5 UNIVERSITA
% DEGLI STUDI
ot DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

A core reference ontology for the customer relationship domain

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/101173 since 2015-12-08T11:11:20Z

Published version:
DOI:10.3233/A0-2012-0102
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

15 December 2021

Applied Ontology 0 (2012) 1-0 I
IOS Press

A Core Reference Ontology for the Customer
Relationship Domain *

ok

Diego Magro and Anna Goy

Universita di Torino, Dipartimento di Informatica, Corso Svizzera 185, 10149, Torino, ITALY
E-mail: {magro, goy}@di.unito.it

Abstract.

Customer Relationship Management (CRM) has emerged as an important strategy that companies should implement in order
to build profitable and stable relationships with their customer. The domain of CRM has peculiar chracteristics: a CRM strategy
is largely independent from the specific market sector, it requires multiple units cooperation, it implies the management of a huge
amount of knowledge, it is fruitfully supported by software solutions, and finally it implies the integration of human and machine
activities. These characteristics suggest that both companies aiming at implementing an efficient CRM strategy, and software
houses offering ICT solutions supporting CRM would take great advantage from a common semantic model of CRM. The main
contribution of this paper is thus the proposal of O-CREAM-v2, a core reference ontology for the CRM domain, specifically
targeted to Small and Medium Sized Enterprises (SME). The design of O-CREAM-v2 has been based on requirements mainly
elicited from a domain analysis, which considered the way the involved actors talk about CRM within their business, by analyzing
documents and interviews with representatives of SME and ICT companies. Moreover, in order to guarantee accuracy in the
definition of the basic concepts and to support interoperability within/between companies, O-CREAM-v2 has been developed
within the framework provided by the well-known DOLCE foundational ontology, together with three DOLCE extensions, i.e.the
ontology of Descriptions and Situations, the Ontology of Information Objects, and the Ontology of Plans. O-CREAM-v2 is
composed by two layers: an upper core, which models more general concepts and relations, and can be useful also in business
domains other than CRM, and a lower core, representing concepts and relations specific to the CRM domain. The content
requirements defined by the domain analysis pointed out that an ontology for the CRM domain has to account for both particulars
(such as activities, offers, sales, etc.) and information about them (customer records, reports about sales, an so on). Moreover,
since CRM is typically supported by software tools, O-CREAM-v2 includes the formal characterization of software applications.
Thus, O-CREAM-v2 is structured into five modules: Relationships, Knowledge, Activities (all three spanning both the upper
and the lower core), Software and Miscellaneous (both limited to the upper core). The five O-CREAM modules are described in
details in the paper. The discussion is concluded by mentioning two possible exploitation perspectives for O-CREAM-v2, which
could be the basis for building: (a) Web-based repositories supporting the mediation between supply and demand of CRM-related
tools; (b) tools supporting users in building the formal representations of resources in ontology-based IR systems and in the
semantic search engines application field.

Keywords: Customer Relationship Management, CRM, Customer Relationships, Business Knowledge, Business Activities,
Software

1. Introduction

Customer Relationship Management (CRM) Freeland [2005] has emerged in the last decades as an im-
portant aspect that all companies should take into account in order to understand and anticipate customer
needs, in the perspective of acquiring new customers and building profitable and stable relationships with
“old” ones by increasing their fidelity. In particular, a key feature of the CRM philosophy is the so called
one-to-one marketing perspective, i.e. taking into consideration the single customer and establishing per-
sonalized relationships with her, by producing personalized offers, pricing and payment policies, as well
as delivery modalities, packaging, after-sale services, etc.

In order to achieve the above mentioned goals, a huge amount of knowledge about customers is needed,
coupled with the capability of analyzing such data and exploiting them in a CRM perspective. Moreover,

“PREPRINT VERSION. Cite as: Diego Magro and Anna Goy, A Core Reference Ontology for the Customer Relationship
Domain, Applied Ontology 7(2012), pp. 1-48, I0S Press, DOI 10.3233/A0-2012-0102

**Corresponding Author: Diego Magro, Dipartimento di Informatica, Corso Svizzera 185, 10149, Torino, ITALY. E-mail:
magro@di.unito.it

1570-5838/12/$17.00 (© 2012 — I0S Press and the authors. All rights reserved

2 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

in order to carry on communications activities, such as contacts with customers, organization of the sale
force, targeted marketing campaigns, and so on - that are of major importance within CRM - a wide range
of heterogeneous technologies and services are needed, ranging from more classical communication me-
dia (e.g., phone, fax) to e-mail and Web applications. In particular, in order to actually implement an effec-
tive CRM strategy, taking into account all mentioned aspects, different integrated enabling technologies
are required, including Databases Management Systems and Data Warehouses, ERP systems, Business
Intellingence tools, and Web-based applications.

Another interesting aspect of the CRM approach is that it implies a cross-department view, since dif-
ferent business units should cooperate in supporting CRM: Marketing, Sales, Logistics and Finance, Cus-
tomer Service, etc. Moreover, CRM is largely independent from the specific market sector the company
operates in: CRM has become crucial for cars resellers, as well as for typical food producers, for security
devices installers, as well as for service providers.

Finally, within CRM, human activities are typically coupled with machine supported processes; e.g.
the configuration of personalized offers, just to mention a very simple case, is typically supported by a
software system, but requires human intervention.

In summary, CRM is an emerging area, requires multiple units cooperation, is independent from the
specific market sector, requires the acquisition and elaboration of a huge amount of knowledge, is fruit-
fully supported by software solutions, and implies the integration of human and machine activities: these
characteristics suggest that all the involved actors - e.g. companies aiming at implementing an efficient
CRM strategy as well as software houses offering ICT solutions supporting CRM - would greatly benefit
from a common language, a shared set of concepts, and a common model of CRM.

In particular, if CRM were supported by semantic technologies, it would be possible to reason on the
knowledge about customers, and this would offer a much more effective support to decision making, to
marketing-related strategies, and to other customer-oriented enterprise policies.

Another important aspect to take into account when implementing a CRM strategy is the choice of the
ICT tools that support it. In particular, finding the most suited CRM software solution can be a challenging
task, especially for small sized enterprises aiming at adopting a CRM approach. A formally defined shared
set of concepts could be the basis for a mediation service between supply and demand of software tools
supporting CRM.

The CRM domain is also characterized by a great heterogeneity in the nature of the involved concepts,
which range from activities, to software tools, from business knowledge to customer relationships (see
Section 2). This heterogeneity requires a unifying framework able to provide the basis for modeling CRM-
related concepts (and their relations) in a coherent and reusable way.

In the literature, there are a lot of efforts aimed at modeling concepts related to enterprise activities and
business (see, for instance, Rittgen [2007]). However, to our knowledge, a fully developed semantic model
of the CRM field is still missing. The main contribution of this paper is the proposal of a core reference
ontology for the CRM domain, called O-CREAM-v2 (Ontology for Customer REIAtionship Management
2nd version), specifically targeted to small and medium sized enterprises. The main goal of O-CREAM-v2
is twofold: (a) providing a fully developed semantic model of the CRM field, aimed at fulfilling the needs
mentioned above; (b) showing how a foundational ontology Borgo and Leitdo [2004], providing an upper
level model, enables the proper modeling of heterogeneous domains (such as the CRM one).

Our work started from an analysis of the CRM domain, aimed at individuating the main involed ac-
tors and eliciting the way in which they talk about CRM. This analysis, reported in Section 2.1, provided
us with the basic requirements for building the CRM ontology, which are presented in Section 2.2. Sec-
tion 3 discusses the reused upper level ontologies, while Section 4 provides a detailed presentation of
O-CREAM-v2, which is a modified and extended version of O-CREAM (see Magro and Goy [2008a,b]).
This section provides also a discussion of the most important differences between the first and the new
version, mainly concerning the formalization of relationships and their descriptions. As mentioned above,
many works can be found in the literature that are relevant to our work: in this section, along with the
description of our proposal, the main related approaches are presented, and their role with respect to our
work is explained. Section 5 concludes the paper by discussing possible exploitations of O-CREAM-v2.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 3
2. Motivations, Domain Analysis and Requirements
2.1. Motivations and Domain Analysis

By an informal analysis of the adoption of CRM within Italian companies, it emerged that, if most of
large companies have implemented some CRM strategies since years, many Small and Medium Sized
Enterprises (SME) are still trying to orient themselves within this field. Italian SME, in particular, are
traditionally very suspicious towards the adoption of new approaches and technologies, and tend to prefer
going on using their traditional work methods (like hand-written notes, faxes, paper archives, and so on);
meanwhile, in order to improve their competitiveness, they are forced to overcome their own resistance
and take into consideration the adoption of new approaches to customer management, as well as ICT-based
solutions that could support their business processes.

Given this scenario, we decided to focus our analysis on Italian SME, and we identified two possible
roles a SME can play in relation with CRM:

— small ICT companies (i.e., software houses) can offer software solutions for CRM explicitely con-
ceived for SME;

— SME can look for CRM software solutions, in order to improve their technological integration and
business automation.

As already mentioned, we believe that a shared semantic model of the CRM field could be exploited
as a common vocabulary, shared between ICT companies offering software solutions for CRM and SME
looking for ICT support to their business activities. Moreover, it could be useful:

— as a basis for information integration and communications between business departments, cooperat-
ing towards CRM goals;

— as a support to the rationalization of a huge amount of knowledge that needs to be structured, elabo-
rated and analyzed in order to be useful (e.g., for decision making);

— as a common reference meaning in all the computer mediated communications and computer sup-
ported activities concerning CRM.

Having in particular the mediation scenario in mind, the most important knowledge source for the
elicitation of the requirements for such a shared semantic model of CRM is the way the involved actors
talk about CRM within their business. Thus, we analyzed two main types of information sources:

— Documents (e.g., brochures and white papers), produced by ICT companies, describing their CRM
tools.
— Interviews with

* salesmen from ICT companies, aimed at eliciting the way they describe software solutions sup-
porting CRM for SME;

* managers of SME, in order to understand which concepts and terms they use to talk (and think)
about their activities related to customer management.

Documents by ICT companies and interviews with their salesmen represent the way in which software
solutions for CRM are described. Interviews with SME managers about CRM-related activities represent
the way in which SME CRM activities and involved elements are described, as well as the way in which
SME needs and requirements about technological support for CRM are expressed.

Since our goal was to build an ontology representing a common set of concepts and relations, in order to
enable the mentioned actors to “talk” about CRM referring to shared meanings, we exploited both sources
to elicit requirements for the CRM ontology.

Documents and interviews have been manually analyzed by individuating text fragments referring to
CRM concepts. In particular, we grouped all together linguistic expressions used in documents/interviews
and referring to the same concepts and relations. For instance, we found a set of expressions (“cata-

LT INNT] 99 G LR TINNT]

logazione documenti”, “classificazione documenti”, “archiviazione documenti”, “archiviazione documen-

4 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

LR INT3 LR T3

tale”, “archivio documentazione”, “archivio documenti”!) referring to the concept of document classifica-
tion (see Axiom (A110) characterizing DocumentClassification). This analysis, applied to all documents
and interviews, provided us with the following outcomes:

— A set of concepts and relations involved in the description of CRM activities in SME, i.e. concepts
and relations that have to be characterized in a semantic model of the CRM domain.

— A list of natural language terms and expressions that emerged as important when talking about
CRM; each term/expression is related to a semantic representation based on the ontology. These
terms/expressions represent a bridge between the ontology and the user, by providing a natural lan-
guage access to the semantic representation.

These outcomes have been checked, in order to find lacks or inaccuracies, by referring to the literature
about CRM (e.g. Dychi [2001]; Freeland [2005]; Devalle [2005]), and by having them verified by a CRM
expert. The former outcome provided us with the “content” requirements for the CRM ontology, that are
summarized in the following. The latter outcome has been exploited to build a user interface enabling the
users to interact with the ontology. Some preliminary results in this direction can be found in Goy and
Magro [2011].

2.2. Requirements

We think that two kinds of requirements should be taken into account when building a domain ontology:
First of all, there are content requirements deriving from the domain analysis; such requirements provide
the knowledge engineer with the concepts and relations that the ontology should model. Moreover, there
are general requirements, concerning general top-level concepts and their integration with domain specific
concepts.

From the domain analysis, we elicited content requirements, stating which concepts and relations have
to be characterized in a CRM ontology. Such concepts and relations can be grouped as follows:

1. Business activities (e.g., sales, offers, communications with customers). The analized documents
refer to two basic kinds of business activities:

— Activities somehow involving a business relationship. In turn, a business relationship is always a
relation between the company and a stakeholder; for instance: sales, deliveries, payments, com-
munications.

— “Internal” activities, like filing documents, document (report, invoice, etc.) generation, updating
(inserting, deleting) information in archives, and so on.

2. Relationships which the company is involved in (e.g., the relationship established between a vendor
and a buyer after a sale). Relationships are those permanent links that are established usually as a
result of a business activity.

3. The business knowledge of a company. Interesting examples are: reports about sales; calendars con-
taining information about appointments; offer lists; archives and records about customers, sales,
orders, and so on.

4. Software applications supporting business activities, with their properties (e.g., licences, functional-
ity, technical requirements, delivery model).

From literature analysis about ontology modeling we elicited the following general requirement. a CRM
ontology, suitable for supporting interoperability and communications both within or cross companies
needs to be grounded on a foundational ontology Borgo and Leitdao [2004], providing a rich characteri-
zation of the basic concepts and relations on which specific CRM concepts and relations can be formally
defined.

The reuse of existing ontological models, and especially upper level ontologies, is of major importance
in semantic knowledge representation, mainly because:

"Documents cataloguing, documents classification, documents filing, documentation filing, documentation file, documents file.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 5

— Linking a domain ontology to an existing well-grounded upper level model guarantees a higher de-
gree of accuracy in the definition of basic concepts.

— Making reference to the same upper level ontology enhances the interoperability between different
domain ontologies.

— In domains characterized by a high heterogeneity of concepts, upper level ontologies provide a co-
herent framework supporting the management of such heterogeneity. In particular, the CRM domain
is characterized by concepts and relations of very different nature, such as activities, information en-
tities, software objects, and so on; linking the CRM domain ontology to a well-founded upper level
ontology (see Section 3) helped us to cope with such heterogeneity, as we will show in details in
Section 4.

3. Moﬂellng Basis: Reused Untologles

O-CREAM-v2 has been developed within the framework provided by the well-known foundational on-
tology DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) Masolo et al. [2003];
Borgo and Masolo [2009], and three other ontologies Gangemi and Mika [2003]; Gangemi et al. [2005]
that extend DOLCE, namely: the ontology of Description and Situations (DnS), the Ontology of Informa-
tion Objects (OI0), and (to a lesser degree) the Ontology of Plans (OoP).

In this section, we briefly sketch those features of DOLCE, DnS, OIO and OoP that are necessary for
understanding O-CREAM-v2.

Other ontologies have influenced the development of O-CREAM-v2, which are not part of O-CREAM-
v2 formalization. We do not provide here any survey of these latter ontologies, but we will mention them
whenever it is needed to point out their similarities and differences with O-CREAM-v2.

In the following, the acronyms DOLCE, DnS, OIO and OoP are used to prefix the names of the
concepts and relations of the respective ontologies, while the names of the elements of O-CREAM-v2 are
written without prefix.

3.1. DOLCE

DOLCE Masolo et al. [2003]; Borgo and Masolo [2009] is a foundational ontology of particulars.
DOLCE : Particular denotes the root of the DOLCE taxomomy of categories, i.e. the class of all the
particulars that DOLCE accounts for.

DOLCE distinguishes four basic categories of particulars, namely: objects (DOLCE : Object), events
(DOLCE : Event), qualities (DOLCE : Quality) and abstracts (DOLCE : Abstract).?

Objects are those “particulars that are wholly present [...] at any time they are present” Masolo et al.
[2003] (such as cars, human persons, sheets of paper, amounts of iron, legal persons, organizations, laws,
data, etc.). Events are those entities that “happen in time” (such as activities, processes, etc.). Each object
participates in at least one event (e.g., a human person participates in its life; when she sings, a singer
participates to the singing activity, etc.); conversely, each event has at least one object that participates in
it: DOLCE : participant(x,y,t) specifies this immediate relation between objects and events, stating
that during time t, the object x participates in the event .

Among objects, it is worth mentioning the physical objects (DOLCE : PhysicalObject), such as
cars, human persons, sheets of paper, amounts of iron, etc. and the non-physical objects (DOLCE :
NonPhysicalObject), such as legal persons, organizations, laws, data, etc. Physical objects (DOLCE :
PhysicalObject, such as cars, human persons, sheets of paper, etc.) and amount of matter (DOLCE

*In Masolo et al. [2003] objects are called “endurants” and events are called “perdurants”. Here we prefer the more business-
friendly terms “objects” and “events”, used in Borgo and Masolo [2009]. As a consequence, we also use the terms “physical/non-
physical objects”. Furthermore, the formalization in Borgo and Masolo [2009] is slightly different from that in Masolo et al.
[2003]. We here mainly refer to the original DOLCE version described in Masolo et al. [2003], except for some minor aspects
that are explicitly pointed out in this section.

6 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

AmountO f M atter, such as amounts of iron, etc.) are two special kinds of physical objects. The former
“are objects with unity [, while the latter] are objects with no unity” Masolo et al. [2003]. The physical
objects to which we ascribe some kind of agentivity are called agentive physical objects (DOLCE :
Agentive PhysicalObject, such as human persons, etc.), while the others are called non-agentive physi-
cal objects (DOLCE : NonAgentive PhysicalObject, such as cars, sheets of paper, etc.). As a furhter
category we have the one of Non-physical (unitary) objects (DOLCE : NonPhysicalObject). An im-
portant sub-category of non-physical objects is that of social objects (DOLCE : SocialObject), which
somehow depend on a community of agents and among which DOLCE distinguishes between agen-
tive social objects (DOLCE : AgentiveSocialObject) and non-agentive social objects (DOLCE :
NonAgentiveSocial Object), according to whether or not we ascribe to them some kind of agentivity.
Examples of the former are legal persons, organizations, etc., while examples of the latter are laws, data,
etc.

Qualities are the “basic entities that we can perceive or measure” Masolo et al. [2003] (such as, col-
ors, weights, etc.). In DOLCE, qualities are particulars and each individual quality inheres in exactly one
particular, which is its own bearer (e.g., the weight of John is an individual quality uniquely pertaining
to John and it is different from, say, the weight of Mary). DOLCE : hasQuality(x,y) specifies that
the particular x has the individual quality y (or, stated in other words, that the quality y inheres in the
particular x). Physical objects can have only physical qualities (DOLCE : PhysicalQuality), while
physical qualities can inhere in both physical objects and physical qualities themselves. Non-physical ob-
jects can have only abstract qualities (DOLCE : AbstractQuality), while abstract qualities can inhere
in both non-physical objects and abstract qualities themselves. Events can have only temporal qualities
(DOLCE : TemporalQuality), while temporal qualities can inhere in both events and temporal quali-
ties themselves.

Each quality takes value in a DOLCE : Region. In Masolo et al. [2003], regions are special kinds
of abstracts, which are particulars outside time and space. Differently, in Borgo and Masolo [2009], re-
gions exist in time (i.e., they “are created, adopted, abandoned, etc” Borgo and Masolo [2009]): in the
present article we take the latter perspective. There are three basic kinds of regions, namely the physi-
cal regions (DOLCE : Physical Region), the abstract regions (DOLCE : AbstractRegion) and the
temporal regions (DOLCE : Temporal Region). Among the temporal regions, it is worth mentioning
the time intervals (DOLCE : Timelnterval). Physical, abstract and temporal qualities take values in
physical, abstract and temporal regions, respectively. As regards physical and abstract qualities, the pred-
icate DOLCE : qLocation(z,y,t), states that during time t, the quality x is located in the region y.
A detailed discussion about the different approaches to modeling properties and the options offered by
DOLCE (among which, the one based on individual qualities) can be found in Borgo and Masolo [2009].

Obijects, events, qualities and, under the perspective taken in Borgo and Masolo [2009] and in the present
paper, also regions are particulars that live in time: the predicate DOLCE : presentAt(z,t) specifies
that during time t, the particular x exists.

The parthood between objects is expressed by the predicates DOLCE : part(x,y,t), which states
that y is part of x during t and DOLCE : properPart(x,y,t), which states that during t, y is part
of x, but x is not part of y (i.e., that during t, y is proper part of x). Similarly, the parthood between
events (and also between abstracts) is expressed by the predicates DOLCE : part(x,y) and DOLCE :
properPart(x,y) (in the two former cases, the parthood relationship is not temporary). A particular x
without proper parts is called an atom: DOLCE : Atom(x).

In this article, we will exploit another basic DOLCE relation between particulars, namely the specific
constant dependence: “A particular x is specifically constantly dependent on another particular y iff, at
any time ¢, x can’t be present at ¢ unless y is also present at ¢” Masolo et al. [2003]. The predicate
DOLCE : specificallyConstantly DependsOn(z,y) expresses this relation.

DOLCE reference formal characterization is specified in modal logic S5 plus the Barcan Formula, but
lighter versions of DOLCE (also expressed in OWL W3C [2011]) exist as well and can be downloaded
from the Web, e.g. from the Laboratory of Applied Ontology Web site (http://www.loa-cnr.it/) or the
Ontology Design Patterns Web site (http://ontologydesignpatterns.org/wiki/Main_Page) .

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 7

3.2. Description and Situations (DnS)

The ontology of Description and Situations (DnS) Gangemi and Mika [2003]; Gangemi et al. [2005]
provides a pattern for extending other ontologies with a set of reified concepts® and relations, which can
represent tuples and the intensions or the extensions of classes and relations. The two core concepts are the
notion of description (DnS : Description) and that of situation (DnS : Situation). Each instance of
the latter represents ““a state of affairs or relationship, a tuple, or fact” Gangemi et al. [2005]. Descriptions
provide conceptualizations for (or give a structure to) situations and the basic relation between situations
and descriptions is the satisfaction relation (DnS : satisfies) expressing the fact that a given situation
satisfies a given description.

O-CREAM-v2 exploits, in particular, a DnS-based extension of DOLCE. However, in this last version
of our ontology, we do not use the notion of DnS : Situation (see Section 4.1.1 for a brief discussion
about this issue) that we had used in a previous version Magro and Goy [2008b,a].

In such a DnS extension of DOLCE, reified concepts, i.e. the descriptive counterparts of particu-
lars (e.g., the reification of the notions of examinee, taking an exam, exam duration, etc.), are special
kinds of DOLCE : NonAgentiveSocialObjects (thus they are DOLCE particulars in their turn),
characterized by the class DnS : Concept. The immediate relation between the reified concepts and
the particulars that they make reference to is expressed by the predicate DnS : classifies(z,y,t).
DnS provides three special kinds of reified concepts: the roles (DnS : Role, such as the role of ex-
aminee), the courses (DnS : Course, such as the notion of taking an exam) and the parameters
(DnS : parameter, such as the parameter specifying the exam duration) that represent the descriptive
counterparts of DOLCE : Objects, DOLCE : FEvents and DOLCE : Regions, respectively. More-
over, DnS provides also three relations that specialize the predicate DnS : classifies(x,y,t), namely:
DnS : playedBy(z,y,t), holding between roles and the objects that they classify (e.g., the role of ex-
aminee, during a certain time, may be played by Mr. John Freeman); Dn.S : sequences(x,y,t), holding
between courses and the events that they classify (e.g., the course of taking an exam, during a certain time,
may sequence the John Freeman’s activity of taking that particular exam); DnS : valuedBy(z,y,t),
holding between parameters and the regions that they classify (e.g., the parameter specifying the exam
duration can be valued by a region corresponding to 2 hours). At any time, a reified concept may classify
one or more particulars or it may classify no particular at all. Conversely, at any time, a particular can be
classified by one or more reified concepts or by no reified concept at all.

Each DnS : Concept (and, thus, in particular, each DnS : Role, DnS : Course and DnS :
parameter) is always defined by a Dn.S : Description (DnS : defines(x,y) specifies that the descrip-
tion x defines the reified concept y) and, once defined, it can be used by any description (Dn.S : uses(x,y)
specifies that the description = uses the reified concept y). Defining is a special way of using, i.e.:
DnS : defines(x,y) — DnS : uses(z,y).

OWL versions of DnS extensions of DOLCE can be found at URIs
http://www.loa-cnr.it/ontologies/ExtendedDnS.owl and http://ontologydesignpatterns.org/ont/dul/DUL.owl.

3.3. Ontology of Information Objects (OIO)

OIO Gangemi et al. [2005] further extends the DnS extension of DOLCE with a set of concepts,
relations, definitions and axioms that account for information objects. In OIO, an information ob-
ject (OIO : InformationObject) is a DOLCE : NonAgentiveSocialObject and it represents
an information content. OIO distinguishes both between an information and its physical realization
(OIO : InformationRealization), and between an information and its encoding system (OIO :
InformationEncodingSystem). A physical realization is any entity that acts as a physical support
for an information (e.g. a paper sheet, a sound, a content of a sequence of cells in the main memory

3In the following, we use the words concept, class and category in an interchangeable way to refer to terminological elements
of the ontology, while we use the expression “reified concept” to refer to those instances, belonging to the domain of discourse
of the ontology, which represent concepts.

8 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

Relationships Knowledge Activities Software Miscellaneous

Upper Core

Lower Core

1g. 1. O- -V modules and 1evels

of a computer, etc). The predicate OIO : realizedBy(x,y,t) specifies that, during time t, the infor-
mation object x is realized by the information realization y. Moreover, information contents are ordered
according to some encoding systems, that is according to a set of rules (i.e. a language, a code, etc.),
represented in the ontology by OIO : InformationEncodingSystems, which are special kinds of
DnS : Descriptions. The predicate OIO : orderedBy(x,y) specifies that the information object x
is ordered by the information encoding system y. Finally, during any time ¢, an information content x
can express a meaning y, formalized as a DnS : Description (OIO : expresses(x,y,t)), and can be
about any particular, i.e. any element in the domain of discourse of the ontology, z (oio : about(x, z,t)).
OWL versions of OIO are available at URIs http://www.loa-cnr.it/ontologies/InformationObjects.owl and
http://ontologydesignpatterns.org/ont/dul/IOLite.owl.

3.4. Ontology of Plans (OoP)

The Ontology of Plans (OoP) Gangemi et al. [2005] accounts for several notions related to plans
and their executions. We here will use only the general notion of plan (OoP : Plan), which is a
special kind of description that “is conceived by a cognitive agent, defines or uses at least one task
[...] and one role (played by agents), and has at least one goal as a proper part” Gangemi et al.
[2005]. OWL versions of OoPcan be found at URIs http://www.loa-cnr.it/ontologies/Plans.owl and and
http://ontologydesignpatterns.org/ont/dul/PlansLite.owl.

4. O-CREAM-v2: a core Ontology for Customer REIAtionship Management

An ontology for the CRM domain has to account for both ground particulars (such as activities, offers,
sales, and other relationships, etc.) that we encounter in the domain and the information items about them.
This is why several elements in O-CREAM-v2 representing ground particulars have also an informational
counterpart in the ontology. Furthermore, since CRM is typically supported by ICT-based tools, a part of
O-CREAM-v2 is devoted to the formal characterization of software applications.

O-CREAM-v2 is currently structured into five modules: Relationships, Knowledge, Activities, Software
and Miscellaneous modules (Figure 1).

The first module provides a characterization for a basic notion of relationship and for the main
kinds of business relationships in the CRM domain. The Knowledge module introduces the concept of
InformationElement as arefinement of OO0 : InformationObject, as well as several kinds of infor-
mation elements that play a central role in the considered domain. The third module characterizes a basic
notion of activity and several more specific activity types. A notion of software and a basic framework
for talking about several aspects of software applications are provided in the Software module. Finally,
the Miscellaneous module accounts for a set of ontological items that support the formal apparatus of
O-CREAM-v2, but are not central to the modeled domain: For these items, only a light characterization is
provided.

Moreover, we distinguish two levels in O-CREAM-v2: an upper core and a lower core. The latter is
more specific to the considered CRM domain, while the former is more general and can be useful also in

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 9

business domains other than CRM (Figure 1): Relationships, Knowledge and Activities modules span the
two levels, while Software and Miscellaneous modules lie entirely within the upper core.

O-CREAM-v2 currently contains hundreds of classes, properties and axioms. Therefore, due to the
space contraints we cannot provide here its complete formalization. Instead, in the present section we
present its formal kernel, which allows one to understand the main aspects of the whole ontology. Further-
more, besides those notions for which a formal characterization is provided, we mention and informally
describe also some other classes and properties, when we consider them useful to give a rather precise
idea of O-CREAM-v2 coverage.

4.1. (Business) Relationships

Despite their very different nature, many states of affairs in the considered domain can be conveniently
described as aggregations of interrelated particulars, in which each particular plays (one or more) specific
roles. We call such aggregations relationships.

Throughout the article, we will use the term “relationship” both with a formal meaning (i.e., to refer
to entities representing aggregations of particulars) and with the usual intended meaning in the CRM
domain (e.g., in expressions as “business relationship”, “sale relationship”, etc.). Indeed, all of the different
relationships in the domain share a common structure, which is effectively represented by an abstract
formal notion of relationship.

For instance, when an enterprise sells a person some goods, a particular business relationship is estab-
lished between the enterprise that sells and the person that buys. Moreover, such a relationship involves
also other particulars, such as the sold goods and, possibly, other elements such as the specification of pay-
ment and delivery methods, etc. This “relationship”, as intended in the CRM domain, can be effectively
modeled as a “relationship” in the formal sense.

In Section 4.1.1, we introduce an abstract general formal notion of relationship. This formalization
provides the basic machinery for “reifying” the relationships, i.e. to represent them as particulars and to
place them in the domain of discourse. Such general notion of relationship encompasses not only the
business relationships, but also all of those aggregation of interrelated entities that have to be predicated
on within (and by means of) the ontology. For example, the association between a good and its asked
price, which is not considered a business relationship in the CRM domain, it is formally modeled as a
relationship.

In Section 4.1.2 we introduce some specializations of the general abstract notion of relationship and we
there provide a characterization for the business relationships, as well as a description of some of the most
relevant types of business relationships in the considered domain. Figure 2 reports a fragment of the O-
CREAM-v2 Relationship Taxonomy (the names of classes of the relationships belonging to the upper core
are written in bold), while Figure 3 lists some properties used to characterize the relationships (the names
of those in the upper core are in bold) and depicts the hierarchy between properties (e.g., hasSupplier is
a subproperty of hasRelationshipElement).

4.1.1. (Business) Relationships: Upper Core

O-CREAM-v2 puts at disposal the basic general notion of Relationship, for representing the business
relationships and, in general, all those relationships that need to be predicated on within the ontology.

Relationship is the generic class of all the reified relation instances involving at least two elements
(here called relationships); therefore, each subclass of Relationship represents a reified n-ary relation
(with n > 2). By means of their reification, the relationships are placed into the domain of discourse and
thus they can be predicated on in a natural way within a first-order theory. Moreover, the reification of the
relationships simplifies the translation of O-CREAM-v2 into those ontology languages that support only
unary and binary relations, such as OWL W3C [2011].

The following six axioms provide the basic minimal formal machinery for representing relationships.

10 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview
DOLCE:Object

DOLCE:NonAgentiveSocialObject

DnS:Description

Relationship

Relationship
Description
Good&Price Offer
Relationship Business Relationship
Relationship

CustomerRelationship GontactRelationship
Cus?omer. PersonalizedOffer Description Description
Relationship Relationship
Contact Communication
Relationship Relationship e
(E
Order Pay.ment‘ Iﬁi
Relationship Relationship .]I
Sale Delivery B ISLA A
Relationship Relationship

B

Fig. 2. A fragment of O-CREAM-v2 Relationship Taxonomy

hasRelationshipElement describedBy hasTemporaryRelationshipElement KEY
_ - 7N = - _ _ IR p
hasSupplier N hasContact hasContactRelationship -~ N | 20
~ / -~ . subproperty
hasCustomer/ hasContactHolderEnterprise hasContactPerson hasCRQualifyingDescription of P
4 Q

Fig. 3. Most relevant properties characterizing O-CREAM-v2 relationships

Each relationship involves at least two individuals (elements of the relationship) and it is described
by a RelationshipDescription, which is a particular type of DnS : Description that specifies the
classifying reified concepts for the individuals in the relationship:*

(A1) Relationship(x) — DOLCE : NonAgentiveSocialObject(z) N
(DOLCE : presentAt(x,t) — (yl,y2,y3)(yl # y2 A
(hasRelationshipElement(x,yl) V hasTemporaryRelationshipElement(x,yl,t)) A
(hasRelationshipElement(x,y2) V hasTemporaryRelationshipElement(x,y2,t)) A
RelationshipDescription(y3) A describedBy(x,y3)))

The association between a relationship and an element of the relationship can be either temporary or
not. In some cases, a relationship can acquire and lose some elements during its life span, still maintaining
its identity. This is true, in particular, for many business relationships in the considered domain, which
may change in time. For instance, in the same contact relationship between an enterprise e (the “contact
holder”) and another enterprise or person c (the “contact”), the (optional) person that plays the role of
contact point for the communications within the relationship may change during the life span of the re-
lationship, without affecting the identity of the relationship, which thus remains (i.e., it continues to be
regarded as) the same contact relationship between e and ¢ (see Section 4.1.2). In order to express this kind
of association between a relationship and an element, we introduce the following temporary property:

(A2) hasTemporaryRelationshipElement(x,y,t) —
Relationship(x) N DOLCE : Particular(y) AN DOLCE : Timelnterval(t)

In other cases, the association between a relationship and an element is constant, i.e. it holds for the
whole life span of the relationship. For instance, in a contact relationship, the contact holder enterprise e
and the contact ¢ can not change during the life span of the relationship, since the identity of the relation-

“Every formula is assumed to be universally quantified over all its free variables. We specify axioms, definitions and theorems
in a first-order language with equality, thus the equality symbol “=" is a primitive logical symbol; “x # y” is a shortcut for
““(m — y)”.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview I1

ship depends on the involvement of both e and c in the relationships (i.e., a relationship involving another
contact holder in place of e or another contact in place of ¢ would be another relationship). The following
non temporary property expresses such kind of association between a relationship ad an element:

(A3) hasRelationshipElement(x,y) — Relationship(x) N DOLCE : Particular(y)

A relationship is always described by a description that specifies the roles that the elements play within
the relationship. We firstly introduce the general predicate described By(x,y), whose intuitive meaning
is that the particular x is described by the description y:

(A4) describedBy(z,y) — DOLCE : Particular(x) A DnS : Description(y)

We do not provide a formalization for the described By property in the general case, but we restrict it
in the case of the relationship descriptions by stating that any relationship description, for each element of
the relationship that it describes, must at Ieast use (DnS : uses) one reified concept that classifies that
element:

(AS) RelationshipDescription(x) —
DnS : Description(z) A (Vy)(describedBy(y, x) — Relationship(y))

(A6) Relationship(x) A RelationshipDescription(y) A describedBy(z,y) A
(hasRelationshipElement(z, z) V hasTemporaryRelationshipElement(z, z,t)) A
DOLCE : presentAt(z,t) N DOLCE : presentAt(y,t) —

(Fe)(DnS : Concept(c) A DnS : uses(y,c) A DnS : classifies(c, z,t))

The notion of Dn.S : Situation and, in general, the situation-description framework of Dn.S Gangemi
et al. [2005] has influenced our formal characterization of the concept of Relationship. Indeed, a first ver-
sion of the ontology Magro and Goy [2008b,a] specified the relationships as particular Dn.S : Situations
and the relation between a relationship and its description was modeled by the DnS : satis fies property,
holding between situations and descriptions.

Even though several good reasons had supported such a choice, in this new version of the ontology
we revised it, since the notion of DnS : Situation revealed itself not very suited to our representation
needs (as a consequence, the primitive property described By has been introduced and used to link the
relationships to their descriptions, in place of DnS : satisfies). For instance, the need to distinguish
between temporary and non temporary elements in a relationship can not be easily satisfied by that frame-
work, where only the non temporary property Dn.S : settingFor is available to represent the association
between a Dn.S : Situation and the individuals that it involves. Furthermore, no DnS : Situation can
be a setting for another DnS : Situation and each DnS : Situation is always a setting for at least
one DOLCE : Event (see definition D5 and axioms A10 and A1l in Gangemi et al. [2005]): Such a
characterization seems too restrictive in the considered CRM domain.

4.1.2. (Business) Relationships: Lower Core

The enterprises are daily involved in many business relationships and those that want to implement
some kind of CRM are primarily interested in managing these relationships. This means that they need to
keep track of them in their information systems, to maintain data and information about them, to derive
new knowledge from those data and information, to (reactively or proactively) establish new business
relationships, etc. In this domain, a business relationship is any relationship that an enterprise has with
a stakeholder (i.e., a customer, a contact, a buyer, etc.). In this context, several different kinds of state
of affairs are regarded as business relationships: besides the customer relationships, which are complex
relationships involving other relationships (see the end of this section), also personalized offers, orders,
sales, communications, as well as the simple fact that an enterprise is in contact with some other enterprise
or human person, are all examples of business relationships.

12 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

Formally, a business relationship is defined as a relationship constantly (i.e., by means of the non tem-
porary hasRelationshipElement property) involving at least an enterprise e and another individual (or-
ganization or human person) sh,> which plays some stakeholder role within the relationship:

(D1) BusinessRelationship(x) =
Relationship(x) A (Vt)(DOLCE : present At(z,t) —
(e, sh, shr,d)(Enterprise(e) A (Organization(sh) V HumanPerson(sh)) A
StakeH older Role(shr) A RelationshipDescription(d) A e # sh A
hasRelationshipElement(x,e) A hasRelationshipElement(x, sh) A
DnS : playedBy(shr, sh,t) A DnS : uses(d, shr) A described By(z,d)))

A stakeholder role is a particular kind of DnS : Role and it can be played only by organizations or
human persons:

(A7) StakeHolder Role(x) — DnS : Role(x) A
(Vy,t)(DnS : playedBy(z,y,t) — (Organization(y) V HumanPerson(y)))

Some particular types of stakeholder roles have been specified in the ontology, such as the roles of
contact, buyer, customer, etc.

O-CREAM-v2 accounts for several core business relationship types in the CRM domain. Here we de-
scribe only some of them in order to illustrate how they are characterized within the framework described
so far. In particular, in the following, we will provide a formal specification only for the notion of contact
relationship, with the purpose of illustrating the formal pattern that we have followed for characterizing
relationships within O-CREAM-v2. Then, we will informally describe the core relationship types involved
in the sales cycle (namely: the (possibly personalized) offer, order, sale, delivery, payment and good-price
association relationhip types), as well as the notion of customer relationship.

When an enterprise is in touch with some stakeholder, a contact relationship holds between them. The
stakeholder might have bought some products or services from the enterprise or it might buy something
in the future. In any case, the supplier is interested in selling its product or services to the customer.

We characterize the contact relationship as a particular business relationship whose elements may play
different roles, namely: the contact holder enterprise, the contact, the contact person, and the qualifying
description roles. These roles are used in a contact relationship description, as stated by the following
axiom:

(A8) ContactRelationshipDescription(x) —
RelationshipDescription(x) A (3ch, cr, cpr, qdr)(Contact Holder EnterpriseR(ch) A
ContactR(cr) A ContactPersonR(cpr) A C RQualifyingDescriptionR(qdr) A
DnS : uses(x,sr) A DnS : uses(x,cr) A DnS : uses(x, cpr) A DnS : uses(x, qdr))

Since we aim at modeling the contact relationships between enterprises and their contacts, only an
enterprise can be the contact holder:

(A9) ContactHolder EnterpriseR(x) — DnS : Role(x) A
(Vy,t)(DnS : playedBy(z,y,t) — Enterprise(y))

Differently, the contact role is a stakeholder role and thus it can be played both by organizations (thus,
in particular, by enterprises) and human persons:

(A10) ContactR(z) — StakeHolder Role(x)

In a contact relationship, there can be some persons that the contact holder enterprise actually refers to
for communicating with its contact:

The notions of organization, enterprise and human person are beyond the scope of our ontological investigation. The Mis-
cellaneous module (Section 4.5) contains only the specification that Organization is a DOLCE : AgentiveSocialObject,
Enterpriseis a Organization and HumanPersonis a DOLCE : Agentive PhysicalObject.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview I3

(A11) ContactPersonR(x) — DnS : Role(z) A
(Vy,t)(DnS : playedBy(z,y,t) — HumanPerson(y))

Finally, a contact relationship may be further qualified by means of some descriptions that can specify,
for instance, the preferred ways of contact, payment or delivery methods for the customer:

(A12) CRQualifyingDescriptionR(x) — DnS : Role(x) A
(Vy,t)(DnS : playedBy(z,y,t) — DnS : Description(y))

A contact relationship is a business relationship described by a contact relationship description:

(D2) ContactRelationship(x) = Relationship(x) A
(y)(Contact RelationshipDescription(y) A described By(z,y))

(A13) ContactRelationship(x) — BusinessRelationship(x)

For each role type specified above, there is a corresponding property that links the relationship with
the elements that play this kind of role within the relationship itself. Thus, a contact relationship is
characterized by the following properties: hasContactHolder Enterprise(z,y), hasContact(z,y),
hasContact Person(z,y,t), and hasC RQuali fyingDescription(x,y, t).

For the two former properties, an axiom like the following three holds:

(A14) hasContactHolder Enterprise(x,y) —
ContactRelationship(x) A hasRelationshipElement(x,y)

Each contact relationship involves one and only one particular contact holder and one and only one
particular contact:

(A15) ContactRelationship(x) — (3y)(hasContactHolder Enterprise(x,y))
(A16) hasContactHolder Enterprise(x,yl) A hasContact Holder Enterprise(x,y2) — yl = y2

For the other two properties hasContactPerson, and hasC RQualifyingDescription, we do not
specify any axiom similar to the two latter, since we admit both that in a contact relationship there can
be no contact person (or qualifying descriptions) and that there can be one or more. Moreover, the set of
contact persons (or of qualifying description) in a contact relationship may change during the life span of
the relationship, therefore these are two temporary properties:

(A17) hasContactPerson(x,y,t) —
ContactRelationship(x) A hasTemporaryRelationshipElement(x,y,t)

(analogously for hasC RQuali fyingDescription(x,y,t)).
Each contact relationship depends both on the contact holder and on the contact, therefore if any of
them ceases to be present, the relationship ceases to be present too:

(A18) ContactRelationship(x) A hasContact Holder Enterprise(x,y) —
DOLCE : specificallyConstantly DependsOn(z,y)

(analogously for hasContact(x,y))

The following axiom specifies that a contact holder element in a contact relationship always plays a
contact holder role, which is used by a corresponding contact relationship description (similar axioms hold
for the other above listed three properties that characterize the contact relationships):

(A19) ContactRelationship(x) A Contact RelationshipDescription(y) A described By(z,y) A
hasContact Holder Enterprise(x, z) A
DOLCE : presentAt(z,t) N DOLCE : presentAt(y,t) —
(3ch)(Contact Holder EnterpriseR(ch) A DnS : uses(y,ch) A DnS : playedBy(ch, z,t))

In the CRM domain, the relations typically involved in the sales cycle are of paramount importance:
We provide in the following an informal characterization for the principal ones.

14 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

The Of ferRelationship is a first central relation in the sales cycle. Any offer relationship is a
Relationship amongst the Enterprise that makes the offer, one or more offered goods (each with its
asked price), one or more (optional) targets, a DOLCE : Timelnterval specifying the validity time,
an optional global asked price (i.e. the price asked for the set of all the offered goods), and one or more
(optional) qualifying descriptions (that may specify, for instance, the possible payment or delivery meth-
ods). As far as the offered goods are concerned, each O f fer Relationship always has one or more
Good& PriceRelationship elements; each of them is a Relationship representing the association be-
tween an offered good, its asked price and/or its asked unit price, and a set of descriptions qualifying that
single offered good.

As argued in Hepp [2008], an offered good may be either an actual, concrete “identifiable object or
action” (such as that particular house or that specific tutorial that prof. X will give at that time at a given
place) or a characterization of a set of similar goods (e.g., by means of the specification of their common
make and model, such as in an offer for PCs Dell Latitude E6400), which only specifies the type of the
offered goods without explicitly referring to any specific “identifiable object or action”. Therefore, an
offered good may be either a specific DOLCE : Particular (or a set of DOLCE : Particulars),
which is the very offered element, or a DnS : Description that characterizes the type of the offered
goods (and, possibly, their quantity or quantity range). In this last case, the Good& Price Relationship
contains a DnS : Description that characterizes the offered goods, but it makes no direct reference
to the corresponding actual individual goods. However, since at least one individual corresponding to
the specified type should exist, we require that the DnS : Description of the offered goods always
DnS : uses a concept that DnS : classifies at least one concrete individual (or set of individuals).
For instance, in an offer for Dell Latitude E6400 PCs, we require that at least one Dell Latitude E6400
concrete PC exists that corresponds to the description.

For the sake of generality, we admit that any kind of individual can be offered. However, typically
an offered good is a DOLCE : AmountO f Matter,a DOLCE : NonAgentivePhysicalObject®, a
Service, an InformationElement, an AmountO f M oney (in financial transactions), a set of elements
of these types or a DnS : Description, which DnS : uses a concept that Dn.S : classifies some
element of these types.’

As done with the type of the offered goods, we do not place any restriction on the nature of the prices.
Usually, a price is a DnS : Description representing the specification of an AmountO fmoney, but,
in general, everything can be a price. Therefore, O f fer Relationship encompasses those situations (that
should be included, although they are not very common) in which a product or a service is offered for a
change with another product or service. Thus, it should be clear that we admit a sort of symmetry between
goods and prices, which somehow holds also in other relationships defined in the following. Indeed, in
principle, every individual that can be offered as a good can also be asked as a price.’

Finally, an offer relationship can specify one or more targets which the offer is addressed to. Any
target in an Of fer Relationship can be a specific Organization (e.g., the ACME, Inc.), a specific
HumanPerson (e.g., John Smith) or a DnS : Description characterizing the actual targets.

In many cases, the CRM practices aim at personalizing the offers in order to meet as much as possible
the needs of the individual customers: a PersonalizedO f fer Relationship is an O f fer Relationship
and a BusinessRelationship (since it directly involves a stakeholder) that has one and only one specific
target, which is either a specific Organization or a specific Human Person.

€ According to the notion of product specified in Borgo and Vieu [2006], a product always is an individual in DOLCE :
AmountO f Matter U DOLCE : NonAgentivePhysicalObject.

"The notions of service and amount of money are beyond the scope of our ontological investigation. The Miscellaneous module
(Section 4.5) contains only the specification that Service and AmountO f M oney are two kinds of DOLCE : Particulars.

8Such a symmetry is recognized also by other authors: For instance, in Uschold ez al. [1998], the product (here called good) is
defined as “the role of the good, service or quantity of money that is: offered for sale by a vendor or agreed to be exchanged by
the vendor with the actual customer in a sale”, while the asking price is defined as: “the role of the good, service or quantity of
money being asked for by a vendor in exchange for a product that is for sale” (an analogous definition is provided in Uschold et
al. [1998] also for the sale price).

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 15

Everything stated above about the goods and the prices in an offer relationship holds also for the goods
and the prices in the order and sale relationships, described in the following.

Each time an enterprise receives an order, a particular Order Relationship is established. Any or-
der relationship is a BusinessRelationship amongst the Enterprise that receives the order, the
Organization or the HumanPerson that places the order, one or more ordered goods (each with its
price), a DOLCE : Timelnterval representing the date of the order, an optional global order price (i.e.,
the price that has to be paid for the set of all the ordered goods) and one or more (optional) qualifying de-
scriptions. Like the O f fer Relationships, any Order Relationship can specify several ordered goods,
each one represented by a Good& Price Relationship.

Similarly, when something is sold by a vendor to a buyer, a SaleRelationship is created.
Every individual sale relationship is a BusinessRelationship amongst the vendor Enterprise,
the buyer Organization or HumanPerson, one or more sold goods (each with its price), a
DOLCE : Timelnterval representing the date of the sale, an optional global sale price (i.e., the
price that has to be paid for the set of all the sold goods) and one or more (optional) qualify-
ing descriptions. Any SaleRelationship can specify several sold goods, each one represented by a
Good& PriceRelationship.

Finally, we briefly characterize the delivery and payment relationship types.

A DeliveryRelationship represents the delivery of some goods to a buyer. Its elements are the de-

livering Enterprise, the Organization or the HumanPerson that receives the goods, one or more
delivered goods (or collections of goods), an optional delivery charge (i.e., the price that has to be paid
by the receiver for the delivery), a delivery channel (e.g., the postal service, a courier service, the Inter-
net, etc.) and a DOLCE : Timelnterval representing the delivery date. It is worth pointing out that
actual, concrete goods are delivered. Thus, differently from the offer, order and sale relationships, the de-
livery relationships always concern only actual, concrete goods and not their characterizations by means
of DnS : Descriptions.

A PaymentRelationship represents the transfer of a paid price from a payer to a paid enterprise.
Its elements are the Enterprise that receives the payment, the Organization or the HumanPerson
that pays the price, the paid price, an optional charge (i.e., the additional price that has to be paid by the
payer for that specific payment method), an optional payment channel and a DOLCE : TimelInterval
representing the payment date. It is worth pointing out that a paid price always is an actual concrete
element (or a collection or actual concrete elements), such as an AmountO f Money. Thus, differently
from the offer, order, sale and delivery relationships, the payment relationships always concern actual
concrete elements as paid price and payment charges and not their characterizations by means of Dn.S :
Descriptions.

Besides the relationships described above, O-CREAM-v2 also accouts for several other relationship

types relevant in the CRM domain, among them: the request for quotation, bidding, complaint, appoint-
ment, visit, communication and conversation (with contacts) business relationship types.

The various business relationships between an enterprise and a stakeholder (personalized offers,
orders, sales, payments, communications, etc.) characterize that complex relationhip holding be-
tween them and known as customer relationship. Therefore O-CREAM-v2 formalizes the notion of
Customer Relationship as a (complex) BusinessRelationship amongst an Enterprise (the sup-

plier), an Organization or a HumanPerson (the customer, either potential or actual) and a set
of other business relationships (ContactRelationship, O f fer Relationships, SaleRelationships,
Payment Relationships, CommunicationRelationships, etc.), each one involving both the same en-
terprise (which plays the supplier role in the customer relationship) and the same organization or human
person (which plays the customer role in the customer relationship).

16 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview
DOLCE:Object REV

DOLCE:NonAgentiveSocialObject

B IS-A A
OlO:InformationObject B
InformationElement
Digital Encoding BusinessRelationship MasterData Document Report
InformalionTM/ /Record\ /\ /\ I\
DigitalEncoding Contact Order Sale BusinessRelationship Commercial) Heporth)
Record Record Record MasterData Document BusinessRelationships

Contact Report
MasterData Invoice OnsSales

Fig. 4. A fragment of O-CREAM-v2 Information Element Taxonomy

OlO:realizedBy 0|010fd_eredBy Ol0:about semanticallyEquivalent OlO:expresses encodes

| |
| i
entirelyRealizedBy order:edBy identifies

Lt

Fig. 5. Most relevant properties characterizing O-CREAM-v2 information elements

equivalentlE |

1

£

s

:

4.2. (Business) Knowledge

The CRM activities manage a huge amount of business knowledge®: They access the master data files,
the transactional data and various information sources, they analyze data and information, they produce
data, documents and reports, they register in databases new contacts, orders, sales, communications, etc.

The Ontology of the Information Objects Gangemi et al. [2005] provided us with the basis for for-
malizing the concepts and the relations relevant to the business knowledge. O-CREAM-v2 introduces the
notion of InformationElement as a sub-concept of OIO : In formationObject and it strengthens for
it several OIO axioms that characterize the latter, in order to better fit the considered domain. Moreover, a
set of new properties (w.r.t. OIO) are introduced, formalized and related to those in OIO.

Figure 4 shows a fragment of the O-CREAM-v2 taxonomy of information elements, while Figure 5
reports the most relevant properties that characterize the information elements (as in the figures above,
the names of the classes and properties belonging to the upper core are written in bold). In Figure 5,
a dashed line expresses a sub-property/super-property relationship, while a dotted line represents an
entailment relationship between two properties that formally is not a sub-property/super-property rela-
tionship. For instance, entirelyOrderedBy is a sub-property of orderedBy, while the latter (which
has arity 3) is not a sub-property of OIO : orderedBy (which has arity 2); however, it holds that
(Vx,y,t,)(orderedBy(z,y,t) — OIO : orderedBy(x,y)).

In Section 4.2.1, we provide a characterization for the general In formationElement concept by refin-
ing and extending the OIO framework. Moreover, we also informally introduce the notion of digital infor-
mation element and the encodes property, which relates an encoding information element to its encoded
information. All of them have been placed in the upper core of the ontology, given their possible utility
also in several other domains different from CRM. In Section 4.2.2 we introduce and discuss some more
specific kinds of information elements, with the main aim of illustrating how the basic characterization of
information elements applies to them.

9We refer here to a broad notion of business knowledge encompassing all kinds of data, information and knowledge somehow
involved in the CRM business processes.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 17

4.2.1. (Business) Knowledge: Upper Core

The characterization of the data, information and knowledge elements involved in the (CRM) busi-
ness processes requires at least the capability of talking about the meaning, the encoding languages and
the physical realizations of such elements. As stated in Section 3.3, OIO formalizes the basic notion of
information object (OO : InformationObject) by considering all these features. In particular, OIO
offers a framework in which the content of an information object is kept clearly separate both from
its physical realization and from its encoding system and, furthermore, in which the relationships be-
tween these notions are analyzed and represented, as well. In O-CREAM-v2, the concepts and the rela-
tions related to the business knowledge are rooted in that framework. However, although the notion of
OIO0 : InformationObject is the foundation for our formalization, it is too underspecified to be directly
used in the CRM domain. For this reason, we have introduced In formationFElement as a sub-concept
of OIO : InformationObject and we have refined and extended the characterization that the former
inherits from the latter.

The main aims of this refinement and extension are:

1. Clarifying the relationships between an information element and its parts for what it concerns their
physical realizations, their encoding systems, the particulars they are about, and the descriptions they
express. For instance, if a part of a document is realized by means of a sequence of paper sheets,
what can we say about the physical realization of the whole document? Conversely, if a document
is physically realized by a sequence of paper sheets, what can we say about its proper parts? If all
of the proper parts of a document are physically entirely realized by the same sequence of paper
sheets, what can we say about the whole document? Conversely, if a document is entirely realized
by a sequence of paper sheets, what can we say about its proper parts? Similar questions in relation
to the encoding systems, the particulars that an information element is about and the descriptions
that it expresses have to be answered too.

2. Clarifying the relationships between an information physical realization and its possible parts that
are physical realizations in their turn, for what it concerns the information elements that they realize.
For instance, if a sequence of ten paper sheets (partially/entirely) physically realizes a document,
what can we say about a booklet that contains those ten paper sheets? Can we say that the booklet
(partially/entirely) physically realizes the document too? If each proper part of a document is entirely
physically realized by a sequence of pages of a book, can we say that the book, as a whole, entirely
realizes the document?

3. Providing the means to clearly decouple the encoding systems of an information element from its
physical realizations. This will allow, for instance, to unambiguosly specify that some business
knowledge piece exists both in an English and in an Italian version and that the first one is on paper,
while for the second one only a digital encoding exists.

4. Clarifying the relationships between a description and its parts for what it concerns the informa-
tion elements that express them; i.e., does an information element that expresses a description also
expresses the possible descriptive parts of the expressed description?

5. Accounting for the semantic equivalence between information elements and for a stricter equivalence
notion encompassing, not only the equivalence between the meanings of two information elements,
but also between the encodings that order them. This means, in particular, that we admit that two
information elements can be equivalent (both semantically and, possibly, also with respect to their
ordering encoding systems) still being two distinct individuals.

6. Accounting for those information elements that identify or represent particulars (different from them-
selves), within an enterprise information system.

In the following, we present and discuss our formal framework.
InformationElement is the most general concept that represents the set of all the information ele-
ments in our domain:

(A20) InformationElement(x) — OIO : InformationObject(x)

I8 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

Every part of an information element is an information element:

(A21) InformationElement(x) N DOLCE : part(xz,y,t) — InformationElement(y)

In general, an individual information element (e.g., the specification of the best practices for han-
dling some specific kinds of cutomer’s complaints) can be physically realized by different elements. We
need to distinguish the situations in which each realizing element realizes the whole information (e.g.,
such best practices are wholly described in each booklet given to each employee working in the mar-
keting unit) from those in which each realizing element only partially realizes the information (e.g.,
the best practices are partly decribed in a booklet and partly present only in the mind of the employee
in charge at the marketing unit). Therefore, for each information element x, we interpret the predicate
OIO : realizedBy(z,y,t) as the assertion that, during ¢, z is physically realized by vy, either entirely or
only partially; furthermore, we introduce the predicate entirelyRealized By(x,y,t) to express the fact
that, during ¢, x is entirely physically realized by y (for instance, in the first above-mentioned situation,
the best practices are entirely Realized By each booklet; in the second one we can only say that they are
OIO0 : realized By both the booklet and an employee’s mental representation, but no realization entirely
physically realizes the information element. However, we can specify that a proper part of the best prac-
tices is entirelyRealized By a booklet and another one is entirelyRealized By the employee’s mental
realization).

Formally, we first state that if a part of an information element is realized by any physical realization,
then the whole information element is realized by that physical realization too:

(A22) InformationElement(z) N DOLCE : part(x,z,t) A OIO : realizedBy(z,y,t) —
OIO : realizedBy(z,y,t)

Stating that an information element is realized by a physical realization means that either it is entirely
realized by such a physical realization, or it has a proper part that is realized by it:

(A23) InformationElement(x) A OIO : realizedBy(x,y,t) —
(entirelyRealized By(x,y,t) V
(32)(DOLCE : properPart(x, z,t) A entirelyRealizedBy(z,y,t)))

The property entirelyRealizedBy(x,y,t) is stronger than OIO : realizedBy(x,y, t):

(A24) entirelyRealizedBy(x,y,t) —
InformationElement(z) A OIO : realized By(x,y,t)

If a physical realization entirely realizes an information element, then it entirely realizes also any proper
part of that information element:

(A25) entirelyRealizedBy(x,y,t) —
(Vz)(DOLCE : properPart(z, z,t) — entirelyRealizedBy(z,y,t))

Conversely, if a physical realization entirely realizes each proper part of a non-atomic information
element, then it entirely realizes also the whole information element:

(A26) InformationElement(x) N DOLCE : proper Part(x,z1,t) A
(Vz)(DOLCE : properPart(x, z,t) — entirelyRealized By(z,y,t)) —
entirelyRealized By(z,y,t)

Up to here we have formalized the relationships between an information element and its parts for what it
concerns the physical realizations. By taking the opposite perspective, we need to specify the relationships
between an information physical realization and its parts for what it concerns the realized information
elements. For instance, if a section of a booklet physically realizes an information element (e.g., the above-
mentioned best practices), then also the booklet as a whole physically realizes that information element.
In general, if an information element x is realized by an information realization y, then it is also realized
by any information realization that has y as a part, as stated by the following axiom (in which both the

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 19

temporary and the non temporary partonomic relations occur, since an information realization can be
either an object or an event):

(A27) InformationElement(x) A OIO : realizedBy(z,y,t) A
OIO : InformationRealization(z) A (DOLCE : part(z,y,t) V DOLCE : part(z,y)) —
OIO : realizedBy(z, z,t)

An analogous axiom holds also for the entire realization:

(A28) InformationElement(z) A entirelyRealizedBy(x,y,t) A
OIO : InformationRealization(z) A (DOLCE : part(z,y,t) V DOLCE : part(z,y)) —
entirelyRealizedBy(z, z, t)

Given that a proper part of an object is also a part of that object, from Axioms A21, A26 and A28, it
follows that if each proper part of a non atomic information element x is entirely realized by any infor-
mation physical realization, which is part of a given information physical realization w, then w entirely
realizes the whole information element x:

(T1) InformationElement(z) A OIO : InformationRealization(w) A
DOLCE : properPart(x,z1,t) A (V2)(DOLCE : proper Part(z, z,t) —
(Fy)(entirelyRealizedBy(z,y,t) N DOLCE : part(w,y,t)) —
entirelyRealized By(z,w,t)

Similarly to what happens with the physical realizations, the same individual information element (e.g.,
a sales report) can be ordered by different encoding systems. We need to distinguish the situations in
which each encoding system orders the whole information (e.g., the report is entirely written both in
Italian and in English) from those in which each encoding system only partially orders the information
(e.g., the report is partly written in English and partly specified in a diagrammatic language). Moreover,
the set of encoding systems that order the same information element may change during the life span of
the information element (e.g., the report is originally produced in Italian and, afterwards, it is translated
in English). This last dynamic behaviour of the information elements w.r.t. their encoding systems can not
be expressed by the non temporary OIO : orderedBy(x,y) relation specified in Gangemi et al. [2005],
however, we easily overcome this obstacle (while still committing to OIO) by introducing the temporary
orderedBy(z,y,t), as follows:

(A29) orderedBy(z,y,t) — InformationElement(x) A
OIO : InformationEncodingSystem(y) AN DOLCE : TimelInterval(t)

(A30) orderedBy(z,y,t) — OIO : orderedBy(z,y)
(A31) OIO : orderedBy(z,y) — (3t)(orderedBy(z,y,t))

We interpret the predicate orderedBy(x,y,t) as the assertion that, during time ¢, x is ordered by v,
either entirely or only partially; furthermore, we introduce the predicate entirelyOrderedBy(x,y,t)
to express the fact that, during ¢, x is entirely ordered by y (for instance, in the first above-mentioned
situation, the report is entirelyOrderedBy the Italian language and entirelyOrdered By the English
language, as well; in the second one we can only state that it is Ordered By both the English language
and a diagrammatic language, but none of these languages entirely orders the report. However, we can
specify that a proper part of the report is entirelyOrdered By the English language and another one is
entirelyOrdered By a diagrammatic language).

Formally, we first state that if a part of an information element is ordered by any information encoding
system, then the whole information element is ordered by that information encoding system too:

(A32) InformationElement(x) N DOLCE : part(x, z,t) A orderedBy(z,y,t) —
orderedBy(zx,y,t)

If an information element is ordered by an information encoding system, then either it is entirely ordered
by such a system or it has a proper part that it is:

20 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

(A33) orderedBy(z,y,t) — (entirelyOrderedBy(x,y,t) V
(32)(DOLCE : properPart(x, z,t) A entirelyOrderedBy(z, y,t))

The property entirelyOrderedBy(x,y,t) is stronger than ordered By(x,y,t):
(A34) entirelyOrderedBy(x,y,t) — orderedBy(x,y,t)

If an information encoding system entirely orders an information element, then it entirely orders also
any proper part of that information element:

(A35) entirelyOrderedBy(x,y,t) —
(Vz)(DOLCE : properPart(z, z,t) — entirelyOrderedBy(z,y,t))

Conversely, if an information encoding system orders each proper part of a non-atomic information
element, then it entirely orders also the whole information element:

(A36) InformationElement(x) N DOLCE : properPart(x,z1,t) A
(Vz)(DOLCE : properPart(z, z,t) — entirelyOrderedBy(z,y,t)) —
entirelyOrderedBy(z,y,t)

The semantics of an information element is given (at least in part) by the particulars that the information
element talks about and by the descriptions that it expresses. We refine the predicate OIO0 : about(x,y,t)
by stating that an information element is about all the particulars that its parts are about:

(A37) InformationElement(x) N DOLCE : part(x, z,t) A OIO : about(z,y,t) —
OIO0 : about(x,y,t)

We do not specify the converse axiom stating that if a non atomic information element is about a
particular p, then it necessarily has a proper part which is about p. In other words, we adhere to a holistic
view of aboutness and we admit the possibility that two or more information elements together may be
about some particular even though none of them, individually, is about it. For instance, a database record
may be about an individual association between an employee and its department, while no field in the
record is about this association.

In our domain we need to distinguish two more specific kinds of aboutness, namely the identification
and the representation. Indeed, in an enterprise information system some information elements can be
used to identify (other) particulars or also to represent those particulars within the information system.
For instance, an order code is used to identify an order relationship, while an order record (see below) is
used to represent an order within the enterprise information system. In Oberle et al. [2006], the authors
introduce the property identifies as a specialization of OIO : about to express that a (abstract) data in
a computational system “identifies something different from itself”, as it is for “a user account in a Unix
operating system which has a physical counterpart in the real world”. We also introduce the predicate
identifies(z,y,t), but we do not restrict it to the case of data within computational systems:

(A38) identifies(x,y,t) — InformationElement(xz) N DOLCE : Particular(y) N DOLCE :
Timelnterval(t) N OIO : about(x,y,t) Nx #y

Differently from aboutness, for the sake of generality, we do not state, in general, that any information
element identifies all the particulars that are identified by its parts.

As mentioned above, an information element can not only identify a particular, but it can also represent
it within the enterprise information system. We thus introduce the predicate represents(zx,y,t) to spec-
ify the special case of identification where the information element = provides a characterization of the
particular y complete enough to be considered as a sort of representation of y:

(A39) represents(z,y,t) — identifies(x,y,t)

As regards the expression of descriptions, any information element expresses all the descriptions ex-
pressed by its parts:

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 21

(A40) InformationElement(x) N DOLCE : part(z,z,t) AN OIO : expresses(z,y,t) — OIO :
expresses(z,y,t)

As with aboutness, we admit that two or more information elements together may express a description
even though none of them, individually, expresses it.

Moreover, saying that an information element x expresses a description means stating that it expresses
the whole description, and thus, if the expressed description has some proper parts that are descriptions,
then x expresses also them:

(A41) OIO : expresses(z,y,t) A InformationElement(x) —
(Vz)(DnS : Description(z) N DOLCE : properPart(y, z,t) — OIO : expresses(x, z,t))

Obviously, the converse is not true in general: an information element may express all the descriptive
parts of a given description, without expressing that given description.

To complete the basic characterization of the information elements we need also to introduce a weak and
a strong notion of equivalence between information elements. The weak notion of equivalence (expressed
by the property semantically Equivalent) accounts for the semantic equivalence, but it does not require
the equivalence of the information encoding systems that order the two information elements: For instance,
two different reports may have the same content, even though one is written in English and the other
is written in Italian. The strong notion of equivalence between information elements (expressed by the
property equivalentl), besides the semantic equivalence, requires also the equivalence of the ordering
information encoding systems: For instance, sometimes an information may be duplicated and the two
copies may evolve independently from each other; in those situations it may be convenient to regard the
two copies as two different information elements since the beginning. At the time of duplication, however,
the two information elements are not only semantically equivalent, but they are also ordered in the very
same way.

Two information elements that are semantically equivalent have the same meaning, which implies that
they are about, they identify and they represent, the same particulars and, moreover, they express the same
descriptions:

(A42) semanticallyEquivalent(z,y,t) — InformationElement(z) A
InformationElement(y) N DOLCE : Timelnterval(t)

(A43) semantically Equivalent(x,y,t) —
InformationElement(z) A InformationElement(y) A
(V2)(OIO0 : about(zx, z,t) < OIO : about(y, z,t)) A
(Vz)(identifies(x, z,t) < identifies(y, z,t)) A
(Vz)(represents(x, z,t) < represents(y, z,t)) A
(V2)(OIO0 : expresses(z, z,t) < OIO : expresses(y, z,t))

Obviously, the semantic equivalence is a reflexive, symmetric and transitive relation between informa-
tion elements:

(Ad4) InformationElement(x) — semanticallyEquivalent(z,x,t)
(A45) semantically Equivalent(x,y,t) < semantically Equivalent(y, x,t)

(A46) semantically Equivalent(x,y,t) A semantically Equivalent(y, z,t) —
semantically Equivalent(z, z,t)

The following axiom formalizes the strong notion of equivalence between two information elements x
and y. Such a notion implies not only the semantic equivalence between the two information elements,
but it also entails the equivalence between the encoding systems, in the sense that for each part of x, a
corresponding part of y exists that is semantically equivalent to the first one and ordered in the very same
way, and vice versa:

22 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

(A47) equivalentI E(x,y,t) —
semantically Equivalent(x,y,t) A
(Vz1,1)(DOLCE : part(x,z1,t) A entirelyOrderedBy(z1,1,t) —
(Fy1)(DOLCE : part(y,yl,t) A semantically Equivalent(x1,yl,t) A
entirelyOrderedBy(yl,1,t))) A
(MyL,[)(DOLCE : part(y,yl,t) A entirelyOrderedBy(yl,1,t) —
(3x1)(DOLCE : part(z,z1,t) A semanticallyEquivalent(yl,x1,t) A
entirelyOrderedBy(x1,1,t)))

Like the semantic equivalence, the strong equivalence between information elements is a reflexive,
symmetric and transitive relation:

(A48) InformationElement(x) — equivalent] E(x,x,t)
(A49) equivalentl E(x,y,t) < equivalentl E(y, z,t)

(A50) equivalentl E(x,y,t) N equivalentl E(y, z,t) —
equivalentI E(x, z, t)

Given the importance of the computer-supported knowledge management in the CRM domain, among
the information elements O-CREAM-v?2 distinguishes those that are ordered only by binary computer lan-
guages: These are called digital information elements. We can not report here their formal characteriza-
tion, however it is worth mentioning that their physical realizations are always based either on a piece of
hardware or on an electromagnetic wave. Moreover, we consider a file as a physical realization of a digital
information element depending on some mass storage device.

Sometimes the information elements are used to encode other information elements; i.e., an informa-
tion element can provide a representation for another information element such that the latter can be de-
rived from the former. This is very frequent for the digital information elements. For instance, a JPEG
information element encodes an image such that an image editor can reconstruct the encoded image from
the encoding element. O-CREAM-v2 puts at disposal the predicate encodes(z,y,t) to express that an
information element x encodes another information element y (different from) during time .

Thus in the O-CREAM-v2 framework it it possible to state, for instance, that a JPEG file is the physical
realization of an information element ordered by the JPEG standard; such element encodes an image; the
encoded image is a specific kind of information element, it is ordered by some visual language and it can be
physically realized by its appearance on a display (a special type of OIO : In formationRealization).'?

4.2.2. (Business) Knowledge: Lower Core

The basic characterization of information elements has been exploited to specify several types of infor-
mation elements that we encounter in the CRM domain: Figure 4 depicts some of them. Here we illustrate
the approach by formally characterizing some notions relevant to the master data and to the reports.

An enterprise adopting CRM strategies usually needs to keep track of (almost) all the business relation-
ships it is involved in. Not only the business relationships coming from the classical transactions (such
as those relevant to the orders, the sales, the payments, etc.), but also those coming from more informal
activities (such as those relevant to the communications, the appointments, the complaints, etc.), have to
be represented within the enterprise information system. Therefore, the master data files that store the in-
formation elements representing the business relationships are an important part of the enterprise business
knowledge.

'°COMM (Core Ontology for Multimedia Annotation) Arndt ez al. [2009] is an ontology for the “semantic representation
of media objects”, which extends DOLCE, DnS and OIO. It puts at disposal a rich conceptualization that encompasses the
notions of digital data (e.g. image data, audio data, etc.) and media (e.g. image, etc.). Thus, despite its different scope and target
domain, COMM has a little conceptual overlap with O-CREAM-v2. However, COMM does not explicitly account for the notion
of encoding and it suggests a different representation pattern for describing the state of affairs similar to the example above.
According to that pattern, for instance, an actual image can be the physical realization of a JPEG digital data and not of the
information element that the digital data encodes, as it is in O-CREAM-v2, instead.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 23

We formalize the notion of business relationship record by defining it as an information element repre-
senting a business relationship:

(D3) BusinessRelationshipRecord(xz) = InformationElement(z) A
(3y)(BusinessRelationship(y) A
(Vt)(DOLCE : Timelnterval(t) N DOLCE : presentAt(z,t) — represents(z,y,t)))

It is worth noting that, given the definition above, during its whole life span, a business relationship
record represents the same business relationship.
Each business relationship record always is a proper part of a business relationship master data:

(A51) BusinessRelationshipRecord(z) N DOLCE : presentAt(z,t) —
(Jy)(BusinessRelationshipMaster Data(y) A DOLCE : properPart(y, x,t))

A business relationship master data is an information element which, as a whole, represents a (possibly
empty) set of business relationships, all involving the same enterprise. This does not entail that a business
relationship master data, as a whole, also represents the business relationships belonging to the represented
set. However, we require that for each business relationship belonging to the represented set, the business
relationship master data contains a record that represents the relationship. Conversely, each business re-
lationship record in the master data always represents a member of the represented set of relationships.
Formally, the notion of BusinessRelationshipMaster Data is characterized as follows:!!

(A52) BusinessRelationshipMaster Data(z) —
InformationElement(z) A (Vt)(DOLCE : Timelnterval(t) N DOLCE : presentAt(z,t) —
(Fy)(Set(y) A
(Vz)(hasMember(y, z) — BusinessRelationship(z)) A
(Vz1, 22)(hasMember(y, z1) A hasMember(y, z2) —
(Je)(Enterprise(e) A hasRelationshipElement(z1,e) A hasRelationshipElement(z2,¢e))) A
extensionally Represents(z,y,t) A
(Vz)(hasMember(y, z) —
(3brr)(BusinessRelationshipRecord(brr) N DOLCE : proper Part(z,brr,t) A
represents(brr, z,t))) A
(Vbrr)(BusinessRelationshipRecord(brr) N DOLCE : proper Part(z,brr,t) —
(3z)(hasMember(y, z) A represents(brr, z,t)))))

It is worth noting that, given the axiom above, the set of relationships represented by a business relation-
ship master data may change during the master data life span (i.e., the master data may represent different
sets at different times).

For each business relationship type present in O-CREAM-v2 (Contact Relationship,

Order Relationship, SaleRelationship, etc.), in the ontology there are both a corresponding specific
kind of business relationship record and a corresponding specific kind of business relationship master data.
For instance, a C'ontact Relationship can be represented by a C'ontact Record, which is characterized
as follows:

(D4) ContactRecord(xz) = InformationElement(z) A
(Fy)(ContactRelationship(y) A
(Vt)(DOLCE : Timelnterval(t) N DOLCE : presentAt(z,t) — represents(x,y,t)))

""O-CREAM-v2 provides a light charaterization for the notion of set in its Miscellaneous module (Section 4.5). Such a char-
acterization, besides the Set category, also contains the properties hasMember(z,y) and extensionally Represents(x,y,t):
all of them are used in Axioms A52 and A54. The former expresses the membership of the element y to the set x. The latter
formalizes a special way in which an information element x can represent a set y during ¢ (the general representation relation
between an information element and a particular - i.e. represents(x,y,t) - is introduced in Section 4.2.1). Intuitively: an infor-
mation element extensionally represents a set if, besides representing that set, for each element of the set it also has both a proper
part that represents that element and a proper part that represents the membership of the element to the set.

24 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

Given that a contact relationship is a particular kind of business relationship (Axiom A13), from the
definition above and Definition D3, we derive that:

(T2) ContactRecord(x) — BusinessRelationshipRecord(x)
Each contact record always is a proper part of a contact master data:

(A53) ContactRecord(z) N DOLCE : presentAt(z,t) —
(Jy)(Contact Master Data(y) N DOLCE : proper Part(y, x,t))

A contact master data is a particular type of business relationship master data. As a whole, a contact
master data, represents a (possibly empty) set of contact relationships of the same enterprise. Each contact
record within a contact master data represents an individual contact relationship. The following axiom
provides a formal characterization for the notion:

(A54) ContactMaster Data(x) —
BusinessRelationshipM aster Data(z) A (Vt)(DOLCE : Timelnterval(t) AN DOLCE
presentAt(z,t) —
(Jy)(Set(y) A
(Vz)(hasMember(y, z) — ContactRelationship(z)) A
(Vz1, 22, wl, w2)(hasMember(y, z1) A hasMember(y, z2) A
hasContact Holder Enterprise(z1,wl) A hasContact Holder Enterprise(z2,w2) —
wl = w2) A extensionallyRepresents(x,y,t) A
(Vz)(hasMember(y, z) —
(Jer)(ContacRecord(cr) N DOLCE : proper Part(z,cr,t) A
represents(cr, z,t))) A
(Ver)((ContacRecord(cr) N DOLCE : properPart(z, cr,t) —
(3z)(hasMember(y, z) A represents(cr, z,t)))))

Of course, everything that holds for the business relationship master data and for the business relation-
ship records holds also for the particular cases of the contact master data and the contact records, respec-
tively. In particular, an enterprise may acquire and lose contacts during its activity, therefore the same
contact master data may represent different sets of contact relationships at different times. Differently, the
same contact record may change in time (e.g., some parts can be added, deleted, modified, etc.), but it
always represents the same contact relationship during its whole life span.

Besides the master data, the CRM processes involve several other kinds of information elements: they
manage many documents, such as commercial documents (invoices, documents specifying orders, trans-
port documents, etc.), promotional documents, reports, etc. In particular, the enterprises that adopt CRM
strategies need to access the right knowledge at the right moment, therefore they pay much attention to
the data analysis and the reporting activities. In many cases, the reports are relevant to business relation-
ships (sale, payment, complaint relationships, etc.). As examples, in the following we provide a formal
characterization for the reports on business relationship and for the particular cases of reports on sales.

A report on sales is simply an information element talking about business relationships or about sets of
business relationships:

(A55) ReportOnBusinessRelationships(x) — InformationElement(x) A
(Vt)(DOLCE : presentAt(z,t) — (Jy)(about(x,y,t) A (BusinessRelationship(y)V (Set(y) A
(Vz)(hasMember(z, z) — BusinessRelationship(z))))))

A report on sales is a particular report on business relationships that talks about sales relationships or
about sets of sales relationships:

(A56) ReportOnSales(x) — ReportOnBusinessRelationships(z) A
(Vt)(DOLCE : presentAt(x,t) — (Jy)(about(x,y,t) A (SaleRelationship(y) V (Set(y) A
(Vz)(hasMember(x, z) — SaleRelationship(z))))))

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 25

DOLCE:Event

Activity
Complex Software
Activity Activity
Activitylnvolving Making InformationProcessing
BusinessRelationships Offer Activity
Establishin
9 Making Document Performing

CustomerRelationship

PersonalizedOffer ~ Classification Customer

) Segmentation
AcquiringContact Communicating Creating ¢

Invoice

Reporting

Placing
Order

Paying
Sale Delivering
Activity Goods

Fig. 6. A fragment of O-CREAM-v2 Activity Taxonomy

It is worth noting that a report on business relationships may talk about individual business relationships,
by providing, for instance, some information on each of them; however, it can also provide some collective
information on relationships (e.g., the means of the paid prices for different kinds of products in the sales
in the last three months). Such a collective information refers to sets of business relationships and not to
the individual relationships: This is why we explicitly mention both the individual relationships and the
sets of such relationships in the two axioms above.

4.3. (Business) Activities

In the considered domain, the notion of activity plays a central role. This is a rather broad concept that
encompasses, among others: the core business activities in the CRM domain (e.g., acquiring a new contact,
selling a product, making an offer, communicating with a customer, etc.); the activities related to informa-
tion management (e.g., reporting, handling documents, performing a statistical analysis on sales, cluster-
ing customers into different groups sharing similar characteristics, etc.); the specific activities supporting
the main processes (e.g., creating a bill, printing an invoice, changing the format of an electronic docu-
ment, etc.) and, given that software applications are of paramount importance in CRM, all the activities
resulting from the execution of any piece of software.

Figure 6 depicts a fragment of the O-CREAM-v2 taxonomy of activities (the names of the concepts
belonging to the O-CREAM-v2 upper core are in bold).

Despite the differences between activities of different kinds, they all share the same set of characteristics
that are captured by the general Activity concept: Each activity always has a starting time and can have an
ending one; it can receive some particulars as inputs and involve some particulars as outputs; it is always
executed by someone or something; it can exploit some resources (either by using or consuming them) and
it may be performed according to some specified methods. Figure 7 reports the most relevant properties
that characterize O-CREAM-v2 activities (as in the figures above, those belonging to the upper core are
written in bold, the dashed lines specifies a sub-property/super-property relationship, while the dotted lines
represent an entailment relationship between two properties different from a sub-property/super property
relationship).

In the present section we describe the main characteristics of the O-CREAM-v2 activities. We start
by formally characterizing the basic Activity and Complex Activity concepts. In particular, since any
activity can modify the state of the world by involving one or more particulars, we specify several dif-
ferent ways in which this involvement can take place. Moreover, given their importance in the CRM do-

26 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

startsAt involvesAsOutput_t
—~ = ~
endsAt ~ ~
generatesEvt_t hasEffectsOnObj_t
b
hasAsinput_t - -
put_ — / | - -
createsObj_t modifiesObj_t destroysObj_t
performedBy aae
P A AIONETIS
------ PR AN "-..__
exploitsResource adds Lttt Vot Tl changes
—_ ™~ Proper JPtae '/ N HRY S, “*~Quality
- — Part_t . . P A Value_t
usesResource consumesResource e S oY AN -
. . '
removes » oo N
. ' i ' .
executionOf Proper o P s, removes
Part_t e ' ' Y .
- K 1 ' '\ s.Temporary
performedAccordingToMethod adds ‘ ! \ Relationship
']
REV Temporary ! ' % ETement_t
Hﬁ Relationship ! : '
P Element_t ! ! \
[y
L adds I removes
" ... gontact gontact
é ; Person_t Person_t

Fig. 7. Most relevant properties characterizing O-CREAM-v2 activities

main, we also provide a characterization both for the information processing and the software activities.
Furthermore, the domain analysis showed that in CRM there is a fundamental distinction between the
relationships and the activities that create (and, more generally, involve) them. This means, in particular,
that a business relationship and the activity that has created it are two distinct particulars: For instance, a
sale activity and the new sale relationship that it establishes are two different elements of the world. This

section also introduce the notion of activity involving business relationships and provide some examples
for it.1?

4.3.1. (Business) Activities: Upper Core
First of all, activities are special kinds of events:

(A57) Activity(z) — DOLCE : Event(z)"

Each activity has always one and only one starting time:

(A58) startsAt(x,t) — DOLCE : Event(x) A Timelnstant(t)'

(AS9) Activity(x) — (3t)(startsAt(x,t))

(A60) Activity(z) A startsAt(z,t1) A startsAt(x,t2) — t1 = 2

In a similar way, an activity can have one (and no more than one) ending time:
(A61) endsAt(x,t) — DOLCE : Event(x) A Timelnstant(t)

(A62) Activity(x) N endsAt(x,t) N\ endsAt(x,t2) — t1 =12

Obviously, the starting time must precede the ending one:

’In the considered domain, temporary relations between the activities and other particulars (executors, resources, etc.) are
usually not needed. This is why, for the sake of simplicity, whenever it is possible, we omit the temporal parameter in the modeled
relations. However, in O-CREAM-v2, we do use temporary relations in those cases where they are needed in order to better
capture their meaning or to better represent the relationships among them.

131t is worth noting that since Activity is a subclass of DOLCE : Event, then the Activity class denotes the set of “actual”
activities, which should not be confused with their descriptions or conceptualizations. As stated in Section 3.2, Dn.S Gangemi
and Mika [2003]; Gangemi et al. [2005] puts at disposal the notion of course, represented by the Dn.S : Course class, whose
instances are the descriptive counterparts of events. Within that framework, an activity description can be brought into the domain
of discourse by modeling it as a DnS : Description that DnS : defines a DnS : Course, which DnS : sequences the
described actual activity. In this chapter, we focus on the characterization of actual activities.

"“Time istants are atomic time intervals, i.e.: TimelInstant(t) = DOLCE : Timelnterval(t) A DOLCE : Atom(t).

13Since we need to be able to talk also about running activities and given that, for the sake of generality, in this core ontology
we admit never-ending activities, we do not specify the ending time as mandatory for activities.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 27

(A63) Activity(z) A startsAt(z,t1) A endsAt(z,t2) — t1 < t2'6

An activity can not be present before its starting time, while it is present at the time it starts (any event
extends in time and, thus it can only be partially present at any time instant) and it remains present until
its (possible) ending time; it ceases to be present at its ending time and it is no more present afterwards:

(A64) Activity(x)AstartsAt(xz,t) — (Vt1)(t1 <t — ~DOLCE : present At(x,t1)) A\DOLCE :
present At(z,t)

(A6S) Activity(x) A startsAt(z,t1) A endsAt(z,t2) —
(Vt3)(t1 <t3 < t2 — DOLCE : presentAt(x,t3)) A
(Vt4)(t2 < t4d — -DOLCE : present At(z,t4))

Each object can participate in an activity only from the starting time of the activity up to its (possible)
ending time:

(A66) Activity(z) N startsAt(z,t) N DOLCE : participant(z,y,tl) —
t <t1A (Vt2)(endsAt(x,t2) — t1 < 12)

There may be complex activities that have subactivities as their parts:
(DS) ComplexActivity(x) = Activity(z) A (Jy)(Activity(y) N DOLCE : proper Part(z,y))

If a complex activity starts at time ¢, then there must be at least one subactivity that starts at ¢ and no
subactivity can start before ¢:

(A67) ComplexActivity(x) A startsAt(x,t) —
(Fy)(Activity(y) AN DOLCE : properPart(z,y) A startsAt(y,t)) A
(Vy, t1)(Activity(y) AN DOLCE : proper Part(z,y) A startsAt(y,t1) — t < t1)

Similarly, if a complex activity ends at a time ¢, then there must be at least one subactivity that ends at
t and no subactivity can end after ¢:

(A68) ComplexActivity(x) A endsAt(z,t) —
(Fy)(Activity(y) AN DOLCE : proper Part(z,y) A endsAt(y,t)) A
(Vy)(Activity(y) A DOLCE : proper Part(z,y) — (3t1)(endsAt(y,t1) Atl < t))

If each subactivity of a complex activity has an ending time, then the complex activity itself has an
ending time too:

(A69) ComplexActivity(x) A
(Vy)(Activity(y) AN DOLCE : properPart(z,y) — (3t)(endsAt(y,t))) —
(3t1)(endsAt(z,t1))

As stated above, an activity can receive as inputs, or involve as outputs, some particulars. Very often,
the activities receive as inputs only objects, such as amounts of iron or some customer data. Similarly, in
many cases, the outputs of activities involve only objects: For instance, the result of an activity can be a
new technological artifact (such as a car) or an information element (such as a report on customers), etc.
However, in the considered domain, also events can be inputs for (or outputs of) activities. For instance, a
speech-to-text system actually receives as input a speech, which is an event; conversely, a text-to-speech
system generates a speech (i.e., an event). We thus admit both objects and events as inputs and outputs of
activities.

We firstly consider the inputs, by characterizing the predicate hasAsInputs(x,y,t), whose intuitive
meaning is that at time t, y is available as input for the activity x:

"®Given two time instants t1 and #2, the predicate “¢1 < #2” means that t1 precedes t2. We will also use the shortcuts
“t1 < 27, instead of “(t1 < t2) V (t1 = ¢2)”, which means that t1 does not follow t2 and “t1 Op; t2 Ops t3”, (where Op;
and Op3 can be either < or <), instead of “(t1 Op; t2) A (¢t2 Op2 t3)”.

28 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

(A70) hasAsInput,(z,y,t) — Activity(z) A
(DOLCE : Object(y)V DOLCE : Event(y))ANTimelInstant(t) N\DOLCE : present At(x,t) A\
DOLCE : presentAt(y,t)"7

Obviously, any element y can be available as input to an activity x only during the activity itself:
(A71) hasAsInputy(x,y,t) A startsAt(x,tl) — t1 <t A (Vt2)(endsAt(z,12) — t < t2)

The inputs to an activity that are objects participate in the activity (at least for all the times instants that
they are available as inputs):

(A72) hasAsInput,(z,y,t) N DOLCE : Object(y) — DOLCE : participant(x,y,t)
Having as input an object implies having as inputs also all its (possible) proper parts:

(A73) hasAsInput(xz,y,t) N DOLCE : Object(y) N DOLCE : properPart(y,z,t) —
hasAsInputy(x, z,t)

It is worth noting that if ¥ is an event no axiom analogous to the latter holds. Indeed, events “extend in
time” Masolo ef al. [2003] and, thus, we can not say that all the temporal parts of y are available as inputs
to x, at any time ¢ when the predicate hasAsInput,(x,y,t) is true.

An activity may also involve some particulars as outputs, namely, it can generate some events and it can
produce some effects on objects, by creating, destroying or modifying them. In order to account for the
main possibilities, we introduce in the upper core several temporary relations; the principal ones are (see
Figure 7): involvesAsOutput,, generatesEvt,, hasE f fectsOnObj,, createsObj,, destroysObjy,
modi fiesObj;, addsProper Part,, removesProper Part;, addsTemporaryRelationshipElement,
removesT emporaryRelationshipElement; and changesQualityV alue;. The lower core of the on-
gology accounts for other kinds of activity outputs, more specific to the CRM (see Section 4.3.2).

The relation involvesAsOutput; is the most general one holding between an activity and its out-
puts and it captures both the generation of events, and the production of effects on objects. Intuitively,
involves AsOutput,(x,y,t) means that at time t, the activity x somehow involves y as its output (we will
distinguish in the following some relevant ways in which an activity can involve a particular as its output):

(A74) involvesAsOutputy(x,y,t) — Activity(x) A (DOLCE : Object(y) V DOLCE
Event(y)) A Timelnstant(t) N DOLCE : presentAt(z,t) N DOLCE : presentAt(y,t)

As stated for inputs, any element y can be involved as output by an activity x only during the activity
itself:

(A75) involves AsOutputy(x,y,t) A startsAt(xz,tl) — t1 <t A (Vt2)(endsAt(x,t2) — t < t2)

In general, it is possible that the same activity involves as output the same element several times. This
means, in particular, that the involvement as output may extend for an interval of time (and it is not
necessarily istantaneous, even though it could be).

Moreover, similarly to inputs, any object involved as output by an activity participates in the activity (at
least for all the times it is involved as output):

(A76) involves AsOutputy(x,y,t) N DOLCE : Object(y) — DOLCE : participant(z,y,t)

The generation of an event is a specific case of output. We thus introduce the predicate generates Evty(x, y, t),
whose intuitive meaning is: at time t, the activity x is generating the event yj.

(A77) generatesEvt,(x,y,t) — involves AsOutput,(x,y,t) N DOLCE : Event(y)

A generated event is not present when the generating activity is not generating it:

"For each relation R:(Z,t) (where T is a list of non-temporal parameters), R(Z) = (3t)R:(Z, t) is the corresponding non
temporary one. For instance, hasAsInput(z,y) = (3t)(hasAsInputi(z,y,t)).

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 29

(A78) (3t1)(generatesEvty(z,y,t1)) —
(Vt)(—generatesEvt,(x,y,t) — "DOLCE : presentAt(y,t))

Since an event extends in time, its generation by an activity extends in time too, but there must always
be a specific moment in which the activity has started generating it. Moreover, from that moment until
any time ¢ in which the predicate generates Evt,(x,y, t) is true, the generating activity has never stopped
generating it (and, consequently, the generated event has never ceased to be present):

(A79) generatesEvt (x,y,t) — (3t1)(Timelnstant(tl) Atl < t A generatesEvty(xz,y,t1) A
(Vt2)(TimelInstant(t2) N t2 < t1 — —generatesEvty(x,y,t2)) A
(Vt2)(TimelInstant(t2) AN tl < t2 <t — generatesEvty(x,y,t2)))

The predicate hasE f fectsOnObj,(x,y,t) captures the relation between an activity and the objects
which that activity produces effects on. Its intuitive meaning is that at time t, the activity x produces some
effects on the object y. In general, the same activity can have effects on the same object many times (i.e.
at different times). This relation is formalized by the following axioms and definitions:

(A80) hasEf fectsOnObj(z,y,t) — involves AsOutputy(z,y,t) N DOLCE : Object(y)

An activity can produce effects on an object in three different ways, namely by creating, destroying or
modifying it:

(D6) hasE f fectsOnObjy(x,y,t) = createsObjy(x,y, t)VdestroysObjs(x,y, t)VmodifiesObj(z,y,t)

As regards the creation, the intended meaning of createsObji(z,y,t) is that at time t, the activity x
creates the object y. In O-CREAM-v2, creating an object means making it to become present (in DOLCE
sense) and the creation time ¢ specifies the very moment in which the created object y begins to be present,
after an interval of time (possibly infinite) in which it was not present. This means, in particular, that only
non-present elements can be created. However, for the sake of generality, we admit that the same element
can be created more than once (i.e. in general, an object can alternate periods of non-presence to periods
of presence and it can be brought from non-presence into presence by an activity that creates it).

The following axiom formally characterizes the notion of creation in our domain (it should be noted
that, in principle, an element g created by an activity x can be destroyed by any activity z - possibly other
than z - and this can happen also before = has ended, therefore we can not require that a created element
is present at the time when the creating activity ends):

(A81) createsObjy(z,y,t) — (Ft1)(Timelnstant(tl) ANtl < t A
(Vt2)(TimelInstant(t2) ANtl <t2 <t — “DOLCE : presentAt(y,t2)))

Moreover, it should be clear that from Definition D6 and Axioms A74 and A0, we derive
(T3) createsObji(x,y,t) — DOLCE : presentAt(y,t).

It is worth pointing out that creating an element does not necessarily mean creating all its (possible)
proper parts: A new artifact, for instance, can be created by assembling a set of existing components.

Besides creating it, an activity can also destroy an existing particular. We specify the destruction of an
object by means of the predicate destroysObj.(x,y,t), which means, informally: at time t, the activity
destroys the object y. The destruction is considered the opposite of the creation. Therefore, destroying an
object means making it to cease to be present (in DOLCE sense) and the destruction time ¢ specifies the
very last moment in which the destroyed object is still present, immediately before a (possibly infinite)
time interval in which the destroyed element is not present. As for creation, for the sake of generality, we
admit that the same element can be destroyed more than once. The following axiom formally characterizes
the notion of destruction in our domain (again, we note that from the definitions and axioms above, we
can derive destroysObj(z,y,t) — DOLCE : presentAt(y,t)):

(A82) destroysObji(z,y,t) —

(Ft1)(TimelInstant(tl) At < t1 A (VE2)(Timelnstant(t2) Nt < t2 < t1 — =DOLCE :
presentAt(y, t2)))

30 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

Furthermore, destroying an element does not necessarily mean destroying any of its (possible) proper
parts: An assembled artifact, for instance, can be destroyed by simply disassembling it.

Differently from creating or destroying any element, an activity can have effects on particulars also by
modifying them: modi fiesObj,(x,y,t) informally means that at time t, the activity x modifies the object
y. Modifying a proper part of any object means also modifying the object as a whole:

(A83) modifiesObji(x,y,t) N DOLCE : properPart(z,y,t) — modifiesObji(x, z,t)

We have identified several kinds of modifications that an activity may perform on particulars (see Fig-
ure 7). Some of them are rather general and perhaps useful beyond the CRM domain, thus they are cap-
tured by properties belonging to the upper core of the ontology. In the present section, we discuss only
the most important of them. In particular we present: two predicates expressing mereological modifica-
tions (i.e., adding, and removing a proper part), two predicates relevant to the addition and the removal
of relationship elements and one predicate accounting for the changing of a property value. Other mod-
ification types are very specific to the CRM domain and thus they are characterized in the lower core
of O-CREAM-v2: In Section 4.3.2 we will discuss two of them (namely, addsContactPerson; and
removesContact Persony).

As regards the addition of a new proper part, the predicate addsProper Part,(z,y, p,t) means, infor-
mally, that at time t, the activity x adds to the object y a new proper part p. The time t specifies the very
moment in which the object p begins to be a proper part of ¥, after an interval of time (possibly infinite)
in which it was not. Formally:

(A84) addsProperPart,(x,y,p,t) — modifiesObji(x,y,t)
(A85) addsProperPart,(z,y,p,t) — DOLCE : Object(p) N DOLCE : participant(z,p,t)
(

(A86) addsProperPart,(x,y,p,t) —
(Ft1)(TimelInstant(tl) A tl < t A (VE2)(Timelnstant(t2) ANtl < t2 < t — -DOLCE :
proper Part(y,p,t2))) N DOLCE : properPart(y,p,t)

In principle, after = has added p as a proper part to y, p can be removed from y by any activity z -
possibly other than z - and this can happen also before x has ended, therefore we can not require that the
added proper part is still a proper part of y when the adding activity ends.

Conversely to the addition of a proper part, the predicate removesProper Party(x,y, p,t) means, in-
formally, that at time t, the activity x removes from the object y its proper part p. The time t specifies
the very last moment in which p is still a proper part of y, immediately before a (possibly infinite) time
interval in which p is no longer a proper part of y. Formally:

(A87) removesProper Party(z,y,p,t) — modifiesObj(x,y,t)

(A88) removesProper Party(z,y,p,t) —
DOLCE : Object(p) N DOLCE : participant(z,p,t)

(A89) removesProper Party(z,y,p,t) —
DOLCE : properPart(y,p,t)\(3t1)(Timelnstant(t1)Atl > t A (Vt2)(Timelnstant(t2) At <
t2 <t1l — ~DOLCE : properPart(y, p,t2)))

As a particular case, we make explicit that destroying a proper part p of y actually means removing it
from y:

(A90) destroysObj(z,p,t) N DOLCE : properPart(y,p,t) — removesProper Part,(z,y,p,t)

As we have seen (Section 4.1), the relationships can acquire and lose temporary relationship elements
during their life. The activities can also add and remove temporary relationship elements to and from
relationships. The properties addsT emporaryRelationshipElement(x,y, e, t) and
removesTemporaryRelationshipElement(z,y, e, t) can be used to model these situations. In partic-
ular, the former means, informally, that at time t, the activity x adds to the relationship y a new temporary

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 31

relationship element e. The time ¢ specifies the very moment in which the element e becomes a temporary
element of y, after an interval of time (possibly infinite) in which it was not. Formally:

(A91) addsTemporaryRelationshipElement(x,y, e, t) — modifiesObji(x,y,t)

(A92) addsTemporaryRelationshipElement(x,y, e, t) —
Relationship(y) N DOLCE : Particular(e)

(A93) addsTemporaryRelationshipElement(x,y, e, t) —
(Ft1)(Timelnstant(tl) Atl < t A
(Vt2)(TimelInstant(t2) Nt1 <12 <t —
—hasTemporaryRelationshipElement(y, e, t2))) A
hasTemporaryRelationshipElement(y, e, t)

Conversely, removesTemporaryRelationshipElement,(x,y, e, t) informally means that at time t,
the activity x removes from the relationship y its temporary element e. The time t specifies the very last
moment in which e is still a temporary relationship element of y, immediately before a (possibly infinite)
time interval in which e is no longer a temporary relationship element of y. Formally:

(A94) removesTemporaryRelationshipElement,(x,y,e,t) — modifiesObj(x,y,t)

(A95) removesTemporaryRelationshipElement,(x,y,e,t) —
Relationship(y) N DOLCE : Particular(e)

(A96) removesTemporaryRelationshipElement,(x,y,e,t) —
hasTemporaryRelationshipElement;(y, e, t) A
(Ft1)(Timelnstant(tl) ANt < t1 A
(Vt2)(TimelInstant(t2) Nt < t2 < tl —
—hasTemporaryRelationshipElement;(y, e, t2)))

As particular case, destroying a temporary relationship element e of y always entails its removal from
Y

(A97) destroysObji(x, e, t) A hasTemporaryRelationshipElement(y, e, t) —
removesTemporaryRelationshipElement(z,y, e, t)

Another way in which an activity can modify an object is by changing some of its quality values (the
quales, in the DOLCE terminology). For instance, moving an object means changing the value of its
space location (which can be modeled as a DOLCE quality). O-CREAM-v2 puts at disposal the predicate
changesQualityV aluey(x,y, q,t) for specifying the changing of quality values. The intended meaning
of this predicate is that at time t, the activity x changes the value taken by the individual quality q of y. The
time ¢ represents the very moment in which ¢ changes its value and takes the new one. The interpretations
of the predicate are restricted as follows:

(A98) changesQualityV aluei(x,y,q,t) — modifiesObj(x,y,t)
Since any modified particular y isa DOLCE : Object, it bears only physical or abstract qualities:

(A99) changesQualityV alue,(x,y,q,t) —
(DOLCE : PhysicalQuality(q)VDOLCE : AbstractQuality(q))NDOLCE : hasQuality(y, q)

(A100) changesQualityV aluey(x,y,q,t) —
(3t1, qul, qu2)(Timelnstant(tl) A
((DOLCE : Physical Region(qul) AN DOLCE : Physical Region(qu2)) V
(DOLCE : AbstractRegion(qul) N DOLCE : AbstractRegion(qu2))) A
t1 < tA(Vt2)(Timelnstantl(t2)Atl < t2 <t — DOLCE : qLocation(q, qul,t2))NADOLCE :
gLocation(q, qu2,t) A qul # qu2)

32 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

Besides the creation, destruction, and modification of objects or events, accounted for by the relations
described so far, each activity is always performed by someone or something. In our domain, only DOLCE
objects (e.g., human persons, enterprises, computers, etc.) can perform activities:

(A101) performedBy(z,y) — Activity(x) N DOLCE : Object(y)
(A102) Activity(z) — (Jy)(per formedBy(x,y))

Any object participates for at least one time instant in the activity that it performs, but it is not re-
quired that an executor participates in all parts of the activity (in particular, an activity may have different
executors at different moments):

(A103) performedBy(z,y) A startsAt(xz,t1l) —
(Ft)(TimelInstant(t)Atl < tA(VE2)(endsAt(z,t2) — t < t2)ADOLCE : participant(x,y,t))

Any object performing a complex activity must always execute at least one subactivity (the converse
is not stated, since we admit that any object performing a subactivity might not be considered also as an
object carrying out the whole complex activity).

(A104) ComplexActivity(x) A per formedBy(z,y) —
(3z)(Activity(z) N DOLCE : properPart(x, z) A per formedBy(z,y))

It is worth pointing out that we can not state axioms similar to the previous one for either of the relation
hasAsInput; or involves AsOutputy, etc. (introduced above). In fact, the analysis of the domain did not
allow us to draw similar conclusions for these relations: For instance, an output of a business process can
not always be considered as an ouput of one of its activities.

Besides having inputs and outputs, an activity can also exploit some resources, both by using them
or by consuming them. O-CREAM-v2 offers the general predicate exploits Resource(x,y) and the two
more specific predicates usesResource(x,y) and consumesResource(x,y). We do not report here their
formal characterization.

Furthermore, a notion of method is present in O-CREAM-v2 as a special kind of Dn.S : Description.
It is represented by the class Method and it accounts for for those descriptions that specify “how to
do things”. The property per formedAccordingT oM ethod(x,y) specifies that activity x is performed
according to method y. For an activity z to be performed according to a method y we require that at least
one part w of x is sequenced by a Dn.S : Course z (DnS : sequences(z,w,t)) used by the method y
(DnS : uses(y, z)).'8

Given the central role that the knowledge management plays in the CRM domain, it is worth analyzing
some features of those activities that process information elements, information physical realizations or
descriptions (that are expressed by information elements). In particular, we provide a basic characteriza-
tion for the information processing activities and then we make explicit the basic relationships between
the information elements, their physical realizations and the expressed descriptions, when they are given
as inputs to an activity or they are created by an activity. Furthermore, we also provide a formalization for
DocumentClasst fication, a specific kind of information processing activity.

Each information processing activity is an activity that receives as input and/or involves as output some
information elements:

(A105) InformationProcessingActivity(z) — Activity(z) A
(Jy, t)(InformationElement(y) A Timelnstant(t) A
(hasAsInputy(z,y,t) V involves AsOutput(x,y,t)))

Although one could expect that the converse holds as well (i.e., that each activity that either receives
as input or involves as output any information element always is an information processing activity), the
outcomes of our analysis of the CRM domain advise against stating it in general. Indeed, almost all the

BTwo notions of method are present both in http://www.loa-cnr.it/ontologies/ExtendedDnS.owl and
http://ontologydesingpatterns.org/ont/dul/DUL.owl.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 33

main activities in the considered domain actually access or produce some information, but classifying all
of them as information processing activities would not reflect the point of view of the CRM practitioners.
Similar considerations guided us in the characterization of many activity types for which we have specified
only necessary conditions.

Whenever an information element is available as input to an activity, that activity has necessarily (re-
ceived) as inputs also the physical realizations for all the parts of the information element. Indeed, there is
no way to actually access an information element other than through the physical realizations of its parts.
Formally:

(A106) hasAsInputi(x,y,t) A InformationElement(y) N DOLCE : part(y, z,t) —
(Fw, t1)(t1 <t AOIO : InformationRealization(w) A OIO : realizedBy(z,w,t1) A
hasAsInput,(z,w,tl))

In the simplest case, for each information element y given as input to an activity x, a single physical
realization w is given as input to x that entirely realizes y.

The converse statement of the above axiom seems not to hold in general. Let’s consider, for instance,
the activity of copying a file (which is a physical realization for a digital information element, as stated
in Section 4.2.2): such an activity produces a new file, i.e. a new physical realization for a same digital
information element; to perform that task, the activity surely needs to access the source file; however, it
could be rather counterintuitive stating that it also accesses the information element actually realized by
the source file. Therefore, in OCREAM-v2, we admit that an activity can receive as input an information
realization without receiving as input also the corresponding realized information element.

Moreover, as regards the creation of information elements, we have to consider that every information
element must always be somehow physically realized. Furthermore, different physical realizations can re-
alize different parts of the same information element. Therefore, any activity x that creates an information
element y must also create the physical realizations (in case they are objects) or generate them (in case
they are events) for all the parts of y, unless they are already available as inputs to x:

(A107) createsObji(x,y,t) A InformationElement(y) N DOLCE : part(y, z,t) A
—(Fw)(OI0 : InformationRealization(w) A OIO : realizedBy(z,w,t) A
hasAsInputy(x,w,t)) —

(Fw)(OI0 : InformationRealization(w) A OIO : realizedBy(z,w,t) A
(Ft1)(t1 < t A createsObji(z,w, tl)) V generates Evty(z,w,t))

As in the case of input, the converse is not true in general, since an activity can create an information
realization without necessarily creating the corresponding realized information elements. For instance, the
activity of copying a file creates the destination file (i.e. the information physical realization), but it would
be rather counterintuitive stating that it also creates the information elements realized by the file.

As far as the descriptions are concerned, if a description is available as input to an activity, then an
information element expressing that description must be provided as input to the activity:

(A108) hasAsInput,(x,y,t) A DnS : Description(y) —
(Fw, t1)(t1 < t A InformationElement(w) A OIO : expresses(w,y,tl) A
hasAsInputy(x,w,tl))

Furthermore, an activity x that creates a description y must also create the information element that
expresses the description, unless it is already available as input (in this last case, the creation of the de-
scription could have required, for instance, a modification to the expressing information element provided
as input):

(A109) createsObji(x,y,t) A DnS : Description(y) A
=(3w)(InformationElement(w) A OIO : expresses(w,y,t) A
hasAsInputy(x,w,t)) —
(3t1, w)(t1 < tAInformationElement(w)AcreatesObjy(x, w,t1)ANOIO : expresses(w,y,t))

34 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

Among the activities processing information elements, it is worth mentioning the document classifica-
tion. This is a rather specific kind of information processing activity. However O-CREAM-v2 provides
a characterization for it in its upper core, since, despite its specificity, such kind of activities play an
important role in several knowledge management processes, also beyond the CRM domain.

As a basic characterization, we can describe a document classification activity x as an information pro-
cessing activity that “classifies” at Ieast one document doc in at least one set of documents ds. Namely:
x is an information processing activity that receives as input either a document doc or an informa-
tion element j about a document doc, and it creates an information element 7 representing the mem-
bership relationship m between the document doc and the container set ds. Formally (considering that
Document(d) — InformationElement(d))':

(A110) DocumentClassification(x) — InformationProcessingActivity(x) A
(3doc, ds,m,i,t1,t)(Document(doc) A Set(ds) A MembershipRelationship(m) A
InformationElement(i) A TimelInstant(tl) A Timelnstant(t) Ntl <t A
(hasAsInput(x,doc,t1) V (37)(InformationElement(j) A about(j, doc, t1) A
hasAsInput,(z,j,t1))) A
(Vd)(hasMember(ds,d) — Document(d)) A
hasContainerSet(m,ds) A hasMember Element(m, doc) A represents(i, m,t) A
createsObjy(z,i,t)))

Given the axiom above, it should be clear that in our context “classifying” means creating (at least) one
information element that represents the membership between a document and a class of documents.

Moreover, we should point out that this basic characterization only specifies a mandatory input element
(i.e., either a document or an information element about a document) and a mandatory output element
(i.e., the information element representing the membership relationship). Nevertheless, a document clas-
sification activity can of course receive as input more than one document or some information about many
documents and classify each of them in more than one class of documents. Furthermore, for the sake of
generality, we can not state anything at this level on whether the information about the possible classes of
documents is provided as input or it is created by the activity itself, nor we can formally characterize such
kind of information.

Another important class of activities is that of software activities. Indeed, CRM heavily relies upon
software applications that support its processes. In this domain, a software activity is an activity that
results from the execution of some piece of software, as stated by the following axiom (the predicate
Software(z) states that x is a piece of software and it is defined in Section 4.4):

(D7) SoftwareActivity(x) = Activity(x) A (Jy)(Software(y) A executionOf(x,y))

A software activity can be performed only by computing systems, intended as hardware devices, such
as PCs, PDAs, smart phones, etc. All of these elements are grouped in the HwComputingSystem class,
which is a class of Hardware Taxonomy, contained in the Miscellaneous module (Section 4.5).

(A111) SoftwareActivity(z) A per formedBy(x,y) — HwComputingSystem(y)

Moreover, a piece of software participates in the activity resulting from its execution from the start of
the activity until its (possible) end:

(A112) executionOf(x,y) — SoftwareActivity(xz) A Software(y)

(A113) executionO f(x,y)AstartsAt(z,t1) — (Vt)((Timelnstant(t)A\tl < tA(Vt2)(endsAt(x,t2) —
t <t2)) — DOLCE : participant(z,y,t))

The characterization of the notion of set in the Miscellaneous module (Section 4.5) includes a reification of the member-
ship relationship between a set and an element of the set. In this way, such relationships belong to the domain of discourse,
therefore it is possible to predicate on them by means of first-order predicates. The ontology vocabulary allows one to refer
to any membership relationship = by means of the predicate MembershipRelationship(x) and also to specify the elements
of such a relationship, i.e. its container set i and each member z by means of the predicates hasContainerSet(x,y) and
hasMember Element(x, z), respectively. Axiom (A110) is an example of a possible usage of these ontology items.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 35

4.3.2. (Business) Activities: Lower Core

The most representative activities accounted for in the lower core of O-CREAM-v2 are those involving
business relationships and those performing specific information processing tasks.

The business relationships (between a company and its customers) are the main focus of the CRM,
whose processes are primarily aimed at managing (i.e., creating, modifying, maintaining knowledge on,
etc.) them. As stated above, O-CREAM-v2 assigns the business relationships an autonomous status w.r.t.
the activities that create - and, in general, that involve - them. However, as we might expect, these kinds
of activities play an important role too, in the considered domain.

An activity that involves some business relationship is simply an activity that either has as input or
involves as output a business relationship:

(D8) ActivityInvolvingBusinessRelationships(x) = Activity(z) A
(Jy, t)(BusinessRelationship(y) A Timelnstant(t) A
(hasAsInputy(z,y,t) V involves AsOutput(x,y,t)))

In certain cases the predicates addsT emporaryRelationshipElement(z,y, e, t) and
removesTemporaryRelationshipElement(z,y, e, t) introduced above are not enough to express
the specific modifications that some activities make to business relationships (and - more gen-
erally - to relationships). For instance, the basic characterization of ContactRelationship intro-
duces the predicates hasContactPerson(z,y,t) and hasC RQuali fyingDescription(x,y,t) as sub-
predicates of hasTemporaryRelationshipElement(x,y,t) (see Section 4.1.2). Moreover, any ontol-
ogy that extends O-CREAM-v2 might expand the vocabulary by introducing new sub-predicates of
hasTemporaryRelationshipElement(z,y,t) for characterizing ContactRelationships. Therefore,
there can be situations in which it is necessary to explicity specify whether an activity that adds a tem-
porary relationship element to a contact relationship actually adds to the relationship a qualifying de-
scription, a contact person or something else. To easily cope with these situations, for each sub-predicate
of hasTemporaryRelationshipElement(x,y,t) occurring in its vocabulary, O-CREAM-v2 puts at
disposal two corresponding predicates that express the addition and the removal of this specific kind
of relationship-element temporary link. Here we formally illustrate this by considering only the pred-
icate hasContactPerson(z,y,t), but the same pattern has been followed for each sub-predicate of
hasTemporaryRelationshipElement(z,y,t) in the vocabulary of O-CREAM-v2.

The two predicates addsContactPersoni(z,y,p,t) and removesContactPersoni(z,y,p,t) enable
us to model the addition and the removal of a contact person in a contact relationship. The former infor-
mally means that at time t, the activity x adds to the relationship y a new contact person p (and the time
t specifies the very moment in which p becomes a new contact person in y), whereas the latter informally
means that at time t, the activity x removes p as a contact person in the relationship y. The first predicate
is restricted as follows:

(A114) addsContactPersony(x,y,p,t) — modifiesObj(z,y,t)
(A115) addsContactPersony(x,y,p,t) — Contact Relationship(y) A HumanPerson(p)

(A116) addsContactPersoni(z,y,p,t) —
(3t1)(Timelnstant(tl) Atl <t A
(Vt2)(TimelInstant(t2) ANtl < t2 <t —
—hasContactPerson(y,p,t2))) A hasContactPerson(y, p,t)

Given that, in general, an element of a relationship may play more than one role within the relationship,
adding a contact person p to a relationship y does not imply that p also becomes a new temporary rela-
tionship element; indeed, in general, nothing prevent p to already be a temporary relationship element in y
(although not a contact person) immediately before and at the time when the activity x adds it as a contact
person. However, if it is not the case (i.e., if p is not already a temporary element of y), then adding it as a
contact person means also adding it as a new temporary element:

36

m

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

(A117) addsContactPerson(z,y,p,t) A (Ftl)(Timelnstant(tl) Atl <t A
(Vt2)(TimelInstant(t2) Nt1 <12 <t —
—hasTemporaryRelationshipElement(y, p,t2)) —
addsTemporaryRelationshipElement,(z,y,p,t))

On the opposite, removing from y a temporary relationship element p which is (also) a contact person,
eans also removing it as a contact person:

(A118) removesTemporaryRelationshipElementy(x,y, e, t) A hasContact Person(y,e,t) —
removesContactPerson(z,y,e,t)

The predicate removesContactPersony(z,y,p,t) is restricted in a way analogous to

addsContactPersony(z,y,p,t).

The ontology needs also to explicitly account for those activities that create business relation-

ships. Therefore, each class of business relationships explicitly provided by the ontology (e.g.,

C

ustomer Relationship, Contact Relationship, SaleRelationship, etc.) is paired with the class of

those activities that create that kind of relationships (a few of them are depicted in Figure 6). Therefore
O-CREAM-v2 accounts for the notions of: EstablishingCustomer Relationship (which characterizes
those activities that create new C'ustomer Relationships); AcquiringContact (which accounts for those
activities that create new ContactRelationships); SaleActivity (which provides a formalization for
those activities that create SaleRelationships); etc.

In order to illustrate the approach, we here provide a formal characterization for the concept

AcquiringContact. As stated above, acquiring contacts means creating (at least) a new contact relation-
ship:

(D9) AcquiringContact(x) = ActivityInvolvingBusinessRelationships(x) A
(Jy, t)(ContactRelationship(y) A Timelnstant(t) A createsObji(z,y,t))

Each activity z that creates a contact relationship y between an enterprise e and a contact ¢ always

entails a refinement of the customer relationship between e and c by the new created contact relationship,

if

such a customer relationship already exists (Axiom A136), otherwise it is the activity z itself that creates

also the customer relationship (Axiom A120):20

(A119) AcquiringContact(x)ANContactRelationship(y)AhasContact Holder Enterprise(y, e)A
hasContact(y, c) A createsObjy(z,y,t) A
(32, t1)(Customer Relationship(z) \TimelInstant(tl) AhasSupplier(z,e)ANhasCustomer(z, c)\

(Vt2)(TimelInstant(t2) ANtl < t2 <t — DOLCE : presentAt(z,t2))) —
addsContact Relationshipy(x, z,y,t)

(A120) AcquiringContact(x)N\ContactRelationship(y)AhasContactHolder Enterprise(y,e)A
hasContact(y, c)AcreatesObji(x, y,t)A—(3z, t1)(Customer Relationship(z) NTimelInstant(t1)A

hasSupplier(z,e) A hasCustomer(z,c) A

(Vt2)(TimelInstant(t2) Ntl < t2 <t — DOLCE : presentAt(z,t2))) —
(3z)(Customer Relationship(z) A hasSupplier(z,e) A hasCustomer(z,c) A
hasContactRelationship(z,y,t) A createsObj(z, z,t))

O-CREAM-v2 explicitly provides some specific types of information processing activities that fre-

quently occur in the considered domain, such as creating invoices, reporting, performing statistical anal-

The properties hasSupplier, hasCustomer and hasContact Relationship, occurring in the two following axioms, ex-

press the link between a customer relationship and its elements that play the roles of supplier, customer and contact relationship,
respectively. The predicate addsContact Relationship:(x, z,y,t) infomally means that at time t, the activity x adds to the
customer relationship z a new contact relationship y.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 37

DOLCE:Object KEY

DOLCE:NonAgentiveSocialObject

B IS-A A
OlO0:InformationObject
InformationElement
Software
ComputerProgram BinaryCode ExecutableCode SourceCode SystemSoftware ApplicationSoftware
ExecutableBinaryCode InterpretedSourceCode
ExecutableMachineCode InterpretedBytecodeCode

Fig. 8. A fragment of O-CREAM-v2 Software Taxonomy

yses, modifying master files, performing customer segmentation, etc. Because of the space constraints, we
cannot describe them here.

A set of subclasses of M ethod have been introduced in O-CREAM-v2, among them we have the follow-
ing (whose names give an intuition of their meaning): PaymentM ethod, CreditCardPaymentMethod,
BankTransfer PaymentMethod, DeliveryM ethod, DataAnalysisM ethod,

Statistical DataAnalysisMethod, ClusteringDataAnalysisMethod, DataMiningM ethod etc.

4.4. Software (Upper Core)

Software applications are the core of a set of enabling technologies for CRM. In this section we present
the main concepts at relations that allow the CRM practitioners to talk about several aspects of their
adopted or needed software applications, as well as the CRM software providers to describe their software
solutions. Firstly, we define and characterize our notion of software and we mention some specific kinds of
software categories (for which we omit here the formal characterization); then we illustrate the primitives
for specifying which activities a piece of software can support or perform, the delivery models according
to which it is deployed and the licences under which it is released. We conclude this section by presenting
the main concepts and predicates for talking about the software resources and the hardware elements that
a piece of software requires in order to work.

Given their generality, we place all of the concepts and relations relevant to software into the upper core
of our ontology. Figure 8 depicts a fragment of O-CREAM-v2 Software Taxonomy, while Figure 9 reports
the main properties that characterize the software elements. Since any software element is a particular
kind of information element (see below), several properties that characterize the information elements in
general are also exploited for software characterization.

Moreover, in this section we also mention some language types, namely: Computer Language,
General Purpose ProgrammingLanguage, HighLevel ProgrammingLanguage,

LowLevel ProgrammingLanguage, M achineLanguage, ByteCodeLanguage. Their full formal
characterization is beyond the scope of our ontology, however all of them are classified into the Language
Taxonomy, contained in the Miscellaneous module (Section 4.5).

In Oberle et al. [2006] the notion of software is analyzed from an ontological point of view and an
ontology for software is presented, which is based on DOLCE, DnS and OoP. The ontological analysis
discussed in that paper yielded several results that have guided the development of the module modeling
software-related concepts in O-CREAM-v2. Another ontology that has influenced the definition of this
module is COPS (Core Ontology of Programs and Software) Lando et al. [2007], which provides an onto-
logical view of computer programs and software in the frameworks provided by more abstract ontologies

38 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

hasLicence suitableForSupporting hasSoftwareRequirement
|
hasSoftwareDeliveryModel] hasHardwareRequirement

suitableForPerforming Q is a subproperty of P

|
1
Q

Fig. 9. Most relevant properties characterizing O-CREAM-v2 software (besides those characterizing the information elements in
general)

(including both DOLCE and the 1&DA core ontology for Information and Discourse Acts Fortier and
Kassel [2004]).

In particular, O-CREAM-v2 has borrowed from the Core Software Ontology (CSO) Oberle et al. [2006]
the fundamental characterization of software as a particular information object expressing a plan. Differ-
ently from CSO, and similarly to COPS, our notion of software encompasses both source and binary code
programs and it admits also physical realizations other than those depending on hardware (e.g., a source
code that is physically realized by only a paper listing is considered a piece of software in our framework,
which is not the case in CSO). As in COPS, we introduce both the notions of software and of computer
program (differenlty from COPS, we consider a computer program as a specific kind of software) and we
explicitly specify the language types that can order these kinds of information elements.

In the business domain, software applications often include not only computer programs, but also other
types of information elements, such as database schemas, configuration and layout data, and so on. How-
ever, a collection of such kinds of information elements without any computer program can not be con-
sidered a piece of software. Therefore, we specify that a software entity must have at least one computer
program among its parts. Moreover, each piece of software can be ordered only by computer languages,
which means, in particular, that the software documentation (manuals, UML models and any other doc-
ument describing software) are not considered to be software. This is another difference with COPS,
where the notion of Library of Programs is present as a software superclass. Any Library of Programs in
COPS contains “Collection of Programs and, potentially, other documents (such as manuals)” Lando et
al. [2007].

The following definition formalizes our notion of software:

(D10) Software(x) = InformationElement(x) A
(Vt)(DOLCE : presentAt(z,t) —
(3p)(Computer Program(p) A DOLCE : part(z,p,t)) A
(V1)(orderedBy(x,1,t) — Computer Language(l)))

In O-CREAM-v2, a computer program is a particular kind of software expressing at least one algorithm
and ordered only by (one or more) general purpose programming language. This is expressed by the
following definition:

(D11) ComputerProgram(z) = Software(xz) A
(Vt)(DOLCE : presentAt(z,t) —
(Fa,l)(Algorithm(a) A OIO : expresses(z,a,t) A
General Purpose ProgrammingLanguage(l) A orderedBy(z,1,t)) A
(V1)(orderedBy(z,l,t) — General Purpose ProgrammingLanguage(l)))

An algorithm is a particular kind of OoP : Plan:
(A121) Algorithm(x) — OoP : Plan(x)

It should be noted that the definitions above admit that, at different times, the same piece of software
may contain different computer programs and it may be ordered by different computer languages; similarly
at different times the same computer program may express different algorithms and it may be ordered by
different general purpose programming languages. This formalization reflects a point of view admitting
that software applications and computer programs can be maintained and modified without necessarily
losing their identity.

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 39

From the two definitions above, Axiom A40 and the DOLCE axiom DOLCE : part(z,y,t) —
DOLCE : presentAt(x,t) N DOLCE : presentAt(y,t) (Axiom Ad17 in Masolo et al. [2003]), it
follows that any software entity (when it is present) expresses at least one algorithm:

(T4) Software(x) N DOLCE : presentAt(x,t) —
(Ja)(Algorithm(a) A OIO : expresses(z,a,t))

and, given also Axiom A32, we have that any software entity (when it is present) is always ordered by
at least one general purpose programming language (which means that there is at Ieast one part of any
software entity which is entirely ordered by such a type of language):

(T5) Software(x) N DOLCE : presentAt(x,t) —
(31)(General Purpose ProgrammingLanguage(l) A orderedBy(x,1,t))

Moreover, in 0-CREAM-v2 the temporary parthood between objects is assumed to be antisymmetric
(see Section 4.5). Therefore, given that both software entities and computer programs are objects, from
the two definitions above, Axiom A165 and the DOLCE definition of Temporary Proper Part (Definition
Dd20 in Masolo et al. [2003]), we derive that any piece of software that is not a computer program by
itself necessarily has a proper part which is a computer program:

(T6) Software(x) A =Computer Program(z) N DOLCE : presentAt(z,t) —
(3p)(Computer Program(p) N DOLCE : proper Part(z,p,t))

Besides the two classes Software and Computer Program, O-CREAM-v2 accounts for other spe-
cific kinds of software. Some basic distinctions are based on the different kinds of languages that can order
a piece of software (e.g., source code vs binary code) or on the possibility of executing it either directly by
hardware or by software interpretation (e.g., executable machine code vs interpreted bytecode or source
code). Other basic software categories allow one to distinguish, for instance, between system software
(such as operating systems) and application software(such as business software). Figure 8 reports some
of these categories. Even though O-CREAM-v2 does provide a formal characterization for a few of them,
we do not report it here.

In the considered domain, several further aspects of software play an important role. For the sake of
brevity, we do not discuss all of them and we limit our description to some of the most interesting ones
from a modelling perspective. In the following, we introduce the primitives that O-CREAM-v2 puts at
disposal to specify: The kinds of activities a piece of software may perform or, at least, support; the
software modules and hardware elements it requires; the models according to which it is delivered; the
licences under which it is released.

In the CRM domain, as in many other domains, the execution of an activity may be supported by a
software application. Thus it is important to be able to specify which activities a software application
may support. To this aim, we introduce the predicate suitableFor Supporting(x,y,t), whose intuitive
meaning is that during time t, the piece of software x is suitable for supporting the activity y (which does
not mean that y is actually supported by x, but only that it could be):

(A122) suitableForSupporting(xz,y,t) —
Software(z) N Activity(y) N DOLCE : TimelInterval(t)

In some cases, a piece of software can completely automate the execution of an activity. In
order to specify which activities a piece of software may perform, we introduce the predicate
suitable For Per forming(z,y,t), whose intuitive meaning is during time t, the piece of software x is
suitable for performing the activity y (which does not mean that y is actually a software activity resulting
from the execution of x, but only that it could be).

The suitability of a software application for performing an activity entails its suitability for supporting
the same activity:

(A123) suitableForPer forming(z,y,t) — suitableForSupporting(x,y,t)

40 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

If an activity «x is the execution of a piece of software g, then y is suitable for performing x for the
whole duration of x:

(A124) executionOf(x,y) A startsAt(z,t1) —
(Vt)((TimelInstant(t) ANt <t A (Vi2)(endsAt(x,t2) — t < 2)) —
suitable For Per forming(y, z,t))

The following axiom links the “suitability for supporting” to the “suitability for performing” by stating
that if a piece of software x is suitable for supporting an activity y, then either x is suitable for performing
y or y is a complex activity and z is suitable for performing a sub-activity of y:

(A125) suitableForSupporting(xz,y,t) —
suitableForPer forming(z,y,t)V (Complex Activity(y) A (3z)(DOLCE : properPart(y, z) A
suitable For Per forming(z,y,t)))

The converse of the axiom above holds only if the piece of software x is suitable for performing the
whole activity y (as Axiom A123 states), but not in the general case. In fact, it seems too restrictive stating
that whenever a piece of software is suitable for performing a sub-activity of a complex activity it is also
suitable for supporting the complex activity as a whole. For instance, one might not want to state that a
piece of software for simulating a calculating machine is suitable for supporting the activity of carrying
out a statistical analysis on the sales, even though someone may use that calculating machine software
application in such a statistical sale analysis.

In order to work, a piece of software may require other software resources. A software requirement
may take the form of a specification of a software type (e.g., “the software application x requires OpenOf-
fice.org Base, version 2.0 or later”), meaning that any piece of software of the specified type satisfies
the requirement. Sometimes a requirement provides a very specific software type characterization, which
identifies a particular individual piece of software (e.g., “the software application x requires the Java Plat-
form Standard Edition Runtime Environment 6 for Linux x64”). In other cases a requirement actually
specifies a set of alternatives, with the meaning that at least one of them should be satisfied (e.g., “the
software application x requires either Microsoft IE version 7.0 or later or Firefox version 3.0 or later or
Safari version 3.0 or later”).

O-CREAM-v2 currently provides a very basic formal framework for representing the software require-
ments: the predicate hasSoftwareRequirement(x,y,t) is provided, which intuitively means that dur-
ing time t, the particular x has a software requirement specified by y. Since, in principle, besides software
entities, other types of particulars can have software requirements, the argument x in the predicate above
is not restricted to software. For what has been stated above, y can be either a single software requirement
or a set of alternative software requirements:

(A126) hasSoftwareRequirement(x,y,t) —
DOLCE : Particular(z) A

(SoftwareRequirement(y) V SoftwareRequirementAlternatives(y)) A
DOLCE : Timelnterval(t)

In this basic characterization, a software requirement is a Dn.S : Description defining a software type:

(A127) SoftwareRequirement(x) — DnS : Description(x) A
(3st)(SoftwareType(st) A DnS : defines(z, st))

A software type is a DnS : Concept that classifies only software individuals (and at least one):
(A128) SoftwareType(x) — DnS : Concept(x)
(A129) SoftwareType(x) A DnS : classifies(z,y,t) — Software(y)

(A130) SoftwareType(x) N DOLCE : presentAt(z,t) —
(Fy)(Software(y) A DnS : classifies(x,y,t))

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 41

A set of alternative software requirements is specified as a DnS : Description which has at Ieast two
software requirements as proper parts:

(A131) SoftwareRequirementAlternatives(x) — DnS : Description(x) A
(Fsrl, sr2)(SoftwareRequirement(srl) A SoftwareRequirement(sr2) A srl # sr2 A
(Vt)(DOLCE : presentAt(xz,t) — (DOLCE : properPart(z,srl,t) N DOLCE
proper Part(x, sr2,t))))

Apart from software requirements, a particular may have also hardware requirements: we model them
similarly to the sofware requirements, with the only main difference that a single hardware requirement,
besides specifying a hardware type (e.g., “the piece of software = requires a 64-bit, four cores processor”),
can also provide a characterization for sets of hardware individuals: For instance, a requirement such as
“the piece of software x requires at least 8 GB RAM?” can be fulfilled by any set of RAM modules with
an overall storage capacity of at least 8§ GB RAM.

Software applications may be delivered according to different models. Currently, we distinguish be-
tween two different software delivery models: on-premises software and Software as a Service (SaaS).
According to the first approach, the piece of software is installed and runs on a computing system of the
user. In the second case, the piece of software is hosted by a provider and the user remotely access the soft-
ware services (usually via Web). The predicate hasSoftwareDeliveryModel(z,y,t) in O-CREAM-v2
specifies that during time t, the piece of software x is delivered according to the software delivery model
y. A software delivery model is a special kind of DnS : Description.

Analogously to the delivery models, the licences under which a software application is released are
modeled as special kinds of DnS : Descriptions and the association between a software application and
a licence is expressed by the predicate hasLicence(x,y,t). We have not investigated the relationships
between the software licences and the software delivery models, yet.

4.5. Miscellaneous (Upper Core)

The Miscellaneous module contains a set of concepts and relations that are not central to the modeled
domain, but are used within O-CREAM-v2 and support its formal apparatus. For these items, O-CREAM-
v2 only provides a light formal characterization. Unfortunately, due to the space contraints, we cannot
report here this formal characterization. However, for the sake of completeness, in this section we do
briefly informally introduce such concepts and relations.

First of all, this module contains a faxonomy of languages that extends the one introduced in Lando et
al. [2007]. This taxonomy basically distinguishes from natural and formal languages and from visual and
auditive languages. Among the formal languages, we have the computer languages, which encompass,
among others, the digital formats and the programming languages. Besides these basic categories, this
taxonomy contains several other kinds of languages. In the present article, we have used some of them for
characterizing the notion of So ftware and some other notions related to it (Section 4.4). However, other
concepts relevant to languages emerged during the domain analysis (Section 2.1) and, consequently, have
been inserted into the taxonomy. For instance, the need of dashboard-based reports and the capability of
CRM software of producing them was stressed both by SME managers and ICT salesmen; this suggested
to us to insert into the Language Taxonomy the notion of dashboard-based language as a specific kind of
diagrammatic language, which is, in its turn, a special type of visual language.

A second taxonomy in the Miscellaneous module is the Hardware Taxonomy, which contains the main
concepts related to hardware: CPU, storage and I/O device, hardware computing system, such as com-
puter, smartphone, etc. These concepts have been used in the formal characterization of some O-CREAM-
v2 concepts, such as SoftwareActivity (Section 4.3.1) and make it possible to specify hardware require-
ments (Section 4.4). However, a formal characterization of these concepts (besides their classification into
a taxonomy) is out of the scope of O-CREAM-v2.

Furthermore, the characterizations of several concepts in the CRM domain involve a notion of set. For
instance: (1) an offer relationship may offer sets of particulars (Section 4.1.2); (2) a report on sales may be

42 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

about sets of sales relationships (Section 4.2.2); (3) a contact master data represents, as a whole, a set of
contact relationships (Section 4.2.2); (4) a document classification activity creates a piece of information
expressing the membership of a document to a set of documents (Section 4.3.1).

Unfortunately, in DOLCE, the category of sets is specified as a special kind of abstract, but no further
characterization is provided for it. Moreover, at least to our knowledge, there is no extension of DOLCE
providing some support for the sets, suitable for our representation needs.

It is worth mentioning that in Bottazzi et al. [2006] the authors introduce the notion of Collection as a
specialization of the DOLCE : SocialObject category. However collections are different from sets, as
explained by the authors, and they are not suited to our needs.

For these reasons, the Miscellaneous module contains a light characterization of the notion of set. The
aim is not to include in O-CREAM-v2 a whole theory of sets, thus only those aspects of sets that proved to
be necessary to properly characterize other concepts of the ontology have been captured. In particular, this
module includes a light characterization for: the membership relationship between a set and an element;
the notion of empty set; the equivalence, inclusion and disjointness relationships between sets; the notion
of characterizing property; some specific ways in which an information element can identify or represent
a set (i.e., essentially, by identifying or representing each element in its extension or by intensionally
representing the set via a characterizing property).

There are also other concepts that are used within O-CREAM-v2, but that were not in the focus
of our ontological investigation, such as Organization, Enterprise, HumanPerson, Service and
AmountO f Money (just to list those mentioned in the present article). All of these concepts have been
grouped in the Miscellaneous module, where no formal characterization is specified for them, besides their
classification within the DOLCE taxomomy.

Finally, it is worth mentioning that the Miscellaneous module contains a formal restriction on objects,
which specifies that the temporary parthood relationship between the objects accounted for O-CREAM-v2
is antisymmetric (while the antisymmetry of the parthood relationship does not hold in general for the
DOLCE objects).

5. Discussion and Conclusions

We started this paper by considering the peculiar characteristics of the CRM domain, which suggested to
us that all the actors involved in CRM activities could take significant advantages from a shared semantic
model of CRM, like O-CREAM-v2. In turn, the proposed CRM semantic model would greatly benefit
from the integration with an ontology of organizations, like, for instance, the one proposed in Bottazzi and
Ferrario [2009], that formalizes concepts such as roles and norms underlying organizational settings.

We conclude this paper by sketching two possible exploitations of O-CREAM-v2, one from the per-
spective of SME that aim at implementing an efficient CRM strategy, and the other from the point of view
of software houses that offer ICT solutions supporting CRM.

One of the problems that SME usually have to face when deciding to adopt some CRM strategy is how
to choose the suited software support. We think that a mediation between the supply and demand of CRM-
related software tools would provide a valuable help to SME that are trying to orient themselves in the
CRM software market. In order to face this challenge, we designed ARNEIS (Advanced Repository for
Needs of Enterprises and Innovative Software), a framework enabling intelligent Web-based repositories
storing descriptions of software products and services. Moreover, we developed a prototype in order to
evaluate the framework in the CRM domain Goy et al. [2008]. The basic idea underlying ARNEIS is that
SME that decide to improve their technological integration and business automation, but lack the know-
how to find the most suited ICT solution that fits their needs, can contact the ARNEIS-based repository
and describe their requirements. The system matches these requirements with the descriptions of the CRM
tools, uploaded in the repository by software houses, and suggests the SME the most suited solutions.
The matching is possible since the descriptions of both SME requirements and CRM software tools are
translated into a semantic representation, thus enabling the application of reasoning techniques

D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview 43

In order to check the feasibility of this approach, we built an OWL (http://www.w3.org/TR/owlfeatures/)
version of a significant fragment of O-CREAM-v2, usable within the prototype based on the ARNEIS
framework. A first version of the matching mechanism is described in Goy and Magro [To appear], to-
gether with the results of a preliminary evaluation of the recommendation of CRM solutions to SME,
supported by the prototype.

One of the main challenges of the exploitation of a formal ontology like O-CREAM-v2 within a system
based on the ARNEIS framework is providing users (both software houses and SME) with a user-friendly
Web-based interface enabling them to describe their products or requirements without being exposed to
the complexity of a formal semantic language such as OWL. To this purpose, we designed a form-based
user interface for software houses, described in Goy and Magro [2011], and a preliminary version of a
user interface based on Business Process Modeling techniques for SME, described in Goy and Magro [To
appear].

The idea of supporting companies that are looking for CRM tools is obviously not new: there are
many Web sites that offer evaluation and comparison services aimed at helping users to find the most
suited CRM solution. However, these sites provide very simple mechanisms: for example, the CRM
Software Comparison site by CRM-Reviews.com (http://www.crm-reviews.com/compare-vendors/), or
the Click-by-click CRM comparison by Dovarri Inc. (http://www.dovarri.com/compare-crm.html) offer
very simple comparison tables including a limited number of CRM solutions, compared on the basis of
a small pre-defined set of features. Other sites offer recommender services, but, again, they are based
on a extremely limited set of pre-defined characteristics (e.g., the CRM Solution Advisor by Compare
CRM: http://www.comparecrm.com/crm/crm-vendor-recommendations.php; the Vendor Guru by Elite
CRM Software: http://www.elitecrmsoftware.com/crm.html). With respect to sites like these ones, our ap-
proach aims at offering SME a much more detailed way to describe their needs; moreover, we enable also
CRM vendors to describe their software solutions, through a Web-based user interface (see Goy and Ma-
gro [2011]). Thus, in our approach, both the CRM solutions available and the features on which the com-
parison is based are dynamic and not pre-defined, as in the mentioned examples. Moreover, the knowledge
about CRM on which our prototype is based is far more complex than a simple feature list; this complex-
ity should ensure a deeper understanding of both the vendor offer and the SME needs, and thus a more
grounded recommendation.

Web-based repositories exploiting the ARNEIS framework can be very useful for SME, to help them
in finding the most suited software support for their CRM activities, but also for software houses, that
can exploit the repository to promote their products. Within this perspective, the availability of a formal
semantic representation of CRM-related concepts like O-CREAM-v2 could be useful for software houses
in order to support them in building formal semantic descriptions of their product and services. Such se-
mantic descriptions could be indexed in semantic search engines Mangold [2007] and ontology-based In-
formation Retrieval (IR) systems Tran et al. [2007], thus offering software houses an important marketing
opportunity.

References

R. Arndt, R. Troncy, S. Staab, and L. Hardman. Comm: A core ontology for multimedia annotation. In S. Staab and R. Studer,
editors, Handbook on Ontologies, Second Edition, pages 403—421. Springer, 2009.

S. Borgo and P. Leitdo. The role of foundational ontologies in manufacturing domain applications. LNCS, 3290:670-688, 2004.

S. Borgo and C. Masolo. Foundational choices in dolce. In S. Staab and R. Studer, editors, Handbook on Ontologies, Second
Edition, pages 361-381. Springer, 2009.

S. Borgo and L. Vieu. From physical artefacts to products. In Proc. Second Workshop FOMI, pages 85-99, 2006.

E. Bottazzi and R. Ferrario. Preliminaries to a dolce ontology of organizations. International Journal of Business Process
Integration and Management, 4(4):225-238, 2009.

E. Bottazzi, C. Catenacci, A. Gangemi, and J. Lehmann. From collective intentionality to intentional collectives: an ontological
perspective. Cognitive Systems Research - Special Issue on Cognition Joint Action and Collective Intentionality, 7(2-3):192—
208, 2006.

A. Devalle. Customer relationship management. In V. Cantino et al. Management Information Systems, pages 343-368. McGraw-
Hill, 2005.

44 D. Magro, A. Goy /A Core Reference Ontology for the CRM Domain: an Overview

J. Dychi. The CRM Handbook: a business guide to customer relationship management. Addison-Wesley, 2001.

J.-Y. Fortier and G. Kassel. Managing knowledge at the information level: an ontological approach. In Proc. ECAI 2004 Workshop
on Knowledge Management and Organizational Memories, pages 39-45, 2004.

J. Freeland. The Ultimate CRM Handbook. McGraw-Hill, 2005.

A. Gangemi and P. Mika. Understanding the semantic web through descriptions and situations. LNCS, 2888:689-706, 2003.

A. Gangemi, S. Borgo, C. Catenacci, and J. Lehmann. Task Taxonomies for Knowledge Content. 2005. Metokis Deliverable
DO7.

A. Goy and D. Magro. Managing user interaction in an ontology-based system. In Proc. 7th International Conference on Web

nformation Systems and Technologies. ress,

A. Goy and D. Magro. How semantic web technologies can support the mediation between supply and demand in the ICT market:
the case of customer relationships management. In I. Bedini, F. D. Dorloff, and E. Kajan, editors, Handbook of Research on
E-Business Standards and Protocols: Documents, Data and Advanced Web Technologies. 1GI Global, To appear.

A. Goy, D. Magro, and F. Prato. ARNEIS: A web-based intelligent repository of ict solutions for e-business. In Proc. iiWAS2008,
pages 403-406, 2008.

M. Hepp. Goodrelations: An ontology for describing products and services offers on the web. LNCS, 5268:329-346, 2008.

P. Lando, A. Lapujade, G. Kassel, and F. Fiirst. Towards general ontology of computer programs. In Proc. ICSOFT
(PL/DPS/KE/MUSE), pages 163-170, 2007.

D. Magro and A. Goy. The business knowledge for customer relationship management: an ontological perspective. In Proc.
OBI2008. ACM Press, 2008.

D. Magro and A. Goy. Towards a first ontology for customer relationship management. In Proc. CSTST 2008, pages 637—643.
ACM, 2008.

C. Mangold. A survey and classification of semantic search approaches. International Journal of Metadata, Semantics and
Ontologies, 2(1):23-34, 2007.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. WonderWeb deliverable D18. ISTC-CNR, 2003. Technical
Report.

D. Oberle, S. Lamparter, S. Grimm, D. Vrandecié, S. Staab, and A. Gangemi. Towards ontologies for formalizing modularization
and communication in large software systems. Applied Ontology, 1(2):163-202, 2006.

P. Rittgen, editor. Handbook of Ontologies for Business Interaction. Idea Group, 2007.

T. Tran, S. Bloehdorn, P. Cimiano, and P. Haase. Expressive resource descriptions for ontology-based information retrieval. In
ICTIR 2007 (First International Conference on the Theory of Information Retrieval), pages 55-68. Springer, 2007.

M. Uschold, M. King, S. Moralee, and Y. Zorgios. The enterprise ontology. The Knowledge Engineering Review, 13(1):31-89,
1998.

W3C. OWL Web Ontology Language current status. http://www.w3.org/standards/techs/owl#w3c_all, 2011.

