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Summary 

Chromogranin A (CgA) is produced by cells of the sympathoadrenal system, as well as by human 

ventricular myocardium. In the clinical setting CgA has been mainly used as a marker of 

neuroendocrine tumors, but in the last decade much data have been published on the role of CgA 

and its derived peptides, particularly catestatin and vasostatin, in the regulation of cardiovascular 

function and cardiovascular diseases, including heart failure and hypertension. CgA-derived 

peptides, namely catestatin and vasostatin, may exert negative inotropic and lusitropic effects on 

mammalian hearts. As such CgA and its derived peptides may be regarded as a complex feedback 

system able to modulate the exaggerated release of catecholamines. This system may be also 

regarded as an attempt for compensatory cardioprotective response against myocardial injury in 

pre and postischemic scenario. In fact, while vasostatin can trigger cardioprotective effects akin 

ischemic preconditioning (protection is triggered before ischemia), catestatin is a potent 

cardioprotective agent in the early post-ischemic phase, i.e. it is a postconditioning agent 

(protection is triggered at the onset of reperfusion). Admittedly, the exact mechanism of 

cardioprotection of this system is far from being fully understood. Nevertheless, both vasostatin 

and catestatin have shown to be able to activate multiple cardioprotective pathways. In particular, 

both catestatin and vasostatin may induce nitric oxide dependent pathway, which may play a 

pivotal role in cardioprotection against ischemia/reperfusion injury. Here, we describe the cardiac 

effects of catestatin and vasostatin, the mechanisms of myocardial injury and protection and the 

role of CgA derived peptides in cardioprotection. 
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Introduction 

Pharmacological strategies that have consistently provided cardioprotection, in laboratory 

experiments and even in patients, are those involving peptides, like atrial natriuretic peptides 

(ANPs) and other drugs stimulating cyclic guanosyn monophopsphate (cGMP) synthesis [1]. 

Among emerging peptides in the cardiovascular system chromogranin A (CgA) derived peptides 

are occupying a role of paramount importance. CgA is a key player in neuroendocrine regulation 

of cardiac function. In fact, CgA is ubiquitously distributed in nervous system, immune system 

and diffuse neuroendocrine system of both vertebrates and invertebrates [2-6]. 

Yet, CgA is the major soluble product within the secretory granules of chromaffin cells of the 

adrenal medulla where it is costored and coreleased with catecholamines [7]. In particular, in 

mammalian myocardium, CgA is costored with ANPs within the atrial myoendocrine cells [8]. 

Moreover, human ventricular myocardium produces and releases CgA. In these cells CgA is co-

localized with brain natriuretic peptide (BNP). Importantly, there is strong correlation between 

BNP and CgA circulating levels in heart failure patients. Therefore CgA may be a potential 

therapeutic target in heart failure [6] and CgA derived peptides may play a role in regulating 

cardiovascular function. 

Chromogranin A derived peptides 

Human CgA gene consists of eight exons separated by seven introns and has been localized into 

chromosome 14q32. The mature human CgA protein (439 amino acids) has many pairs of basic 

residues that are potential cleavage sites for endoproteases that also coexist in the secretory 

granules (e.g. prohormone convertases PC1/3 and PC2) [9]. CgA proteolytic processing gives rise 

to several peptides of biological importance, including serpinins [10] pancreastatin [11], 

vasostatin-1 (VS-1) [12], and catestatin (human CgA352-372, bovine CgA344-364) [13-18] (For 

more details, see reviews in this forum). 

Whether CgA is proteolytically cleaved in human myocardium is not unequivocally ascertained; 

recent findings suggest that proteolytic processing could, indeed, occur in myocardial tissue. In 



fact, N-terminal fragments containing the VS-1 domain has been detected in the rat heart [19]. 

Intriguingly, murine cardiomyocytes are also able to secrete catestatin (CST), which may establish 

a paracrine function in cardiac tissue [20]. Nevertheless, several cleavage products of CgA have 

been identified to date and have been shown to exert important biological functions. For instance, 

vasostatin (human CgA 1–76) is a vasodilatator agent; serpinin (human CgA411–436) is an 

antiapoptotic agent, pancreastatin (human CgA250–301) is a dysglycemic hormone, and CST 

(human CgA352–372) is a catecholamine release-inhibitory peptide. Recently, it has been reported 

that high doses of VS-1 may exert in vivo an adrenoceptor-dependent initial vasoconstriction, 

which masks the persistent adrenoceptor-independent vasodilatation [21]. Notably, it has been 

suggested that the relation between CgA expression and blood pressure is U-shaped, thus 

suggesting that both CgA deficiency and excess could results in an increase in catecholamine 

release [22]. 

Very recently Meng et al. [23] have suggested that CST modulates the cardiac hyperthophic 

response to high blood pressure. These authors observed that among hypertensive patients, the 

ratio of CST to norepinephrine was lower in patients with than in those without left ventricular 

hypertrophy. 

Clearly, both CgA and its derived peptides have a role in the pathogenesis of hypertension, being a 

complex system able to modulate sympathoadrenal tone and cardiovascular functions. Importantly, 

among CgA derived peptides, both vasostatin-1 and CST have been proposed as cardioprotective 

agents [24,25].Therefore we will focus our attention on these two peptides. 

Vasostatin-1 

Vasostatins (VS-1 and VS-2) are N-terminal CgA-derived peptides (See reviews in this forum). In 

particular, vasostatin (VS-1) is the highly conserved CgA1–76, which was named vasostatin 

because of its vaso-suppressive effects on isolated and pre-contracted human vessels [12,26]. VS-1 

contains three amphipathic domains, i.e. one in the positively charged CgA47–66 and the other 

two in the negatively charged CgA1–40 [27]. Clearly, VS-1 and its smaller fragments act as 



multifunctional regulatory peptides displaying several proprieties. These include antifungal, 

antibacterial and vasodilatory properties [28-30]. Importantly, as above mentioned, VS-1 acts as 

cardio-suppressive agents on isolated beating heart preparations obtained from rats, frogs and eels 

[31]. The cardiotropic and vasoactive properties of CgA-derived vasostatins suggest that these 

peptides play a role as regulator of the cardiovascular function, particularly under conditions of 

sympathetic overstimulation [32-34]. 

Catestatin 

Catestatin, one C-terminal CgA derived fragment, is a peptide with different variants within a 

species and with different sequencing in the different species. The different variants and 

sequencing will be considered in other reviews of this forum. The human CST (sequence: 

SSMKLSFRARAYGFRGPGPQL) is a cationic and hydrophobic peptide. Recent studies have 

documented that lower plasma level of CST is a risk factor for development of hypertension in 

humans and animals [35]. It has been also documented that a naturally occurring human variant of 

CST alters autonomic function and blood pressure, and that arterial hypertension of CgA knockout 

mouse is rescued by exogenous injection of catestatin. Importantly, CST is a nicotin cholinergic 

anatagonist, antagonizes catecholamine secretion, vasodilates and is a negative myocardial 

inotrope [9,36]. Thus, also CST may play a crucial role in regulating the cardiovascular functions. 

The CgA-derived peptides vasostatin-1 and catestatin as regulatory of cardiac functions 

Cardiac inotropic and lusitropic effects by vasostatin-1 

Increasing physio-pharmacological evidences indicate that peptides containing the N-terminal 

domain of CgA (i.e. VS-1) contribute to the autocrine/paracrine cardiac regulation. In all species 

tested their major actions consist of negative inotropism and in the counteraction of the β-

adrenergic mediated positive inotropism, typically induced by isoproterenol (Iso) [6,33,37-39]. In 

the rat heart, these peptides also induce negative lusitropism. VS-1 also counteracts endothelin-1 

(ET-1)-induced positive inotropic effects and ET-1-dependent coronary constriction [24] without 



affecting calcium transients on isolated ventricular cells [24]. So that it suggests a noncompetitive 

antagonistic action indirectly via endothelium-derived nitric oxide [40]. 

Intracellular mechanisms 

The negative inotropic and lusitropic effects by VS-1 have been extensively studied by Tota’s 

group [9,36-41] and Alloatti’s group [40,42] and will be the topic of other reviews of the present 

Forum. Here we will briefly describe the intracellular mechanism of these contractile effects that 

are relevant for the cardioprotective mechanisms. 

Clearly, VS-1 interacts with multiple intracellular effectors. In fact in the rat heart we have show 

that the NOS-NO-cGMP-PKG system plays a key role in mediating specific intracardiac signaling 

involved in the control of the contractile performance [24]. In particular, we have shown that the 

reduction of left ventricular pressure, rate-pressure product, and +dP/dtmax induced by VS-1 was 

abolished by either scavenging NO with hemoglobin (Hb) or blocking NOS activity with NOS 

antagonists as well as by inhibiting soluble Guanylyl Cyclase (sGC) or cGMP-dependent protein 

kinase (PKG). These data are all consistent with an NO-dependent mechanism underlying the VS-

1induced negative inotropic action in the rat heart. However, the mechanism by which the peptide 

interacts with these intracellular effectors (i.e., via either a still unknown receptor or lipophilic 

interaction with the membrane) is still under intense investigation [41]. Recently, a heparan sulfate 

proteoglycans (HSPGs) interaction and caveolae endocytosis of VS-1 has been proposed as 

mechanism that is coupled with a phosphatidylinositol 3-kinase (PI3K)-dependent eNOS 

phosphorylation [40]. 

It has been demonstrated that, in rat ventricular myocytes, NO by targeting sGC, and thus PKG, 

negatively affects contractility. This negative effect was mediated by reducing L-type Ca2+ current 

and by phosphorylating troponin-I, thus reducing the affinity of troponin-C for Ca2+ [43-45]. We 

proposed that both L-type Ca2+ current reduction and PKG-mediated myofilament desensitization 

to Ca2+ may account for VS-1 induced negative inotropy. Moreover, activation of PKG induced the 

phosphorylation of α1-subunit of the PTx-sensitive Gi/o proteins, and this potentiated the 



inhibition operated on L-type Ca2+ current [43]. In addition, this PKG-induced action on Gi/o 

proteins, at same time, negatively affected adenylyl cyclase, causing a decrease of cAMP levels, 

and stimulated eNOS-dependent NO production [46,47]. Interestingly, in our experiments we 

observed that the VS-1-induced negative inotropic effect was blocked not only by inhibition of the 

NOS-NO-cGMP-PKG system but also by the impairment of Gi/o proteins by PTx [24]. 

Intriguingly, it has been also reported that cytoskeleton integrity is necessary for the VS-induced 

negative inotropy and lusitropy in the rat heart. These results are of importance because the 

cytoskeleton alterations in cytoskeleton dynamics play a pivotal role in both physiological and 

physiopathological cardiac mechanics in the case of systolic and diastolic dysfunctions [41]. 

Recently, experiments conducted on rat isolated cardiomyocytes and bovine aortic endothelial 

cells suggested that the negative inotropism induced by VS-1 in rat papillary muscle is probably 

due to an endothelial PI3K-dependent NO-release, rather than to a direct action on cardiomyocytes 

[39]. Taken together, these data strongly suggest that in the inotropic effects a cross-talk between 

endothelium and myocardium may play an important role. 

Cardiac inotropic and lusitropic effects by catestatin 

The cardiotropic actions of wild-type-CST, including the beta-adrenergic and endotelin-1 (ET-1) 

antagonistic effects, support an important role of this peptide as an autocrine-paracrine modulator 

of cardiac function, particularly when the heart is targeted by either adrenergic or ET-1 stimuli. In 

the frog heart CST reduced contractility by inhibiting phosphorylation of phospholamban. 

Moreover, the CST effect was abrogated by pretreatment with either NOS or sGC inhibitors, or an 

ET(B) receptor antagonist. CST also non-competitively inhibited the positive inotropic action of 

isoproterenol [9]. In the rat heart slightly different effects were achieved by different variants of 

CST (see other reviews of this Forum). Nevertheless, wild-type-CST increased heart rate and 

coronary pressure and decreased left ventricular pressure, rate pressure-product and both positive 

and negative dP/dt. Wild-type-CST not only inhibited phospholamban phosphorylation, but also 

the inotropic and lusitropic effects of wild-type-CST were abolished by chemical inhibition of β2-



adrenergic receptors, Gi/o protein, nitric oxide or cGMP, indicating involvement of this pathway 

[36]. CST displays a transient positive inotropic effect, which is abolished by the H1 histamine 

receptor antagonist mepyramine [48]. 

Intracellular mechanisms  

The NO synthase (NOS)-NO-cGMP-dependent protein kinase (PKG) cascade plays a key role in 

the control of contractile depression by CST. In particular studies highlight the pivotal 

involvement of a Ca2+-independent/PI3K- and Akt-dependent NO release in the cardiodepressant 

effects of CST [36,40]. It has also been reported that, the release of NO derives mainly from 

endothelial cells via Akt-dependent phosphorylation of eNOS [1,40]. In fact, CST dose-

dependently reduced the effect of β-adrenergic stimulation. This effect was not mediated by a 

direct action on cardiac cells, but likely involved a PI3K-dependent NO release from endothelial 

cells. When inotropic effects of CST were evaluated in the presence of selective antagonists it has 

been confirmed a role for both α- and β-adrenergic receptors, as well as for Gi/o proteins and the 

NO pathway [36]. 

Therefore both VS-1 and CST cardiac effects consider a cross-talk between 

endocardia/endothelium and cardiomyocytes. This cross-talk is of paramount importance in 

cardioprotection. 

 

Before to consider the cardioprotective effects of CgA derived peptides we will briefly consider 

the “Ischemia/reperfusion injury” and will consider with more details the “Cardioprotective 

strategies and pathways”. 

 

Ischemia/reperfusion injury (Fig. 1) 

Coronary heart disease is one of the leading worldwide causes of death; in particular the acute 

myocardial infarction is a major cause of such mortality. The only way to salvage myocardium in 

patients with acute myocardial infarction is the rapid restoration of blood flow which reduces 



infarct size. However, the rapid reperfusion induces additional lethal injuries that are not present at 

the end of the ischemic period, that is reperfusion injury [49-51]. Reperfusion injury is due to 

complex biochemical and mechanical mechanisms involving extracellular and intracellular 

processes. In the myocardium reperfusion injury includes cellular death, which can occur for 

necrosis autophagy and apoptosis. It has been proposed that necrosis can be caused mainly by 

ischemia as well as by reperfusion, whereas the apoptosis is typically induced by reperfusion [52]. 

Autophagy may be both deleterious and beneficial, depending on a number of circumstances [for 

reviews see 53]. Reperfusion injury also includes myocardial stunning, endothelial dysfunction 

and no-reflow phenomenon [51]. 

Causes of reperfusion injury (751 words 5148 Char) (530 3644) 

The mechanisms of reperfusion-induced cell death are not completely understood, but it is well 

established that myocardial damages during reperfusion among others can be due to the liberation 

of ROS, to the cellular/mitochondrial overload of Ca2+, to the activation of mitochondrial 

permeability transition pore (mPTP), to the reduced availability of NO and to the activation of the 

NFkB. 

Oxidative stress related to the generation of reactive oxygen species (ROS) plays an important role 

[51,54] and contributes to the onset and maintenance of post-ischemic inflammation [52]. During 

reperfusion, the superoxide anion (O2
-) production increases, which along with other ROS strongly 

oxidize the myocardial fibers, thus favoring apoptosis [51-58]. It reacts with the NO forming 

peroxynitrite (ONOO-). Thus, ONOO- is a sign of a reduced availability of NO [59,60] and 

participates with O2
- to the lesion of myocardium [61-63]. Peroxynitrite dependent damages may 

be reduced in the presence of a sufficient quantity of NO which can react, in a so-called secondary 

reaction, with ONOO- leading to protein nitrosylation and damage reduction [64]. Reperfusion 

injury is also due to the cellular Ca2+ overload. In fact, the Ca2+ overload, which starts during 

ischemia, is further increased during reperfusion. Altered cytosolic Ca2+ handling may induce 

structural fragility and excessive contractile activation during ischemia and upon reperfusion, as 



also evidenced from a progressive increase of ventricular diastolic pressure and band necrosis 

[57,65,66]. Increasing cellular osmolarity, the overload of Ca2+ favors the swelling (explosive 

swelling) of myocardiocytes. Mitochondria undergo rapid changes in matrix Ca2+ concentration 

upon cell stimulation. Within mitochondria Ca2+ overload can promotes the expression/release of 

proapoptotic elements, such as the release of caspase cofactors [58]. Ca2+ overload is also 

considered one of the conditions responsible of the opening of mPTP. Although, mitochondrial 

transition pore (mPTP) opening is strongly inhibited by acidosis during ischemia, it is also favored 

by ATP depletion, oxidative stress and high intra-mitochondrial Ca2+ concentrations, conditions all 

occurring during myocardial reperfusion [67]. In fact, the opening of mPTP results in cessation of 

ATP production and cell necrosis and/or to the release of cytochrome c (Cyt c) and cell apoptosis. 

It is likely that a large number of cells are killed by these mechanisms during reperfusion [68-71].  

In the reperfusion the role of nuclear factor kappa B (NFκB) is also important. Its activation is 

induced from several agents included hydrogen peroxide and contributes to the exacerbation of the 

myocardium lesions sustaining inflammatory reactions [49,72-75]. Also the reduced NO 

availability determined by I/R favors the activation of the transcription of the genes that codify for 

molecules of cellular adhesion [73,76]. The NO deficiency can also cause vasoconstriction and 

formation of micro-thrombi into the lumen of the small vessels [77,78]. These mechanisms, 

combined to the adhesion of the leucocytes to the endothelium, can lead to the so-called “no-

reflow phenomenon” [79].  

In summary, reperfusion injury are due to several mechanisms that include Ca2+ overload, ROS 

generation, reduced availability of NO, mPTP opening and to the activation of the NFκB, which 

lead to the augmented expression of molecules of cellular adhesion, leukocyte infiltration and no-

reflow phenomenon. Therefore, the mPTP play a central role being primed by ischemia to open 

upon reperfusion, so that leading to reperfusion-induced cell necrosis.  

Effects of reperfusion injuries 



Among the outcomes of reperfusion injury are included a) endothelial and vascular dysfunction 

and the sequels of impaired coronary flow, which may concur to the “no-reflow phenomenon”; b) 

metabolic and contractile dysfunction; c) arrhythmias; and d) cellular death, by apoptosis, swelling 

and contraction band necrosis. 

Cardioprotective strategies and pathways 

Preconditioning and vasostatin-1 (w 1157 c 8120) (901 6256)  

An initial impulse to the concept of cardioprotection was given by the seminal studies of 

Braunwald, Maroko and colleagues in the early seventies [80,81]. However only in 1986 when the 

ischemic preconditioning (IP) phenomenon was described by Murry et al. [82] research in the 

field increased exponentially. These authors reported that 4 cycles of 5-min ischemia/5-min 

reperfusion prior to a 40-min coronary occlusion decreased infarction by 75% from that seen in 

dogs with only a 40-min coronary occlusion. Thus the brief periods of ischemia had 

preconditioned the myocardium to make it more resistant to the stress of a longer ischemic 

interval. In all animal models IP consists of brief periods (a few minutes) of ischemia, separated 

from one another by brief periods (a few minutes) of reperfusion just prior to a prolonged period of 

ischemia followed by reperfusion (see Fig. 1). Preconditioning limits the severity of the 

ischemia/reperfusion injury. In fact, after IP, the extent of the area of a subsequent infarction is 

reduced by 30–80% versus matched controls. Preconditioning also reduces ischemia/reperfusion 

arrhythmias and may reduce contractile dysfunction. 

Downey’s group was the first to report that IP is triggered by adenosine released during the brief 

periods of preconditioning ischemia [83]. Subsequently we and other investigators have identified 

many of IP’s signaling steps. It is now clear that cardioprotection by ischemic preconditioning is 

triggered by autacoids such as adenosine, bradykinin, opioids and platelet activating factor, 

produced as a response to the cycles of brief ischemia/reperfusion [84-92]. Therefore, it seems that 

cardioprotective substances have their receptors coupled to signal transduction pathways that 

ultimately inhibit the formation of mPTP during the reperfusion phase following the infarcting 



ischemia (Fig. 2) [93-97]. Actually, it is becoming clear that the protective pathway is complex 

and can be divided at least into a pre-ischemic trigger phase and a mediator phase in early 

reperfusion. 

Cardioprotection by IP requires a complex signaling cascade, which includes the opening of 

mitochondrial ATP-sensitive potassium channels (mitoKATP) [98-105]. Intriguingly 

preconditioning can be completely blocked by free radical scavengers, such as N-acetyl-cysteine 

(NAC) or mercaptopropionyl glycine (MPG) [98,100]. These results confirmed that redox 

signaling is involved in triggering cardioprotection by preconditioning. 

In the signaling cascade “trigger pathway” protein kinase C (PKC) plays a pivotal role. In fact 

PKC activation may occur quite directly through activation of phospholipase C (PLC) for the 

action of adenosine receptors. Other substances via their specific receptor may activate a more 

complex pathway that includes the activation of PI3K, PKB/Akt, nitric oxide synthase (NOS), 

guanylyl cyclase and PKG, opening of mitoKATP channels, and finally production and release of 

ROS which target PKC [106] (Fig. 2). When this pathway is activated the heart displays a 

protected phenotype which persists for a couple of hours even after the triggering agonists have 

been washed out. 

In the mediation phase, it seems that the activated PKC modifies another adenosine receptor 

subtype, the A2b receptor [105,108], which becomes ready to be activated in the reperfusion 

period. The subsequent downstream signaling events trace somehow those seen in the trigger 

pathway. These signaling are thought to ultimately prevent formation of mPTP [71,109].  

The reperfusion signaling pathways include the Reperfusion Injury Salvage Kinase (RISK) 

pathway and the more recently described Survivor Activating Factor Enhancement (SAFE) 

pathway, two apparently distinct signal cascades which may actually interact to convey IP and 

Postconditioning (PostC) cardioprotection [110]. 

Several studies have demonstrated that activation of Akt plays a role of paramount importance in 

cardioprotection. Akt leads to the cardioprotective effects of G protein–coupled receptors 



[111,112], glycoprotein 130–linked receptors and receptors of tyrosine kinases [113,114]. These 

receptors activate PI3K which results in an increase of phosphatidylinositol triphosphate (PIP3) 

levels [113-115]. PIP3 favors Akt translocation to the plasma membrane. Akt is subsequently 

activated through phosphorylation at Thr308 by phosphoinositide-dependent kinase 1 (PDK1) and 

by phosphorylation at Ser473 via both TORC2 mechanism and the intrinsic catalytic activity of 

Akt [116-119]. 

The possibility that Akt is also phosphorylated by signal transducer and activator of transcription 3 

(STAT3) or janus kinase (JAK) has been put forward by Goodman et al. [120] and by Gross et al. 

[121]. Recently, it has been proposed that STAT3 is part of the protective SAFE pathway which 

includes JAK/STAT signal transduction pathway [122,123]. In the context of cardioprotection 

STAT3 has been identified in cardiomyocyte mitochondria [124] and its presence was confirmed 

in isolated mitochondria [125,126]. 

STAT3 is activated by phosphorylation during ischemia, and a further increase in its 

phosphorylation occurs during reperfusion [121,127-133]. Such a phosphorylation of STAT3 

reduces cardiomyocyte death and attenuates adverse cardiac remodeling after I/R injury [134]. 

STAT3 phosphorylation and DNA-binding are also induced by IP [135]. Ischemic 

postconditioning also induces STAT3 phosphorylation [120,136,137].  

We have previously shown that NO and its derivative nitroxyl (HNO) play an important role in the 

cardioprotective mechanism of preconditioning triggering [138]. It has been proposed that both an 

NO-cGMP- PKG signaling plays a role in the cardioprotective effect of ischemic postconditioning, 

as well as a NO-dependent PKG independent mechanism. The latter include the intervention of 

ONOO- and other reactive nitrogen species, which in concert with ROS can activate PKC [51]. 

According to results of Cohen and Downey group [139], the cardioprotective effect of ischemic 

preconditioning involves activation of PKC via a direct mechanism linked to adenosine type 1 

receptor, which is independent of the NO-cGMP pathway [88,140]. Therefore, other mechanisms 

couple indirectly to PKC via the activation of a NO-cGMP-PKG pathway [140-143].  



Vasostatin-1 

Regarding N-terminal CgA-derived VS-1, it has been reported that VS-1 is able to counteract the 

effects of adrenergic stimulation [37] via an endothelial and endocardial release of NO, thus 

contributing to protection against excessive excitatory sympathetic challenges [39, 42]. Therefore, 

we wondered whether VS-1 may trigger preconditioning-like effects. Recently, we showed that the 

VS-1 (human recombinant CgA1–78) protects against the extension of myocardial infarction in the 

rat, inducing a pre-conditioning-like effect via adenosine/nitric oxide signaling if administered at 

low concentration before ischemia/reperfusion [24]. The protective signaling activated by VS-1 

converges on PKC. Using the model of isolated rat heart, we found that the reduction of the left 

ventricular pressure (LVP), the maximal values of the first derivative of LVP (dP/dtmax) and of the 

rate-pressure product elicited by VS-1 at 33 nM is abolished by blocking Gi/o proteins with 

pertussis toxin, scavenging NO with hemoglobin, and blocking NOS activity with NG-

monomethyl-L-arginine or N5-(iminoethyl)-L-ornithine, soluble guanylate cyclase with 1H-

[1,2,4]oxadiazole-[4,4-a]quinoxalin-1-one, and PKG with KT5823. Data confirmed the 

involvement of the Gi/o proteins/NO-cGMP-PKG pathway in the VS-1-dependent negative 

inotropic effects. When given before 30-min of ischemia, VS-1significantly reduced the size of the 

infarct from about 65% to about 30% of the left ventricular mass. This protective effect was 

abolished by either NOS inhibition or PKC blockade and was attenuated, but not suppressed, by 

the blockade of A1 receptors. These results suggest that VS-1 activity triggers two different 

pathways: one of these pathways is mediated by A1 receptors, and the other is mediated by NO 

release, and both converge on PKC. Therefore, similarly to preconditioning ischemia, VS-1 may 

be considered a stimulus strong enough to trigger the two pathways, which may converge on PKC. 

We concluded that, since VS-1 does not present membrane receptor [40], possibly it interferes 

with other membrane receptors [24]. Importantly, between VS-1 infusion and 30-min ischemia 

there was a wash-out period which allowed the recovery from inotropic effect. Therefore 



cardioprotection was not due to a reduction of oxygen consumption because of cardiac inotropism 

depression.  

These data emphasize the potential importance of the release of CgA as an attempt of the 

cardiovascular system to protect itself against I/R damages and, eventually, against sympathetic 

overstimulation. Actually, increased plasma levels of CgA are present in patients after myocardial 

infarction [39]. Importantly, very recently, in acute myocardial infarction (AMI) patients an initial 

reduction with a subsequent increase in CST plasma levels has been reported [144]. The increased 

levels of CST and its precursor, CgA, are more supportive of the potential importance of the 

release of CgA and derivatives as tentative to protect the heart against I/R injury. Since the 

majority of I/R damages occur in the early reperfusion, we wondered whether a supplementation 

of VS-1 or CST in the early reperfusion phase may protect the heart against reperfusion injury. In 

our laboratory we observed that VS-1 does not protect when given in post-ischemic phase 

(unpublished observations). On the contrary CST only given in reperfusion resulted highly 

protective against I/R damages [25]. Before to consider CST protective effects in reperfusion, let 

us consider the postconditioning phenomenon as protective tool against reperfusion injury. 

Postconditioning and Catestatin (w 560 c 4181) (428 3225) 

Preconditioning is a robust cardioprotective intervention that salvages ischemic myocardium in 

experimental animals and in humans. However, preconditioning must be applied before an 

ischemic event to be protective. Although emergency angioplasty, thrombolysis, or 

revascularization surgery can effect reperfusion with documented salvage of myocardium, these 

procedures contribute to the injury (reperfusion injury). Therefore, interventions are needed that 

can supplement the reperfusion strategy and attenuate reperfusion injury in the heart.  

The concept of cardioprotective reperfusion pathways was first proposed in the late 1990s when it 

was discovery that a variety of growth factors and drugs are capable of limiting myocardial infarct 

size if administered at the onset of myocardial reperfusion [51,92]. However, only when Zhao et 

al. [145] reported a most improbable observation that several brief coronary occlusions after a 60-



min occlusion significantly reduced infarct size, researchers renewed they interest on the 

opportunity to limit reperfusion injury. Postconditioning (PostC) has a great clinical appeal. In 

clinical practice, postconditioning is a promising adjunctive technique to reperfusion since it can 

improve postinfarction outcome, limit left ventricle dilatation and attenuate contractile 

dysfunction. However, ischemic/mechanical PostC cannot be applied to all patients with acute 

myocardial infarction. This makes pharmacological postconditioning an intriguing clinical 

objective. 

In the original description of ischemic PostC in 2003 [145], the infarct-limiting effects were 

attributed to the prevention of myocardial reperfusion injury, attenuated apoptotic cell death, less 

oxidative stress, preserved endothelial function, reduced calcium overload, less myocardial 

inflammation and edema. However, it was soon clear that an actual signal transduction pathway 

was involved in the cardioprotective effects induced by ischemic PostC [146-149]. The novel 

aspect, therefore, was the opportunity of recruiting endogenous pro-survival signaling pathways to 

protect the heart against lethal myocardial reperfusion injury with both intermittent ischemia and 

drugs. 

The main pathways (RISK and SAFE) involved in preconditioning are also involved in 

postconditioning (Fig. 3). However, the mechanism of cardioprotection involved in 

postconditioning are not exactly the same of those involved in preconditioning (for review see 

109). 

RISK cascade considers the intervention of several enzymes starting from PI3K-Akt and MEK-

ERK-1/2 as above described. These cascades converge on mitochondria and sarcoplasmatic 

reticulum to reduce cytoplasmatic and mitochondrial calcium overload and to limit damages.  

In mice with a deletion of STAT3 within cardiomyocytes, infarct size reduction by a 

postconditioning stimulus of 3 cycles 10 s ischemia and reperfusion each was abolished [132]. 

Also, postconditioning with exogenous tumor necrosis factor α did not protect isolated hearts from 

cardiomyocyte-specific STAT3 knockout mice [132,150]. However, whether or not specifically 



mitochondrial STAT3 contributes to the cardioprotection by postconditioning must be confirmed 

in further studies [151]. 

Catestatin 

Regarding pharmacological postconditioning with CST, in a recent study [25], we demonstrated 

the possibility to protect the heart infusing CST at beginning of reperfusion. We perfused the post-

ischemic isolated rat heart with a CST concentration of 75 nM. In this model CST decreased the 

infarct size, limited the contracture and improved the post-ischemic systolic function. Moreover, 

we found that CST was protective in a model of isolated cardiomyocytes exposed to simulated 

ischemia, increasing cell viability rate of about 65%. The CST concentration we used in the 

isolated heart is within the same range of concentrations of the precursor CgA, detected in plasma 

of patients suffering IMA (about 1 nM) or cardiac heart failure (about 10 nM) [152,153]. It is also 

similar to the peptide concentration (IC50 ~ 100 nM) which depresses myocardial inotropism in 

normal perfused hearts [36], and appears slightly lower than the IC50 value for CST-induced 

inhibition of the nicotinic cholinergic receptor-mediated catecholamine release in bovine adrenal 

chromaffin cells [17]. CST applied in the reperfusion is protective especially in terms of 

improvement of post-ischemic cardiac function. Since protection was observed in both isolated 

heart and isolated cardiomyocytes, we suggested that the protective effect was primarily due to a 

direct effect on the myocardium and did not necessarily depend on the antiadrenergic and/or 

endothelial effects of CST [25]. However, endothelial effects could be additive. 

In ongoing experiments we are studying the main mechanism for CST cardioprotection [154]. We 

have shown that the CST given in early reperfusion facilitates the phosphorylation of Akt, PKCε 

and GSK3β which may regulate mitochondrial function [49,110,139,155]. The mechanisms seem 

similar to those described in ischemic PostC. However, the protective pathways partially diverge, 

as mitoKATP channel blockade (5-hydroxydecanoate, 5-HD) or ROS scavenger does not avoid 

CST-dependent contracture limitation, whereas PKC inhibition abolishes infarct size, antiapoptotic 

activity, contracture limitation and systolic function recovery. Since 5HD attenuates the PKCε 



activation due to CST, a reverberant circuit (PKCε-dependent mitoKATP channel activation ROS 

formation and subsequent PKCε re-activation, Fig. 3) has been hypothesized [70]. We also 

observed that the anti-infarct effect of CST is abolished by scavenging ROS with a sulfhydryl 

donor specific for mitochondrial activity [156], namely N-(2-mercaptopropionyl)glycine (MPG, 

300 µM); whereas the contracture limitation is not affected by MPG.  

Contrary to what was seen for VS-1, catestatin was unable to induce preconditioning-like effects 

(unpublished observations). 

Why is vasostatin-1 a preconditioning and catestatin a postconditioning agent? 

Several substances may be protective or deleterious when certain conditions have changed 

[51,139], as we and others have observed for other mediators such as PAF (platelet-activating 

factor) [142,154,157] and Angeli’s salt, which are two protective agents when given in pre- but not 

in postconditioning phase [138,158,159]. On the contrary, we and other authors [160,161] have 

shown that Apelin is a postconditioning agent, but it is not protective when given as 

preconditioning mimetic. 

Actually, it is unknown why VS-1 is a preconditioning and CST a postconditioning agent. We can 

only propose a hypothesis: since the preconditioning effect of VS-1 is attenuated by the blockade 

of adenosine type 1 receptors, and since the receptor involved in the protection against reperfusion 

injury are the A2b receptors, we can argue that the type of receptors influenced by the two CgA 

derived peptides are different. However, this is a hypothesis and as such needs to be verified.  

CgA derived peptides, ischemia/reperfusion and comorbidities 

Since ischemic heart disease in humans is a complex disorder caused by or associated with known 

cardiovascular risk factors (e.g. smoking, aging, hypertension, myocardial hypertrophy and/or 

metabolic syndrome), which may be “confounders” in the outcome of cardioprotection, it is 

worthwhile to consider CgA and derived peptides in the presence of some of these 

comorbidities/confounders. 



The role of CgA and its derived peptides, namely VS-1 and CST, in clinical scenario as players of 

pathophysiological mechanisms and/or as markers of cardiovascular diseases will be considered by 

other Reviews of this Forum. Here we briefly consider these peptides in the context of 

cardiovascular diseases and cardioprotection. 

CgA plasma levels correlate with the severity of cardiac dysfunction and are a predictive factor for 

mortality in patients with chronic heart failure [162]. Moreover high levels of CgA were correlated 

to long-term mortality in patients with acute myocardial infarction [163]. Elevated circulating 

levels have also been reported in patients with tumors and with kidney and liver failure [164-166]. 

Whether the increased levels contribute to the development of diseases or represent an attempt of 

protection against injury is not clear at the moment. 

Of note, CgA knockout mice show hypertension and cardiac enlargement [167]. In this in vivo 

studies conducted in CgA knockout mice the authors have shown that the injection of CST rescue 

animals from elevated blood pressure. Moreover, studies on individuals with primary and 

secondary hypertension showed that CgA levels and catecholamine storage in the adrenal medulla 

were reduced as compared with controls [168-170]. These data seem promising in considering 

CST as a possible treatment in systemic arterial hypertension, at least in patients with increased 

levels of circulating catecholamines. Actually, CST is a potent vasodilator also in human and is an 

anti-hypertensive agent [167-170]. Importantly, in patients with acute myocardial infarction an 

initial reduction with a subsequent increase in CST plasma levels has been recently reported [143]. 

We observed a non-significant trend toward reduction of infarct size with ischemic PostC in 

spontaneously hypertensive rats [171]. In the same model we have preliminary evidence that CST 

given in early reperfusion is more effective than ischemic PostC in inducing protection against 

infarct size [172], supporting the idea that the addition of CST plays a beneficial role in the 

presence of hypertension. The delayed increased levels of CST after infarction [143] are in 

keeping with an attempt of compensatory cardioprotective response against myocardial injury, 

which misses the early phase of reperfusion, when the majority of damages occur [51,92]. 



Vasostatins appear to function as endocrine/paracrine cardiac stabilizers, particularly in the 

presence of intense adrenergic stimuli, e.g., under stress responses. The “anti-adrenergic” action of 

vasostatins points to a counter-regulatory role of these CgA fragments in cardiovascular 

homeostasis, which may protect the heart against overstimulation at several levels [8,36]. An 

important role of vasostatins in normal and abnormal cardiac function is also supported by the 

finding that elevated levels of circulating CgA in patients with chronic heart failure represent an 

independent prognostic indicator of mortality and depend on the severity of the disease [162]. 

To the best of our knowledge, no other CgA derived peptides have been tested in the context of 

ischemia/reperfusion, cardioprotection and comorbidities. However, it would be worthwhile to test 

some of these peptides in these contexts. An interesting peptide may be the CgA dysglycaemic 

fragment pancreastatin. In fact, it has been suggested that pancreastatin, may be a component of a 

“zero steady-state error” counter-regulatory homeostatic mechanism [173]. Interestingly 

pancreastatin may be increased in hypertension, is involved in metabolic syndrome and affects 

both carbohydrate and lipid metabolism playing an important role in intermediary metabolism and 

disease [174]. 

Clearly more study is needed to identify which CgA derived peptides and interventions (pre or 

postconditioning with peptides) may be protective in the presence of comorbidities. 

Conclusions 

Interestingly VS-1 is a preconditioning inducer and CST a postconditioning agent. Delayed 

increased levels of CST after infarction [143] are in keeping with an attempt of compensatory 

cardioprotective response against myocardial injury. Early interventions such as pharmacological 

postconditioning, which target the first few minutes of reperfusion, may be clinically useful at the 

time of angioplasty, thrombolysis or cardiac surgery. Conceivably, CgA and its derived peptides 

influence may be multifunctional, being achieved not only via the nervous and sympathoadrenal 

systems, but also via direct timely protective mechanisms on cardiomyocytes. Importantly, both 

VS-1 [41,175] and CST [39] positively influence endothelial function, and this may be of pivotal 



importance in organ protection. Our studies on cardioprotection also provide insights into the 

importance of the stimulus-secretion coupling of CgA and its spatio-temporal processing as an 

attempt of the cardiovascular system to protect itself against I/R damages and associated patho-

physiological processes. All together, our results suggest that CgA derived peptides might 

represent a class of compounds dedicated to reduce cardiac reperfusion injury in a time dependent 

fashion. Future research on the mechanisms of action of the CgA-derived peptides, on their 

efficacy in the presence of comorbidities and on the elucidation of their receptors will also be 

important in developing these peptides as potential therapeutics against ischemia/reperfusion 

injury. 
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LEGENDS 

Figure 1. Flowchart depicting the main mechanisms of myocardial 

ischemia/reperfusion injury. In the hearts reactive oxygen species (ROS) 

production slightly increases during the initial part of ischemia until the O2 is 

exhausted. Then sharply increases in reperfusion. Formation of mitochondrial 

permeability transition pores (mPTP) had been limited during ischaemia by the low 

pH despite increased cellular levels of ROS, Ca2+ and Pi overload. However, as pH 

returns to its baseline level and ROS formation increases prolonged opening occurs. 

The limited damages occurring during ischaemia are exacerbated by the prolonged 

mPTP opening which mediates irreversible cell damages in reperfusion. The 



opening effect, besides Ca2+ overload, is also due to indirect effects, such as 

phospholipase A2 (PLA2) and calpain activations and consequent arachidonic acid 

release after membrane phospholipids degradation. A part mitochondrial membrane 

depolarization also inorganic phosphate (Pi) and lower levels of nitric oxide (NO) 

contribute to mPTP opening. Pore opening leads to cell-death through the release of 

pro-apoptotic factors as cytochrome c (Cyt c) and via ROS-induced ROS release 

(RIRR).  

 

Figure 2. Scheme depicting the principal factors involved in cardioprotective 

pathways triggered by preconditioning. Activation of cell-surface receptors in 

response to an ischaemic conditioning stimulus recruits cGMP/PKG, RISK 

pathways. These signal transduction pathways, together with acidosis, activated at 

the time of reperfusion will crosstalk and will terminate on mitochondria to activate 

protective pathways. Akt: Serine/threonine protein kinase; cGMP/PKG: Cyclic 

guanosin monophosphate/protein kinase G; eNOS: Endothelial NO synthase; 

ERK1/2: Extracellular regulated kinase 1/2; GSK3β: Glycogen synthase kinase 3 β; 

MEK: Mitogen-activated protein kinase kinase; mPTP: Mitochondrial permeability 

transition pore; mitoKATP: mitochondrial ATP-dependent Kþchannels; NO: Nitric 

oxide; P70S6K: p70 ribosomal S6 protein kinase; PLC: phospholipase C; PI3K: 

Phosphoinositide 3-kinase; PKG: Protein kinase G; RISK: Reperfusion injury 

salvage kinases; ROS, reactive oxygen species; VS-1: vasostatin-1. 

 



Figure 3. Scheme depicting the main elements of Reperfusion Injury Salvage 

Kinases (RISK) and Survivor Activating Factor Enhancement (SAFE) 

pathways. These two protective pathways are activate in the early reperfusion phase 

of both pre and postconditioning. SR, sarcoplasmatic reticulum; PLN, 

phospholamban. See text for further explanation 
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