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The longitudinal polarizability, αxx, and second hyperpolarizability, γ xxxx, of polyacetylene are eval-
uated by using the coupled perturbed Hartree-Fock/Kohn-Sham (HF/KS) scheme as implemented in
the periodic CRYSTAL code and a split valence type basis set. Four different density functionals,
namely local density approximation (LDA) (pure local), Perdew-Becke-Ernzerhof (PBE) (gradient
corrected), PBE0, and B3LYP (hybrid), and the Hartree-Fock Hamiltonian are compared. It is shown
that very tight computational conditions must be used to obtain well converged results, especially
for γ xxxx, that is, very sensitive to the number of �k points in reciprocal space when the band gap
is small (as for LDA and PBE), and to the extension of summations of the exact exchange series
(HF and hybrids). The band gap in LDA is only 0.01 eV: at least 300 �k points are required to obtain
well converged total energy and equilibrium geometry, and 1200 for well converged optical prop-
erties. Also, the exchange series convergence is related to the band gap. The PBE0 band gap is as
small as 1.4 eV and the exchange summation must extend to about 130 Å from the origin cell. Total
energy, band gap, equilibrium geometry, polarizability, and second hyperpolarizability of oligomers
−(C2H2)m−, with m up to 50 (202 atoms), and of the polymer have been compared. It turns out that
oligomers of that length provide an extremely poor representation of the infinite chain polarizabil-
ity and hyperpolarizability when the gap is smaller than 0.2 eV (that is, for LDA and PBE). Huge
differences are observed on αxx and γ xxxx of the polymer when different functionals are used, that is
in connection to the well-known density functional theory (DFT) overshoot, reported in the litera-
ture about short oligomers: for the infinite model the ratio between LDA (or PBE) and HF becomes
even more dramatic (about 500 for αxx and 1010 for γ xxxx). On the basis of previous systematic com-
parisons of results obtained with various approaches including DFT, HF, Moller-Plesset (MP2) and
coupled cluster for finite chains, we can argue that, for the infinite chain, the present HF results are
the most reliable. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3690457]

I. INTRODUCTION

It is well-known that, in Kohn-Sham density functional
theory (KS-DFT), conventional functionals lead to a large
overshoot for the calculated longitudinal static electronic po-
larizability and hyperpolarizabilities of extended quasi-linear
chains. The classic example is that of π -conjugated polyene
oligomers,1, 2 but this result has been confirmed for many
other cases with and without π -conjugation.3–7 The oligomer
chain lengths that have been considered typically show slight
convergence of the (hyper)polarizability per unit of C2H2, or
even no convergence, of the KS-DFT calculations towards the
infinite polymer limit. Thus, the macroscopic long chain be-
havior and the limiting values of the (hyper)polarizabilities
are unknown.

On the other hand, in principle it should be feasible to
carry out infinite periodic polymer calculations directly us-

a)Electronic mail: valentina.lacivita@unito.it.

ing one of the many periodic codes now publicly available. A
complementary condition is however the availability of com-
putational tools for the calculation of the polarizability and
hyperpolarizability in a coupled form that permits electrons
to relax under the effect of the perturbation.

These conditions are fulfilled by a development version
of the periodic quantum mechanical CRYSTAL code,8 in
which the coupled perturbed Hartree-Fock and Kohn-Sham
(CPHF and CPKS) schemes are implemented up to second
order perturbation in the wave-function (see for example
Ref. 9), as alternative to the variational finite-field method
providing the field-dependent energy.

In this paper we utilize the CRYSTAL code to perform
electronic (hyper)polarizability calculations on long chain
polyenes and on infinite periodic polyacetylene (PA) at the
Hartree-Fock (HF) and KS-DFT levels. For KS-DFT, several
representative conventional hybrid and non-hybrid function-
als are employed. The infinite periodic KS-DFT calculations,
in particular, represent a severe test of the methodology as

0021-9606/2012/136(11)/114101/12/$30.00 © 2012 American Institute of Physics136, 114101-1
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well as the accuracy that can be achieved. In this connection
it is important to note that there are major differences in both
the physics and the formal theory when one switches from
a finite to an infinite periodic chain.10, 11 Hence, the consis-
tency of the results obtained for these two cases is not guar-
anteed, and the computational conditions that ensure conver-
gence must be verified carefully. Our aim is to build a robust
computational scheme for the calculation of optical proper-
ties, even in cases at the limit of conductivity. In doing so,
we show that it is possible to draw regular 0D → 1D trends
(without border effects for finite chains) at every level of the-
ory, regardless the convergence rates and the magnitude of
the numbers to manage. In addition, cases where the poly-
mer asymptote is approached, the finite chain results extrapo-
late perfectly to the infinite periodic chain limit. The basis set
effect is also explored.

The paper is organized as follows: in Sec. II, the basic pe-
riodic CPHF/KS equations are shortly recalled. In Sec. III, the
computational details are illustrated. In particular, the most
delicate computational parameters of periodic calculations,
namely the number of �k points at which the self-consistent
field (SCF) and CPHF equations are solved and the parame-
ters controlling the truncation of the exact exchange series are
discussed. The results are presented in Sec. IV: (a) conver-
gence of the oligomers to the polymer for various properties,
including α and γ ; (b) the comparison of the five different
levels of theory here explored; and (c) the effect of the basis
set. Finally, in Sec. V, a few conclusions are drawn.

II. THE CPHF/CPKS METHOD TO FOURTH ORDER

(Hyper)polarizability tensors can be calculated as deriva-
tives of the total energy Etot with respect to the electric
field components εt (t = 1, 2, 3). Analytical formulas for
estimating these derivatives are provided by the CPHF/KS
method,12 as adapted for periodic systems,13 and recently
implemented9, 14–16 for 0D to 3D systems in a local variational
basis within the CRYSTAL code.8

Basically, the scheme focuses on the description of the
crystalline orbitals (CO) relaxation under the effect of the
field,

∂nCj

∂εt1 . . . ∂εtn

≡ C
(ti ...tn)
j =

∑
j

U
(ti ...tn)
ij C

[0]
i , (1)

- U (ti ...tn) being the unknown matrix which transforms the un-
perturbed coefficients C[0] (see Ref. 12) - and uses the per-
turbed wave functions to calculate the dielectric properties as
energy derivatives.

Previous works9, 15 on periodic systems led us to the fol-
lowing coupled perturbative expressions for:

1. The static polarizability α
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2. and the static second hyperpolarizability γ
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U (vw)∗
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]
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All matrices are in the unperturbed CO basis; indices i, j, l
refer to generic COs whereas Roman subscripts a, b, c and p,
q, r distinguish occupied and virtual COs, respectively. De-
pendence upon �k points has been omitted for brevity. Each
matrix must be understood as �k-dependent, e.g., U ≡ U (�k).
In the above equations:

� nk is the number of k points in the first Brillouin zone
at which the CPHF/KS equations are solved.

� R is the real part of the expression that follows in
parentheses.

� Pt, u is the sum of all permutations of the Cartesian field
components, t and u, separated by commas (and so is
Pt, u, v, w).

� �
(t)
ij is the tth component of the perturbation operator,

�̂(�k) = eı�k·�r �∇�k e−ı�k·�r , (4)

(see Refs. 13 and 17–21) in the unperturbed CO ba-
sis; it is computed initially in the Bloch atomic orbital
basis and then transformed to the CO basis using:

�
(t)
ij =

∑
μ,ν

C
[0]∗
μi �(t)

μνC
[0]
νj , (5)

� W
(t)
ij and W

(tu)
ij are, in order, the first and second deriva-

tives of the two-electron interaction matrix, obtained
by multiplying the bielectronic integrals with the first-
and second-order perturbed density matrices:

D(t)
μν =

∑
a

(
C(t)∗

μa C[0]
νa + C[0]∗

μa C(t)
νa

)
, (6)

D(tu)
μν =

∑
a

(
C(tu)∗

μa C[0]
νa + Pt,uC

(t)∗
μa C(u)

νa + C[0]∗
μa C(tu)

νa

)
.

(7)

� G
(u)
ij is the derivative of the Fock matrix with respect

to the u component of the applied electric field. It is a
sum of two terms,

G
(u)
ij = �

(u)
ij + W

(u)
ij . (8)

It depends on U(u) through the first-order density ma-
trix D(u)

μν .
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� Matrix E(uv) collects the second derivatives of the
eigenvalues. It is obtained through a non-canonical
process of block diagonalization by U(u) and U(uv),
which leads to definition,

E
(uv)
ab =U

(uv)
ab (Ea−Eb) + Pu,v

∑
p

G(u)
ap U

(v)
pb + W

(uv)
ab ,

(9)
for the occupied-occupied elements, for example.

� ∂U
(t)
pa

∂ku
is evaluated analytically.13

CRYSTAL provides self-consistent solutions to Eqs. (2) (CP-
SC1) and (3) (CP-SC2), by exploiting equalities,

U
(u)
ab = 0, (10)

U
(tu)
ab = −1

2
Pt,u

∑
p

U (t)∗
pa U

(u)
pb , (11)

for block-diagonal terms, and

U (u)
ap = G(u)

ap

Ep − Ea

, (12)

U (tu)
ap =

W (tu)
ap + Pt,u

(∑
b

G
(t)
abU

(u)
bp − ∑

q

U (u)
aq G(t)

qp + ı
∂U

(u)
ap

∂kt

)

Ep − Ea

,

(13)
for the others which involve the difference between the un-
perturbed eigenvalues Ea and Ep, and the derivatives W

(t)
ij and

W
(tu)
ij , which depend, respectively, on U

(t)
ij and U

(tu)
ij through

the perturbed density matrices.9, 16

The KS-DFT calculation of energy derivatives through
Eqs. (2) and (3) using a hybrid functional, such as PBE0, have
been discussed at length in Ref. 22. Interested readers are re-
ferred to that paper for details. Local density approximation
(LDA) and Perdew-Becke-Ernzerhof (PBE) can be seen as
particular cases of the general derivation.

III. COMPUTATIONAL DETAILS

Calculations have been performed using a development
version of the periodic ab initio CRYSTAL09 code,8 that
adopts a Gaussian-type basis set for constructing the Bloch
functions, that are the variational basis for building the COs.
Most of the calculations have been performed by using a
6-31G (all-electron) split-valence basis set, relying on the
good accuracy of static longitudinal results previously ob-
tained for long chain polyenes:12, 23 the longer the chain, the
higher the compensation of neighboring atomic functions for
the lack of extended polarization functions.12 It consists of
nine atomic orbitals (AO) resulting from a contraction of 6(s),
3(sp), and 1(sp) Gaussian-type functions for C and 2s type AO
(3G and 1G contractions) for H. Much larger basis sets have
then been used in order to verify the effect on all the consid-
ered properties.

Five different levels of theory have been com-
pared, namely (i) pure density functional within the LDA
(Refs. 24–26) or (ii) generalized gradient approximation

(GGA) in the PBE (Refs. 27–30) formulation; (iii) PBE0 and
(iv) B3LYP hybrid functionals with 25%(Ref. 31) and 20%
(Refs. 32–34) of exact exchange, respectively, and finally (v)
pure HF.

Convergence thresholds on the SCF energy and CP-SC
properties have been set to TE = 11 and TCP = 4, respectively.
Two kinds of parameters are critical for the calculation of the
polarizability and hyperpolarizability tensors: the shrinking
factor S, defining the number of �k points at which the SCF and
CPKS equations are solved, and the set of tolerances control-
ling the accuracy of the Coulomb and Hartree-Fock exchange
series (the latter being relevant for HF, B3LYP, and PBE0).

A. Convergence with respect to the number
of �k points

We first check the influence of the shrinking factor S on
the SCF equilibrium solution (total energy Etot, interatomic
distances L, band gap Eg, Mulliken bond population BP), as
shown in Table I. PBE and B3LYP data are not reported, as the
former exhibits a trend similar to LDA and the latter to PBE0.
It turns out that for the HF solution, which is characterized by
a band gap Eg as large as 6.80 eV, S = 30 - corresponding to
16 �k points in the irreducible Brillouin zone, due to time rever-
sal symmetry - already provides well converged values for all
the considered quantities. At the other extreme, the LDA band
gap is very small (of the order of 0.08 eV); as a consequence,
the convergence with S is extremely slow and only at S = 300

TABLE I. Total energy and equilibrium geometry of PA as functions of
the shrinking factor S. Eg is the energy gap (in eV) and 
E (in mi-
crohartree) the energy difference with respect to the most accurate re-
sults, i.e., −76.86124747 hartree (HF), −77.29556515 hartree (PBE0), and
−76.67436338 hartree (LDA). Interatomic distances (L) in Å and Mulliken
bond populations (BP) in |e|. A 6-31G type basis set has been used. Other
computational parameters (see text for details): TE = 11, TC = 10, and
Tx = 30.

C1 = C2 C2 − C3

S Eg 
E L BP L BP

HF 30 6.792 0.00 1.338 0.591 1.452 0.376
40 6.792 . . . 1.338 0.591 1.452 0.376

30 1.426 5.19 1.368 0.512 1.426 0.407
40 1.415 0.66 1.368 0.512 1.426 0.407

PBE0 50 1.412 0.09 1.368 0.512 1.426 0.407
60 1.412 0.01 1.368 0.512 1.426 0.407
80 1.412 0.00 1.368 0.512 1.426 0.407

100 1.412 . . . 1.368 0.512 1.426 0.407

30 0.215 141.86 1.381 0.451 1.406 0.407
40 0.180 67.14 1.383 0.447 1.403 0.411
50 0.155 39.28 1.384 0.445 1.402 0.413
60 0.139 24.99 1.385 0.443 1.401 0.414
80 0.120 11.75 1.386 0.441 1.400 0.417

LDA 100 0.106 6.36 1.387 0.440 1.399 0.418
200 0.076 0.67 1.388 0.437 1.398 0.420
300 0.076 0.09 1.388 0.437 1.397 0.421
400 0.076 0.02 1.388 0.436 1.397 0.421
500 0.076 0.00 1.388 0.436 1.397 0.421
700 0.076 . . . 1.388 0.436 1.397 0.421
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TABLE II. Polarizability αxx and second hyperpolarizability γ xxxx (in a.u.)
of PA as functions of the shrinking factor S. γ xxxx in 106 (HF), 109 (PBE0),
and 1016 (LDA) a.u. TCP = 4. Basis set and other computational parameters
as in Table I. Bold lines define αxx and γ xxxx values converged to at least 1%.

S αxx(×102) γ xxxx

HF 30 1.629 5.648
40 1.629 5.661

PBE0 50 7.595 1.531
60 7.545 1.837
70 7.532 1.970
80 7.529 2.022

100 7.528 2.046
150 7.528 2.049

LDA 300 1488 −0.443
400 1250 −0.079
500 1155 0.355
600 1120 0.739
700 1107 1.008
800 1102 1.169
900 1101 1.254

1000 1100 1.296
1100 1100 1.315
1200 1100 1.323
1250 1100 1.326

the total energy is converged to better than 10−7 hartree. As
expected PBE0, with an intermediate Eg (1.36 eV), which is
very close to the experimental value35 (1.6 ≤ Eg ≤ 1.8 eV),
converges with S = 50 to 
E ≤ 10−7 hartree.

Dependence on the shrinking factor S is also important
for the polarizability αxx and the second hyperpolarizability
γ xxxx. Two coupled perturbed (CP-SC1 and CP-SC2) iterative
schemes have been carried out to achieve the fourth order of
perturbation through the (2n + 1) rule. Given the inverse rela-
tionship between optical constants and powers of the energy
gap Eg - Eqs. (2) and (3), referring to definitions (11)–(13) -
a much stronger dependence on Eg, and then on S, is to be
expected, and this is actually the case, as shown in Table II,
where the longitudinal components are reported. Consider
first the LDA case (see also Figure 1). The variation with S
is very large; α reduces by about 25% in going from S = 300
to S = 700. γ at S = 400 still carries the wrong sign and at
S = 600 it is still off by 44% with respect to the converged
result obtained at S = 1200. It should be noticed that α is as
large as 105 and γ as large as 1016 in a.u. The HF solution
shows a much faster convergence (S = 30) due to the large
band-gap. Indeed, HF α is about 700 times smaller than LDA
α. For γ this ratio increases to 1010. About the same num-
ber of �k points as used in the field-free SCF cycle, i.e., 51, is
required for well converged optical properties with PBE0.

B. Convergence with respect to the two-electron
series range

The effect of the five parameters controlling the trun-
cation of the Coulomb and exchange series, indicated as
Ti (i = 1 → 5),8 can be described with reference to the ex-

1.09

1.11

1.13

550 700 850 1000 1150 1300

α

S

-0.4

0.0

0.4

0.8

1.2

400 600 800 1000 1200

γ

S

FIG. 1. LDA polarizability αxx (in 105 a.u.) and second hyperpolarizability
γ xxxx (in 1016 a.u.) of PA as functions of the shrinking factor S. The asymp-
totic values are α∞

xx = 1.099 and γ ∞
xxxx = 1.336. Highlighted areas include

α and γ values converged to better than 1% with respect to the asymptotes
(solid lines).

pression of the total electronic energy in the AO basis:

Exc = 1

2

∑
μν

∞∑
�g

P �g
μν

∞∑
�g′

∑
ρτ

P �g′
ρτ

×
∞∑
�g′′

[
(μ0ν �g|ρ �g′′

τ �g′+�g′′
) − 1

2
(μ0ρ �g′′ |ν �gτ �g′+�g′′

)

]
.

(14)

Roughly speaking, integrals are disregarded (or approximated
in the case of T2, see below) when the overlap between the in-
volved functions is below 10−Ti (see Ref. 8). T1 and T2 refer
to the Coulomb series (TC). T1 defines the minimum amount
of charge density to be considered for electron 1 or 2. T2 de-
fines the set of direct space �g vectors within which these bi-
electronic integrals are calculated exactly, otherwise a mul-
tipolar expansion is used to describe the interacting charge
distributions.36–38 The effect of TC (here T1 has been set equal
to T2) on the ground state and its optical properties is docu-
mented in Table III. Both α and γ show high stability with
respect to Tc, so that Tc = 10 can be used safely (despite
the small energy variation at higher Tc values), extending the
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TABLE III. Polarizability αxx (× 102 a.u.) and second hyperpolarizability γ xxxx (in a.u.) of PA as functions of the parameter TC controlling the truncation of
the Coulomb series (see text for details). Eg is the energy gap (in eV) and 
E (in microhartree) the energy difference with respect to the most accurate results,
i.e., −76.86126625 hartree (HF), −77.29557482 hartree (PBE0), and −76.67435270 hartree (LDA). Shrinking factor S is set to 300 (LDA), 50 (PBE0), and
30 (HF) for geometry optimizations and to 1200 (LDA), 100 (PBE0), and 30 (HF) for CPHF/KS calculations. Other computational parameters as in previous
tables.

LDA PBE0 HF

TC Eg 
E α γ (×1016) Eg 
E α γ (×109) Eg 
E α γ (×106)

10 0.076 −10.69 1100 1.323 1.420 19.94 7.437 1.972 6.792 18.78 1.629 5.648
20 0.076 0.62 1097 1.312 1.420 0.74 7.441 1.975 6.792 1.09 1.630 5.650
30 0.076 . . . 1096 1.310 1.420 . . . 7.441 1.975 6.792 . . . 1.630 5.650

summation over the exact Coulomb terms to N = 11 (num-
ber of cells). Champagne et al.39 observed the same rapid
convergence at the HF/Slater-Type-Orbitals(STO)-3G level,
referring to an equivalent space partition in short/medium-
and long-range (LR) regions.

T3, T4, and T5 are associated with HF exchange summa-
tions. T3 truncates the summation over �g′′, Eq. (14), when the
overlap distributions {μ0ρ �g′′ } or {ν �gτ �g′+�g′′ } are below 10−T3 .
It is the equivalent of T1, but for the exchange series. As
T3 = 10 provides well converged results, we use this value.
More delicate is the role of T4 and T5, which select pseudo-
overlaps {μ0ν �g} and {ρ �g′′

τ �g′+�g′′ }, thus limiting summations
over �g and �g′ (see Ref. 40). They control the spatial range
of the density matrix elements P

�g
μν and P

�g′
ρτ in Eq. (14), which

depends in turn on the electronic structure of the system: the
smaller the gap, the larger the range of the density matrix.40

We set their values according to the scheme T4 = 1
2T5 = Tx .

SCF energy calculations converge at Tx = 30 and Tx = 150
for HF and PBE0, respectively (Table IV). Much slower is the
CPHF/KS convergence, in particular for PBE0, as shown in
Table V. Convergence to 1% on γ xxxx is achieved at Tx = 100
(N = 33) for HF (about three times slower than what doc-
umented in Ref. 39), whereas PBE0 requires Tx as large as

TABLE IV. Total energy and equilibrium geometry of PA as functions of
the parameter Tx, controlling the truncation of the exchange series (HF and
PBE0). Eg is the energy gap (in eV) and 
E (in microhartree) the energy
difference with respect to the most accurate result, i.e., −76.8612902 hartree
(HF) and −77.2956558 hartree (PBE0). Symbols, units, and other computa-
tional parameters as in previous tables.

C1 = C2 C2 − C3

Tx Eg 
E L BP L BP

HF 30 6.792 42.72 1.3382 0.591 1.4516 0.376
40 6.805 − 0.05 1.3384 0.591 1.4512 0.376
50 6.808 . . . 1.3384 0.591 1.4512 0.376

PBE0 30 1.412 90.74 1.3679 0.512 1.4259 0.407
40 1.418 41.77 1.3682 0.511 1.4255 0.408
50 1.420 41.22 1.3682 0.511 1.4255 0.408
60 1.423 19.97 1.3684 0.511 1.4252 0.408
80 1.423 9.60 1.3685 0.510 1.4250 0.408

100 1.423 7.74 1.3685 0.510 1.4250 0.408
120 1.426 3.00 1.3686 0.510 1.4249 0.409
150 1.426 0.37 1.3687 0.510 1.4248 0.409
180 1.426 0.00 1.3687 0.510 1.4248 0.409

1000 (N = 103, Figure 2), even if only a fraction of exact
exchange (1/4) is incorporated in it.

The DFT exchange-correlation contribution in PBE0
and LDA is obtained by numerical integration, using a
Gauss-Legendre radial quadrature and a Lebedev 2D angular
scheme.41, 42 Pre-defined pruned grids are adopted.8 The de-
fault grid (75 radial and 974 angular points per atom) provides
well converged results for both the equilibrium geometry and
the optical properties α and γ .

IV. RESULTS

A. From the molecule to the polymer: Structures,
energetics, and optical properties

In this section, convergence of the acetylene oligomers
−(C2H2)m− towards the periodic polymer (PA) will be con-
sidered. We will try to answer the following questions:

TABLE V. Polarizability αxx and second hyperpolarizability γ xxxx (in a.u.)
of PA as functions of the thresholds, Tx = T4 = 1

2 T5, controlling the trunca-
tion of the exchange series (see text for details). M is the number of direct
lattice vectors involved in the exchange series summations, R is the radius
(in Å) of this exchange zone. Symbols, units, and other computational pa-
rameters as in previous tables.

PBE0 HF

Tx M R α γ (×109) α γ (×106)

30 19 24.71 785.7 2.329 163.6 5.726
40 21 27.18 788.2 2.338 164.1 5.859
50 23 29.65 800.6 2.400 164.7 5.993
60 25 32.12 802.0 2.418 164.9 6.046
70 29 37.07 808.7 2.460 165.1 6.104
80 29 37.07 810.4 2.482 165.2 6.128
100 33 42.01 816.2 2.534 165.2 6.161
200 47 59.31 826.1 2.662 165.3 6.203
300 57 71.66 830.4 2.743 165.3 6.212
400 65 81.55 832.0 2.785 . . . . . .
500 73 91.43 833.0 2.811 . . . . . .
600 81 101.3 833.5 2.832 . . . . . .
700 87 108.7 833.8 2.843 . . . . . .
800 93 116.2 834.1 2.854 . . . . . .
900 99 123.6 834.2 2.861 . . . . . .
1000 103 128.5 834.3 2.866 . . . . . .
1100 109 135.9 834.4 2.870 . . . . . .
1200 113 140.9 834.4 2.874 . . . . . .
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FIG. 2. HF and PBE0 polarizability αxx and second hyperpolarizability γ xxxx

of PA as functions of the thresholds Tx controlling the truncation of the ex-
act exchange integrals series (see text for details). αxx in 102 a.u. (PBE0
and HF); γ xxxx in 109 (PBE0) and 106 (HF) a.u. The asymptotic values
are α∞

xx = 8.353 and γ ∞
xxxx = 2.890 (PBE0); α∞

xx = 1.653 and γ ∞
xxxx = 6.216

(HF). Highlighted areas include α and γ values converged to better than 1%
with respect to the asymptotes (solid lines).

1. How rapid is the convergence of the total energy, the
equilibrium geometry, the charge distribution as a func-
tion of the number of monomers m?

2. How fast do α and γ converge? (Note that, as PA be-
longs to the C2h point symmetry, the dipole moment μ

and the first hyperpolarizability β are null due to inver-
sion symmetry.)

3. Does convergence vary with the functionals?
4. Is the overall accuracy of the CRYSTAL code, in all its

parts (SCF, CP-SC1, and CP-SC2), such as to permit us
to verify the infinite oligomer chain limit by comparison
with the polymer?
In previous investigations the infinite chain limit was ap-
proached with finite chains of increasing length (see, for
example, Refs. 23, 43, and 44). The HF infinite limit
was explored by Kirtman et al.45 through periodic CPHF
calculations, the results being very close to the present
ones. Here, the 0D → 1D analysis has been extended
to DFT pure (LDA and GGA) and hybrid (PBE0 and
B3LYP) functionals.

The last question is not trivial, as in Sec. III it has been
shown that the influence of the computational parameters on
the calculated properties is very large. The two most impor-
tant possible sources of discrepancy are: (a) the strong de-
pendence of many properties of the polymer on the shrinking
factor S documented in Sec. III must take the form of a strong
dependence on the chain length in 0D oligomers; (b) the elec-
tric field operator, that is, simply �r for the 0D cases, along the
1D chain takes the form �r + ı �∇k . At the limit m → ∞ the
two values should coincide.

In order to eliminate border (finite chain) effects, exten-
sive properties are evaluated as differences between oligomers
of different length: for example, α (as well as Etot and γ ) of
the central monomer is evaluated as α′ = αm − αm − 1. Inten-
sive properties - such as bond lengths and Mulliken popula-
tions in Table VI - refer to the central part of the oligomer. The
band gap of the oligomer cannot be purified of border effects.

Full-geometry optimizations were carried out for m up to
50, corresponding to oligomers with as many as 202 atoms.
Table VI provides energy and geometry of oligomers of in-
creasing length (the reference polymer data are in the last
row), whereas energy gaps (eV), α and γ (a.u.) values are
reported in Table VII. For HF the convergence of energy and
geometry is extremely rapid: at m = 12, the total energy (per
monomer unit) is already equal to the one of the polymer up
to the seventh decimal figure and the two alternating bond
lengths coincide with those in the polymer to the fourth dec-
imal digit. The polymer structure overlaps almost perfectly
to the HF one obtained by Limacher et al.46 using a more
extended basis set, i.e., cc-pVDZ. We note a HF overshoot
(∼25%–30%) of the bond length alternation (BLA = 
(C1C2

− C2C3) = 0.113 Å) compared to the experimental data: BLA
= 0.085 Å,46 0.08 Å,47 and 0.086 Å.48 On the other hand,
the HF symmetry-breaking dimerization distortion value u0 of
0.03 Å compares well with the x-ray diffraction result derived
by Fincher et al.,35 whereas inclusion of electron correlation
fails by systematic underestimation.49, 50

Structural properties of the oligomers converge monoton-
ically to those for the polymer also in the LDA approxima-
tion. Convergence is, however, much slower: at m = 50 Etot

still differs by 4 microhartree and the bond lengths by about
3 mÅ. As usual, PBE0 is an intermediate case.

As expected, convergence of αxx and γ xxxx requires
achieving larger m values than for structural and energetic
properties (see Table VII). For HF, at m = 20, α differs
from the polymer value by about 2%, and at m = 50 by
0.1%. These differences increase to 12% (m = 20) and 0.5%
(m = 50) for γ . The good convergence is graphically docu-
mented by Figure 3. Using power series in 1/m as fitting func-
tions yields α∞

xx = 165 a.u. and γ ∞
xxxx = 617 × 104 a.u. for the

infinite m limit, which almost coincide with the analytical (in-
finite periodic) CPHF results. This not only confirms the in-
ternal consistency of our method, but also lends further relia-
bility to previous extrapolation attempted by Kirtman et al.23

- who predicted α∞
xx and γ ∞

xxxx to be, respectively, 166 ± 5 a.u.
(to be compared with 165 a.u. in the present case) and (691
± 39) × 104 a.u. (to be compared with 616 × 104 a.u. in
the present case) - despite their extrapolation was obtained
from absolute ratios α/m and γ /m without eliminating border
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TABLE VI. 0D → 1D convergence of C1 = C2 and C2 − C3 bond lengths (Å) and total energy Etot (hartree). Oligomer structures have been cut from the
polymer, saturated, and geometry optimized. Bond lengths refer to the chain center and Etot is evaluated as the difference Em

tot − Em−1
tot (m is the number of

−C2H2− monomers), in order to eliminate border effects.

LDA PBE0 HF

m Etot C1C2 C2C3 Etot C1C2 C2C3 Etot C1C2 C2C3

2 −76.669561 1.3455 1.4442 −77.292400 1.3423 1.4556 −76.860119 1.3275 1.4645
4 −76.672567 1.3500 1.4326 −77.294636 1.3564 1.4391 −76.861144 1.3355 1.4548
8 −76.673809 1.3733 1.4132 −77.295549 1.3643 1.4301 −76.861246 1.3379 1.4519
12 −76.674162 1.3777 1.4085 −77.295636 1.3668 1.4271 −76.861248 1.3382 1.4516
16 −76.674258 1.3801 1.4060 −77.295650 1.3678 1.4259 . . . . . . . . .
20 −76.674309 1.3817 1.4043 −77.295654 1.3683 1.4254 . . . . . . . . .
30 −76.674339 1.3836 1.4022 −77.295655 1.3687 1.4249 . . . . . . . . .
40 −76.674350 1.3852 1.4005 −77.295656 1.3687 1.4249 . . . . . . . . .
50 −76.674359 1.3860 1.3997 −77.295656 1.3687 1.4248 . . . . . . . . .

∞ −76.674363 1.3884 1.3972 −77.295655 1.3687 1.4248 −76.861248 1.3382 1.4516

effects and slightly different BLA. Comparison of our data
with CPHF/6-31G values, αxx = 162 a.u. and γ = 628
× 104 a.u., reported in Ref. 45 for the minimum-energy
RHF/6-31G structure of the infinite polymer is even better,
as well as more homogeneous.

The existence of two different series of oligomers with
odd/even number of double carbon bonds converging to the

same limit at m → ∞ has been envisaged to explain irreg-
ularities on the trend of γ ′ (without border effects).23 The
present results do not support such a hypothesis, as is shown
in Fig. 4 where trends α′ vs m and γ ′ vs m are compared with
those from Ref. 23 (made consistent with our definition of
α′ and γ ′). The accurate and rigorous scheme here adopted
for setting of the computational parameters (see Sec. III) has

TABLE VII. 0D → 1D convergence of the polarizability αxx and the second hyperpolarizability γ xxxx (in a.u.) of PA. Eg (eV) is the energy gap. α in 103 a.u.
(LDA), 102 a.u. (PBE0 and HF); γ in 1010 a.u. (LDA), 109 a.u. (PBE0) and 106 a.u. (HF). Oligomer structures have been cut from the polymer, saturated, and
geometry optimized. Differences α′

xx = αm
xx − αm−1

xx and γ ′
xxxx = γ m

xxxx − γ m−1
xxxx , without border effects, are reported (m is the number of −C2H2− monomers).

Basis set and computational parameters as in previous tables.

LDA PBE0 HF

m Eg α′
xx γ ′

xxxx Eg α′
xx γ ′

xxxx Eg α′
xx γ ′

xxxx

2 3.995 0.483 0.000 6.041 0.464 0.000 12.17 0.457 0.006
4 2.424 0.126 0.000 4.131 1.088 0.000 9.663 0.768 0.105
6 1.752 0.197 0.000 3.279 1.627 0.001 8.590 1.097 0.549
8 1.380 0.316 0.001 2.800 2.386 0.006 8.024 1.311 1.389
10 1.140 0.456 0.002 2.493 3.152 0.018 7.692 1.439 2.401
12 0.974 0.616 0.004 2.283 3.885 0.042 7.480 1.519 3.340
14 0.854 0.796 0.009 2.131 4.561 0.085 7.336 1.563 4.098
16 0.762 0.993 0.018 2.019 5.164 0.152 7.235 1.591 4.665
18 0.686 1.210 0.031 1.932 5.697 0.246 7.162 1.608 5.062
20 0.601 1.444 0.053 1.864 6.139 0.367 7.105 1.620 5.356
22 0.555 1.694 0.085 1.807 6.531 0.512 7.061 1.627 5.575
24 0.517 1.960 0.132 1.763 6.875 0.678 7.029 1.634 5.696
26 0.484 2.239 0.199 1.725 7.117 0.853 7.001 1.636 5.809
28 0.454 2.537 0.291 1.695 7.329 1.036 6.980 1.640 5.884
30 0.444 2.849 0.383 1.671 7.506 1.218 6.960 1.642 5.958
32 0.419 3.175 0.583 1.614 7.653 1.395 6.947 1.646 6.003
34 0.397 3.514 0.801 1.595 7.767 1.561 6.933 1.644 6.016
36 0.378 3.865 1.083 1.614 7.872 1.718 6.922 1.647 6.050
38 0.362 4.235 1.438 1.597 7.935 1.854 6.914 1.644 6.064
40 0.348 4.613 1.897 1.586 8.018 1.987 6.906 1.649 6.070
42 0.332 5.006 2.310 1.575 8.046 2.091 6.898 1.648 6.099
44 0.321 5.411 3.153 1.565 8.094 2.192 6.892 1.648 6.104
46 0.310 5.824 3.993 1.556 8.123 2.263 6.887 1.649 6.114
48 0.299 6.247 4.798 1.548 8.153 2.323 6.882 1.650 6.128
50 0.288 6.692 5.995 1.518 8.212 2.368 6.879 1.650 6.135

∞ 0.076 110.0 1323 × 103 1.434 8.343 2.866 6.792 1.652 6.161
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The minimum m value providing convergence to better than 1% with respect to the asymptotes (solid lines) is highlighted.
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FIG. 4. Trends of the longitudinal polarizability α′
xx and second hyperpolar-

izability γ ′
xxxx (in a.u.) of PA oligomers, (C2H2)m, with m up to 22. Compar-

ison between results from the present work and from Ref. 23 (obtained at the
HF level) is made.

enabled us to approach the polymer limit describing a per-
fectly smooth pattern.

For PBE0, the Eg difference with respect to the polymer
at m = 50 is 0.08 eV, i.e., about 6% difference from Eg in
the polymer, which may be compared with the corresponding
1% difference for HF. At m = 20, the PBE0 α is about 25%

smaller than the converged value, and γ is only 0.4 instead
of 2.87 × 109 a.u. For the largest oligomer (m = 50), α is
within 1% of the polymer value, but γ is still off by about
20%. The difference between HF and PBE0 is evident from
Figure 3, showing in particular that at m = 50 the gradient of
the PBE0 γ curve is just starting to decrease towards the con-
verged plateau. If the latter is estimated using the fitting func-
tion γ (m) = ∑3

n=0
cn

mn , γ ∞
xxxx = 2.49 × 109 a.u. is obtained,

which still differs by about 10% from the analytical polymer
value γ

pol
xxxx = 2.87 × 109 a.u. However, we can still use this

extrapolation procedure to predict that for m > 60 the calcu-
lated value will be within about 1% of the convergence limit.

Both LDA α and γ are still in the very steep part of
the curve at m = 50, and then extremely far from conver-
gence. Table VII documents that at m = 50 the α value is 6.69
× 103 a.u., to be compared to 1.10 × 105 a.u. in the polymer,
and γ is seven orders of magnitude smaller than the polymer
value. The ratio Rα = αLDA/αHF increases from 1.22 (m = 3)
to about 670 (polymer) - which complies with expectations
on the pure DFT catastrophe - and the soaring (m = 3–7) is
even higher than previous results: Karolewski et al.51 report a
value of Rα that increases from 1.28 (m = 3) to 2.00 (m = 7),
i.e., about 10% below our estimation at m = 7, Rα = 2.23. Rγ

= γ LDA/γ HF, instead, undergoes a change of about 10 orders
of magnitude: from Rγ < 1 for m = 3 − 5 to Rγ = 2.15 × 109

at the polymer limit. At m = 50, we get a value of Rγ which is
about 104, i.e., 5 orders of magnitude below the polymer limit.
In this case it is impossible to extrapolate α and γ values at
m → ∞ from oligomers of manageable length.

B. Effect of the Hamiltonian on periodic properties

Table VIII summarizes salient data regarding the effect
of the Hamiltonian. As anticipated, the LDA and PBE band
gap is extremely small and, as a consequence of this quasi-
metallic behavior, longitudinal α and γ components are ex-
tremely large. The convergence of oligomer properties to-
wards the PA value is then extremely slow, due to the high
electron mobility (border effects propagate into the inner
chain). The iterative coupling between perturbation and CO
relaxation through the CP-SC1 cycle - Eq. (12) - improves
the sum over states (SOS) results for α (obtained at itera-

TABLE VIII. Bond lengths C1 = C2 and C2 − C3 (Å), cell parameter a (Å), energy gap Eg (eV) and the
coupled perturbed polarizability αxx and second hyperpolarizability γ xxxx (in a.u.) of PA as functions of the level
of theory adopted for calculations. Sum over state (SOS) values for αxx and γ xxxx are also shown. Basis set and
computational parameters as in previous tables. PBE calculations performed using computational parameters as
set for LDA; B3LYP as for PBE0.

LDA PBE B3LYP PBE0 HF

C1C2 1.388 1.399 1.374 1.368 1.338
C2C3 1.397 1.412 1.427 1.426 1.452
a 2.465 2.487 2.479 2.471 2.467
Eg 0.076 0.114 1.167 1.412 6.805

αSOS
xx 1.280 × 105 5.874 × 104 8.438 × 102 6.146 × 102 5.659 × 10

αxx 1.100 × 105 5.034 × 104 1.069 × 103 8.343 × 102 1.652 × 102

γ SOS
xxxx 1.360 × 1016 1.298 × 1015 3.410 × 109 1.296 × 109 5.130 × 105

γ xxxx 1.323 × 1016 1.267 × 1015 6.515 × 109 2.866 × 109 6.161 × 106
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tion zero of the CP-SC1 process) by about 30% (LDA) and
15% (PBE), but still is unable to scale its magnitude. At the
second order of perturbation, the effect of the CP-SC2 cycle
- Eq. (13) - on γ SOS is further reduced to about 2%-3% at both
the LDA and PBE levels.

When the band gap is relatively large, as predicted by
HF, calculated values are considerably resized in magnitude.
Electron relaxation increases αSOS by about a factor of 3 (so
reducing the difference with respect to LDA) and γ SOS by 12
times, but this is overall a minor effect as far as the DFT catas-
trophe is concerned. Therefore, the choice of a functional able
to provide a reasonable band gap seems to be a crucial step for
obtaining reliable polarizabilities and hyperpolarizabilities.

A correlation between the band gap Eg and the magnitude
of αxx and γ xxxx (as well as the 0D → 1D convergence rate)
has been inferred on the basis of the data discussed above
(Table VIII). However, such data correspond to a discrete
sampling over a heterogeneous choice of the Hamiltonians. In
order to investigate such correlation in a homogeneous frame-
work, including the full range of possible band gaps, we per-
formed a set of calculations in which the percentage of HF
exchange XHF varies continuously from 0% to 100% in the
PBE functional. The computational parameters for both ge-
ometry relaxation (minimum energy structures are indicated
as Rmin) and CPKS calculations have been set according to
the most stringent standards defined in Sec. III, in order to en-
sure sufficient stability of the results along the whole range of
XHF explored. Results are shown in Fig. 5 - series Fit(Rmin).
The energy gap increases from 0.114 eV when XHF = 0% to
6.68 eV when XHF = 100%. Correspondingly, αxx decreases
from 50 338 to 168 a.u. and γ xxxx from 1.27 × 1015 to 7.45
× 106 a.u. The values of αxx and γ xxxx provided by LDA,
B3LYP, and HF, all reported in Fig. 5 with colored spots (PBE
and PBE0 belong to the curve), lie very close to the interpo-
lating curves αxx(Eg; Rmin) and γ xxxx(Eg; Rmin). Figure 5 es-
tablishes a strong dependence of the (hyper)polarizabilities
on the band gap, almost irrespective of the peculiarities of
the various levels of theory adopted (see, for example, LDA
and PBE, having both XHF = 0 but different band gap val-
ues). Differences between αxx and γ xxxx values calculated with
different Hamiltonians and those estimated at the same band
gaps using the fitting curves αxx(Eg; Rmin) and γ xxxx(Eg; Rmin)
(Table IX) are maintained up to around 15%. Moreover, given
that even the HF data are consistent with the fitting, we can
extend the argument of the minority short-range role of corre-
lation potential (with respect to the exchange potential) in the
calculation of the optical properties of small band gap finite
systems3 to periodic systems.

In Sec. III (Tables I and IV) it is shown that the band
gap (and thus also αxxxx and γ xxxx) is closely related to the
pattern of alternating bonds in PA. Indeed, if we run all the
CPKS calculations represented in Fig. 5 - series Fit(Rmin)
at the same geometry (for example, that obtained for PBE)
the resulting curve, Fig. 5 - series Fit(RPBE), deviates signif-
icantly from the first. Comparison between curves Fit(Rmin)
and Fit(RPBE) clearly shows that the band gap and the bond
lengths are strongly correlated, and we can restrict the de-
pendence of αxx and γ xxxx essentially on a single param-
eter. Consider, for example, the case XHF = 25%, i.e., a
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FIG. 5. Longitudinal polarizability αxx (top) and second hyperpolarizability
γ xxxx (bottom) of PA (in a.u.) as functions of the energy gap Eg (eV) values
obtained using different percentages of exact exchange XHF within the PBE
functional. Series Rmin (circles) refers to CPKS calculations performed after
geometry relaxation; series RPBE (triangles) refers to CPKS calculations per-
formed on the PBE relaxed geometry. LDA, B3LYP, and HF values of αxx

and γ xxxx are indicated with colored points.

PBE0 calculation on structure RPBE. The PBE BLA (0.009 Å)
is much smaller than that associated with geometry relaxation
(0.056 Å). Such a difference reverberates on a two times de-
crease of the band gap (Eg(RPBE) = 0.663 eV vs Eg(Rmin)
= 1.412 eV), whereas αxx(XHF = 25%; RPBE) increases by
about two times and γ xxxx(XHF = 25%; RPBE) by almost
10 times. At XHF = 100%, the ratio over the HF values raises
up to 4 for αxx and about 40 for γ xxxx.

C. Effect of the basis set

The effect of the basis set has been explored by progres-
sively adding one, two, and three sets of polarization functions
to the Pople’s 6-31G basis used for all the calculations previ-
ously discussed. Both HF and DFT (PBE0) trends have been
explored. Table X shows that only the first set of polariza-
tion functions (d on carbon atoms, p on hydrogen atoms) has
an important effect on (hyper)polarizabilities, when added to
the 6-31G set at the HF level - αxx and γ xxxx reduce by 8%
and 32%, respectively - as a result of the increase of the band
gap by about 5%. Adding a first set of polarization functions
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TABLE IX. The effect of geometry on the calculation of the polarizability αxx and the second hyperpolarizability
γ xxxx of PA. Values of the optical properties at different band gaps Eg (eV) have been obtained using i. the
Hamiltonians indicated in parentheses (column Eg) at the relaxed geometry - column Calc(Rmin); ii. the fitting
functions αxx(Eg) and γ xxxx(Eg) defined at the minimum PBE energy structures for variable exact exchange
percentages 0 < XHF < 100% values - Fit(Rmin); iii. and the fitting functions αxx(Eg) and γ xxxx(Eg) defined for
XHF = 0% - Fit(RPBE). Columns 10x report the orders of magnitude relative to αxx and γ xxxx.

αxx γ xxxx

Eg Calc(Rmin) Fit(Rmin) Fit(RPBE) 10x Calc(Rmin) Fit(Rmin) Fit(RPBE) 10x

0.076 (LDA) 11.00 10.67 8.997 104 1.323 1.232 1.526 1016

0.114 (PBE) 5.030 5.018 5.021 104 1.267 1.255 1.391 1015

1.167 (B3LYP) 1.069 1.108 2.421 103 6.515 7.400 53.54 109

1.412 (PBE0) 8.343 8.063 18.54 102 2.866 2.573 22.38 109

6.805 (HF) 1.652 1.666 6.047 102 6.161 7.736 236.4 106

to basis set 6-31G (Table X, line 2) enlarges the PBE0 band
gap by 2% and consequently reduces the polarizability by the
same percentage amount and the second hyperpolarizability
by about 13%. Again, further additions of polarization func-
tions to the Pople’s 6-31G basis set show a negligible effect.

Improving the valence part of Pople’s 6-31G basis set
by spreading its Gaussian functions or adding very diffuse sp
shells would lead to numerical problems of pseudo-linear de-
pendence in periodic calculations.39 For this reason we have
tested the performance of a multiple-zeta basis set series as
well (Table X, bottom). Using much more diffuse s (for H)
and p (for C) shells (than those of basis set 6-31G) within
the valence description does not significantly alter the previ-
ous outline: overall, the variation along the rows, excluding
the first entry, does not exceed 4(2)% for the HF (PBE0) po-
larizability and 9(5)% for the HF (PBE0) hyperpolarizability
calculated along the chain axis. The most important changes
occur when switching from the DZP basis set to the TZP basis
set: αxx and γ xxxx decrease by 4% and 16% (HF) and 8% and
22% (PBE0), respectively.

However, comparing bases 6-31G(d,p) and TZP on a
qualitative level, differences turn to be relatively small, apart
from γ xxxx PBE0 which decreases by about 16% using the
TZP set. Moreover, whereas the ratio αPBE0/αHF is about 5 for
all the basis sets considered here, γ PBE0/γ HF is more sensi-

tive to the basis set used. Nevertheless, choice of the 6-31G
basis set for most of the present calculations was important
to allow comparison with data reported in the literature. It is
also worth noting that the DFT overestimation of the second
hyperpolarizability is further amplified by addition of polar-
ization functions to the 6-31G basis set (from 25% to 30%)
or using more extended multiple-zeta basis sets (from 10% to
15%).

V. CONCLUSIONS

The longitudinal polarizability αxx and second hyperpo-
larizability γ xxxx of polyacetylene have been evaluated with
five different Hamiltonians. The numerical system developed
in this work depends upon the choice of computational pa-
rameters that are more stringent the smaller the energy gap.
Convergence with respect to the number of �k points used in
the various steps of the calculation (SCF, CP-SC1, and CP-
SC2) is not readily reached: up to 1200 �k points are required
in the worst case, namely, γ xxxx evaluated within the local den-
sity approximation, providing a band gap as small as 3 milli-
hartree.

Also the range of the exact exchange term (used in
B3LYP, PBE0, and HF) strongly depends on the band gap,
which is relatively small for the two hybrid functionals (1.1-

TABLE X. Effect of the basis set on the calculation of the polarizability αxx and the second hyperpolarizability γ xxxx of PA. Columns 2–7 provide the
exponents (bohr−2) of the polarization functions added to the 6-31G and DZP sets (see Refs. 54 and 55 for a complete definition). The exponents of the most
diffuse functions are sH = 0.16 and spC = 0.17 for the 6-31G set and sH = 0.12, sC = 0.16 and pC = 0.12 for the DZP set. γ xxxx in 109 (PBE0) and 106 (HF)
a.u. Energy gaps Eg in eV. Calculations have been performed at the optimized geometries. Other computational parameters as in previous tables.

H C PBE0 HF

BS p1 p2 d d1 d2 f Eg αxx γ xxxx Eg αxx γ xxxx

6-31G . . . . . . . . . . . . . . . . . . 1.434 834.3 2.8658 6.827 165.2 6.161
6-31G(p,d) 1.10 . . . . . . 0.80 . . . . . . 1.461 818.2 2.5005 7.186 151.2 4.220
6-31G(2d,2p) 2.10 0.75 . . . 2.50 0.63 . . . 1.464 818.7 2.4694 7.235 151.2 4.092
6-31G(2df,2pd) 2.10 0.75 1.00 2.50 0.63 0.80 1.478 806.2 2.3454 7.252 151.0 4.030

DZP 1.00 . . . . . . 0.75 . . . . . . 1.448 840.6 2.6834 7.067 156.3 4.687
TZP 1.00 . . . . . . 0.75 . . . . . . 1.502 774.5 2.0947 7.140 149.3 3.916
TZPP 1.41 0.59 1.06 1.10 0.52 0.76 1.494 792.5 2.1861 7.165 154.9 4.275
QZVP 1.00 . . . . . . 0.75 . . . . . . 1.502 774.6 2.0847 7.156 151.2 4.130
QZVPP 1.41 0.59 1.06 1.10 0.52 0.76 1.497 790.5 2.1598 7.167 154.6 4.235
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1.4 eV vs 6.8 eV for HF). As a matter of fact, exchange inter-
actions within a radius of about 130 Å must be considered in
the first case, whereas only 40 Å are required for HF.

It has been shown that the use of oligomers as a model
for polymers can be very misleading, as the convergence with
m - the number of monomers in the chain - can be quite slow
when the gap is small, as for LDA, PBE, PBE0, and B3LYP. In
these cases the results at m = 50 still differ from the polymer
limit by 1% (α) or 17% (γ ) (PBE0 or B3LYP), or by several
orders of magnitude (LDA or PBE). Results have been shown
to strongly depend on the adopted Hamiltonian (for γ the dif-
ference can be as large as 10 orders of magnitude), and on the
resulting band gap.

Literature data concerning short oligomer chains indicate
that Hartree-Fock (hyper)polarizabilities are close to the ones
obtained with correlated wave functions. On this basis our
LDA and GGA data give catastrophically exaggerated values
(DFT catastrophe), whereas hybrid data are more reasonable
but still far apart by orders of magnitude when γ xxxx is con-
sidered. LR corrections52, 53 have been claimed, in the case of
finite oligomer chains, to limit catastrophic divergence on (hy-
per)polarizabilities, but still performance depends parametri-
cally on the system52 and no clear improvements of LR cor-
rected functionals over HF have been shown.52, 53

Besides the wide family of small-gap organic poly-
mers, there is a connection with the optical properties of
more complex systems such as carbon nanotubes (CNT)
(1D systems characterized by a small band gap). Thus, the
present work is preliminary to a systematic study of the (hy-
per)polarizabilities of CNT.
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