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Abstract. Mountain watersheds are particularly vulnera-
ble to extreme meteorological events, such as high intensity
rainfall, and mountain soils often show pronounced fragility
and low resilience due to severe environmental conditions.
Alpine soil vulnerability is partly intrinsic but in part related
to climate change (mainly precipitation regimes), and is en-
hanced by the abandonment of rural mountain areas that re-
duced the land maintenance actions traditionally carried out
by farmers and local populations in the past. Soil hazards
are related to different processes such as water erosion, loss
of consistency, surface runoff and sediment transport, of-
ten occurring simultaneously and interacting with each other.
Therefore, the overall effects on soil are not easy to quan-
tify as they can be evaluated from different soil chemical and
physical properties, referring to specific soil loss phenom-
ena such as soil erosion, soil liquefaction, loss of consistency
etc. In this study, we focus our attention on a mountain re-
gion in the NW Italian Alps (Valle d’Aosta), which suffered
from diffuse soil instability phenomena in recent years, as
a consequence of extreme rainfall events and general aban-
donment of the agricultural activities in marginal areas. The
main effects were a large number of shallow landislides in-
volving limited soil depths (less than 1 m), affecting consid-
erable surfaces in the lower and middle part of the slopes.
These events caused loss of human lives in the year 2000
and therefore raised the attention on land maintenance is-
sues. Surface (topsoil: 0–20 cm) and subsurface (subsoil:
20–70 cm) samples were characterised chemically and phys-
ically (pH, carbon and nitrogen contents, cation exchange ca-
pacity, texture, aggregate stability, Atterberg limits etc.) and
they showed very different soil properties. Topsoils were
characterised by better stability, structure, and consistency.
The differences between the two depths were potential trig-
ger factors for shallow soil movements involving the upper

soil horizons. We assessed a great number of soil properties
that are known to be related to vulnerability to the main haz-
ards present in the area. These properties were evaluated at
the two depths and a factor analysis was performed to sim-
plify the dataset interpretation, and to hypothesise the most
decisive parameters that were potentially related to vulnera-
bility. The factors (soil structure, aggregation, consistency,
texture and parent material, cation exchange complex and
other chemical properties) were a first step towards identi-
fying soil quality indexes in the studied environment.

1 Introduction

Mountain watersheds are particularly vulnerable to extreme
rainfall events (Giannecchini et al., 2007; Turconi et al.,
2010), which may trigger shallow soil movements, involving
limited soil depths (Giannecchini, 2005) and diffuse erosion.
This is particularly evident in the Alps, where the increased
occurrence of extreme precipitation events has been observed
as a result of climate change (IPCC, 2007; Lindner et al.,
2010). Besides this, the marginalization of mountain areas
can enhance the natural hazard frequency as the land mainte-
nance is less capillary and large agricultural areas have been
abandoned.

Mountain soils are also characterised by intrinsic fragility
(Sanchez-Maranon et al., 2002; Descroix and Gautier, 2002;
Arnaud-Fassetta et al., 2004; Alewell et al., 2008; Stanchi
et al., 2009) and low resilience (i.e. the capability to re-
cover after severe stresses, Seybold et al., 1999), making
them almost non-renewable. Even if the soils of the alpine
areas have profiles that are very irregular with regards, for
example, to thickness of horizon or depth to bedrock, gen-
erally they have considerable skeleton content, and coarse
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texture with sand and silt abundance. Extreme climatic con-
ditions limit the soil profile evolution and the differentiation
of diagnostic horizons. Also soil erosion contributes to the
scarce profile development, as surface material is continu-
ously transported by runoff. The main factors driving soil
development are climate and relief. Soil losses for erosion
may be very high depending on site variables such as slope,
vegetation cover, and parent material (Egli et al., 2001; Khor-
mali et al., 2009). Descroix and Mathys (2003, French South
Alps) observed that erosion losses are 2 to 3 orders of mag-
nitude higher on bare soils than on pastures. However, alpine
soils are fragile also in terms of physical properties such as
soil structure and consistency that can be potentially lost af-
ter extreme rainfall events (Crosta et al., 2003; Luino, 2005)
or wet snow avalanches (Freppaz et al., 2010, Confortola et
al., 2012). Soil losses can be related to different morpho-
logical processes acting at slope and watershed scales (Bell
and Glade, 2004; Luino, 2005), such as soil slips, debris
flows, solifluctions, and diffuse erosion. The susceptibility
to all these phenomena is difficult to assess, as the trigger-
ing factors, occurrence thresholds and mechanisms are com-
plex. Moreover, soil properties usually show high variability
in all spatial dimensions, i.e. both in their spatial distribution
on the slope and along the soil profile, with discontinuities
in soil properties. Despite these limitations, some chemical
and physical properties are known to be related to soil losses,
when extreme rainfall events occur (Luino, 2005; Stanchi et
al., 2008b).

Soil quality indicators have been often proposed as sets of
soil properties (physical, chemical, biological) that are able
to change abruptly after changes in soil use and management
or disturbances (Brejda et al., 2000; Ajami et al., 2006), and
therefore also assess the level of soil degradation. As re-
marked by Karlen et al. (1997), the choice of quality indi-
cators (such as the ones proposed by Shukla et al., 2006)
depends on the observer’s focus (e.g. agriculture and crop
production, land management and conservation, engineering,
environmental protection etc.). In mountain environments,
soil quality depends strongly on soil structure and consis-
tency conservation.

Assessing soil intrinsic vulnerability to loss phenomena
through soil quality indicators would be a fundamental step
forward in land use planning. No standardised set of indi-
cators is available to evaluate soil vulnerability in mountain
areas, and this is partly justified by the relative scarcity of
soil data in mountain environments. Factor analysis is com-
monly used to identify underlying patterns in soil properties
of environmental interests (Donkin and Fay, 1991; Pardini et
al., 2004), i.e. finding factors behaving as “hidden variables”
from a larger set of correlated variables. In this case, we
are looking for a number of not immediately measurable fac-
tors that are responsible for soil vulnerability, using a larger
number of more easily measurable variables that are known
or likely to be related to soil vulnerability.

Fig. 1. Location of the study area with the two subareas in Italy.

In previous research (Stanchi et al., 2008b, 2009) we stud-
ied the properties of topsoil and subsoil of a limited pilot area
located in the Aosta Valley (NW Italian Alps). In this work
we focused our attention on a larger dataset from a wider area
in the same Region (Fig. 1), often affected by shallow soil
movements (upper decimetres of soil) with different mech-
anisms. Soil vulnerability was studied at two depths (top-
soil: 0–20 cm, corresponding to A horizons, i.e. surface hori-
zons richer in organic matter and generally characterised by
more pronounced aggregation, largely related to root pres-
ence and with relatively abundant soil fauna activity; subsoil:
20–70 cm, corresponding to AC (with properties inherited by
the parent material) or Bw (with incipient alteration, diagnos-
tic for Inceptisols) horizons, characterised by lower organic
matter content than the topsoil and more related to pedogenic
processes). These depths are often involved in shallow soil
movements and soil losses in the study areas.

Some of the chemical and physical properties related to
surface soil losses were studied, and factor analysis was per-
formed in order to individuate and interpret the main fac-
tors describing soil vulnerability in the studied environment.
This assessment may help in further studying the thresholds
of shallow soil instability phenomena registered in the study
area.

2 Study areas and methods

2.1 Study areas

Two study areas were chosen in the Aosta Valley (Fig. 1),
which were particularly subject to soil loss and instability
phenomena, and have been monitored and documented in
recent years (Nus-Saint Marcel and Valpelline), particularly
after the year 2000 when an extreme rainfall event caused a
big flooding. The study areas are representative of the re-
gions environmental characteristics, and types and frequency
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Table 1. Main characteristics of the study areas.

Valpelline Nus
Saint-Marcel

Area (km2) 465 82

Altitude range (m a.s.l.) 800–4150 500–3500

Main vegetation typologies Larix decidua, Picea excelsa, Pinus cembra,
mixed broadleaved forest, alpine grassland,
agricultural areas

Larix dedua, Pinus cembra, mixed pioneer
broadleaved forests, alpine grassland, agricul-
tural areas

Main geological covers Dioritic formations and (upper part); moraines,
taluses, debris

Alluvial deposits, moraines and debris, preva-
lence of mixed lithologies

Main natural hazard typologies Landslides, soil slips; surface erosion Landslides, solid transport; wildfires; soil slips,
debris flows, surface erosion

of natural hazards. The climate is characterised by dryness
(mean annual precipitation 580 mm), as characteristic for the
inner part of the Valley (Filippa et al., 2010), with extreme
rainfall events particularly frequent during spring and au-
tumn. The information about environmental variables (cli-
mate, geology, vegetation) were given by the Valle d’Aosta
Region as printed maps or shapefiles. Table 1 collects the
main information on the 2 study sites.

2.1.1 Valpelline subarea

The Valpelline subarea has a surface of 465 km2. It includes
the Buthier watershed, and reaches from 800 to 4150 m a.s.l.
The upper part of the valley is characterised by dioritic for-
mations, the lower part by gneiss of the Arolla series. Most
of the Quaternary cover is formed by moraines, taluses and
debris, partly by big boulders. Wide areas are affected by
landslides involving detritus and moraines. Alluvial deposits
are present along the main hydrological network. The forest
cover is dominated byLarix deciduaandPicea excelsa, as-
sociated withPinus cembraat higher orPinus sylvestrisat
lower elevations.Larix decidua andPinus sylvestrisdomi-
nate in sun-exposed slopes. Broadleaved mixed forests pro-
gressively substitute coniferous species as the altitude de-
creases. Herbaceous cover ranges from grasslands-orchards
in the lower parts and close to settlements, often with aban-
doned terraces, to deciduous forests and some extensions of
coniferous forests, to pastures at higher altitudes.

2.1.2 Nus and Saint-Marcel subarea

This subarea has a surface of around 82 km2 and reaches
from 500 to 3500 m a.s.l. It includes the Saint-Barthelemy
watershed, characterised by steep and high slopes and a con-
siderably developed hydrological network (around 273 km,
tributaries of the Saint-Barthelemy river) with steep slopes
and consequently high solid transport. A considerable part
of the slopes is used as pastures. At higher elevations,Pi-
nus cembraprevails, sometimes mixed withLarix decidua,

and with Rhodoreto-vaccinietumassociations. Very sunny
slopes, where dryness is a limiting factor forPicea abies
and Pinus cembra, are often colonised by pureLarix de-
cidua forest. The Saint Marcel area shares the lower bor-
der, corresponding to the Dora Baltea river, with the Nus
area, and covers a 28 km2 area (from 500 to 1350 m a.s.l.),
which showed a high density of shallow mass movements
during the year 2000 flood. The area is characterised by
strong anthropogenic pressure and high infrastructure and
settlement density. The topography is characterised by a flat
area (Dora alluvial deposits), followed by mixed moraine and
debris deposits. The vegetation in the flat area is quite frag-
mented, consisting of meadows, leisure areas and orchards.
In the sloping parts, the main vegetation covers are aban-
doned chestnut forests, pioneer species, mixed forests with
broadleaved and conifer species.

2.2 Soil sampling, soil analyses, and statistics

In the whole study area, characterised by a particularly high
density of shallow soil movements and diffuse erosion after
the year 2000 event, the soils were relatively young and the
majority of them can be classified, according to soil classifi-
cation systems, as Entisols and Inceptisols (after Soil Survey
Staff, 2006, see Supplement), or Regosols and Cambisols
(after IUSS Working Group, 2006). The sampling strategy
was based on the soil associations and corresponding land
units in the study areas. The Supplement contains a detailed
description of land units and, for each of them, a representa-
tive soil profile. A total of 41 soil profiles, characterised and
classified for the preparation of a 1:10 000 soil map, were
sampled at two depths: 0–20 cm (A horizons, topsoil, T),and
about 20–70 cm (i.e. AC and C and a minority of Bw hori-
zons, subsoil, S), considering the average depth of soil in-
stability phenomena involving 20–80 cm of soil. Soil pro-
files were described in the field and sampled by horizons for
the soil map preparation, then the samples were oven dried,
sieved, analysed, and finally soils were classified. For this
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Table 2. Considered physical properties for topsoil (T) and subsoil (S) samples. Standard dev. in brackets (n = 41), significance levels
expressed by p-values (Na-hex indicates soil texture without, H2O2 with soil organic matter removal).

Soil properties T S p

Coarse sand (%)Na−hex 36.6 (11.0) 36.8 (10.0) 0.940
Fine sand (%)Na−hex 38.4 (10.8) 32.6 (6.5) 0.006
Coarse silt (%)Na−hex 9.6 (2.6) 11.2 (2.5) 0.010
Fine silt (%)Na−hex 11.6 (4.9) 14.3 (6.3) 0.038
Clay (%)Na−hex 3.8 (2.0) 5.2 (3.7) 0.024
Coarse sand (%)H2O2 29.4 (10.3) 34.6 (12.2) 0.044
Fine sand (%)H2O2 32.6 (7.3) 30.2 (7.1) 0.145
Coarse silt (%)H2O2 10.6(4.2) 10.6(3.4) 0.969
Fine silt (%)H2O2 16.9 (3.6) 14.3 (6.3) 0.397
Clay (%)H2O2 10.4 (3.6) 5.2 (3.4) 0.018

Total aggregate loss (%) 49 (24) 67 (21) 0.000

DfH2O2
–DfNa 0.169 (0.0897) 0.112 (0.0882) 0.008

Coarse sandH2O2/Coarse sandNa−hex 0.83 (0.18) 0.91 (0.21) 0.069
ClayH2O2/ClayNa−hex 3.58 (2.72) 2.53 (2.18) 0.069
LL (%) 49 (12) 37 (10) 0.000
PL (%) 38 (11) 27 (9) 0.000
PI (%) 10 (3) 9 (4) 0.869

research, we focused on the T and S depths.
Soil pH was determined potentiometrically (SISS, 2000),

total organic C (TOC) and total N content (TN) were deter-
mined by dry combustion with an elemental analyser. Cation
exchange capacity (CEC) was analysed with the BaCl2-
triethanolamine method at pH 8.1 (Rhoades, 1982); the car-
bonate content determination followed the SISS (2000) of-
ficial method. Soil texture was determined by the pipette
method with Na-hexametaphosphate without and with soil
organic matter (SOM) oxidation with H2O2 (Gee and
Bauder, 1986). The skeleton content was estimated in the
field by volume. The Atterberg liquid limit (LL) was de-
termined with a semi automatic cone penetrometer (SISS,
2000), and the plastic limit (PL) with the thread rolling
method (SISS, 2000). Soil aggregate stability was deter-
mined by wet sieving (Zanini et al., 1998), measuring ag-
gregate loss (%) for different sieving times (5, 10, 15, 20,
40, 60 min.), aggregate loss for abrasion, aggregate loss for
slaking, total aggregates loss, and aggregates half-life (min).

All analyses and physical determinations were performed
in duplicate, and then averaged.

In order to summarize soil texture with a synthetic index,
we estimated the fragmentation fractal dimension (Df) from
size-distributions with and without SOM removal, as done
in a previous work (Stanchi et al., 2008a) whereDf , ranging
from 2 to 3, was calculated by linear regression of the cumu-
lative mass for soil size fractions (<2 mm) vs. the fraction
upper size radius (Tyler and Wheatcraft, 1992). In general,
Df close to 2 indicates a coarser aggregation type, i.e. a rela-
tive abundance of coarse aggregates (Anderson et al., 1998).

We performed factor analysis using covariance and corre-
lation data matrix, considering the following variables that

are known to influence soil quality and conservation and are
likely to have a direct or indirect relationship with the stud-
ied phenomena (Seybold et al., 1999): pH, total aggregates
loss and aggregates half-life after wet sieving (soil stability),
liquid limit (LL), plastic limit (PL), plastic index (PI= LL–
PL), soil texture (3 classes) with/without soil organic matter
(SOM) removal and correspondingDf values (Stanchi et al.,
2008a), clay and coarse sand aggregation index (Stanchi et
al., 2008a), cation exchange capacity (CEC), exchangeable
cations, base saturation, carbonates, and total C and N con-
tents. All analyses were performed in double. Among the
above mentioned properties, aggregate stability and the At-
terberg limits are related to soil structure and erodibility. The
texture without SOM removal and the corresponding Df are
useful indexes of soil aggregation and reflect changes in soil
physical quality. Organic matter content promotes soil ag-
gregation and structure creation, as well as inorganic cements
(carbonates). The CEC, being related to clay content, is also
known to be related to the Atterberg limits (higher CEC is
typical of soils with better consistency properties).

Factor analysis was performed considering topsoils and
subsoils separately, using covariance and correlation data,
with varimax rotation, in order to maximise the correla-
tion between factors and measured properties. Prior to fac-
tor analysis, we verified the normal distribution of variables
through a Kolmogorov-Smirnov test.

All the statistical treatment of data was performed with
SPSS (version 17.0).
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3 Results and discussion

The soils in the study areas were generally characterised by
limited development, as we can expect for Alpine environ-
ments. Refering to WRB (IUSS Working Group, 2006), most
of them were classified as Regosols, a few as Cambisols, the
latter in recently abandoned almost flat, non-terraced, agri-
cultural areas. The average total depth of A horizons var-
ied with site conditions and management in the range 5–
50 cm (p < 0.01, data not shown). Pastures and abandoned
terraced areas showed deeper A horizons (both 29 cm aver-
age depth, st. dev 13 and 22, respectively), as did coniferous
forests (30 cm average depth, st. dev. 16), while broadleaved
and mixed coniferous-broadleaved woods showed less devel-
oped A horizons (14 cm average depth, st. dev. 8, and 16 cm
average depth, st. dev. 8, respectively). A horizon develop-
ment was also significantly related to slope classes, as slopes
>30◦ showed significantly lower depths (less than 20 cm,
p < 0.01).

Both topsoils and subsoils showed coarse textures in Na-
hexametaphosphate (Table 2) with high sand content (more
than 50 % by weight) and maximum 5 % of clay content,
for both determination methods. Topsoils (T) and subsoils
(S) showed significant differences in many relevant physical
properties (Table 2). In general, soil texture was finer in the
subsoils, i.e. richer in silt and clay fractions, due to limited
aggregation processes in S samples (when organic matter is
not removed, and therefore aggregates are still present to-
gether with primary particles). Moreover no significant dif-
ferences were observed after organic cements removal, as
soil organic matter played, as expected, a relevant role in
aggregation mainly in topsoils. Topsoil samples were there-
fore characterised by more pronounced aggregation, as also
indicated by the higherDfH2O2

–DfNa index (Stanchi et al.,
2008a), and by the coarse sand and clay ratio, higher LL and
PL, i.e. better resistance to liquefaction, despite the overall
low plasticity (low PI independent of soil depths).

Aggregate losses (Fig. 2) were always higher (all siev-
ing times,p < 0.001) for subsoils both in quantitative terms,
and in loss velocity (data not shown), indicating greater
vulnerability. Topsoil were quite vulnerable but aggregates
showed a considerably lower destruction rate (about double
time required for the breakdown of 50 % aggregates, data
not shown), which can be seen as a measure of soil physi-
cal quality. In the study by Freppaz et al. (2002) comparable
topsoil aggregate loss were reported for ski slopes with high
intensity of management, while undisturbed forest and recent
clear-cut areas showed much lower soil loss (around 20 %).
Topsoils also showed better consistency properties (higher
LL and PL,p < 0.001), indicating a higher resistance to plas-
ticity loss and liquefaction processes. However, both depths
showed a limited plasticity interval, i.e. plasticity index (PI),
as we may expect in Alpine environments.

Also chemical properties (Table 3) confirmed the differ-
ences between soil depths (T, topsoil; S, subsoil), mainly in

Fig. 2. Soil losses (%) for topsoil and subsoil samples (n = 41 each).
The lines represent average values± 2 standard error. Wet sieving
was performed for 6 sieving times (5, 10, 15, 20, 40, 60 min.).

Table 3. Considered chemical properties for topsoil (T) and sub-
soil (S) samples. Standard dev. in brackets (n = 41), significance
levels expressed by p-values (CEC: cation exchange capacity; * sig-
nificant differences between values in the same lines,p < 0.05).

Soil properties T S p

pH 6.7 (1.2) 7.1 (1.1) 0.115
CEC (cmolc kg−1) 14.7 (7.3) 8.3 (4.6) 0.000*
Exch Ca (cmolc kg−1) 14.8 (12.3) 8.8 (7.6) 0.014*
Exch Mg (cmolc kg−1) 1.8 (1.4) 1.1 (1.1) 0.020*
Exch K (cmolc kg−1) 0.31 (0.21) 0.14 (0.08) 0.000*
Organic C (g kg−1) 37.0 (27.0) 13.9 (11.2) 0.000*
N (g kg−1) 2.65 (2.33) 4.3 (1.4) 0.426
C/N 16.4 (5.7) 15.5 (9.5) 0.562

the cation exchange complex and the organic C content, both
showing a sharp decrease with soil depth. The carbonate con-
tent (data not shown), as well as pH (Table 3), showed con-
siderable heterogeneity in the study areas, depending on the
parent material. For such properties, no uniform trend was
observable along the soil profiles.

Correlation matrices for T and S samples are presented
in Tables 4 and 5, respectively. In the topsoils and subsoils,
LL and PL showed significant positive linear correlation with
the organic carbon content, indicating that the organic mat-
ter content, despite its modest amounts, plays a major role
in the Alpine environment concerning the conservation of
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Table 4. Correlation matrix between soil properties, topsoils (* significant forp < 0.05; ** p < 0.01).

pH C N CEC Total loss LL PL DfH2O2
DfNa SandNa SiltNa ClayNa SandH2O2 SiltH2O2 ClayH2O2

pH −0.437* −0.224 −0.399** 0.593** −0.361* −0.463* −0.633** 0.0091 −0.115 −0.046 0.042 0.374** −0.046 −0.607**
C 0.753** −0.555** −0.509** 0.804** 0.658** 0.435** −0.237 0.246 −0.244 −0.202 −0.169 −0.073 0.473**
N −0.123 −0.375** −0.032 −0.043 −0.201 0.015 0.268 −0.235 −0.321* −0.121 −0.107 0.434**
CEC −0.424** 0.563** 0.573** 0.397** −0.344** 0.200 −0.167 −0.284** −0.209 −0.036 0.438**
Total loss −0.617** −0.594** −0.634** −0.094 −0.185 0.222 0.031 0.115 0.232−0.650**
LL 0.977** 0.383* −0.121 0.419** −0.448 −0.233 −0.033 −0.170 0.410**
PL 0.341** −0.260 0.408* −0.411** −0.313* 0.038 −0.233 0.378**
DfH2O2

0.122 −0.78** 0.679** 0.939 −0.278** 0.356* 0.016

DfNa 0.132 −0.171* 0.014 −0.174 0.024 0.329*
SandaNa −0.985** −0.847** 0.286 −0.449* 0.102
SiltNa 0.742** −0.261 0..433* −0.124
ClayNa −0.305 0.408** −0.11
SandH2O2 −0.31** −0.470*
Silt H2O2 −0.028

Table 5. Correlation matrix between soil properties, subsoils (* significant forp < 0.05; ** p < 0.01).

pH C N CEC Total loss LL PL DfH2O2
DfNa SandNa Silt Na ClayNa SandH2O2 Silt H2O2 ClayH2O2

pH −0.093 0.315* −0.45** 0.252 −0.159 −0.093 −0.029 0.194 0.051 −0.02 −0.109 −0.058 0.044 0.073
C 0.083 −0.582** −0.47** 0.820** 0.860** 0.065 −0.502** 0.347* −0.292* −0.348* −0.017 −0.034 0.116
N −0.278 0.025 −0.032 −0.043 −0.201 −0.241 0.268 −0.235 −0.245 0.149 −0.117 −0.161
CEC −0.659** 0.464** 0.333* −0.026 −0.284 0.243 −0.226 −0.202 0.015 −0.086 0.155
Total loss −0.580** −0.380* 0.005 0.217 −0.191 0.165 0.189 −0.207 0.294* −0.070
LL 0.936** −0.059 −0.470** 0.404* −0.355* −0.377* 0.180 −0.228 −0.007
PL −0.017 −0.496** 0.359* −0.297 −0.383* 0.136 −0.163 −0.027
DfH2O2

0.554** −0.620** 0.578** 0.600** −0.699** 0.435** 0.958**

DfNa −0.797** 0.627** 0.916** −0.505** 0.409** 0.516**
SandaNa −0.963** *0.759** 0.651** −0.606** −0.537**
Silt Na 0.556** 0.556** −0.637** 0.487**
ClayNa 0.009 0.330* 0.482**
SandH2O2 −0.961** −0.755**
SiltH2O2 0.544**

soil consistency. The positive correlation with CEC was also
highly significant at both depths, confirming that soil consis-
tency is positively influenced by the cation exchange com-
plex, as often stated in literature (Seybold et al., 2008). For
T samples, soil consistency (i.e. high LL and PL, Table 4)
showed a strong negative relationship with total soil loss, in-
dicating that soil loss by water erosion is somehow mitigated
when soils have good consistency properties. The same trend
was observed for S samples (Table 5), but the correlation co-
efficients were lower, though the relation was still significant.

The Atterberg limits showed a strong correlation in both
T and S subgroups, confirming the linear relationship ev-
idenced in literature (De Jong et al., 1990; Stanchi et
al., 2009). The liquid limit of topsoils showed a posi-
tive correlation with the sand-sized fraction (Sand in Na-
hexametaphosphate) and with the clay content after SOM re-
moval, indicating that the liquid limit is related to the aggre-
gation properties and to the clay fraction abundance. Similar
correlation coefficients could be established for the plastic
limit in T samples. For subsoil samples, the correlation of the
liquid limit with coarse-sand sized fraction was still present,
although less significant.

The liquid limit of topsoil was positively correlated with
fractal dimension after SOM removal: higher consistency

Table 6. Eigenvalue, variance and cumulative variance explained
by factor analysis in topsoil samples (n = 41).

Factors Eigenvalues Variance Cumulative
variance

1 8.24 0.23 0.23
2 5.19 0.23 0.46
3 2.67 0.16 0.62
4 1.96 0.11 0.74
5 1.17 0.06 0.80

corresponded to samples with higherD, i.e. with higher con-
tent of fine primary particle fractions (clay, fine silt). For
subsoil, a negative significant relation was observed only be-
tween LL andDfNa, i.e. soils with higherD (higher relative
abundance of fine aggregated fractions) showed a lower LL,
although a positive relation was generally expected, as LL is
generally related to the fine fractions (clay in particular). In
this case the different behavior might depend on the determi-
nation method (no SOM removal). In fact, a similar relation
is visible between clay and silt contents (without SOM re-
moval) and LL.
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Table 7. Proportion of variance (varimax rotation) for soil properties of the retained factors in topsoil samples (n = 41).

Soil properties Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

50 % aggregates disruption time 0.16 0.18 0.27 −0.14 0.38
LL 0.92 0.17 0.034 −0.066 0.12
PL 0.91 0.21 0.012 −0.12 0.072
SandNa 0.14 0.95 −0.19 −0.24 0.49
Silt Na −0.145 −0.937 0.155 0.012 −0.037
Clay Na −0.11 −0.90 0.27 0.058 −0.078
SandH2O2 0.034 0.23 −0.93 −0.099 0.016
Silt H2O2 −0.34 −0.18 0.76 0.21 −0.15
Clay H2O2 0.45 −0.20 0.77 −0.12 0.20
CSH2O2/CSNa −0.30 −0.14 −0.50 −0.14 0.33
ClayH2O2/ ClayNa 0.46 0.73 0.31 −0.10 0.22
DfNa −0.14 −0.94 0.20 −0.19 −0.12
DfH2O2

0.44 −0.18 0.80 −0.16 0.17

CEC 0.73 0.15 0.099 0.29 0.10
Mg 0.006 −0.33 0.30 0.57 −0.44
Ca 0.30 0.008 0.08 0.80 0.065
K 0.004 0.40 −0.17 0.36 0.38
BS −0.17 −0.15 0.009 0.89 0.037
pH −0.45 −0.17 −0.48 0.55 0.24
N 0.71 0.39 0.086 0.22 0.21
C 0.84 0.34 0.036 0.10 0.006
C/N −0.31 −0.21 0.059 −0.26 −0.77
DfNa/DfH2O2

0.41 0.80 0.29 −0.081 0.22

Total aggregate loss −0.84 0.057 −0.25 0.30 −0.047

Table 8. Eigenvalue, variance an cumulative variance explained by
factor analysis in subsoil samples (n = 41).

Factors Eigenvalues Variance Cumulative
variance

1 7.4 0.25 0.25
2 4.6 0.15 0.40
3 3.5 0.15 0.55
4 2.2 0.12 0.67
5 1.9 0.11 0.78
6 1.3 0.10 0.88

Factor analysis was carried out using the following vari-
ables: LL; PL; texture for the two determination methods;
C and N contents, C/N ratio; CEC, exchangeable cations;
clay and coarse sand ratio; and soil losses,DfH2O2

, DfNa,
DfH2O2

–DfNa. In the case of correlation matrix, we retained
the factors with eigenvalues>1, and varimax rotation was
adopted to maximize correlations between factors and mea-
sured properties for both T and S samples. Extracted commu-
nalities were always high (data not shown), always exceeding
0.700, indicating that the extracted components were repre-
sentative of the variable group, i.e. they have a significant
contribution to the factor (Ayoubi and Khormali, 2008).

For topsoil samples (Table 6) five factors explained 80 %
of the total variance. The first two factors were able to ex-
plain most of the variance. For subsoil samples (Table 7)
6 models were retained, accounting for a cumulative vari-
ance of 88 %. Factor 1 was the most relevant in terms of
explained variance (25 % of the total variance), factors 2, 3,
and 4 contributed for around 15 % each, while a more limited
contribution was given by factors 5 and 6.

In topsoils, Factor 1 (Table 8), explaining about 25 %
variance, was characterised by a high positive loading
of LL (0.92) and PL (0.91), of CEC (0.73) and organic
C (0.843), and a negative loading of total aggregate loss
(−0.84). Depending on the distribution of weights (load-
ings) we tried to relate each factor with a relevant soil prop-
erty/soil function (Shukla et al., 2006; Ayoubi and Khormali,
2008). Factor 1 was therefore related to soil structure and
strength, as good soil structure and consistency are important
for preventing topsoil losses. Factor 2 showed negative loads
with clay (−0.90) and silt (−0.94) contents without SOM
removal, as well as withDfNa (−0.94), while it showed pos-
itive loads with sand content without SOM removal (0.95),
clay aggregation ratio (0.73), and between the difference be-
tweenDf values (0.80), which is known as a measure of soil
aggregation (Stanchi et al., 2008a). Therefore, we identified
factor 2 as aggregation factor. Factor 3 was related to texture
and parent material, as it was influenced by soil texture after
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Table 9. Proportion of variance (varimax rotation) for soil properties of the retained factors, in subsoil samples (n = 41).

Soil properties Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

50 % aggregates disruption time −0.23 0.73 0.057 −0.34 −0.20 −0.32
LL −0.14 0.91 0.061 0.11 −0.042 −0.17
PL −0.093 0.92 −0.111 0.061 0.058 0.009
SandNa −0.88 0.11 0.32 0.17 0.026 −0.037
SiltNa 0.86 −0.10 −0.17 −0.22 0.005 0.070
ClayNa 0.69 −0.10 −0.64 0.028 −0.11 −0.06
SandH2O2 −0.88 0.23 −0.005 0.13 −0.33 0.075
SiltH2O2 0.69 −0.34 −0.15 −0.34 0.48 −0.054
Clay H2O2 0.92 0.037 0.038 0.28 −0.069 −0.081
CSH2O2/CSNa 0.16 0.26 −0.003 0.049 −0.88 −0.023
ClayH2O2/ClayNa −0.168 0.058 0.93 0.18 −0.09 0.11
DfNa 0.76 −0.049 −0.63 0.039 −0.005 −0.031
DfH2O2

0.91 −0.002 −0.05 0.29 −0.06 −0.005

CEC −0.025 0.33 0.055 0.055 0.13 −0.88
Mg 0.32 0.012 0.15 0.30 0.77 0.16
Ca 0.11 0.041 0.35 0.86 0.016 0.062
K −0.161 −0.013 −0.10 0.83 −0.15 −0.23
BS 0.16 −0.18 0.26 0.64 0.054 0.57
pH −0.44 −0.19 0.33 0.60 0.21 0.55
N −0.24 0.080 0.42 −0.13 −0.26 0.60
C −0.060 0.85 0.19 −0.32 −0.22 0.007
C/N −0.011 −0.021 −0.32 −0.21 0.76 −0.18
DfNa/DfH2O2

−0.21 0.073 0.92 0.25 −0.055 0.043

Total aggregate loss −0.20 −0.59 −0.42 0.13 0.18 0.50

the removal of organic binding agents, that means by the pri-
mary particles content, independent of aggregation, and by
the corresponding fractal dimension, which is a global mass-
size distribution index. Factor 4 was mainly dependent on
soil chemical properties related to the cation exchange com-
plex (in particular exchangeable Ca) and with pH and base
saturation. It could be therefore related to soil bases and re-
action. The last factor, number 5, was apparently related to
the organic matter mineralization, and it showed a negative
load of the C/N ratio (−0.77).

In subsoils, Factor 1 (Table 9) was influenced by soil tex-
ture and aggregation, as it showed high positive loadings
with Dfs (which are known to be positively related to clay
content, Tyler and Wheatcraft, 1992; Stanchi et al., 2008a),
and with clay and silt fractions (both methods). Moreover, it
showed a negative loading with sand content without SOM
removal, i.e. with aggregates in the sand size range. Fac-
tor 2 was clearly related to Atterberg limits, i.e. soil consis-
tency, and also with C content, which is known to improve
soil plasticity and resistance to liquefaction. It showed also a
positive loading from the aggregate loss velocity. Therefore,
factor 2 might be identified as a aggregate vulnerability/soil
consistency factor. Factor 3 was strongly related to clayDfNa

and the corresponding clay content, i.e. with fine aggregate
classes (i.e. aggregated clay). Factor 4 showed a relation
with the exchangeable cation complex, as it had high positive

loadings with exchangeable K, Mg, base saturation, and pH.
The last two factors only explained a limited variance propor-
tion and they were more complex to interpret. Factor 5 was
related to coarse sand aggregation, and Mg content, while
factor 6 only to CEC.

4 Conclusions

The soils of the study area showed a considerable vulner-
ability as evidenced by the shallow instability phenomena
registered in the past, strictly related to severe storms and
potentially with spring snow melt. In fact, topsoil hori-
zons were often affected by water erosion and other shallow
soil movements or gravitationally moved soil material such
as soil slips, sometimes triggered by intense rainfall events.
Topsoils (0–20 cm) and subsoils (20–70 cm) showed consid-
erable differences in physical and chemical soil properties.
Topsoils were generally characterised by better resistance to
loss phenomena, due to better plasticity, structure, and con-
sistency, while subsoils were characterised by weaker aggre-
gation, and scarce consistency and plasticity. Such differ-
ences with soil depth indicated a sharp gradient in resistance
to soil losses, and they may explain the frequency of shallow
soil collapses in case of heavy and intense precipitations, as
observed in the recent past. The better structure of topsoils

Nat. Hazards Earth Syst. Sci., 12, 1845–1854, 2012 www.nat-hazards-earth-syst-sci.net/12/1845/2012/



S. Stanchi et al.: The influence of Alpine soil properties on shallow movement hazards 1853

was mainly related to the organic binding agents, and can
therefore be affected by land management for external in-
puts of organic matter (manuring), management of terraced
slopes, maintenance of the drainage network in agricultural
areas, and use of erosion-mitigating measures. Factor anal-
ysis allowed us to identify some groups of properties that
mainly affect soil behavior. The overall behavior of top-
soil samples was dominated by structure, aggregation, and
consistency; secondly by texture and chemical properties be-
cause subsoil samples properties were dominated by soil tex-
ture and consistency, with a lower importance of the SOM.
Factor analysis helped reducing the high number of chemi-
cal and physical parameters that may affect soil vulnerabil-
ity in the study area, grouping them into a limited number
of factors related to soil texture, structure, and consistency.
Such differences and discontinuities along the profile may
explain the slip of soil horizons recorded after extreme rain-
fall. The set of physical properties (LL, PL, aggregate stabil-
ity etc.) we investigated may help in future research to for-
mulate indexes of soil physical quality with respect to surface
soil losses in mountain environments. We are currently try-
ing to relate physical properties to shallow hazard triggering
mechanisms through continuous precipitation and soil mois-
ture recording. Among the elements that require further in-
sight and investigation, there are the role of skeleton in the
soil behavior, the possible root reinforcement action, and the
effect of the snow melting on soil structure and consistency,
which is very relevant in mountain areas besides the effects
of the liquid precipitation.

Supplementary material related to this
article is available online at:
http://www.nat-hazards-earth-syst-sci.net/12/1845/2012/
nhess-12-1845-2012-supplement.pdf.
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