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ABSTRACT

We consider the problem of convergence in homogeneous shearing-box simulations of magneto-rotationally driven
turbulence. When there is no mean magnetic flux, if the equations are non-dimensionalized with respect to the
diffusive scale, the only free parameter in the problem is the size of the computational domain. The problem of
convergence then relates to the asymptotic form of the solutions as the computational box size becomes large. By
using a numerical code with a high order of accuracy we show that the solutions become asymptotically independent
of domain size. We also show that cases with weak magnetic flux join smoothly to the zero-flux cases as the flux
vanishes. These results are consistent with the operation of a subcritical small-scale dynamo driving the turbulence.
We conclude that for this type of turbulence the angular momentum transport is proportional to the diffusive flux
and therefore has limited relevance in astrophysical situations.
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1. INTRODUCTION

The magneto-rotational instability (MRI) is commonly in-
voked to explain the origin of turbulence in electrically con-
ducting disks (Balbus & Hawley 1991). Although the instability
itself is amenable to an analytic treatment, much of what is cur-
rently known about the nonlinear development of this instability
is based on numerical simulations. In particular, the efficiency
of MRI-driven turbulence at transporting angular momentum,
which is the crucial quantity that ultimately controls the ac-
cretion rate, is known almost exclusively through numerical
simulations. Because of the difficulties inherent in simulating
an entire disk the majority of the numerical work has been based
on the local model known as the shearing-box approximation
(SBA; Hawley et al. 1995). The advantages of the SBA are
numerous: the cylindrical geometry of the full disk is replaced
with the Cartesian geometry of a rectangle, simple periodic and
shear-periodic boundary conditions can be applied, and most
importantly, whatever numerical resolution is available can be
deployed to resolving the ensuing turbulence. However, a num-
ber of issues arise that have led several authors to question the
applicability of the SBA to the study of disk turbulence. Regev
& Umurhan (2008) have noted some inconsistencies in the for-
mulations of the SBA with uniform background states; they
have also questioned the assumption of locality that underlies
the derivation of the SBA. Related concerns about locality were
expressed by Bodo et al. (2008). However, the biggest issue
about the SBA remains the so-called problem of convergence.

There are two configurations in which MRI-driven turbulence
is studied numerically: one in which there is a net magnetic flux
threading the layer and the other in which there is none. In the
former case, if the uniform component of the magnetic field
is vertical, say, there is a linearly unstable mode with a well-
defined vertical wavenumber of maximum growth rate that sets
the scale of the instability; in the latter case no such state exists,
and the MRI must set in as a subcritical instability. Similar
considerations apply if the initial field is azimuthal. What exactly

determines the characteristic scale of the turbulence in the no-
net-flux case is, at the moment, an open question. The conceptual
appeal of the no-flux case is that it offers the possibility of a
universal state of MRI turbulence in which the disk becomes
self-magnetized through dynamo action, so that the angular
momentum transport depends on the disk properties but not on
the amount of flux threading the disk. Clearly much effort has
been devoted to determining if such a universal state exists, and
the value of the associated turbulent transport. Simply stated, the
problem of convergence is that the angular momentum transport
measured in numerical simulations based on the SBA with
homogeneous background state and zero mean flux depends on
numerical resolution, and decreases as the resolution increases.

This effect was first noted by Fromang & Papaloizou (2007)
in a series of numerical experiments with the ZEUS code
and subsequently confirmed by other authors using different
codes (e.g., Pessah et al. 2007; Simon et al. 2009; Guan
et al. 2009). There are a number of important points that
should be made. Most of the evidence for the convergence
problem is based on codes with no explicit viscosity or magnetic
diffusivity in which the dissipation arises solely from truncation
errors. An increase in resolution is interpreted as a decrease
in effective dissipation, so that the convergence problem can
equivalently be stated as a decrease in the effective transport
with decreasing dissipation. Recently, however, Fromang (2010)
indicated that the problem does not arise when explicit viscosity
and magnetic diffusivity are included. Also, the problem is
seen in simulations with homogeneous background state and
periodic boundary conditions in the vertical. Simulations by
Käpylä & Korpi (2011) suggest that the convergence problem is
absent if different boundary conditions are applied in which the
magnetic field is vertical on the upper and lower boundaries.
Also, the problem seems to disappear when stratification is
included (Davis et al. 2010), or the aspect ratio is such that
the computational domain consists of a sufficiently tall box
(J. M. Stone 2010, private communication). Finally, even when
the effect is clearly observed there is no universal agreement
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about the rate at which the transport decreases with resolution.
A number of questions naturally arise: what is the origin of
the convergence problem? Is it a numerical artifact associated
with the indiscriminate use of ideal solvers? Is it a real physical
phenomenon related to subcritial dynamo instabilities? Is it that
the SBA in its simplest form is too idealized to describe MRI
turbulence in a disk? What is the asymptotic scaling of the
angular momentum transport with resolution/dissipation, and
what can we learn from it?

In this paper, we address some of these issues. We revisit
numerically the problem of MRI-driven turbulence in shearing
boxes with uniform background state and periodic boundary
conditions in the vertical. We formulate the problem in a slightly
unconventional way that is designed to emphasize the role of
symmetries in the SBA and to make it easier to distinguish
between numerical and physical effects.

In the ideal limit, the shearing-box equations are scale
invariant, in the sense that doubling the number of grid points in a
simulation or doubling the size of the computational domain are
entirely equivalent. This gives rise to two equivalent limiting
procedures: letting the grid spacing vanish for finite domain
size, and letting the domain size become infinite for finite
grid spacing. Although the two limits are equivalent, the latter
makes it easier to interpret the results in terms of some classical
results from dynamo theory. Using this formulation we consider
the results of high-resolution numerical experiments and reach
the following conclusions. The convergence problem is real
in the sense that the transport by MRI-driven turbulence does
decrease with decreasing dissipation and vanishes for vanishing
dissipation. The problem is related to two aspects of the SBA
with periodic boundary conditions: one is the inherent symmetry
of the SBA and the other is the absence of an effective inverse
cascade in the dynamo solutions. We find that there exists an
asymptotic regime in which the effects of the symmetries are
apparent but it is realized at very high resolution or, as we shall
see presently, at very large system size, suggesting that most
of the simulations described in the current literature are not in
that regime. Finally, we argue that even though the SBA in its
simplest form is probably unable to capture the physics of MRI-
driven turbulence in disks, it nevertheless gives us very useful
clues about which effects are likely to be important, and how to
proceed to improve our models.

The paper is organized as follows. In the next section, we
discuss the zero-flux case; we review the standard formulations
and propose a slightly different approach that better separates
physical and numerical quantities. We present numerical ev-
idence that suggests the existence of an asymptotic state in
which the transport becomes independent of system size. We
then discuss cases with small but finite flux and show that they
match smoothly with the zero-flux cases. Finally, we discuss the
implications for modeling astrophysical disks.

2. THE ZERO NET FLUX CASE

We begin by discussing the case with no mean flux. Concep-
tually, this is the simplest case since for an ideal incompressible
fluid, the SBA is completely scale invariant. As we shall see
presently, this symmetry plays an important role in determining
the asymptotic form of the solutions.

2.1. Formulation

The first step is to cast the SBA equations in dimensionless
form. Often this is accomplished by selecting units that depend

on the sound speed; although this choice is convenient from an
astrophysical point of view it is not the most suitable to bring out
the natural symmetries of the equations. Instead, we begin by
considering an incompressible fluid, i.e., a fluid with infinite
sound speed, with finite viscosity and magnetic diffusivity,
and we shall return to the compressible case presently. A
detailed presentation of the SBA can be found in Hawley et al.
(1995); (see also Lesur & Longaretti 2007). The equations in
dimensional form can be written as

∂v
∂t

+ v · ∇v + 2Ω × v = B · ∇B
4πρ

− 1

ρ
∇

(
B2

8π
+ P

)
− ∇(2AΩx2) + ν∇2v, (1)

∂B
∂t

+ v · ∇B − B · ∇v = η∇2B, (2)

∇ · v = ∇ · B = 0, (3)

where B, v, ρ, and P denote, respectively, magnetic field,
velocity, density, and pressure. The local angular velocity
� = Ωez and shear rate

A ≡ R

2

∂Ω
∂R

(4)

are considered constants. For a Keplerian disk Ω ∝ R−3/2 and
A = −(3/4)Ω. The velocity can be decomposed as the sum of
the base Keplerian flow and the fluctuations:

v = 2Axey + u; (5)

likewise, the pressure can be decomposed as the sum of the
average and the fluctuations:

P = P0 + p. (6)

With these decompositions, the dimensional shearing-box equa-
tions become

Du
Dt

+ Ax
∂u
∂y

+ Auxey + 2Ω × u = B · ∇B
4πρ

− 1

ρ
∇

(
B2

8π
+ p

)
+ ν∇2u, (7)

DB
Dt

+ Ax
∂B
∂y

− ABxey − B · ∇u = η∇2B, (8)

∇ · u = ∇ · B = 0, (9)

with D/Dt = ∂/∂t + u · ∇. The above system of equations con-
tains only three dimensional parameters: the rotation frequency
Ω, the viscosity ν, and the magnetic diffusivity η.

By adopting the following units of time, length, velocity, and
magnetic field intensity

τ = 1

Ω
, L = lD ≡

√
ν

Ω
, u∗ =

√
νΩ, B∗ =

√
ρνΩ

(10)
the equations can be written in dimensionless form as

Dû

Dt̂
−3

4
x̂

∂û
∂ŷ

− 3

4
ûxey + 2ez × û = 1

4π
B̂ · ∇̂B̂

− ∇̂
(

B̂2

8π
+ p̂

)
+ ∇̂2û,

(11)
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DB̂

Dt̂
− 3

4
x̂

∂B̂
∂ŷ

+
3

4
B̂xey − B̂ · ∇û +

1

Pm

∇̂2B̂ = 0, (12)

where the hatted quantities are dimensionless and Pm = ν/η
is the magnetic Prandtl number. It is important to note that
the induction equation (12) depends only on Pm, while the
momentum equation (11) has no adjustable parameters at
all. This is because in the SBA with no mean flux, the
diffusive scale ld is the only intrinsic length that can be
defined using the dimensional parameters of the problem.
Clearly, in order to solve Equations (11) and (12) one also
needs to define a computational domain and suitable boundary
conditions, thereby introducing an external length scale L that
characterizes the size of the computational box; the latter,
however, has no direct physical meaning. In particular, in the
case of periodic boundary conditions (shearing periodic in
the radial direction), formally one is considering an infinite
domain, with L representing a long-wavelength cutoff. The
domain size can itself be non-dimensionalized to define the
additional parameter R ≡ L/L. For fixed magnetic Prandtl
number, R—the domain size in units of the diffusive scale—is
the only adjustable parameter.

We note that the non-dimensional form of the equations above
is different from what is typically found in the literature. In
general, the box size is used as the unit of length and the square
of the parameter R is then identified with the Reynolds number.
However, in a turbulent flow, the Reynolds number should be
more properly defined in terms of the integral scale of the
turbulence. The question then becomes whether asymptotically,
for R → ∞, in MRI turbulence the integral scale is linked
to the box size, or to the diffusive scale, or to a combination
of both. We note that if the solutions become asymptotically
independent of the box size, the system of Equations (11) and
(12) does not depend on any non-dimensional parameters, apart
from the Prandtl number, i.e., for fixed Prandtl number there is
a universal solution.

In the zero net flux case, dynamo processes must effectively
maintain the magnetic field against dissipation; however the
magnetic field is itself responsible for generating, through the
MRI, the turbulence that sustains it. It is well known that,
in a (small-scale) turbulent dynamo, the magnetic energy is
concentrated near the resistive scale. In this case, one expects
that the MRI-driven velocity may also be characterized by the
diffusive scale. In order for the velocity to have a significant
component comparable to the box size an efficient mechanism
is required that can transfer energy backward, from the resistive
scale to the largest available scale, i.e., an inverse cascade.
Whether such an inverse cascade exists is at the heart of the
problem.

As an aside, we note that the condition for the validity of the
SBA is that the characteristic scales of the solution be much
smaller than the box size, lest the use of periodic boundary
conditions is not justified. Therefore, if there were cases in
which the shearing-box results would show a dependence of
the solutions on the box size R as R → ∞, one should
actually reformulate these cases by introducing some global
scale characteristic of the whole disk.

One of the main objectives of MRI studies is to determine the
efficiency of the transport of angular momentum by Maxwell
and Reynolds stresses. It is customary to define the quantity

Σ ≡
〈
uxuy − BxBy

4πρ

〉
(13)

that represents the box and time-averaged value of the total
stresses (hereinafter overbars denote time averages, while angle
brackets denote a box average). This quantity has dimensions of
square velocity; thus with our choice of non-dimensionalization
it is measured in units of Ων. For fixed magnetic Prandtl number
we can write

Σ ∼ f (R)Ω2l2
D = f (R)Ων. (14)

Here, f (R) is a dimensionless function that accounts for the
possible dependence of the solutions on the externally imposed
box size. When R = O(1) the box size is comparable to the
diffusive scale, and, on general grounds, one expect a strong
dependence of f (R) on R. It is not clear, a priori, what depen-
dence one should expect as R → ∞. It is important, however, to
be clear about the relationship between the asymptotic form of
f (R) and the transport efficiency. In turbulence theory, it is cus-
tomary to refer to “turbulent transport” to describe a transport
process that becomes independent of diffusion for small diffu-
sion, and to “collisional transport” to describe one such process
that remains proportional to the diffusivities when these become
small. Because, here, Σ is measured in diffusive units (Ων), if
f (R) ∼ constant as R → ∞ the angular momentum transport
is entirely collisional. Conversely, in order for the transport to be
“turbulent” in the sense defined above, f (R) ∼ R2 as R → ∞.
In fact, any asymptotic dependence of f (R) weaker than R2

will ultimately lead to a transport that vanishes for vanishing
viscosity.

Typically, in the literature, the transport efficiency is measured
in terms of the parameter α. In the incompressible case this is
defined as the total stresses measured in units of L2Ω2 (Lesur
& Longaretti 2007); in other words

α ≡ Σ
Ω2L2

= f (R)
1

R2
, (15)

since R2 = L2Ω/ν. Again, we recover the result that in order
for α to have asymptotically finite (constant) value the function
f (R) must diverge quadratically as R becomes large.

When compressibility is taken into account, an additional
physical parameter is introduced, namely the sound speed cs,
that can be used to define a new length scale H = Ωcs .
When vertical gravity is accounted for, H represents the scale
height of the disk. In studies such as the present one, in which
vertical gravity is neglected, this length has no direct meaning;
nevertheless it introduces a new non-dimensional parameter
RH = H/L, that must be taken into account in the scaling
arguments discussed above. As before we can write

Σ = F (R,RH )Ων, (16)

where F (R,RH ) is a dimensionless function. For RH = O(1),
again we expect a strong dependence of F on RH . However for
RH large, F must become asymptotically independent of RH ,
since this corresponds to the incompressible limit in which F
must approach f.

Physically, this corresponds to situations in which H is much
larger than the characteristic scales of the solutions. Again, if
there is no dependence of these scales on the externally imposed
box size L, the only available length is L and the characteristic
scales of the solutions will be proportional to L. For constant
sound speed and therefore constant ratio H/L, the limit R → ∞
corresponds to RH → ∞, and therefore the stress behavior
should be the same as in the incompressible case. In this case α
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is defined as in Shakura & Sunyaev (1973),

α ≡ Σ
ΩHcs

= Σ
c2
s

, (17)

and we therefore expect again the scaling

α ∼ 1

R2
. (18)

2.2. Numerical Considerations

In most of the MRI studies, as well as in this paper, the analysis
of MRI turbulence is performed using ideal codes, where
dissipative effects only arise due to numerical truncation. In
general, in this case it is not known how to write the dissipation
term explicitly; however, it can be said that the amount of
dissipation depends on the ratio between the local scale of
variation of the physical quantities and the cell size. Structures
comparable to the cell size are subject to strong dissipation that
decreases when the scale of the structures increases. Different
numerical schemes, however, will behave in different ways; in
particular the reduction of dissipation when the local scale is
decreased will be sharper for high-order schemes and gentler
for lower-order ones. In (10), we defined the dissipation scale in
terms of the viscosity and the shear as lD = L = √

ν/Ω. In the
numerical approach one is not able to get an explicit expression
for the dissipation scale; nevertheless it is known that lD is
related to the cell size δ in a way that, however, depends on the
scheme. In addition, it is known that lD (in units of δ) will be
larger for lower-order schemes and smaller for the high-order
ones. Thus, in the non-dimensionalization of the equations, in
principle one should use lD, but in practice one can only use δ.
With the two dimensional parameters Ω and δ, it is possible to
define the units of time τ , length L, velocity u∗, and magnetic
field B∗ as

τ = 1

Ω
, L= δ, u∗ = Ωδ, B∗ = √

ρΩδ. (19)

By the same considerations discussed above, the scaling of
stresses can be written as

Σ ∼ fδ(N )Ω2δ2, (20)

where N = L/δ represents the number of grid points and the
function fδ(N ) depends on the numerical scheme and accounts
for a possible dependence of the solutions on the externally
imposed box size. The scaling for α is correspondingly given
by

α ∼ fδ(N )
1

N2
. (21)

If there is no asymptotic dependence on the box size, i.e.,
fδ(N ) ∼ constant as N → ∞, in this limit we obtain αN2 =
constant where the constant will be different from scheme to
scheme in view of the fact that different numerical schemes,
as discussed above, have different relationships between the
dissipation length lD and the cell size δ. The proper unit for Σ is
given by Ω2l2

D , and consequently, we expect

αN2 ∼
(

lD

δ

)2

. (22)

Since lD is expected to be smaller for high-order codes the
same should be true for the value of αN2. It should be noted

that this discussion ignores possible differences in the effective
Prandtl number for the different schemes, which can account
for additional residual differences between codes.

For the compressible case, we can repeat the same reasoning
as above: we have an additional parameter NH = H/δ that
represents the number of grid points over H; however the
dependence on this parameter should disappear, for constant
sound speed, in the limit N → ∞.

2.3. Numerical Results

We have performed a series of compressible isothermal
shearing-box simulations for the zero net flux case, with
different resolutions and with three different numerical schemes
available in the PLUTO code (Mignone et al. 2007). The main
difference between the three schemes is the order of accuracy of
the reconstruction; more precisely we employed a scheme with
total variation diminishing linear reconstruction (second-order
accurate for smooth flows), a parabolic reconstruction (PPM),
and a monotonicity-preserving fifth-order reconstruction (MP5)
(for a description of this scheme, see Suresh & Huynh 1997;
Mignone & Tzeferacos 2010; Mignone et al. 2010). Our goal
is to study the asymptotic behavior of the solutions as the
separation of scales between the box size and the dissipation
length becomes large. This can be achieved by increasing the
resolution for a fixed scheme or, for a fixed resolution, by using
a scheme with higher order of accuracy.

In the shearing-box approach, the Cartesian coordinates
x, y, and z refer, respectively, to the radial, azimuthal, and
vertical directions. Our computational box has aspect ratio
Lx :Ly :Lz = 1:π :1. As in Fromang & Papaloizou (2007) we
use cells elongated in the azimuthal direction, with aspect
ratio 1:2:1. For each of the schemes we used four different
resolutions: 32, 64, 128, and 256 points in the vertical direction,
the corresponding grid sizes are therefore 32 × 50 × 32,
64×100×64, 128×200×128, and 256×400×256. The sound
speed is chosen such that H = L, the initial magnetic field is
(0, 0, B0 sin(2πx)), with B0 corresponding to β = 1500, and
random noise in the y-component of the velocity is introduced
initially to start the growth of the instability.

As is well known, the time histories of quantities like the
box-averaged magnetic energy or the box-averaged Maxwell
or Reynolds stresses have an initial transient followed by the
establishment of a stationary state in which the quantities
fluctuate around a well-defined mean value. The amplitude of the
fluctuations decreases with increasing resolution. To estimate
the mean value we average over the simulation time excluding
the initial transient phase. The simulation time varies from case
to case and it is always larger than 100 revolutions. We estimate
the error of the mean value by subdividing the averaging interval
into 10 subintervals and then computing the standard deviation
of the subinterval averages. The resulting estimate of the error
is always less than 10%.

2.3.1. Transport

We start our analysis by considering the behavior of α, as
defined in Equation (17), as a function of resolution. Figure 1
shows αN2 as a function of N for all the cases considered.
The quantity displayed represents the function fδ(N ) defined in
Equation (21), which accounts for a possible dependence of the
solutions on the externally imposed box size. Consonant with
our objectives, we are interested in the asymptotic behavior of
fδ(N ) as N → ∞.
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Figure 1. Plot of αN2 as a function of N. The three curves refer to the three
different numerical schemes used in the simulations. These are identified by the
symbols in the legend. In all cases, the error bars are smaller than the symbols.
The slope is about 1, corresponding to the results of Fromang & Papaloizou
(2007) with the ZEUS code, for the PPM curve between N = 64 and N = 128.

We recall that in order for α to be resolution indepen-
dent, fδ(N ) should diverge as N2. The results of Fromang &
Papaloizou (2007) suggested that fδ(N ) ∝ N . A constant value
of fδ(N ), on the other hand, means that the solution is asymp-
totically independent of the box size, that the scaling of α is
determined solely by the equations, and that α decreases with
resolution.

In Figure 1, the squares refer to the linear scheme, the stars
to the PPM, and the triangles to the MP5. It is obvious that,
as the order of accuracy of the scheme is increased, the curves
tend to be flatter for increasing N. However, while the linear
and PPM schemes show a continually decreasing slope and do
not seem to have yet reached an asymptotic behavior, the MP5
scheme, by contrast, appears to be leveling out. The results of
MP5 suggest that fδ(N ) approaches a constant value as N → ∞
and therefore that α has the asymptotic natural scaling ∼1/N2

arising from the equations alone. Our expectation is that, given
sufficient resolution, a similar behavior would be observed with
the other schemes.

It is important to note that even if all the curves corresponding
to different schemes eventually level off, they will not in general
have identical asymptotic values. The reason for this is that we
do not know the explicit form of the numerical dissipation for
each scheme; accordingly we have used the cell size instead
of the dissipation length to non-dimensionalize the equations.
Indeed, we note that in agreement with Equation (22) the higher-
order scheme MP5 has a lower value of the non-dimensional
stresses than the other schemes.

2.3.2. Structures

The behavior of α as a function of resolution suggests that
the only scale that determines the properties of the solutions
is the dissipative scale, which, in numerical studies, is related to
the cell size. It is therefore important to examine the behavior
of the size of the typical observed structures as a function
of resolution. In order to characterize the scales of magnetic
structures, we measure the average scales of variation of the
field in the directions parallel and perpendicular to itself. We
define the quantities

l‖ =
( 〈|B|4〉

〈|B · ∇B|2〉
)1/2

, l⊥ =
( 〈|B|4〉

〈|J × B|2〉
)1/2

, (23)

Figure 2. Plot of Nl‖ as a function of N. The three curves refer to the three
different numerical schemes used in the simulations. These are identified by the
symbols in the legend.

Figure 3. Plot of Nl⊥ as a function of N. The three curves refer to the three
different numerical schemes used in the simulations. These are identified by the
symbols in the legend.

which represent measures of the characteristic scales of the
magnetic field in the parallel direction and along the direction
of maximum gradient, respectively (see Schekochihin et al.
2004). In Figures 2 and 3, we plot, respectively, Nl⊥ and
Nl‖ as functions of N. As before, the three curves refer to
the three different numerical schemes and the symbols have
the same meaning as in the previous figure. The lengths are
normalized with respect to the cell size and the quantities
plotted therefore represent the average number of grid points on
which the observed structures extend. As expected, the magnetic
structures are highly anisotropic with l‖/l⊥ ∼ 10. Considering
the dependence on resolution, we see again that the linear and
PPM schemes show an increase of the number of grid points
over which magnetic structures extend, while the MP5 scheme
appears to tend to a constant number of grid points independent
of resolution, in both the longitudinal and transverse directions.

This analysis suggests that the magnetic field is characterized
by elongated structures extending transversally over a few grid
points. In order to get further insight into the three-dimensional
structure one can define a third scale in the direction orthogonal
to both B and B × J and that points approximately in the
vertical direction:

lB·J =
( 〈|B|4〉

〈|B · J|2〉
)1/2

. (24)
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Figure 4. Two-dimensional cut in the x–y-plane of the distribution of Maxwell
stresses. The distribution is characterized by thin filaments with high stress
values separated by wide regions where the stresses are almost zero.

(A color version of this figure is available in the online journal.)

The ratios of the scales along the three directions are typically
l⊥:l‖:lB·J ∼ 1:10:5 indicating that the magnetic structures can be
thought of as thin sheets. This result is also discussed by Guan
et al. (2009), who base their analysis on the correlation function.
They find that the correlation lengths scale as N−2/3 and that
therefore, measured in units of the cell size, show an increase
with resolution, suggesting that one could expect some kind of
transition. We have also repeated this convergence analysis on
the correlation lengths and again we find that while the linear
and PPM schemes show a behavior similar to that discussed by
Guan et al. (2009), the MP5 scheme at a resolution of 256 grid
points shows a convergent behavior, i.e., the correlation lengths
scale as the cell size. A better impression of the magnetic field
structure can be obtained by looking at Figure 4, where we show
a two-dimensional cut of the Maxwell stress distribution in the
x–y-plane at z = 0. The three-dimensional sheets appear in the
figure as filaments of high Maxwell stress and high magnetic
field intensity, separated by regions of low magnetic field.

We can now discuss this filamentary structure from a more
physical point of view. From the y-component of the induction
equation it can be seen that the field structure is determined
by the competition between three terms: the stretching by the
background shear, the stretching due to velocity fluctuations
(B · ∇v term) and dissipation, and the transverse size is
determined by the balance between these terms. The background
shear tends to stretch the field along the azimuthal direction,
simultaneously decreasing its perpendicular scale of variation
until dissipation sets in. These magnetic filaments, however,
give rise to a local transport of momentum and, therefore, tend
to reduce the local shear. One therefore expects that the effect
of the nonlinear term B · ∇v is to reduce the stretching by
the background shear. The observed increase of the normalized
transverse scale with increasing resolution may be related to

Figure 5. Probability distribution functions of the modulus of the magnetic
field measured in units of B∗ for two MP5 cases with different resolutions. The
numbers of grid points per unit length—measured in units of L—are 128 (solid
line) and 256 (dashed line). The field values larger than that indicated by the
vertical line contribute to about 70% of the magnetic energy and 80% of the
Maxwell stresses.

the increase of this effect, which however ultimately has to
be limited since it cannot completely suppress the background
shear. Thus, asymptotically, the transverse scale has to remain
constant and be determined by the balance between shear
stretching and dissipation. The MP5 scheme, which is closer
to the asymptotic behavior, accordingly shows a tendency of the
transverse scale to become constant. This leads to the conclusion
that a possible dependence on the scale of the box may appear
only in the parallel scale. However, the ratio l‖/l⊥ seems to be
independent of resolution, i.e., the magnetic structures do not
appear to become more elongated as the resolution increases and
all the characteristic lengths appear to become asymptotically
constant when measured in units of the dissipative length.

2.3.3. Probability Distribution Functions

Further details on the solutions can be examined by consid-
ering the behavior of the probability distribution function (pdf)
of magnetic field intensity and of the second-order structure
functions. Our purpose is twofold: on the one hand we want to
show that, indeed, if we measure all quantities in their proper
units, there is a convergence to a well-defined solution when we
increase the number of grid points and, on the other hand, we
want to better characterize this solution. We start by examining
the pdf of magnetic field intensity. Figure 5 compares the two
MP5 cases with the highest resolution; the pdfs are normalized
to unity and the field values are measured in units of B∗.

The pdfs have an exponential character; the mean value of
|B|/B∗ is about 5.5 with a difference of less than 1% between
the two cases at different resolution. The contribution to the
magnetic energy and to the Maxwell stresses comes mainly from
the high field values; values to the right of the vertical line plotted
in the figure contribute to about 70% of the total magnetic energy
and to about 80% of the total Maxwell stresses, while occupying
only about 20% of the volume. The higher contribution to
the Maxwell stresses with respect to the magnetic energy is
explained by the fact that these higher field values correspond
to the magnetic structures discussed above. For these, there is a
strong correlation between the radial and azimuthal components
of the field, while for lower field values the correlation is
much lower. The fact that the volume fraction supporting the
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Figure 6. Longitudinal (top panel) and transverse (bottom panel), time-
averaged, second-order structure functions of By. The two curves correspond to
two MP5 cases with different resolutions. The number of grid points per unit
length—measured in units of L—is 128 (solid line) and 256 (dashed line).

transport is independent of resolution explains the decrease in
the amplitude of the fluctuations when resolution is increased
(Fromang & Papaloizou 2007). In fact, as resolution is increased
and the volume fraction remains the same, the number of points
that contributes to the average gets larger and therefore the
fluctuations of the average become smaller.

In Figure 6, we plot the time-averaged second-order longitu-
dinal and transverse structure functions for the y-component of
magnetic field, for the two MP5 cases at the highest resolution.
They are explicitly defined as

S2l = 〈(By(x, y + h, z) − By(x, y, z))2〉,
S2t = 〈(By(x + h, y, z) − By(x, y, z))2〉.

(25)

Following our discussion, we compute S2l and S2t in units of
B∗2 and h in units of δ. Again, it can be seen that, using these
units, the difference between the two cases at different resolution
is very small, indicating a convergent behavior. The structure
functions in both directions become flat at scales larger than
few grid points. This plateau indicates that the magnetic field
values become uncorrelated at these scales. A similar conclusion
could be reached from the behavior of the averaged spectra, like
those shown in Fromang & Papaloizou (2007), that become flat
at small wavenumbers.

From these two results we conclude that the solution is char-
acterized by the superposition of uncorrelated magnetic sheets.
Those with high field intensity also have a high degree of cor-
relation between magnetic field components and, consequently,
give the highest contribution to both the total magnetic energy
and the Maxwell stresses. An increase of the domain size does
not change the properties of these sheets, but simply increases
the available volume and therefore the number of sheets, leav-
ing unchanged all the average properties. In a similar way there
should not be any modification of the solution by changing the
aspect ratio of the computational box, and we have indeed tested
this by examining two further cases with respective aspect ratios
of 1:2π :1 and 2:π :1, with MP5 and 128 points in the vertical
direction, finding no changes in all the averaged properties.

3. THE FINITE NET FLUX CASE

We now turn to the case in which a net magnetic flux threads
the computational domain. In this case, the magnetic field has
a uniform component of strength B0, say, that can be used to
define a new dimensional length scale λA given by

λA = 1

Ω
B0√
4πρ

. (26)

Accordingly, the averaged stresses will show a dependence also
on this scale and keeping the same units as in the previous
section, in general we can write

Σ = g

(
λA

lD
,

L

lD

)
Ω2l2

D. (27)

Here, we are mostly interested in the form of the function g
when L/lD = R → ∞. On general grounds, we expect it will
take different forms for different relationships between the three
scales L, λA, and lD. We start our discussion by considering what
is known from numerical simulations in the available literature.
The case that has received the greatest attention is that of a mean
vertical field; the results have been summarized in Pessah et al.
(2007). For this case the system is linearly unstable to the MRI;
the (vertical) wavelength of maximum growth rate is given by
λM = 2π

√
16/15λA; the instability exists only for wavelengths

λ > 1/
√

3λA. If λA is larger than
√

3L, no unstable wavelengths
fit in the box, the system becomes stable, and the stresses drop to
zero. Pessah et al. (2007) show that as λA increases, the stresses
scale linearly with λA, reach a maximum, and eventually, drop
to zero when the above condition is met. Furthermore, it has
been found that, at fixed λA/L and at low resolution, the stresses
increase with resolution, i.e., with R (see e.g., Silvers 2008; Bodo
et al. 2008); thus, for high enough resolution, since they cannot
grow indefinitely, they should converge to a value independent
of R. Also, we have to note that Bodo et al. (2008) have found
a dependence of the solutions on the aspect ratio Lx/Lz of
the computational box, with a convergent behavior for high
enough values of Lx/Lz. Putting these considerations together,
we conclude that for lD � λA � L,

Σ ∼ g

(
λA

L

)
Ω2L2, (28)

where the function g is initially proportional to λA/L, then
reaches a maximum (at a fixed value of λA/L), and finally drops
to zero for λA >

√
3L. Thus, the value of Σ at the maximum

scales as Ω2L2.
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Figure 7. Plot of the stresses as a function of λA; the triangles represent
the results of numerical calculations carried out with the MP5 scheme, with
128 points in the vertical direction. The horizontal dashed line represents the
averaged stress value for the zero-flux case, the dashed line shows a quadratic
behavior, the solid line shows a linear behavior, and the vertical solid line shows
the linear stability boundary.

In the opposite regime, when lD ∼ λA � L, the averaged
stresses tend toward the value obtained in the zero-flux case
(Pessah et al. 2007). The results of the previous section suggest
that, for large R, Σ is independent of L and scales as Ω2l2

D .
In order to connect smoothly the two portions with, respec-

tively, lD ∼ λA � L and lD � λA � L, there must be an
intermediate range of values of λA in which the stresses scale
as Ω2λ2

A. In fact, when λA is sufficiently far both from the dis-
sipation scale and from the size of the box, the transport should
depend only on λA and, therefore, by dimensional arguments
it should have a quadratic scaling. Increasing R, the range over
which λA is sufficiently far both from the dissipation scale and
from the size of the box increases and, therefore, the region
with quadratic scaling should increase. Conversely, decreasing
R should cause the interval to shrink and eventually to disap-
pear for low values of R. In Figure 7, we show the results of
calculations with a net vertical flux performed at a resolution of
128 points in the vertical direction, with the MP5 scheme. The
horizontal dashed line corresponds to the averaged stress value
for the zero-flux case, the dashed line corresponds to a quadratic
scaling, the solid line corresponds to a linear scaling, and the
vertical solid line marks the stability boundary; to the right of
it, the stresses vanish.

It is apparent from the figure that indeed for small enough
λA, a range of values exists with quadratic scaling, while for
larger λA the curve reverts to the linear scaling discussed above.
We have deliberately restricted our investigation to values of
λA for which we have quadratic scaling and the transition from
quadratic to linear.

Larger values of λA, for which the stresses increase linearly
up to a maximum and drop to zero to the right of the stability
boundary, have already been discussed extensively in the litera-
ture (see e.g., Pessah et al. 2007). We note here that the portion
with quadratic scaling has never before been reported in the
literature (however, Longaretti & Lesur 2010 find evidence of
a scaling steeper than linear); this is most likely due to limited
resolution since, as discussed above, the quadratic portion dis-
appears for low values of R. We believe that the reason why we
were able to detect it is because of the high order of accuracy

of the MP5 scheme, which for the same resolution produces a
much higher effective value of R.

4. DISCUSSION AND CONCLUSION

In this paper, we have addressed the problem of convergence
in numerical studies of MRI-driven turbulence in the homo-
geneous SBA. Any simulation that is physically useful should
have some meaningful property that becomes independent of
the number of grid points as the latter becomes large. This does
not seem to be the case here. As noted by several authors, in the
weak flux regime, i.e., when the total magnetic flux threading
the computational box is small or zero, the dimensional angu-
lar momentum transport decreases as the resolution increases,
eventually becoming arbitrarily small (Fromang & Papaloizou
2007; Pessah et al. 2007; Simon et al. 2009; Guan et al. 2009).
There are at least two possible frameworks in which to address
this issue: one in terms of Reynolds number, the other in terms
of computational domain size. In both cases one is interested in
the asymptotic behavior of the solutions as either the Reynolds
number or the domain size become large. Clearly, both frame-
works are related and to some extent it is a matter of preference
which one is picked. In this paper, we have chosen to discuss
the convergence problem in terms of domain size. The reason
is that, because of the symmetries of the homogeneous SBA,
there is no a priori characteristic outer scale for the velocity,
which leads to an ambiguity in the definition of the Reynolds
number. On the other hand there is a natural inner scale—i.e.,
the dissipation length—that can be used to non-dimensionalize
the equations. In this case, the Reynolds number is fixed, and of
order unity, and the only remaining free parameter is the domain
size. With this choice, increasing the resolution and increasing
the domain size are entirely equivalent operations. It is then
possible to define the characteristic scale of the solutions, once
they are computed, in terms of, say, the (inverse) scale at which
the velocity or magnetic spectrum peaks; the latter quantity is
conceptually useful since it is related to the effective angular
momentum transport. The problem of convergence then relates
to the behavior of the characteristic scale of the solutions as the
computational domain size increases.

As we discussed in Section 2, there are two limiting possibil-
ities: one in which the solution scale diverges with the domain
size—measured in units of the grid size or the dissipation length-
—the other in which it becomes asymptotically independent of
it. The former can lead to a net turbulent transport that is inde-
pendent of diffusivity, the latter to a quasi-collisional transport
that scales as some fixed multiple of the diffusivity. The evi-
dence from the numerical simulations, in particular Figure 1,
is that it is the latter and not the former that gives the correct
asymptotic behavior. In other words, the characteristic scale of
the solutions becomes independent of the size of the compu-
tational domain. If we accept this result as correct, there are a
number of issues that naturally arise.

The first concerns the physical interpretation of the result. In
the weak-field regime, MRI-driven turbulence should be con-
sidered within the framework of a subcritical dynamo instability
since the magnetic field necessary for the development of the
MRI must be generated self-consistently by the MRI turbulence
itself. In dynamo theory, it is customary to distinguish between
two types of dynamo action, small-scale and large-scale. Small-
scale dynamos generate magnetic field with characteristic scale
comparable to or smaller than the characteristic scale of the
velocity field. The only requirements for the operation of such
dynamos are that the magnetic Reynolds number be sufficiently
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high, and that the underlying velocity not be too symmetric.
Clearly, both conditions can be satisfied here provided the sys-
tem size is large. Large-scale dynamos, on the other hand, gener-
ate magnetic field with characteristic scale larger than that of the
velocity. The latter types of dynamo are associated with flows
lacking reflectional symmetry, i.e., helical flows and an inverse
cascade of magnetic helicity. Recently, Tobias et al. (2011) have
argued that in the nonlinear regime it is often difficult to distin-
guish unambiguously between large- and small-scale dynamo
action and have introduced instead the idea of a system-scale
dynamo, as one that produces magnetic structures compara-
ble in size to the system scale irrespective of the scale of the
velocity. The fact that, here, the scale at which the magnetic
spectrum peaks is comparable with the dissipation scale and it
is asymptotically independent of the system size indicates that
the dynamo operating here is of the small-scale type (Vainshtein
& Kichatinov 1986; Boldyrev & Cattaneo 2004). Dynamos of
this type have no manifest inverse cascade of (magnetic) he-
licity; they can lead to the production of magnetic energy but
not of substantial magnetic flux. In the specific context of MRI-
driven turbulence a small-scale dynamo will not give rise to a
“turbulent” transport of angular momentum. When regarded in
the general scheme of dynamo theory, this result is actually not
that surprising since the underlying flow is not strongly helical,
and therefore there is no a priori reason to expect an efficient
inverse cascade.

This brings us to the second issue, which relates to the astro-
physical significance of these types of MRI solutions. Clearly,
it is to be expected that this type of dynamo excitation will
be prevalent in most (electrically conducting) disks. Its role in
the transport of angular momentum, and therefore in regulat-
ing the accretion rate, however will be negligible. With things
as they stand, the only dynamo solutions that might have an
impact on the angular momentum transport are those with an
efficient inverse cascade. Interestingly, this implies that by their
very nature such solutions should not be treated in the context
of a local approximation. We find ourselves in a paradoxical
situation in which if a solution is astrophysically relevant it can-
not properly be described by a local model, and if it can be
described by a local model then it is astrophysically irrelevant.
The third issue concerns the role of numerics in influencing
what we understand, or think we understand, in computational
astrophysics. It is interesting that the asymptotic behavior that
eventually emerges according to the present study is in many
ways the most natural that is consonant with a subcritical small-
scale dynamo instability developing in a system where there
are not many reasons to expect otherwise. Likewise, the scaling
behavior for the cases with weak imposed fluxes is asymptot-
ically the one that makes most sense given the symmetries of
the equations. Yet, their numerical realizations were somewhat
long in the making, and had not been reported in the literature
to date. The reason is that these asymptotic regimes require a
substantial dynamic range to manifest themselves. In this partic-
ular case, this was achieved by a combination of high-resolution
and high-accuracy numerics. If we had tried to obtain the cor-
rect limiting behaviors with the less accurate codes, it would
have been prohibitive.4 Finally, it behooves us to compare the
conclusions of the present study with those of related studies in
which different scaling behaviors have been observed. Of par-
ticular relevance are: the work of Käpylä & Korpi (2011) who

4 It is useful to note that the scheme with quadratic reconstruction used here
has order of accuracy comparable with ZEUS and ATHENA, two of the codes
commonly used by the practitioners of numerical studies of the MRI.

also consider unstratified shearing boxes but with non-periodic
boundary conditions; the work of Fromang (2010) who has the
same set-up as ours but with explicit diffusivities; and the work
of Davis et al. (2010) who include stratification. In all these
cases the authors report that the problem of convergence as
stated above is absent. In the present context, these conclusions
can be attributed to one or more of the following possibilities:
the simulations are not in the asymptotic regime because of
limited resolution and/or accuracy; the extra physics has en-
gendered an inverse cascade, i.e., the type of dynamo action has
changed from small-scale to large-scale; the extra physics has
changed the nature of the subcritical dynamo instability and
has caused it to become of the system-size type. The last two
possibilities are related but distinct. They both refer to circum-
stances that lead to the production of large-scale magnetic fields,
but in a large-scale dynamo the velocity correlation length re-
mains small and it is only the magnetic structures that become
large; in a system-scale dynamo both the velocity and magnetic
structures grow in size until they occupy the largest available
scale—the system size—hence the name (Tobias et al. 2011).

We begin by discussing the work of Käpylä & Korpi
(2011). They consider unstratified shearing-box simulations
with boundary conditions at the upper and lower boundaries
corresponding to impenetrable, stress-free velocities, and verti-
cal magnetic fields. The distinctive feature of these conditions
is that they allow a flux of magnetic helicity in and out of the
box. This has been advocated by several authors as a feature
that might be beneficial to large-scale dynamo action (see, e.g.,
Vishniac & Cho 2001). The calculations are carried out with
explicit diffusivities and the authors report that the effective an-
gular momentum transport is substantial and insensitive to vari-
ations in the values of both the magnetic Reynolds and Prandtl
numbers. The morphology of the solutions is dramatically dif-
ferent from the periodic cases, with two large current boundary
layers forming in the vicinity of the upper boundaries and the
generation of a coherent nearly uniform azimuthal field. All
these findings are consistent with the activation of a large-scale-
type dynamo. It remains to be seen if these solutions persist at
higher resolutions, as well as how they map to a global geom-
etry. These issues notwithstanding, the Käpylä & Korpi (2011)
solutions are quite remarkable and could potentially have con-
siderable astrophysical significance. Next, we discuss stratifica-
tion (Davis et al. 2010). Its presence drives two new effects: it
introduces a new spatial scale in the problem, namely the verti-
cal scale height that breaks the symmetry of the homogeneous,
periodic models, and it also introduces buoyancy forces associ-
ated with thermal, pressure, and magnetic pressure fluctuations.
It is not unlikely that these new effects could modify the type
of dynamo action and drive flows and field coherent on scales
comparable with the scale height. If this is indeed the case, it
would be interesting to see how the solutions behave as the
simulation size is increased for fixed scale height. Such a study
would be numerically very demanding but astrophysically very
useful.

Finally, we consider the recent results of Fromang (2010)
who reports that when explicit diffusivities are included, the
angular momentum transport becomes independent of resolu-
tion, i.e., the convergence problem goes away. If this result has
a physical basis, it implies that the presence or absence of an
inverse cascade and the type of associated dynamo action (large-
scale as opposed to small-scale) depends on the detailed form of
the diffusivities. The dynamo is small-scale for all three types
of numerical diffusivities considered here and in other similar

9



The Astrophysical Journal, 739:82 (10pp), 2011 October 1 Bodo et al.

studies, and large-scale for “physical” diffusivities. Although
this possibility is not inconceivable, it is somewhat peculiar. It
implies that the type of dynamo action is determined not by the
symmetries of the problem, or large-scale features, but by the
micro-physics. If correct it is a remarkable result. Another possi-
bility is that the simulations are not in the asymptotic regime. To
explore this possibility we note that the study by Fromang (2010)
was carried out by incorporating explicit diffusivities into the
ZEUS code. In order for the explicit diffusivities to be correctly
represented they must give rise to boundary layers whose size
is not smaller than those arising from truncation errors. Thus,
the dynamic range of a code with numerical diffusivities gives
an upper bound on the dynamic range achievable with the same
code, the same resolution, and explicit diffusivities. Now, ZEUS
has an order of accuracy comparable to the code with quadratic
reconstruction: thus we can ask the following question. What is
the resolution that we need with the quadratic code to see the
same asymptotic behavior we observe with the MP5 code? This
can be estimated by comparing the curves in Figure 1 and tak-
ing the ratio in resolutions for which the curves corresponding
to the PPM and MP5 codes have similar slopes. This exercise
gives a factor close to four. A more careful analysis comparing
boundary layers in a channel flow problem yields a similar esti-
mate. Thus, our conclusion is that our quadratic code requires a
resolution exceeding 1000 grid points to reproduce the asymp-
totic behavior observed by the MP5 code with 256 grid points.
Since the highest resolution in the work by Fromang (2010) was
512 grid points it is possible that his results may not yet be in
the asymptotic regime.
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