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Non-perturbative gauge couplings from holography
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and I.N.F.N. – Gruppo Collegato di Alessandria, Viale T. Michel 11, 15121 Alessandria, Italy

Received 19 January 2012, accepted 21 January 2012
Published online 13 February 2012

Key words F-theory, gravity dual, non-perturbative corrections.

We show how D-instanton corrections modify the dilaton-axion profile emitted by an O7/D7 system turning
it into the non-singular F-theory background which corresponds to the effective coupling on a D3 probe.
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1 Introduction

We consider the local limit of Type I′ string theory with Nf D7 branes close to an O7 plane and study the
profile of the corresponding dilaton-axion field τ . At the perturbative level, τ is non-trivial and possesses
logarithmic singularities at the orientifold and brane positions. These singularities are incompatible with
its rôle as string coupling constant, and must therefore be resolved by non-perturbative effects, resulting
into a non-singular F-theory background. The Nf = 4 case was considered long ago by A. Sen [1] who,
based on the symmetries and monodromy properties of the Type I′ configuration, suggested that the exact
dilaton-axion profile be given by the effective coupling of the 4d N = 2 SYM theory with gauge group
SU(2) and Nf = 4 flavors, as encoded in the corresponding Seiberg-Witten curve [2]. This is the gauge
theory supported by a probe D3 brane in the local Type I′ model, and thus the F-theory background can be
interpreted as the gravity dual of the effective gauge coupling of the D3 brane world-volume theory [3].

Here we provide a microscopic description of how the exact F-theory background arises when D-
instantons are introduced in the D7/O7 system and show how they modify the source terms in the τ field
equation [4]. The computation requires integrating over the D-instanton moduli space and this is done via
localization techniques [5, 6] that allow to obtain explicit results even when all instanton numbers con-
tribute. In this way we demonstrate how the non-perturbative corrections to the effective gauge coupling
are incorporated in the dual gravitational solution. The agreement of the exact dilaton-axion profile thus
obtained with the coupling constant of the D3 brane gauge theory persists all the way down to Nf = 0,
which amounts to say that an O7 plane plus its D-instanton corrections represents the gravitational source
for the gauge coupling of the pure SU(2) N = 2 SYM theory in 4d.

The local configuration we consider contains Nf D7 branes; the massless excitations of the D7/D7
open strings describe a gauge theory in eight dimensions and the orientifold projection implies that its
gauge group is SO(Nf ). These degrees of freedom can be assembled into an adjoint chiral superfield

M = m+ θψ +
1
2
θγμνθFμν + · · · . (1)
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A D3-brane (plus its orientifold image) in this background supports a four-dimensional Sp(1) ∼ SU(2)
gauge theory with Nf hypermultiplets, arising from the D3/D7 strings, and flavor group SO(Nf ). For
Nf = 4 this theory has vanishing β-function, and we will mostly consider this case, except in the last
section.

The transverse space to the O7 plane and the D7 branes (parametrized by a complex coordinate z)
corresponds to the Coulomb branch of the moduli space of the theory: placing the probe D3 brane in z
(and its image in −z) amounts to give a vacuum expectation value φcl = (a,−a), with a = z

2πα′ , to
the SU(2) complex adjoint scalar. On the other hand, displacing the D7 branes in zi (i = 1, . . . , Nf )
corresponds to giving a vacuum expectation value

mcl = (m1, . . . ,mNf
,−m1, . . . ,−mNf

) , with mi =
zi

2πα′ , (2)

to the SO(Nf ) complex adjoint scalar m of eq. (1). In the D3 brane effective action, the mi’s represent the
masses of the hypermultiplets, while the rôle of the complexified gauge coupling is played by the dilaton-
axion field τ belonging to the closed string sector. Actually, τ is the first component of a chiral scalar
superfield T in which all relevant massless closed strings degrees of freedom can be organized and which
is schematically given by [7]

T = τ + θλ+ · · · + 2θ8
(
∂4τ̄ + · · · ) , (3)

where ∂ stands for ∂
∂z . Both the O7 plane and the D7 branes couple to T and produce a non-trivial profile

for it. This fact allows to establish an explicit gauge/gravity relation: the effective coupling τ(a) of the
SU(2) theory on the probe D3 brane is the dilaton-axion background τ(z) produced by the D7/O7 system.
Such a background is naı̈vely (i.e. perturbatively) singular but, as we will show in the next sections, it can
be promoted to a full-fledged non-singular F-theory background by taking into account non-perturbative
D-instanton corrections. On the gauge theory side, this amounts to promote the perturbative SU(2) gauge
coupling to the exact one encoded in the corresponding Seiberg-Witten curve.

2 The dilaton-axion profile

As we mentioned above, the D7 branes and the O7 plane act as sources for τ , localized in the transverse
directions. The classical perturbative dilaton-axion profile corresponding to Nf = 4 D7 branes placed in
zi is given by

2πi τcl(z) = 2πi τ0 +
4∑

i=1

[
log

z − zi

z
+ log

z + zi

z

]
= 2πi τ0 −

∞∑

�=1

(2πα′)2�

2�
trm2�

cl

z2�
, (4)

where in the second step we used eq. (2). This profile, which matches the 1-loop running of the gauge
coupling of the SU(2) SYM theory withNf = 4 flavors, can be obtained by computing the 1-point function
of the τ emission vertex with the boundary states of the D7 branes and the crosscap state of the O7 plane.
The dilaton-axion (4) solves the equation of motion �τcl = Jcl δ

2(z), where the classical current

Jcl = −2i
∞∑

�=1

(2πα′)2�

(2�)!
trm2�

cl ∂
2� (5)

arises from interactions on the D7 world-volume between τ and the SO(8) adjoint scalar m when the latter
is frozen to its vacuum expectation value (2). Such interactions can be obtained from a source action of the
form

Ssource = − 1
(2π)3 (2πα′)4

∫
d8xJcl τ̄ (6)
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where the dimensionful coefficient is the ratio of the D7 brane tension and the gravitational coupling
constant, which is the appropriate normalization for a D7 source action [4]. Using the superfields M and
T of eq.s (1) and (3), we can easily realize that the above interactions can be derived from the following
perturbative 8d prepotential

Fcl(M,T ) = 2πi
∑

�

(2πα′)2�−4

(2�)!
tr M2� ∂2�−4 T . (7)

Comparing the corresponding classical action Scl = 1
(2π)4

∫
d8xd8θ Fcl(M,T ) with the definition (6) of

the source action, we thus obtain

Jcl = − (2πα′)4

2π
δFcl

δ(θ8τ̄ )

∣
∣
∣
T=τ0,M=mcl

≡ − (2πα′)4

2π
δ̄Fcl , (8)

where we introduced the handy notation δ̄ � ≡ δ 	
δ(θ8τ̄)

∣
∣
T=τ0,M=mcl

.
From this analysis it is clear how one should proceed to obtain the complete dilaton-axion source J .

One has first to promote the classical prepotential to the full one by including non-perturbative corrections,

i.e. F (M,T ) = Fcl(M,T ) + Fn.p.(M,T ), and then write, in analogy to eq. (8), J = − (2πα′)4

2π δ̄F .
The non-perturbative contribution to the prepotential arises when D-instantons are added to the D7/O7

system; in this case new types of excitations appear corresponding to open strings with at least one end-
point on the instantonic branes, i.e. D(–1)/D(–1) or D(–1)/D7 strings. Due to the boundary conditions,
these excitations do not describe dynamical degrees of freedom but account instead for the instanton mod-
uli, which we collectively denote by M(k) , where k is the instanton number. Among them, one finds the
coordinates of the center of mass and their fermionic partners, which can be identified with the 8d super-
space coordinates x and θ, respectively. The interactions among the moduli are encoded in the instanton
action and can be computed systematically by string diagrams as described in [8, 9]. In the case at hand,
the instanton action can be written as

Sinst(M(k),M, T ) = S(M(k)) + S(M(k),M) + S(M(k), T ) (9)

where S(M(k)) is the pure moduli action, which corresponds to the ADHM measure on the moduli space,
S(M(k),M) is the mixed moduli/gauge fields action and finally S(M(k), T ) is the mixed moduli/gravity
action. Here we focus on the most relevant part for our goal, namely S(M(k), T ), and refer to the literature
for the other terms [4, 10]. To obtain S(M(k), T ), we compute mixed open/closed string disk diagrams
involving instanton moduli and bulk fields. The simplest diagrams yield the “classical” instanton action
−2πi k τ supersymmetrized by insertions of θ moduli, so that τ gets replaced by the superfield T , resulting
in −2πi k T . Other mixed diagrams contributing to S(M(k),M) involve the bosonic modulus χ, which is
akin to the position of the D(–1)’s in the transverse space to the D7’s, but with anti-symmetric Chan-Paton
indices due to the orientifold projection. Such diagrams turn out to be exactly computable, even if they
involve an arbitrary (even) number of χ insertions. Moreover, they are supersymmetrized by θ-insertions
that promote all τ occurrences to T . Altogether, the mixed moduli/gravity action is [4]

S(M(k), T ) = −2πi
∞∑

�=0

(2πα′)2�

(2�)!
tr (χ2�) p̄2� T , (10)

where p̄ is the momentum conjugate to z.
Given the complete instanton action (9), one can obtain the non-perturbative effective action on the D7

branes by performing an integral over the D(–1) moduli space, namely

Sn.p. =
∑

k

∫
dM(k)e−Sinst(M(k),M,T ) =

∫
d8xd8θ Fn.p.(M,T ) , (11)
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where in the last step we have explicitly exhibited the integral over the superspace coordinates x and θ
to define the non-perturbative prepotential. The latter therefore arises from an integral over all remaining
instanton moduli, also called centered moduli. Such an integral can be explicitly computed using localiza-
tion techniques [5, 6]. This amounts to select one of the preserved supercharges as a BRST charge Q so
that the instanton action (9) is Q-exact, and to organize the instanton moduli in BRST doublets so that the
integral over them reduces to the evaluation of determinants around the fixed points of Q. In order to have
isolated fixed points, the instanton action must be deformed by suitable parameters (to be removed at the
end) which in our set-up arise from a particular RR graviphoton background [10, 11]. Here, we will not
delve into the details but simply recall the essential ingredients of the procedure.

One first introduces the k-instanton partition function Zk according to

Zk =
∫
dM(k) e−Sinst(M(k),M,T ;E) , (12)

where E is the deformation parameter. Then, setting q = e2πiτ0 and Z0 = 1, one writes the gran-canonical
partition function Z =

∑∞
k=0 q

kZk, from which one obtains the non-perturbative prepotential

Fn.p. = lim
E→0

E logZ =
∞∑

k=1

qk Fk . (13)

For example, F1 = limE→0 EZ1, F2 = limE→0 E
(
Z2− 1

2Z
2
1

)
and so on. In complete analogy with eq. (8),

one then writes the instanton-induced source for the dilaton-axion as Jn.p. = − (2πα′)4

2π δ̄Fn.p, so that its
q-expansion involves the variations δ̄Fk, which in turn are related to the variations δ̄Zk. For example,
δ̄F1 = limE→0 E δ̄Z1, δ̄F2 = limE→0 E

(
δ̄Z2 − Z1δ̄Z1

)
and so on. Given the explicit form (10) of the

moduli action, it readily follows that

δ̄Zk = 4πi
∞∑

�=0

(2πα′)2� p̄2�+4Z
(2�)
k , (14)

where we introduced the “correlators” of the χ-moduli in the instanton matrix theory

Z
(2�)
k =

1
(2�)!

∫
dM(k) tr (χ2�) e−Sinst(M(k),M,T ;E)

∣
∣
∣
T=τ0 , M=mcl

. (15)

At the first two instanton numbers one finds

δ̄F1 = πi
∞∑

�=0

(2πα′)2� p̄2�+4 lim
E→0

EZ(2�)
1 ,

(16)

δ̄F2 = 4πi
∞∑

�=0

(2πα′)2� p̄2�+4 lim
E→0

E(
Z

(2�)
2 − Z1Z

(2�)
1

)
,

and similar expressions can be easily obtained for any k. The same combinations of partition functions Zk

andχ-correlatorsZ(2�)
k appear in the computation of the D-instanton contributions to a rather different class

of observables, namely the protected correlators 〈trmJ〉 forming the chiral ring of the SO(8) gauge theory
defined in the 8dworld-volume of the D7 branes. The non-perturbative part of the chiral ring elements have
a q-expansion, 〈trmJ〉n.p. =

∑∞
k=1 q

k 〈trmJ 〉k, which can be explicitly computed using localization
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techniques as discussed in [12]. At the first two instanton numbers one finds

lim
E→0

EZ(2�)
1 =

(−1)�

(2�+ 4)!
〈trm(2�+4)〉1 ,

(17)

lim
E→0

E(
Z

(2�)
2 − Z1Z

(2�)
1

)
=

(−1)�

(2�+ 4)!
〈trm(2�+4)〉2

and so on. Using these results, we therefore find a very strict relation between the δ̄ variation of the prepo-
tential and the non-perturbative SO(8) chiral ring [13–15], namely

δ̄Fk = 4πi
∞∑

�=0

(2πα′)2� p̄2�+4 (−1)�

(2�+ 4)!
〈trm2�+4〉k , (18)

which, taking into account the fact that 〈trm2〉k = 0 for all k, implies that

Jn.p. = − (2πα′)4

2π

∞∑

k=1

qk δ̄Fk = −2i
∞∑

�=1

(−1)� (2πα′)2� p̄2�

(2�)!
〈trm2�〉n.p. . (19)

Adding this expression (rewritten in the z coordinate space) to the classical term Jcl of eq. (8) yields the
complete source J . Solving the field equation � τ = J δ2(z), we get then the exact dilaton-axion profile

2πi τ(z) = 2πi τ0 −
∞∑

�=1

(2πα′)2�

2�
〈trm2�〉
z2�

= 2πi τ0 +
〈
log det

(
1 − (2πα′)m

z

)〉
. (20)

At the perturbative level, eq. (4) expressed that fact that the quantities trm2�
cl of the D7 theory act as a

source for the dilaton-axion. This source, however, is non-perturbatively corrected and the exact result
is obtained by replacing the classical vacuum expectation values with the full quantum correlators in the
D7-brane theory, namely trm2�

cl ≡ tr 〈m2�〉 → 〈trm2�〉. Furthermore, introducing the operator

Oτ (z) = τ0 +
1

2πi
log det

(
1 − (2πα′)m

z

)
(21)

we can rewrite eq. (20) as τ(z) =
〈Oτ (z)

〉
, which has the typical form of a holographic relation.

3 Comparison with gauge theory results

As we said above, the chiral ring elements 〈trm2�〉 are explicitly computable via localization and for
the first few values of � their instanton expansion can be found in [12]. Using these results in (20) and
parametrizing the transverse directions with z = 2πα′a in such a way that all α′ factors in the τ profile
are reabsorbed, we get an expression τ(a) that, by direct comparison, can be seen to be exactly equal
to the large-a expansion of the low-energy effective coupling of the SU(2) SYM theory with Nf = 4
massive flavors, as derived from the Seiberg-Witten curve [13]. We can therefore rephrase this result in the
following relation

τsugra(z) ⇔ τgauge(a) (22)

where a = z
2πα′ represents the Coulomb branch parameter. It is interesting to remark that on the super-

gravity side the non-perturbative contributions to the dilaton-axion profile τsugra(z) are due to “exotic”
instanton configurations in the 8d world-volume theory on the D7 branes, while on the gauge theory side
the non-perturbative effects in τgauge(a) arise from standard gauge instantons in the 4d SYM theory. These
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two types of contributions agree because they actually have the same microscopic origin: in both cases they
are due to D(–1) branes, which represent “exotic” instantons for the D7/O7 system and ordinary instantons
for the probe D3 brane supporting the 4d SYM theory.

The relation (22) can obviously be used in two ways. On the one hand, it can be used to read the gauge
coupling constant of the 4d SU(2) theory in terms of the quantum correlators in the 8d theory which gauges
its SO(8) flavor symmetry. This is the approach we have discussed so far. On the other hand, the relation
(22) can be used to read the 8d chiral ring elements in terms of the 4d gauge coupling. Actually this can be
done in an exact way, i.e. to all orders in q. In fact, using recursion relations of Matone type, it is possible
to extract from the Seiberg-Witten curve the exact expression of any given coefficient of the expansion of
τgauge(a) in inverse powers of a. For example, from the exact coefficient of 1

a4 we can deduce that

〈trm4〉 = E2(q)R2 − 6θ44(q)T1 + 6θ42(q)T2 (23)

where E2 is the Eisenstein series of (almost) weight 2, θ2 and θ4 are Jacobi θ-functions and R, T1 and
T2 are the quadratic and quartic SO(8) mass invariants (see [15] for details). This expression resums the
instanton expansion

∑∞
k=1 q

k 〈trm4〉k in which only the first few terms were known by direct evaluation,
and can be generalized to all other chiral ring elements.

4 The pure SU(2) theory

The gauge/gravity relation (22) can be established also when some or all flavors are decoupled to recover
the asymptotically free theories withNf = 3, 2, 1, 0. In particular, from the gauge theory side one can reach
the pure SU(2) case by sending q → 0 andmi → ∞, while keeping the combination q m1m2m3m4 ≡ Λ4

finite. Λ4 is the dimensionful counting parameter in the instanton expansion which replaces the dimen-
sionless q of the superconformal Nf = 4 theory; in other words Λ can be interpreted as the dynamically
generated scale of the pure SU(2) theory. From the supergravity side the decoupling of the flavors corre-
sponds to sending all D7 branes far away from the origin, or equivalently to evaluate the dilaton-axion τ(z)
at a z much smaller than the D7 brane positions in such a way that only the orientifold O7 plane acts as
a source for τ . In this case we can therefore repeat the same steps described in Section 2 and evaluate the
dilaton-axion field emitted by just the O7 plane.

At the non-perturbative level when k D-instantons are put on the orientifold plane, the main difference
with respect to the case with the D7’s is that the spectrum of instanton moduli contains only neutral moduli
corresponding to open strings of type D(–1)/D(–1). The rest of the derivation remains as before. In particu-
lar eq.s (12) and (15) are well-defined even in the absence of the D7’s, and thus formulas like (16) continue
to hold. For example, one finds

lim
E→0

EZ(2�)
1 = − 12

4!
δ�,0 , lim

E→0
E(
Z

(2�)
2 − Z1Z

(2�)
1

)
= − 105

4 · 8!
δ�,2 (24)

which are the analogue of eq. (17) for the pure SU(2) theory. Of course the interpretation as chiral ring
elements in a flavor theory is no longer possible since there are no flavors. Using these results and their
generalizations at higher instanton numbers k, we can still find the variations δ̄Fk of the prepotential and
obtain from these the non-perturbative source current Jn.p., whose first instanton terms are

Jn.p. = 2i
[
Λ4 (2πα′p̄)4

12
4!

+ Λ8 (2πα′p̄)8
105
4 · 8!

+ · · ·
]
. (25)

SU(2) theory. The two terms in (25) correspond to the first two instanton contributions to Jn.p.. Solving
the field equation �τn.p.(z) = Jn.p.δ

2(z) and expressing the result in terms of a = z
2πα′ , we get

2πi τn.p.(a) = 3
Λ4

a4
+

105
32

Λ8

a8
+ · · · (26)
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which exactly coincides with the first two instanton contributions as derived from the Seiberg-Witten curve
[6, 16, 17]. After adding the perturbative piece 2πi τ0 − 4 log

(
4a2

Λ2

)
, we can therefore conclude that the

full dilaton-axion profile sourced by an O7 plane plus its D-instantons completely agrees with the exact
coupling of the pure SU(2) N = 2 SYM theory in d = 4.
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