for equation (D), possibly with a more general
nonlinearity, as well as the analogous subcritical elliptic problem on Rn, has
been successfully studied with variational methods by several authors, for
different kinds of behavior of the coefficient a.

The main feature of the problem is a lack of global compactness, due to the
unboundedness of the domain, and to the failure of the compact embedding
of H1(R) into Lp(R).

The existence of homoclinic solutions for (D) strongly depends on the
behaviour of a. For instance, if a is a positive constant or is periodic, the
invariance under translation permits to recover some compactness and to
obtain existence results (see, e.g., [8], [15]). Instead, if a is monotone and
non constant, one can easily see that that (D) has no homoclinic orbit.

On the other hand, adopting a different viewpoint like in [4], and consid-
ering the whole class of equations like (D) (or more general equations) with
coefficients a satisfying (a1), the existence of infinitely many homoclinics
turns out to be a “generic” property (see also [3]). In particular, in [4] it is
shown how, starting from a given function a satisfying (a1) it is possible to
construct a suitable L∞ small perturbation α, in order that the perturbed
equation −ü+u = (a+α)|u|p−1u admits infinitely many solutions in H1(R).
Clearly, this kind of approach is not always useful if we want to handle with
a specific equation (D) without modifying the coefficient a.

In the asymptotically periodic case, namely when a satisfies (a1)–(a2),
the problem can be studied by using concentration-compactness arguments
and a comparison with the problem at infinity

−ü+ u = a∞(t)|u|p−1u (D∞)

can be useful to prove existence of homoclinic solutions for (D).
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In fact if the ground state level m of (D) is strictly lower that the ground
state level m∞ of (D∞), then the Palais Smale condition holds at level m
and (D) admits a homoclinic orbit characterized as ground state solution
(see [15], [21], [12]).

However, if m = m∞, a different variational procedure has to be set up.
This has been developed in [6], [7], [9], when a∞ is a positive constant. In
fact, the argument followed in these papers requires a precise knowledge of
the critical set of the problem at infinity, that is possible because it admits
a unique positive solution (up to translations). This fact is guaranteed when
(D∞) is autonomous (in the elliptic case this uniqueness result is proved in
[14]), while in the non constant periodic case this kind of argument may fail.

We point out that the homoclinic problem for an asymptotically au-
tonomous Duffing-like equation has been tackled also with perturbative
methods (see [5], [18], [21]), or also using a geometrical approach, as in
[13]. In all these works the fact that the problem at infinity is autonomous
is fundamental in the argument followed there.

When a∞ is a periodic, non constant, positive function, a deeper analysis
of the local compactness properties of the variational problem associated to
(D∞) can be based on the study of the structure of the set of the homoclinics
of (D∞).

This argument involves some techniques developed in recent years, start-
ing from [10] and [19] (see also [11] for the PDE case), to study certain
aspects of the dynamics of (D∞) and, more precisely, to detect a possible
chaotic behavior due to the presence of so-called “multibump” solutions (see
[19]). This rich structure of the set of solutions of (D∞) appears as soon as
a suitable non degeneracy condition on the set of the homoclinics is fulfilled.

This non degeneracy condition, stated in a precise way in Section 1, is a
weaker version of the classical transversal intersection property between the
stable and unstable manifolds, see [19], [17], [22]. Moreover it is suited to
a variational approach to the problem, and, differently from the standard
geometrical approach, permits to study Duffing-like equations with a more
general time dependence, including the asymptotically periodic one, as done
in [2], [16], [1].

The use of this information was already employed in [20] to treat the
asymptotically periodic case (in a more general setting) when a∞ is non
constant and ‖a0‖L∞ is small.

In the present paper, using some of the above mentioned arguments, we
prove the following result.
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Theorem 0.1 Let a: R → R satisfy (a1)–(a2) and let p > 1. If, in addition,

(a3) there exists θ > 2 such that lim inf
|t|→∞

a0(t)eθ|t| > −∞, or

(a4) a ≥ 2−
p−1
2 a∞ on R,

then (D) admits a homoclinic orbit.

We note that this result has a global character, i.e., no perturbation pa-
rameter appears, and is free from any non degeneracy condition.

Indeed, we are able to prove that the failure of the non degeneracy con-
dition on (D∞), which is responsible of the multibump dynamics both for
(D∞), and for (D), implies, and actually is equivalent to the uniqueness
of the non zero critical level for the functional associated to the homoclinic
problem for (D∞). Then the procedure developed in [6] or [9] can be applied
again, using one of the additional assumptions (a3) or (a4), to obtain the
existence of a homoclinic for (D).

Finally, we point out that the existence result stated in Theorem 0.1
is stable with respect to small L∞ perturbations that vanish at infinity.
Precisely we can show:

Theorem 0.2 Let a: R → R satisfy (a1)–(a2) and either (a3) or (a4). Let
g ∈ C(R) be such that g(u) = O(u) as u→ 0. Then there exists ε̄ = ε̄(a, g) >
0 such that for any α ∈ L∞(R) with ‖α‖L∞ ≤ ε̄ and α(t) → 0 as |t| → ±∞,
the equation

−ü+ u = a(t)|u|p−1u+ α(t)g(u)

admits a homoclinic orbit.

The paper is organized as follows. In Section 1 we introduce the varia-
tional setting useful to study the homoclinic problem for (D) and we recall
some known facts. At the end of this Section we also state the non degen-
eracy condition (∗) on the problem at infinity (D∞), that will discriminate
the argument, according that it does hold or not. Then, in Section 2, we
consider the case in which (∗) holds, while in Section 3 we study the case
in which (∗) does not hold. In both the alternative cases we conclude that
the equation (D) admits a homoclinic solution, under the assumptions of
Theorem 0.1. Finally, in Section 4 we discuss further perturbative results,
proving Theorem 0.2.

Acknowledgement. The authors wish to thank Kazunaga Tanaka for drawing
their attention to the problem discussed in the present paper.
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1 Preliminaries

In this section we introduce the variational setting useful to study the ho-
moclinic problem associated to (D).

Let X = H1(R) be the standard Sobolev space endowed with the inner
product 〈u, v〉 =

∫
R(u̇v̇ + uv) and norm ‖u‖ = 〈u, u〉

1
2 . For every u ∈ X let

ϕ(u) = 1
2‖u‖

2 − 1
p+1

∫
R a|u|

p+1.

It is well known, by the Sobolev embeddings, that ϕ ∈ C2(X,R) and the
non zero critical points of ϕ are exactly the homoclinic orbits of (D).

Remark 1.1 The functional ϕ has a mountain pass geometry, since ϕ(u) =
1
2‖u‖

2+o(‖u‖2) as ‖u‖ → 0, and for every u 6= 0, ϕ(λu) → −∞ as λ→ +∞.
In particular, the mountain pass level of ϕ is given by

c = inf
γ∈Γ

sup
s∈[0,1]

ϕ(γ(s))

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, ϕ(γ(1)) < 0}. We note that for
every u ∈ X \ {0} there exist s0(u) > 0 such that ϕ(s0(u)u) < 0 and a
unique s(u) ∈ (0, s0(u)) such that d

dsϕ(su)|s=s(u) = 0 and hence ϕ(s(u)u) =
maxs≥0 ϕ(su). Then

c = inf
u∈X\{0}

sup
s≥0

ϕ(su).

Remark 1.2 Setting K = {u ∈ X : ϕ′(u) = 0, u 6= 0} we observe that:
(i) If K 6= ∅ then c = infK ϕ = (1

2 −
1

p+1) infK ‖u‖2 and infK ‖u‖L∞ > 0.
(ii) If u ∈ K and ϕ(u) = c then ±u > 0.
(iii) If u ∈ K and u > 0 then limt→±∞ e±tu(t) ∈ (0,+∞) (see, e.g., [7]).

Remark 1.3 There exists δ̄ > 0 such that for any interval I ⊂ R with
length |I| ≥ 1 we have

if ‖u‖L∞(I) ≤ 2δ̄ then ϕI(u) ≥ 1
4‖u‖

2
I and ϕ′I(u)v ≥

1
2‖u‖I‖v‖I

where ‖u‖2
I =

∫
I(u̇

2+u2) and ϕI(u) = 1
2‖u‖

2
I−

1
p+1

∫
I a|u|

p+1. By the Sobolev
imbedding Theorem, let ρ̄ > 0 be such that ‖u‖I ≤ ρ̄ implies ‖u‖L∞(I) ≤ δ̄
for every interval I with |I| ≥ 1.
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Remark 1.4 Fixed any τ ∈ R, we set I+
τ = [τ,+∞), I−τ = (−∞, τ ] and for

all x ∈ R with |x| ≤ δ̄, Uτ±,x = {u ∈ H1(I±τ ) | u(τ) = x, ‖u‖L∞(I±τ ) ≤ δ̄}.
Then, the minimum problem

min{ϕI±τ
(u) : u ∈ Uτ±,x}

admits a unique solution uτ±,x for any τ ∈ R and |x| ≤ δ̄, depending contin-
uously on x. Indeed, by the choice of δ̄, we have that ϕI±τ

is strictly convex
on the closed, convex set Uτ±,x. Note that uτ±,x is the unique solution of
(D) on I±τ which verifies the conditions uτ±,x(τ) = x and ‖uτ±,x‖L∞(I±τ ) ≤ δ̄.
Then, we infer that for any τ ∈ R and |x| ≤ δ̄ there results

|uτ±,x(t)| ≤ δ̄e−
|t−τ |

4 , ∀t ∈ I±τ . (1.1)

Now we list some properties of Palais Smale sequences (briefly PS sequences)
for ϕ, i.e., sequences (un) ⊂ X such that (ϕ(un)) is bounded and ‖ϕ′(un)‖ →
0. All the following results were stated, e.g., in [1] and [17], to which we refer
for the proofs.

Remark 1.5 Any PS sequence (un) for ϕ is bounded and lim inf ϕ(un) ≥ 0.
Moreover, if lim supϕ(un) < c then un → 0. Furthermore, if (un) is a PS
sequence for ϕ with lim sup ‖un‖L∞ ≤ 2δ̄ then un → 0.

Lemma 1.6 Let (un) be a PS sequence for ϕ weakly converging to u ∈ X.
Then:

(i) ϕ(u) ≤ lim inf ϕ(un) and ϕ′(u) = 0,

(ii) (un−u) is a PS sequence for ϕ with lim supϕ(un−u) ≤ lim inf ϕ(un)−
ϕ(u).

By Lemma 1.6 we are lead to study PS sequences that converge to 0
weakly in X and we have the following result.

Lemma 1.7 If un → 0 weakly in X and ϕ′(un) → 0 then un → 0 strongly
in H1

loc(R) and the following alternative holds: either

(i) un → 0 strongly in X, or

(ii) there exists (tn) ⊂ R such that |tn| → ∞ and lim inf |un(tn)| ≥ 2δ̄.
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Hence, according to Lemma 1.7 we lose compactness of those PS sequences
(un) which “carry mass” at infinity, in the sense explained in the case (ii).
In order to obtain compactness results it is therefore useful to introduce the
function T :X → R ∪ {−∞} defined in the following way:

T (u) =
{

sup{t ∈ R : |u(t)| = δ̄} if ‖u‖L∞ ≥ δ̄
−∞ otherwise .

Then, arguing as in [17], we obtain:

Lemma 1.8 Let (un) be a PS sequence for ϕ weakly converging to u ∈ X. If
(T (un)) is bounded then u 6= 0 and T (un) → T (u). If in addition limϕ(un) ∈
[c, 2c) then un → u strongly in X.

On the other hand, if (un) is a PS sequence for ϕ weakly converging to 0,
with (T (un)) unbounded, we can follow the sequence (un(·+T (un))) that is
a PS sequence for the functional corresponding to the problem “at infinity”
(D∞).

More precisely, let

ϕ∞(u) = 1
2‖u‖

2 − 1
p+1

∫
R a∞|u|

p+1

and K∞ = {u ∈ X : ϕ′∞(u) = 0, u 6= 0}. Note that all the above results,
stated for ϕ clearly hold even for ϕ∞. In particular, setting Γ∞ = {γ ∈
C([0, 1], X) : γ(0) = 0, ϕ∞(γ(1)) < 0}, the mountain pass level for ϕ∞ is
given by c∞ = infγ∈Γ∞ sups∈[0,1] ϕ∞(γ(s)) = infu∈X\{0} sups≥0 ϕ∞(su).

Remark 1.9 Thanks to the invariance under translation in the problem
(D∞), one can easily show that there exists u∞ ∈ K∞ with ϕ∞(u∞) = c∞.
Moreover, arguing as in Remark 1.1, there exists s0 > 0 such that, setting
γ∞(s) = s0su∞ for every s ∈ [0, 1], we have γ∞ ∈ Γ∞ and

(i) γ∞([0, 1]) ⊂ {ϕ∞ ≤ c∞},

(ii) for any r ∈ (0, ρ̄) there exists hr > 0 such that if γ∞(s) 6∈ Br(u∞) then
ϕ∞(γ∞(s)) ≤ c∞ − hr.

Since γ∞([0, 1]) is compact, for all δ > 0 there exists Rδ such that
(iii) maxs∈[0,1] ‖γ∞(s)‖L∞(R\[−Rδ ,Rδ ]) ≤ δ.
Then, for any h > 0 there exists jh ∈ N such that
(iv) maxs∈[0,1] |ϕ(γ∞(s)(· − jT ))−ϕ∞(γ∞(s)(· − jT ))| ≤ h for all |j| ≥ jh.
In particular (iv) implies that c ≤ c∞.
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Finally, the study of PS sequences for ϕ can be completed by the following
results (see, e.g., [1] for the proofs).

Lemma 1.10 If (un) ⊂ X is a PS sequence for ϕ weakly converging to 0,
then (un) is a PS sequence for ϕ∞ and lim supϕ(un) = lim supϕ∞(un).

Lemma 1.11 If (un) ⊂ X is a PS sequence for ϕ at level b then there exist
u ∈ K∪{0}, v1, . . . , vj ∈ K∞, with j ∈ N∪{0}, and sequences (t1n), . . . , (tjn) ⊂
R with limn→∞ |tin| = ∞ (1 ≤ i ≤ j) and limn→∞(ti+1

n − tin) = +∞ (1 ≤
i ≤ j − 1), such that, up to a subsequence, ‖un − u −

∑j
i=1 vi(· − tin)‖ → 0

as n→∞. Moreover b = ϕ(u) +
∑j

i=1 ϕ∞(vi).

By Lemma 1.11, the set of PS sequences for ϕ can be described in terms
of the critical set K∞ of the functional at infinity. Hence, as we will see, the
topological structure of K∞ reflect possibly on compactness properties for
ϕ. In particular the non connectedness of K∞, expressed by the following
condition

(∗) there exists h̄ ∈ (0, c∞) such that T (K∞ ∩ {ϕ∞ ≤ c∞ + h̄}) 6= R,

will allow us to recover compactness for ϕ∞. On the other hand, the failure
of (∗) can be used to get a precise knowledge of the set of critical levels
of ϕ∞, that, together with Lemma 1.11, gives information on the values at
which the functional ϕ satisfies the PS condition.

Therefore, we will adopt a different strategy, according that the condition
(∗) holds or does not, and in both cases we will prove that (D) admits at
least a homoclinic solution. Precisely, in Section 2 we show that, under the
assumption (∗), the equation (D) admits infinitely many homoclinics, while
in Section 3 we prove the existence of a non trivial critical point for ϕ, by
following a minimax procedure already introduced in [6].

2 If (∗) holds

In this Section we show that if the assumption (∗) is fulfilled then the equa-
tion (D) admits a homoclinic. The procedure developed here shows in fact
that if (∗) holds then (D) actually admits infinitely many homoclinics.

Suppose that condition (∗) holds. Then, by periodicity and Lemma 1.8,
there exists τ ∈ [0, T ), η ∈ (0, T

2 ) and ν > 0 such that

if ϕ∞(u) ≤ c∞ + h̄ and T (u) ∈ [τ − η, τ + η] then ‖ϕ′∞(u)‖ ≥ ν. (2.1)
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For all j ∈ N, let us denote τ−j = τ + η+ jT and τ+
j = τ − η+ (j + 1)T and

Kj = {u ∈ K∞ ∩ {ϕ∞ ≤ c∞ + h̄} : T (u) ∈ [τ−j , τ
+
j ]}.

Note that by (2.1) we have K∞∩{ϕ∞ ≤ c∞+ h̄} = ∪j∈ZKj and, by Lemma
1.8, each Kj is compact. Moreover, arguing e.g. as in [17], one can prove
that there exists r̄ ∈ (0, ρ̄

4) such that

dist(Kj ,K∞ ∩ {ϕ∞ ≤ c∞ + h̄} \Kj) ≥ 2r̄, ∀j ∈ Z.

In other words the assumption (∗) together with the recurrence properties
of the function a∞ give information about the critical set under the level
c∞+ h̄. This set turns out to be the union of the uniformly disjoint compact
sets Kj defined above.

Remark 2.1 Since K0 is compact and u ∈ Kj if and only if u(·+jT ) ∈ K0,
for all j ∈ Z, there exists R̄ ≥ 1 such that

sup
u∈Kj

‖u‖L∞(R\[τ−j −R̄,τ+
j +R̄]) ≤

δ̄
4 , ∀j ∈ Z.

Moreover, since r̄ < ρ̄
4 , we have that

sup
u∈Br̄(Kj)

‖u‖L∞(R\[τ−j −R̄,τ+
j +R̄]) ≤

δ̄
2 , ∀j ∈ Z

from which it follows that ϕ∞ satisfies the PS condition on every Br̄(Kj).

The structure of the critical set of the functional ϕ∞ reflects on the PS
sequences of the functional ϕ as we see in the next Lemma.

Lemma 2.2 For any r ∈ (0, r̄), there exist jr ∈ N and νr > 0 such that
‖ϕ′(u)‖ ≥ νr for any u ∈ Br̄(Kj) ∩ {ϕ ≤ c∞ + h̄} \Br(Kj) with |j| ≥ jr.

Proof. Arguing by contradiction, there exists a sequence un ∈ Br̄(Kjn) ∩
{ϕ ≤ c∞ + h̄} \ Br(Kjn) with jn → ∞ with ϕ′(un) → 0. Then, since by
Remark 2.1, we have ‖un‖L∞(R\[τ−jn

−R̄,τ+
jn

+R̄]) ≤
δ̄
2 , we obtain un(·+jnT ) → u

strongly in X. Moreover, by Lemma 1.10, u ∈ K∞ and ϕ∞(u) ≤ c∞ + h̄.
Therefore u ∈ ∪j∈ZKj , a contradiction.

9



Then for |j| ≥ jr the gradient of ϕ is uniformly bounded from below by the
positive constant µr on anyone of the annulus type regions Br̄(Kj) ∩ {ϕ ≤
c∞+h̄}\Br(Kj). Moreover, by Remark 2.1 and Lemma 1.7, the PS condition
holds in anyone of the sets Br̄(Kj).

Next Remark says that inside Br̄(Kj) a well characterized local mountain
pass structure for the functional ϕ is defined. These three properties will be
the key to prove Theorem 2.4 below.

Remark 2.3 By Remark 1.9, we have that there exists u∞ ∈ K∞ with
ϕ∞(u∞) = c∞. By the previous properties, we can assume that u∞ ∈ K0.
Then, setting γj(s) = γ∞(s)(· − jT ), we obtain

(i) γj([0, 1]) ⊂ {ϕ∞ ≤ c∞},

(ii) for any r ∈ (0, r̄) there exists hr > 0 such that ϕ∞(γj(s)) ≤ c∞−hr for
any γj(s) 6∈ Br(Kj).

Moreover, we can assume that R̄ in Remark 2.1 is so large that
(iii) maxs∈[0,1] ‖γj(s)‖L∞(R\[τ−j −R̄,τ+

j +R̄]) ≤
δ̄
4 for all j ∈ Z.

Finally, for any r ∈ (0, r̄), setting h̄r = 1
4 min{h̄, hr, rνr,−2ϕ∞(γ∞(1))},

there exists ̄r ≥ jr such that
(iv) maxs∈[0,1] |ϕ(γj(s))− ϕ∞(γj(s))| ≤ h̄r for all |j| ≥ ̄r.

Theorem 2.4 If (∗) holds, then (D) admits infinitely many solutions.
Precisely, for any r ∈ (0, r̄

6) there exists ̃r ≥ ̄r, such that K ∩ Br(Kj) 6= ∅
for any |j| ≥ ̃r.

Proof. Assume by contradiction that for all ̃r ≥ ̄r there exists j ∈ Z with
|j| ≥ ̃r such that K ∩Br̄(Kj) = ∅. Then, since ϕ satisfies the PS condition
in Br̄(Kj), there exists µj > 0 such that ‖ϕ′(u)‖ ≥ µj for all u ∈ Br̄(Kj).
Let ηj : [0, 1]×X → X be the flow associated to the Cauchy problem{

d
dtηj(t, u) = −ψ(ηj(t, u))

ϕ′(ηj(t,u))
‖ϕ′(ηj(t,u))‖ ,

ηj(0, u) = u, ∀u ∈ X,

where ψ : X → [0, 1] is a locally Lipschitz continuous function such that
ψ(u) = 1 for all u ∈ B2r(Kj) and ψ(u) = 0 for all u ∈ X \B3r(Kj).
It is standard to check that ϕ decreases along the flow lines and that X \
B3r(Kj) is invariant under ηj . Moreover, since ηj sends bounded sets in
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bounded sets, there exists t̄ > 0 such that for all u ∈ Br(Kj)∩{ϕ ≤ c∞+ h̄
2}

there exists t ∈ (0, t̄] such that ηj(t, u) 6∈ B2r(Kj). Hence, by Lemma 2.2,
for any u ∈ Br(Kj) ∩ {ϕ ≤ c∞ + h̄

2} we get ϕ(ηj(t̄, u)) ≤ ϕ(u)− rνr.
Consider the path γj given by Remark 2.3. Then, setting γ̄j(s) = ηj(t̄, γj(s))
for any s ∈ [0, 1], we obtain

max
s∈[0,1]

ϕ(γ̄j(s)) ≤ c∞ − 3h̄r. (2.2)

Indeed, if γj(s) 6∈ Br(Kj) then, by Remark 2.3 (ii) and (iv),

ϕ(γ̄j(s)) ≤ ϕ(γj(s)) ≤ ϕ∞(γj(s)) + h̄r ≤ c∞ − hr + h̄r ≤ c∞ − 3h̄r.

Otherwise, if γj(s) ∈ Br(Kj), since by Remark 2.3 (i) and (iv) we have
γj([0, 1]) ⊂ {ϕ ≤ c∞ + h̄r} ⊂ {ϕ ≤ c∞ + h̄

2}, we obtain

ϕ(γ̄j(s)) = ϕ(ηj(t̄, γj(s))) ≤ ϕ(γj(s))− rνr ≤ c∞ + h̄r − rν̄r ≤ c∞ − 3h̄r.

Now, note that, by Remark 2.1, ‖u‖L∞(R\[τ−j −R̄,τ+
j +R̄]) ≤ δ̄

2 for all u ∈
Br̄(Kj). Then, since X \ Br̄(Kj) is invariant under ηj , by Remark 2.3
(iii) we infer that ‖γ̄j(s)‖L∞(R\[τ−j −R̄,τ+

j +R̄]) ≤
δ̄
2 . Therefore, if we denote

τ± = τ±j ± R̄ and x±(s) = γ̄j(s)(τ±), s ∈ [0, 1], we can consider the function
u±(s)(·) = uτ±,x±(s) defined in Remark 1.4. Therefore it is well defined and
continuous the path γ̃j : [0, 1] → X given by

γ̃j(s)(t) =

u−(s)(t), if t ≤ τ−,
γ̄j(s)(t), if τ− ≤ t ≤ τ+,
u+(s)(t), if τ+ ≤ t

∀s ∈ [0, 1].

By construction ϕ(γ̃j(s)) ≤ ϕ(γ̄j(s)) for any s ∈ [0, 1]. Moreover, by (1.1),
taking ̃r large enough, we obtain that

max
s∈[0,1]

|ϕ(γ̃j(s))− ϕ∞(γ̃j(s))| ≤ h̄r.

Therefore, by (2.2), we conclude that maxs∈[0,1] ϕ∞(γ̃j(s)) ≤ c∞−2h̄r < c∞
which is a contradiction since γ̃j ∈ Γ∞. Indeed, 0 6∈ B3r(Kj) and moreover
ϕ∞(γ̃j(1)) ≤ ϕ∞(γj(1)) + 2h̄r < 0.

Remark 2.5 Note that Theorem 2.4 holds true only under the assump-
tions (a1) and (a2) on a and moreover it can be proved for more general
nonlinearities than the power |u|p−1u, see e.g. [3].
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3 If (∗) does not hold

In this section we discuss the existence of a non trivial critical point for the
functional ϕ under the assumption that condition (∗) is not satisfied.

The most relevant consequence of the failure of (∗) is the fact that c∞
is the only non zero critical level of ϕ∞. More precisely, the following facts
hold.

Lemma 3.1 For every τ ∈ R there exists a unique pair ±uτ ∈ K∞ such
that T (±uτ ) = τ . Moreover, if u ∈ K∞ then ϕ∞(u) = c∞ and ±u > 0.

Proof. Since (∗) does not hold, T (K∞ ∩ {ϕ∞ < c∞ + h̄}) = R for every
h̄ ∈ (0, c∞). Then, given τ ∈ R, there exists (un) ⊂ K∞ such that T (un) = τ
and ϕ∞(un) < c∞ + 1

n for every n ∈ N. By Remark 1.2 (i) and Lemma 1.8,
the sequence (un) is precompact and thus there exists u ∈ K∞ such that
T (u) = τ and ϕ∞(u) = c∞. In particular u(τ) = ±δ̄, ‖u‖L∞([τ,+∞)) ≤ δ̄.
Supposing u(τ) = δ̄, by Remark 1.4, we obtain u = uτ+,δ̄ on [τ,+∞) from
which we conclude that there exists a unique uτ ∈ K∞ ∩ Uτ+,δ̄. Moreover,
by Remark 1.2 (ii), uτ > 0. An analogous argument holds if u(τ) = −δ.
Finally, since the equation (D) is odd, if u ∈ K∞, T (u) = τ and u(τ) = −δ,
then u = −uτ .

Remark 3.2 (i) According to Lemma 3.1, by the uniqueness (up to a sign)
of the critical point uτ , we infer that uτ (· − jT ) = uτ+jT for every τ ∈ R
and j ∈ Z.
(ii) The mapping τ 7→ uτ is continuous from R into X. Indeed, if τn → τ ,
there exists u ∈ X such that, for a subsequence, uτnj

→ u weakly in X.
Moreover, by Lemma 1.8, u ∈ K∞, T (u) = τ , and uτnj

→ u strongly. Hence,
by uniqueness, u = uτ , and uτn → uτ .
(iii) By Lemma 3.1, since ϕ∞(uτ ) = c∞ and ϕ′∞(uτ )uτ = 0, it follows that
‖uτ‖2 =

∫
R a∞u

p+1
τ = 2c∞ p+1

p−1 for every τ ∈ R.

As important consequence of Lemma 3.1, the following compactness result
holds.

Corollary 3.3 If (un) ⊂ X is a PS sequence for ϕ at a level b ∈ (c∞, c+c∞)
then (un) is precompact.
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Proof. By Remark 1.5, we may assume that un → u weakly in X. If u = 0,
by Lemma 1.10, (un) is a PS sequence also for ϕ∞ at level b. By Corollary
1.11 and Lemma 3.1, b = jc∞ for some integer j ≥ 0, in contradiction with
the assumption b ∈ (c∞, c+ c∞), since, by Remark 1.9 (iv), c ≤ c∞. Hence
u 6= 0 and, by Lemma 1.6, u ∈ K with ϕ(u) ≥ c (see Remark 1.2 (i)), and
(un − u) is a PS sequence for ϕ weakly converging to 0. Then, by Lemma
1.10, (un − u) is a PS sequence for ϕ∞ and, since lim supϕ∞(un − u) =
lim supϕ(un − u) ≤ b− c < c∞, by Remark 1.5, un → u strongly in X.

We point out that for every u 6= 0

max
s≥0

ϕ(su) = (1
2 −

1
p+1)J(u)

p+1
p−1 (3.1)

where

J(u) =
‖u‖2(∫

R a|u|p+1
)2/(p+1)

.

We note that J ∈ C2(X \ {0},R) and, by Remark 1.1,

inf
u 6=0

J(u) = m = (1
2 −

1
p+1)−1c

p−1
p+1 . (3.2)

Moreover, by Remark 1.9 (iv), we have

lim
|τ |→∞

max
s≥0

ϕ(suτ ) = c∞ . (3.3)

According to what stated in Section 1, the value c is a candidate to be a
critical value for ϕ, since by Remark 1.1 there exists a PS sequence for ϕ at
level c. Indeed, we observe that, by Lemma 1.11 and Remark 1.2, if c < c∞
then there exists u ∈ K such that ϕ(u) = c (see [15]).

However, in general it is not always true that c is a critical value for ϕ.
For instance in the case a0 < 0 one can check that c = c∞ and every PS
sequence for ϕ at level c converges to 0 strongly in H1

loc(R).
On the other hand, if c = c∞, we can set up a new minimax at a possibly

larger level, following the same procedure developed in [6], [9], and [7].
Taken τ > 0, let

Gτ = {g ∈ C([0, 1], X+) : g(0) = u−τ , g(1) = uτ}

where X+ = {u ∈ X : u 6= 0, u ≥ 0}. Now, let

cτ = inf
g∈Gτ

max
r∈[0,1]
s≥0

ϕ(sg(r)).
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Clearly cτ ≥ c. In particular we can conclude about the existence of a non
trivial critical point for ϕ in the following case.

Lemma 3.4 If lim infτ→+∞ cτ = c∞, then K 6= ∅.

Proof. Let τn → +∞ and gn ∈ Gτn be such that maxr∈[0,1],s≥0 ϕ(sgn(r)) →
c∞. For every u ∈ X \ {0} let β(u) =

∫
R

t
|t|(u̇

2 + u2)dt ‖u‖−2. We note that
β(u±τn) → ±1 as n→∞. Hence, by the continuity of β and gn there exists
a sequence (rn) ⊂ [0, 1] such that β(gn(rn)) = 0 for every n sufficiently large.
Using the notation of Remark 1.1, let vn = s(gn(rn))gn(rn). By the Ekeland
principle, there exists a PS sequence (un) for ϕ such that ‖vn − un‖ → 0
and ϕ(un) → c∞. Moreover, since β(vn) = 0 and lim inf ‖vn‖ > 0, we have
β(un) → 0. By Remark 1.5 and Lemma 1.6, up to a subsequence, un → u
weakly in X, with u ∈ K ∪ {0}. If u = 0 then |T (un)| → ∞ and, using
Lemma 1.10, there exists v ∈ K∞ such that un(· + T (un)) → v strongly in
X. Hence lim inf |β(un)| > 0, a contradiction.

By Lemma 3.4 we are reduced to consider the case lim infτ→+∞ cτ > c∞.
The following result holds.

Lemma 3.5 If lim infτ→+∞ cτ > c∞, then there exists τ̄ > 0 such that for
τ > τ̄ , there exists a PS sequence for ϕ at level cτ . In addition, if cτ < 2c∞
then there exists u ∈ K with ϕ(u) = cτ .

Proof. By (3.3) and Lemma 3.4, there exist ε > 0 and τ̄ > 0 such that if
τ > τ̄ then max{ϕ(uτ ), ϕ(u−τ )} ≤ c∞ + ε < cτ . Now, the first part of the
Lemma follows by a standard deformation argument (see [6]). The second
part is a consequence of the first one and of Corollary 3.3.

Hence, to conclude, we only have to construct for some τ > τ̄ a particular
g ∈ Gτ such that maxr∈[0,1],s≥0 ϕ(sg(r)) < 2c∞. This can be achieved argu-
ing as in [6] and [7], or in [9], with an additional assumption on the behavior
of a0.

We remark that only at this point, the hypothesis (a3) (or (a4)) and the
fact that we deal with a homogeneous potential play a crucial role in the
argument.

Lemma 3.6 If a0 satisfies (a3), then max r∈[0,1]
s≥0

ϕ(s(ruτ + (1 − r)u−τ )) <

2c∞ for τ ∈ TN large.
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Proof. For τ > τ̄ let gτ (r) = ruτ + (1− r)u−τ for every r ∈ [0, 1]. By (3.1),
since c = c∞, the lemma is proved if we show that there exist τ > τ̄ such
that for every r ∈ [0, 1]

J(gτ (r)) < 2
p−1
p+1m . (3.4)

For every r ∈ [0, 1] we have

‖gτ (r)‖2 = r2‖uτ‖2 + (1− r)2‖u−τ‖2 + 2r(1− r)〈uτ , u−τ 〉 (3.5)∫
R agτ (r)p+1 ≥

∫
R a∞gτ (r)p+1 − C0

∫
R e

−θ|t|gτ (r)p+1 (3.6)

where in (3.6) we have used the assumption (a3). Let us recall now the
following inequality (see [6], Lemma 2.1): there exists Cp ≥ 0 such that for
every x, y ≥ 0

(x+ y)p+1 ≥ xp+1 + yp+1 + (p+ 1)(xpy + xyp)− Cpx
p+1
2 y

p+1
2 . (3.7)

By (3.7), we obtain:∫
R a∞gτ (r)p+1 ≥ rp+1

∫
R a∞u

p+1
τ + (1− r)p+1

∫
R a∞u

p+1
−τ

+ (p+ 1)
(
rp(1− r)

∫
R a∞u

p
τu−τ + r(1− r)p

∫
R a∞uτu

p
−τ

)
− Cpr

p+1
2 (1− r)

p+1
2

∫
R a∞u

p+1
2

τ u
p+1
2

−τ . (3.8)

Moreover, for every r ∈ [0, 1]∫
R e

−θ|t|gτ (r)p+1 ≤ 2p+1
(∫

R e
−θ|t|up+1

−τ +
∫

R e
−θ|t|up+1

τ

)
. (3.9)

Hence, taking τ ∈ TN, and setting ω(τ) = 〈uτ , u−τ 〉 =
∫

R a∞u
p
±τu∓τ and

A = 2c∞ p+1
p−1 = ‖u±τ‖2 =

∫
R a∞u

p+1
±τ (see Remark 3.2 (iii)), by (3.8)–(3.9),

the estimates (3.5) and (3.6) become

‖gτ (r)‖2 = r2A+ (1− r)2A+ 2r(1− r)ω(τ) (3.10)∫
R agτ (r)p+1 ≥ rp+1A+ (1− r)p+1A

+(p+ 1)(rp(1− r) + r(1− r)p)ω(τ)−R(τ) (3.11)

where

R(τ) = C(
∫

R a∞u
p+1
2

τ u
p+1
2

−τ +
∫

R e
−θ|t|up+1

τ +
∫

R e
−θ|t|up+1

−τ ). (3.12)

We claim that
R(τ)
ω(τ) → 0 as τ → +∞. (3.13)
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Hence, the lemma follows. Indeed, by (3.10)–(3.11) and (3.13), setting

fτ (r) = r2A+(1−r)2A+2r(1−r)ω(τ)

(rp+1A+(1−r)p+1A+(p+1)(rp(1−r)+r(1−r)p)ω(τ))
2

p+1
,

we have that (3.4) is true if

fτ (r) < 2
p−1
p+1m for every r ∈ [0, 1] , (3.14)

whenever τ ∈ TN is large enough. One can check that, since ω(τ) → 0 as
τ → +∞,

max
r∈[0,1]

fτ (r) = fτ (1
2) = 2

p−1
p+1

A+ω(τ)

(A+(p+1)ω(τ))2/(p+1)

for τ ∈ TN sufficiently large. Moreover

(A+ (p+ 1)ω(τ))
2

p+1 = A
2

p+1 + 2A
2

p+1
−1
ω(τ) + ω(τ)o(1) as τ → +∞ .

Hence, noting that m = A
p−1
p+1 , we infer that (3.14) holds for τ ∈ TN large

enough.
To conclude, we have to prove the claim (3.13). To this aim, as in [6], we
use the following

Lemma 3.7 ([6]) Let f ∈ C(R) and α > 0 be such that eα|t|f(t) → `± ∈
R as t → ±∞, and let g ∈ C(R) be such that eα|t|g ∈ L1(R). Then
e±αtn

∫
R f(t± tn)g(t) dt→ L± if tn → ±∞, being L± = `±

∫
R e

∓αtg(t) dt.

By Lemma 3.7 and by Remarks 1.2 and 3.2 (i), one can check that

lim
τ→+∞

e2τω(τ) ∈ (0,+∞) . (3.15)

Moreover, for every α ∈ (0, 1) there exists Cα > 0 such that u0 ≤ Cαu
α
0

on R. Then
∫

R a∞u
p+1
2

τ u
p+1
2

−τ ≤ Cα

∫
R a∞u

p+1
2

0 u
α p+1

2
2τ , and, using again Lemma

3.7 and Remark 1.2 (iii), there exists

lim
τ→+∞

eατ(p+1)
∫

R a∞u
p+1
2

0 u
α p+1

2
2τ ∈ (0,+∞) . (3.16)

Finally, noting that we can always assume that θ < p+1 in (a3), by Lemma
3.7 and Remark 1.2 (iii), we have that

lim
τ→±∞

e±θτ
∫

R e
−θ|t|up+1

±τ ∈ (0,+∞) . (3.17)

Hence, taking α ∈ ( 2
p+1 , 1) in (3.16), (3.15)-(3.17) yield (3.13).
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Remark 3.8 If a0 satisfies (a3) then lim supτ→+∞ cτ < 2c∞. Indeed, by
Lemma 3.6 and by (3.3) there exists τ̂ ∈ TN such that cτ̂ < 2c∞ and
maxs≥0 ϕ(suτ ) < 3

2c∞ for |τ | ≥ τ̂ . Then, gluing together the paths g−(r) =
u−rτ̂−(1−r)τ , g(r) = ruτ̂ + (1− r)u−τ̂ and g+(r) = urτ+(1−r)τ̂ (note that g±
are continuous by Remark 3.2 (iii)), we conclude that cτ ≤ max{cτ̂ , 2

3c∞}
for |τ | ≥ τ̂ .

Alternatively to the condition (a3), to have cτ < 2c∞, we can argue as
in [9], assuming a global bound for the ratio a

a∞
, without any convergence

control for a0 at infinity.

Lemma 3.9 If a satisfies (a4) then maxr∈[0,1],s≥0 ϕ(surτ−(1−r)τ ) < 2c∞ for
every τ > 0, and the mapping r 7→ urτ−(1−r)τ belongs to Gτ .

Proof. The first statement follows by the fact that J(uτ ) < 2
p−1
p+1m for every

τ ∈ R. Indeed, this is equivalent to show that
∫

R au
p+1
τ > 2−

p−1
2

∫
R a∞u

p+1
τ ,

that follows by (a4) (Note that uτ > 0 and a(t) > 2−
p−1
2 a∞(t) for |t| large).

The second part is a consequence of Remark 3.2 (ii).

4 Further results

The techniques developed in the previous sections can be easily adapted to
study also perturbative situations.

First, we observe that if a: R → R satisfies (a1) and a = a∞+εa0, with a∞
periodic and a0(t) → 0 as t→ ±∞, then (a2) holds and also the assumption
(a4) is satisfied if |ε| is sufficiently small. Hence the corresponding equation
−ü + u = (a∞ + εa0)|u|p−1u admits a homoclinic solution (see [20] for a
more general setting).

Next theorem shows that if we perturb a function a: R → R satisfying
(a1)–(a2) with any α ∈ L∞(R) that vanishes at infinity and has L∞ norm
small enough, then the corresponding equation still has a homoclinic solu-
tion. More generally, we have:

Theorem 4.1 Let a: R → R satisfy (a1)–(a2) and either (a3) or (a4). Let
g ∈ C(R) be such that g(u) = O(u) as u→ 0. Then there exists ε̄ = ε̄(a, g) >
0 such that for any α ∈ L∞(R) with ‖α‖L∞ ≤ ε̄ and α(t) → 0 as |t| → ±∞,
the equation

−ü+ u = a(t)|u|p−1u+ α(t)g(u) (Dα)

admits a homoclinic orbit.
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Proof. Let G(u) =
∫ u
0 g(y) dy and, given α ∈ L∞(R), let ψα(u) =

∫
R αG(u)

and ϕα = ϕ + ψα. Note that ψα ∈ C1(X) and sends bounded sets into
bounded sets. Moreover, since α(t) → 0 as t → ±∞, ψα(u(· − t)) → 0 as
t → ±∞, uniformly on compact sets of X. Furthermore the problem at
infinity corresponding to (Dα) is (D∞). We distinguish the cases in which
(∗) holds or does not.
If (∗) holds the Theorem follows arguing exactly as in Section 2.
If (∗) does not hold we argue as in Section 3 using the assumption (a3) or
(a4) to prove via the Lemmas 3.6 and 3.9 that lim supτ→∞ cτ < 2c∞. This
can be concluded also for the functional ϕα if ε̄ > 0 is small, because of the
previous remarks, and we can prove the existence of a non trivial critical
point for ϕα following again the argument of Section 3.

We finally note that the argument developed in this paper can be used
to study also the cases in which the function a∞ is almost periodic or more
generally the cases in which a∞ is just Poisson stable, i.e., there exists a
sequence (tn)n∈Z such that tn → ±∞ as n→ ±∞ and a∞(t− tn) → a∞(t)
for any t ∈ R. With minor changes in the proofs, these cases can be treated
following the same scheme used before to study the asymptotically periodic
case.
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