
The Astrophysical Journal Supplement Series, 198:7 (31pp), 2012 January doi:10.1088/0067-0049/198/1/7
C© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS

A. Mignone1, C. Zanni2, P. Tzeferacos1, B. van Straalen3, P. Colella3, and G. Bodo2
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ABSTRACT

We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving
the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release
exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for
multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative
finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit
fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where
piecewise parabolic method, weighted essentially non-oscillatory, or slope-limited linear interpolation schemes can
be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal
condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier
providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning
step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes,
such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an
efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage
of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical
relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial
and temporal disparities.
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1. INTRODUCTION

Theoretical advances in modern astrophysics have largely
benefited from computational models and techniques that have
been improved over the past decades. In the field of gasdynam-
ics, shock-capturing schemes represent the current establish-
ment for reliable numerical simulations of high Mach number,
possibly magnetized flows in Newtonian or relativistic regimes.
As increasingly more sophisticated methods developed, a num-
ber of computer codes targeting complex physical aspects to
various degrees have now become available to the community.
In the field of magnetohydrodynamics (MHD), examples worth
noticing are AstroBEAR (Cunningham et al. 2009), Athena
(Stone et al. 2008; Skinner & Ostriker 2010), BATS-R-US (Tóth
et al. 2011), ECHO (Del Zanna et al. 2007), FLASH (Fryxell
et al. 2000), NIRVANA (Ziegler 2008), PLUTO (Mignone et al.
2007), RAMSES (Teyssier 2002; Fromang et al. 2006), and
VAC (Tóth 1996; van der Holst et al. 2008). Some of these
implementations provide additional capabilities that can ap-
proach the solution of the equations in the relativistic regimes:
AMRVAC and PLUTO for special relativistic hydro, while the
ECHO code allows the handling of general relativistic MHD
with a fixed metric. Other frameworks were specifically de-
signed for special or general relativistic purposes, e.g., the
RAM code (Zhang & MacFadyen 2006), HARM (Gammie et al.
2003), and RAISHIN (Mizuno et al. 2006).

In some circumstances, adequate theoretical modeling of as-
trophysical scenarios may become extremely challenging since
great disparities in the spatial and temporal scales may simul-
taneously arise in the problem of interest. In these situations

a static grid approach may become quite inefficient and, in
the most extreme cases, the amount of computational time can
make the problem prohibitive. Typically, such conditions oc-
cur when the flow dynamics exhibit very localized features that
evolve on a much shorter scale when compared to the rest of
the computational domain. To overcome these limitations, one
possibility is to change or adapt the computational grid dynam-
ically in space and time so that the features of interest can be
adequately captured and resolved. Adaptive mesh refinement
(AMR) is one such technique and can lead, for a certain class of
problems, to a considerable speed-up. Some of the aforemen-
tioned numerical codes provide AMR implementations through
a variety of different approaches. Examples worth noticing are
the patch-based block-structured approach of Berger & Oliger
(1984) and Berger & Colella (1989) (e.g., ASTROBEAR), the
fully octree approach described in Dezeeuw & Powell (1993)
and Khokhlov (1998) (e.g., RAMSES), or the block-based oc-
tree of MacNeice et al. (2000) (e.g., FLASH), and Keppens et al.
(2003) and van der Holst & Keppens (2007) (e.g., BATS-R-US,
AMRVAC).

The present work focuses on the block-structured AMR
implementation in the PLUTO code and its application to
computational astrophysical gasdynamics. PLUTO is a
Godunov-type code providing a flexible and versatile mod-
ular computational framework for the solution of the equa-
tions of gasdynamics under different regimes (e.g., classical/
relativistic fluid dynamics, Euler/MHD). A comprehensive de-
scription of the code design and implementation may be found,
for the static grid version, in (Mignone et al. 2007, henceforth
Paper I). Recent additions to the code include a relativistic
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version of the Harten–Lax–van Leer discontinuities (HLLD)
Riemann solver (Mignone et al. 2009), high-order finite-
difference (FD) schemes (Mignone et al. 2010), and opti-
cally thin radiative losses with a non-equilibrium chemical
network (Teşileanu et al. 2008). Here, we further extend the
code description and show its performance on problems re-
quiring significant usage of adaptively refined nested grids.
PLUTO takes advantage of the CHOMBO library4, which
provides a distributed infrastructure for parallel computations
over block-structured adaptively refined grids. The choice of
block-structured AMR (as opposed to cell-based fully oc-
tree) is justified by the need to exploit the already imple-
mented modular skeleton introducing the minimal amount
of modification and, at the same time, maximizing code
re-usability.

The current AMR implementation leans on the Corner Trans-
port Upwind (CTU; Colella 1990) method of Mignone &
Tzeferacos (2010, MT henceforth), in which a conservative
finite-volume (FV) discretization is adopted to evolve zone av-
erages in time. The scheme is dimensionally unsplit, second-
order accurate in space and time and can be directly applied to
relativistic MHD as well. Spatial reconstruction can be car-
ried out in primitive or characteristic variables using high-
order interpolation schemes such as the piecewise parabolic
method (PPM; Colella & Woodward 1984), weighted essentially
non-oscillatory (WENO), or linear Total Variation Diminishing
(TVD) limiting. The divergence-free constraint of the magnetic
field is enforced via a mixed hyperbolic/parabolic correction of
Dedner et al. (2002), which avoids the computational cost as-
sociated with an elliptic cleaning step, and the scrupulous treat-
ment of staggered fields demanded by constrained transport
(CT) algorithms (Balsara 2004). As such, this choice provides
a convenient first step in porting a considerable fraction of the
static grid implementation to the AMR framework. Among the
novel features, we also show how to extend the time-stepping
scheme to include dissipative terms describing viscous, resistive,
and thermally conducting flows. Besides, we propose a novel
treatment for efficiently computing the time step in the pres-
ence of cooling and/or reacting flows over hierarchical block-
structured grids.

The paper is structured as follows. In Section 2, we overview
the relevant equations while in Section 3 we describe the
integration scheme used on the single patch. In Section 4, an
overview of the block-structured AMR strategy as implemented
in CHOMBO is given. Sections 5 and 6 show the code’s
performance on selected multidimensional test problems and
astrophysical applications in classical and relativistic MHD,
respectively. Finally, in Section 7 we summarize the main results
of our work.

2. RELEVANT EQUATIONS

The PLUTO code has been designed for the solution of
nonlinear systems of conservative partial differential equations
of the mixed hyperbolic/parabolic type. In the present context,
we will focus our attention on the equations of single-fluid
MHD, both in the Newtonian (MHD) and special relativistic
(RMHD) regimes.

2.1. MHD Equations

We consider a Newtonian fluid with density ρ, velocity
v = (vx, vy, vz), and magnetic induction B = (Bx, By, Bz)

4 https://seesar.lbl.gov/anag/chombo/

and write the single-fluid MHD equations as

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂(ρv)

∂t
+ ∇ · [ρvv − BB] + ∇pt = ∇ · τ + ρg,

(1)
∂E
∂t

+ ∇ · [(E + pt )v − (v · B)B] = ∇ · ΠE − Λ + ρv · g ,

∂B
∂t

− ∇ × (v × B) = − ∇ × (η J) ,

where pt = p + B2/2 is the total (thermal+magnetic) pressure,
E is the total energy density, g is the gravitational acceleration
term, and Λ accounts for optically thin radiative losses or
heating. Divergence terms on the right-hand side account for
dissipative physical processes and are described in detail in
Section 2.1.1. Proper closure is provided by choosing an
equation of state (EoS) which, for an ideal gas, allows us to
write the total energy density as

E = p

Γ − 1
+

1

2
ρv2 +

1

2
B2, (2)

with Γ being the specific heat ratio. Alternatively, by adopting
a barotropic or an isothermal EoS, the energy equation can
be discarded and one simply has, respectively, p = p(ρ) or
p = c2

s ρ (where cs is the constant speed of sound).
Chemical species and passive scalars are advected with the

fluid and are described in terms of their number fraction Xα ,
where α = 1, . . . , Nions label the particular ion. They obey
non-homogeneous transport equations of the form

∂(ρXα)

∂t
+ ∇ · (ρXαv) = ρSα, (3)

where the source term Sα describes the coupling between
different chemical elements inside the reaction network (see,
for instance, Teşileanu et al. 2008).

2.1.1. Non-ideal Effects

Non-ideal effects due to dissipative processes are described
by the differential operators included on the right-hand side
of Equation (1). Viscous stresses may be included through the
viscosity tensor τ defined by

τ = ρν

[
∇v + (∇v)T − 2

3
I∇ · v

]
, (4)

where ν is the kinematic viscosity and I is the identity matrix.
Similarly, magnetic resistivity is accounted for by prescribing
the resistive η tensor (diagonal). Dissipative terms contribute to
the net energy balance through the additional flux ΠE appearing
on the right-hand side of Equation (1):

ΠE = Fc + v · τ − η · J × B , (5)

where the different terms give the energy flux contributions
due to, respectively, thermal conductivity, viscous stresses, and
magnetic resistivity.

The thermal conduction flux Fc smoothly varies between
classical and saturated regimes and reads

Fc = q

|Fclass| + q
Fclass, (6)
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where q = 5φρc3
iso is the magnitude of the saturated flux (Cowie

& McKee 1977), φ is a parameter of order unity accounting for
uncertainties in the estimate of q, ciso is the isothermal speed of
sound, and

Fclass = κ‖b̂(b̂ · ∇T ) + κ⊥[∇T − b̂(b̂ · ∇T )] (7)

is the classical heat flux with conductivity coefficients κ‖ and κ⊥
along and across the magnetic field lines, respectively (Orlando
et al. 2008). Indeed, the presence of a partially ordered magnetic
field introduces a large anisotropic behavior by channeling
the heat flux along the field lines while suppressing it in the
transverse direction (here b̂ = B/|B| is a unit vector along the
field line). We point out that, in the classical limit q → ∞,
thermal conduction is described by a purely parabolic operator
and flux discretization follows standard FD. In the saturated
limit (|∇T | → ∞), on the other hand, the equation becomes
hyperbolic and thus an upwind discretization of the flux is more
appropriate (Balsara et al. 2008). This is discussed in more detail
in Appendix A.

2.2. Relativistic MHD Equations

A (special) relativistic extension of the previous equations
requires the solution of energy momentum and number density
conservation. Written in divergence form we have

∂(ργ )

∂t
+ ∇ · (ργ v) = 0 ,

∂m
∂t

+ ∇ · [wγ 2vv − BB − EE] + ∇pt = 0 ,

(8)
∂B
∂t

− ∇ × (v × B) = 0 ,

∂E
∂t

+ ∇ · (m − ργ v) = 0 ,

where ρ is the rest-mass density, γ is the Lorentz factor,
velocities are given in units of the speed of light (c = 1), and
the fluid momentum m accounts for matter and electromagnetic
terms: m = wγ 2v + E × B, where E = −v × B is the electric
field and w is the gas enthalpy. The total pressure and energy
include thermal and magnetic contributions and can be written
as

pt = p +
B2 + E2

2
, E = wγ 2 − p +

B2 + E2

2
− ργ . (9)

Finally, the gas enthalpy w is related to ρ and p via an EoS,
which can be either the ideal gas law,

w = ρ +
Γp

Γ − 1
, (10)

or the Taub-Mathews (TM, Mathews 1971) EoS

w = 5

2
p +

√
9

4
p2 + ρ2 , (11)

which provides an analytic approximation of the Synge rela-
tivistic perfect gas (Mignone & McKinney 2007).

A relativistic formulation of the dissipative terms will not be
presented here and will be discussed elsewhere.

2.3. General Quasi-Conservative Form

In the following, we adopt an orthonormal system of
coordinates specified by the unit vectors êd (d is used
to label the direction, e.g., d = {x, y, z} in Carte-
sian coordinates) and conveniently assume that conserved
variables U = (ρ, ρv, E, B, ρXα)—for the MHD equations—
and U = (ργ, m, E, B)—for RMHD—satisfy the following
hyperbolic/parabolic partial differential equations

∂U
∂t

+ ∇ · F = ∇ · Π + Sp, (12)

where F and Π are, respectively, the hyperbolic and parabolic
flux tensors. The source term Sp is a point-local source term
which accounts for body forces (such as gravity), cooling,
chemical reactions, and the source term for the scalar multiplier
(see Equation (14) below). We note that equations containing
curl or gradient operators can always be cast in this form by
suitable vector identities. For instance, the projection of ∇ × E
in the coordinate direction given by the unit vector êd can be
rewritten as

(∇ × E) · êd ≡ ∇ · (E × êd ) + E · (∇ × êd ) , (13)

where the second term on the right-hand side should be included
as an additional source term in Equation (12) whenever different
from zero (e.g., in cylindrical geometry). Similarly, one can
rewrite the gradient operator as ∇p = ∇ · (Ip).

Several algorithms employed in PLUTO are best im-
plemented in terms of primitive variables, V = (ρ, v, B, p).
In the following, we shall assume a one-to-one map-
ping between the two sets of variables, provided by
appropriate conversion functions, that is, V = V(U) and
U = U(V).

3. SINGLE PATCH NUMERICAL INTEGRATION

PLUTO approaches the solution of the previous sets of
equations using either FV or FD methods both sharing a flux-
conservative discretization where volume averages (for the for-
mer) or point values (for the latter) of the conserved quanti-
ties are advanced in time. The implementation is based on the
well-established framework of Godunov-type, shock-capturing
schemes where an upwind strategy (usually a Riemann solver)
is employed to compute fluxes at zone faces. For the present
purposes, we shall focus on the FV approach where volume-
averaged primary flow quantities (e.g., density, momentum, and
energy) retain a zone-centered discretization. However, depend-
ing on the strategy chosen to control the solenoidal constraint,
the magnetic field can evolve either as a cell-average or as a face-
average quantity (using the Stokes’ theorem). As described in
Paper I, both approaches are possible in PLUTO by choosing
between Powell’s eight-wave formulation or the CT method,
respectively.

A third, cell-centered approach based on the generalized
Lagrange multiplier (GLM) formulation of Dedner et al. (2002)
has recently been introduced in PLUTO, and a thorough dis-
cussion as well as a direct comparison with CT schemes can be
found in the recent work by MT. The GLM formulation easily
builds in the context of MHD and RMHD equations by introduc-
ing an additional scalar field ψ , which couples the divergence
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constraint to Faraday’s law according to⎧⎪⎪⎨
⎪⎪⎩

∂B
∂t

− ∇ × (v × B) + ∇ψ = 0 ,

∂ψ

∂t
+ c2

h∇ · B = − c2
h

c2
p

ψ ,

(14)

where ch is the (constant) speed at which divergence er-
rors are propagated, while cp is a constant controlling the
rate at which monopoles are damped. The remaining equa-
tions are not changed and the conservative character is not
lost. Owing to its ease of implementation, we adopt the
GLM formulation as a convenient choice in the development
of a robust AMR framework for Newtonian and relativistic
MHD flows.

3.1. Fully Unsplit Time Stepping

The system of conservation laws is advanced in time using
the CTU (Colella 1990) method recently described by MT.
Here, we outline the algorithm in a more concise manner and
extend its applicability in the presence of parabolic (diffusion)
terms and higher order reconstruction. Although the algorithms
illustrated here are explicit in time, we will also consider
the description of more sophisticated and effective approaches
for the treatment of parabolic operators in a forthcoming
paper.

We shall assume hereafter an equally-spaced grid with
computational cells centered in (xi, yj , zk) having size
Δx × Δy × Δz. For the sake of exposition, we omit the inte-
ger subscripts i, j , or k when referring to the cell center and
only keep the half-increment notation in denoting face values,
e.g., Fd,± ≡ Fy,i,j+1/2,k when d = y. Following Mignone et al.
(2007), we use ΔV and Ad,± to denote, respectively, the cell
volume and areas of the lower and upper interfaces orthogonal
to êd .

An explicit second-order accurate discretization of
Equation (12), based on a time-centered flux computation, reads

Ūn+1 = Ūn + Δtn
∑

d

(
Ln+1/2

H,d + Ln+1/2
P,d

)
, (15)

where Ū is the volume-averaged array of conserved values
inside the cell (i, j, k), Δtn is the explicit time step, whereas
LH,d and LP,d are the increment operators corresponding to the
hyperbolic and parabolic flux terms, respectively,

Ln+1/2
H,d = − Ad,+Fn+1/2

d,+ − Ad,−Fn+1/2
d,−

ΔVd

+ Ŝn+1/2
d , (16)

Ln+1/2
P,d = Ad,+�

n+1/2
d,+ − Ad,−�

n+1/2
d,−

ΔVd

. (17)

In the previous expression, Fd,± and �d,± are, respectively, right
( + ) and left (−) face- and time-centered approximations to the
hyperbolic and parabolic flux components in the direction of êd .
The source term Ŝd represents the directional contribution to the
total source vector

∑
Ŝd ≡ Ŝbody + Ŝgeo including body forces

and geometrical terms implicitly arising when differentiating
the tensor flux on a curvilinear grid. Cooling, chemical reaction
terms, and the source term in Equation (14) (namely, (c2

h/c
2
p)ψ)

are treated separately in an operator-split fashion.

The computation of Fd,± requires solving, at cell interfaces,
a Riemann problem between time-centered adjacent discontin-
uous states, i.e.,

Fn+1/2
x,i+1/2 = R

(
Un+1/2

i,+ , Un+1/2
i+1,−

)
,

Fn+1/2
y,j+1/2 = R

(
Un+1/2

j,+ , Un+1/2
j+1,−

)
, (18)

Fn+1/2
z,k+1/2 = R

(
Un+1/2

k,+ , Un+1/2
k+1,−

)
,

where R(·, ·) is the numerical flux resulting from the solution
of the Riemann problem. With PLUTO, different Riemann
solvers may be chosen at runtime depending on the selected
physical module (see Paper I): Rusanov (Lax-Friedrichs), HLL,
HLLC (contact), and HLLD are common to both classical and
relativistic MHD modules while the Roe solver is available for
hydro and MHD. The input states in Equation (18) are obtained
by first carrying an evolution step in the normal direction,
followed by correcting the resulting values with a transverse
flux gradient. This yields the corner-coupled states which, in the
absence of parabolic terms (i.e., when Π = 0), are constructed
exactly as illustrated by MT. For this reason, we will not repeat
it here.

When Π 	= 0, on the other hand, we adopt a slightly different
formulation that does not require any change in the computa-
tional stencil. At constant x-faces, for instance, we modify the
corner-coupled states to

U
n+ 1

2
i,± = U∗

i,± +
Δtn

2

⎡
⎣∑

d 	=x

Ln
H,d +

∑
d

Ln
P,d

⎤
⎦ , (19)

where, using Godunov’s first-order method, we compute, for
example,

Fn
y,j+1/2 = R

(
Ūn

j , Ūn
j+1

)
, (20)

i.e., by solving a Riemann problem between cell-centered
states. States at constant y- and z-faces are constructed in a
similar manner. The normal predictors U∗

± can be obtained
either in characteristic or primitive variables as outlined in
Sections 3.2 and 3.3, respectively. Parabolic (dissipative) terms
are discretized in a flux-conservative form using standard central
FD approximations to the derivatives. For any term in the form
Π = g(U)∂xf (U), for instance, we evaluate the right interface
flux appearing in Equation (17) with the second-order accurate
expression

Πx,+ ≈ g

(
Ui + Ui+1

2

)
f (Ui+1) − f (Ui)

Δx
, (21)

and similarly for the other directions (a similar approach is used
by Tóth et al. 2008). We take the solution available at the cell
center at t = tn in Equation (19) and at the half time step n+1/2
in Equation (15). For this latter update, time- and cell-centered
conserved quantities may be readily obtained as

Un+ 1
2 = Ūn +

Δtn

2

∑
d

(
Ln

H,d + Ln
P,d

)
. (22)

The algorithm requires a total of six solutions to the
Riemann problem per zone per step and it is stable under the
Courant–Friedrichs–Levy (CFL) condition Ca � 1 (in two di-
mensions) or Ca � 1/2 (in three dimensions), where

Ca = Δtn+1 max
ijk

[
max

d

(
λmax

d

Δxd

)
+
∑

d

2Dmax
d

Δx2
d

]
(23)
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is the CFL number, λmax
d and Dmax

d are the (local) largest
signal speed and diffusion coefficient in the direction given by
d = {x, y, z}, respectively. Equation (23) is used to retrieve the
time step Δtn+1 for the next time level if no cooling or reaction
terms are present. Otherwise we further limit the time step so
that the relative change in pressure and chemical species remains
below a certain threshold εc:

Δtn+1 → min

[
Δtn+1,

εcΔtn

max(|δp/p|, |δXκ |)
]

, (24)

where δp/p and δXκ are the maximum fractional variations
during the source step (Teşileanu et al. 2008). We note that the
time step limitation given by Equation (24) does not depend
on the mesh size and can be estimated on unrefined cells only.
This allows to take full advantage of the adaptivity in time as
explained in Section 4.2.

3.2. Normal Predictors in Characteristic Variables

The computation of the normal predictor states can be carried
out in characteristic variables by projecting the vector V of
primitive variables onto the left eigenvectors lκi ≡ lκ (Vi) of the
primitive system. Specializing to the x-direction,

wκ
i,l = lκi · Vi+l , l = −S, . . . , S, (25)

where κ = 1, . . . , Nwave labels the characteristic wave with
speed λκ and the projection extends to all neighboring zones
required by the interpolation stencil of width 2S + 1. The em-
ployment of characteristic fields rather than primitive variables
requires the additional computational cost associated with the
full spectral decomposition of the primitive form of the equa-
tions. Nevertheless, it has shown to produce better-behaved so-
lutions for highly nonlinear problems, notably for higher-order
methods.

For each zone i and characteristic field κ , we first interpolate
wκ

i,l to obtain wκ
i,±, that is, the rightmost (+) and leftmost (−)

interface values from within the cell. The interpolation can be
carried out using either fourth-, third- or second-order piecewise
reconstruction as outlined later in this section.

Extrapolation in time to tn +Δtn/2 is then carried out by using
an upwind selection rule that discards waves not reaching a given
interface in Δt/2. The result of this construction, omitting the κ
index for the sake of exposition, reads

w∗
i,+ = wref

i,+ + β+

{
wi,+ − ν

2
[δwi + δ2wi(3 − 2ν)] − wref

i,+

}
,

(26)

w∗
i,− = wref

i,− + β−
{
wi,− − ν

2
[δwi − δ2wi(3 + 2ν)] − wref

i,−
}

,

(27)
where ν ≡ λΔt/Δx is the Courant number of the κth wave,
β± = (1 ± sign(ν))/2, whereas δwi and δ2wi are defined by

δwi = wi,+ − wi,− , δ2wi = wi,+ − 2wi + wi,− . (28)

The choice of the reference state wref
i,± is somewhat arbitrary

and one can simply set wref
i,± = wi,0 (Rider et al. 2007),

which has been found to work well for flows containing
strong discontinuities. Alternatively, one can use the original
prescription (Colella & Woodward 1984)

wref
i,+ = wi,+ − νmax

2
[δwi + δ2wi (3 − 2νmax)] , (29)

wref
i,− = wi,− − νmin

2
[δwi − δ2wi (3 + 2νmin)] , (30)

where νmax = max(0, maxκ (νκ )) and νmin = min(0, minκ (νκ ))
are chosen so as to minimize the size of the term susceptible
to characteristic limiting (Colella & Woodward 1984; Miller &
Colella 2002; Mignone et al. 2005). However, we note that, in the
presence of smooth flows, both choices may reduce the formal
second-order accuracy of the scheme since, in the limit of small
Δt , contributions carried by waves not reaching a zone edge are
not included when reconstructing the corresponding interface
value (Stone et al. 2008). In these situations, a better choice is to
construct the normal predictors without introducing a specific
reference state or, equivalently, by assigning wref

i,± = wi,± in
Equations (26) and (27).

The time-centered interface values obtained in characteristic
variables through Equations (26) and (27) are finally used as
coefficients in the right-eigenvector expansion to recover the
primitive variables:

V∗
i,± =

∑
κ

w
κ,∗
i,±rκ

i +
Δtn

2

(
Sn

g,i + Sn
Bx,i

ΔBx

Δx
+ Sn

ψ,i

Δψ

Δx

)
,

(31)
where rκ is the right eigenvector associated with the κth wave,
Sg is a source term accounting for body forces and geometrical
factors, while SBx and Sψ arise from calculating the interface
states in primitive variables rather than conservative ones and are
essential for the accuracy of the scheme in multiple dimensions.
See MT for a detailed discussion on the implementation of these
terms.

As mentioned, the construction of the left and right interface
values can be carried out using different interpolation tech-
niques. Although some of the available options have already
been presented in the original paper (Mignone et al. 2007), here
we briefly outline the implementation details for three selected
schemes providing (respectively) fourth-, third-, and second-
order spatially accurate interface values in the limit of vanish-
ing time step. Throughout this section we will make frequent
usage of the undivided differences of characteristic variables
(Equation (25)) such as

Δwi,+1/2 = wi,+1 − wi,0 , Δwi,−1/2 = wi,0 − wi,−1 (32)

for the ith zone.

Piecewise Parabolic Method. The original PPM reconstruc-
tion by Colella & Woodward (1984; see also Miller & Colella
2002) can be directly applied to characteristic variables giving
the following fourth-order limited interface values:

wi,± = wi,0 + wi,±1

2
∓ Δwi,±1 − Δwi,0

6
, (33)

where slope limiting is used to ensure that wi,± are bounded
between wi and wi±1:

Δwi,0 = mm

[
Δwi,+1/2 + Δwi,−1/2

2
, 2mm

(
Δwi,−1/2, Δwi,+1/2

)]
(34)

and

mm(a, b) = sign(a) + sign(b)

2
min(|a|, |b|) (35)

is the MinMod function. The original interface values defined
by Equation (33) must then be corrected to avoid the appearance
of local extrema. By defining δ± = wi,±−wi,0, we further apply
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the following parabolic limiter

δ± =
{

0 if δ+δ− > 0
−2δ∓ if |δ±| � 2|δ∓| , (36)

where the first condition flattens the distribution when wi,0 is
a local maximum or minimum whereas the second condition
prevents the appearance of an extremum in the parabolic profile.
Once limiting has been applied, the final interface values are
obtained as

wi,± = wi,0 + δ± . (37)

In some circumstances, we have found that further application
of the parabolic limiter (Equation (36)) to primitive variables
may reduce oscillations.

Third-order-improved WENO. As an alternative to the popular
TVD limiters, the third-order-improved WENO reconstruction
proposed by Yamaleev & Carpenter (2009; see also Mignone
et al. 2010) may be used. The interpolation still employs a three-
point stencil but provides a piecewise parabolic profile that
preserves the accuracy at smooth extrema, thus avoiding the
well-known clipping of classical second-order TVD limiters.
Left and right states are recovered by a convex combination
of second-order interpolants into a weighted average of the
order of three. The nonlinear weights are adjusted by the local
smoothness of the solution so that essentially zero weights
are given to non-smooth stencils while optimal weights are
prescribed in smooth regions. In compact notation

wi,+ = wi,0 +
a+Δwi,+1/2 + 1/2a−Δwi,−1/2

2a+ + a−
,

(38)

wi,− = wi,0 − a−Δwi,−1/2 + 1/2a+Δwi,+1/2

2a− + a+
,

where

a± = 1 +

(
Δwi,+1/2 − Δwi,−1/2

)2
Δx2 + Δw2

i,±/12

. (39)

As one can see, an attractive feature of WENO reconstruction
consists in completely avoiding the usage of conditional state-
ments. The improved WENO scheme has enhanced accuracy
with respect to the traditional third-order scheme of Jiang &
Shu (1996) in regions where the solution is smooth and pro-
vides oscillation-free profiles near strong discontinuities.

Linear reconstruction. Second-order TVD limiting is pro-
vided by

wi,± = wi,0 ± Δwi,0

2
, (40)

where Δwi,0 is a standard limiter function such as the
monotonized-central (MC) limiter (Equation (34)). Other, less
steep forms of limiting are the harmonic mean (van Leer 1974):

Δwi,0 =
⎧⎨
⎩

2Δwi,+1/2Δwi,−1/2

Δwi,+1/2 + Δwi,−1/2
if Δwi,+1/2Δwi,−1/2 > 0 ,

0 otherwise ;
(41)

the Van Albada limiter (van Albada et al. 1982):

Δwi,0 =
⎧⎨
⎩

Δwi,+1/2Δwi,−1/2(Δwi,+1/2 + Δwi,−1/2)

Δw2
i,+1/2 + Δw2

i,−1/2

if Δwi,+1/2Δwi,−1/2 > 0

0 otherwise
,

(42)

or the MinMod limiter, Equation (35).

Linear reconstruction may also be locally employed in place
of a higher-order method whenever a strong shock is detected.
This is part of a built-in hybrid mechanism that selectively
identifies zones within a strong shock in order to introduce
additional dissipation by simultaneously switching to the HLL
Riemann solver. Even if the occurrence of such situations is
usually limited to very few grid zones, this fail-safe mechanism
does not sacrifice the second-order accuracy of the scheme
and has been found to noticeably improve the robustness of
the algorithm avoiding the occurrence of unphysical states.
This is described in more detail in Appendix B. However, in
order to assess the robustness and limits of applicability of the
present algorithm, it will not be employed for the test problems
presented here unless otherwise stated.

3.3. Normal Predictors in Primitive Variables

The normal predictor states can also be directly computed
in primitive variables using a simpler formulation that avoids
the characteristic projection step. In this case, one-dimensional
(1D) left and right states are obtained at tn+1/2 using

V∗
i,± = Vn

i + β±

[
V(U∗

i ) − Vn
i ± ΔVi

2

]
, (43)

where β+ = (1 + sgn(λmax))/2 and β− = (1 − sgn(λmin))/2 may
be used to introduce a weak form of upwind limiting, in a similar
fashion to Section 3.2. Time-centered conservative variables U∗

i

follow from a simple conservative MUSCL-Hancock step:

U∗
i = Un

i − Δtn

2ΔVx

[
Ax,+F

(
Vn

i,+

)− Ax,−F
(
Vn

i,−
)]

+
Δtn

2
Ŝd ,

(44)
where Ax,± and ΔVx are the area and volume elements in
the x direction, respectively, and Vn

i,± are obtained using
linear reconstruction (Equation (40)) of the primitive variables.
This approach offers an ease of implementation over the
characteristic tracing step as it does not require the eigenvector
decomposition of the equations or their primitive form. Notice
that, since this step is performed in conservative variables, the
multidimensional terms proportional to ∂Bx/∂x do not need to
be included.

4. AMR STRATEGY—CHOMBO

The support for AMR calculations in PLUTO is provided
by the CHOMBO library. CHOMBO is a software package
aimed at providing a distributed infrastructure for serial and
parallel calculations over block-structured, adaptively refined
grids in multiple dimensions. It is written in a combination
of C++ and Fortran77 with Message Passing Interface (MPI)
and is developed and distributed by the Applied Numerical
Algorithms Group of Lawrence Berkeley National Laboratory
(https://seesar.lbl.gov/anag/chombo/).

In the block-structured AMR approach, once the solution
has been computed over a rectangular grid which discretizes
the entire computational domain, it is possible to identify
the cells which require additional resolution and cover them
with a set of rectangular grids (also referred to as blocks or
patches), characterized by a finer mesh spacing. CHOMBO
follows the Berger & Rigoutsos (1991) strategy to determine
the most efficient patch layout to cover the cells that have been
tagged for refinement. This process can be repeated recursively
to define the solution over a hierarchy of � = 0, . . . , �max
levels of refinement whose spatial resolutions satisfy the relation

6
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Figure 1. Two-dimensional example of a three-level AMR hierarchy, with the
base level (� = 0) covering the entire computational domain. Solid lines are
representative of the level resolution. Dashed lines contour the ghost zones of
two patches of level � = 1. Colors indicate different filling methods: physical
outer boundaries (red), boundaries filled by exchanging values with adjacent
patches on the same level (blue), and boundaries filled by interpolating from the
next coarser level (yellow).

(A color version of this figure is available in the online journal.)

Δx�
d = r� Δx�+1

d , where the integer r� is the refinement ratio
between level � and level �+1. A level of refinement is composed
by a union of rectangular grids, which must be: disjointed,
i.e., two blocks of the same level can be adjacent without
overlapping; properly nested, i.e., a cell of level � cannot be
only partially covered by cells of level � + 1, and cells of level
�+ 1 must be separated from cells of level �−1 at least by a row
of cells of level �. A simple example of a bidimensional adaptive
grid distributed over a hierarchy of three levels of refinement is
depicted in Figure 1.

Following the notation of Pember et al. (1996), a global
mapping is employed on all levels: in three dimensions, cells
on level � are identified with global indexes i, j, k (0 � i <
N�

1 , 0 � j < N�
2 , 0 � k < N�

3 , with N�
1,2,3 being the

equivalent global resolution of level � in the three directions).
Correspondingly, the cell i, j, k of level � is covered by (r�)3

cells of level � + 1 identified by global indexes l, m, n satisfying
the conditions r�i � l � r�(i + 1)−1, r�j � m � r�(j + 1)−1,
r�k � n � r�(k + 1) − 1. Taking direction 1 as an example, the
expressions, x�

1,− = iΔx�
1, x�

1 = (i + 1/2)Δx�
1, x�

1,+ = (i + 1)Δx�
1,

define the physical coordinates of the left edge, center, and right
edge of a cell, respectively.

If the adaptive grid is employed to evolve time-dependent
hyperbolic partial differential equations, the CFL stability con-
dition allows to apply refinement in time as well as in space, as
first proposed by Berger & Oliger (1984) and further developed
in Berger & Colella (1989). In fact, each level � advances in time
with a time step Δt� = Δt�−1/r�−1, which is r�−1 times smaller
than the time step of the next coarser level � − 1. Starting the
integration at the same instant, two adjacent levels synchronize
every r� time steps, as schematically illustrated in Figure 2 for
a refinement ratio r� = 2. Even though in the following dis-
cussion we will assume that level � + 1 completes r� time steps
to synchronize with level �, CHOMBO allows the finer level
� + 1 to advance with smaller substeps if the stability condition
requires it. Anyway, the additional substeps must guarantee that
levels � and � + 1 are synchronized again at time t� + Δt�.

Figure 2. Schematic representation of the time evolution of an AMR hierarchy
composed of three levels with a refinement ratio r = 2. The length of the
horizontal black arrows is proportional to the time step size Δt�. Curved vertical
arrows indicate interlevel communications. Red arrows represent fine-to-coarse
communications between synchronized adjacent levels, including conservative
averaging (Equation (47)) and refluxing (Equations (48) and (49)). Green
arrows represent coarse-to-fine communications, including the conservative
interpolation (Equation (45)) needed to fill ghost zones and to define the solution
on newly generated cells of the finer level.

(A color version of this figure is available in the online journal.)

Figure 3. Illustrative bidimensional example of prolongation and restriction
operations between two levels with a refinement ratio r� = 2. Cells on level �+1
can be filled by linearly interpolating the coarse values on level � (empty circles)
at cross-marked points (prolongation, green dashed lines, Equation (45)). Cells
on level � can be filled by averaging down values from level �+1 in a conservative
way (restriction, red dotted lines, Equation (47)).

(A color version of this figure is available in the online journal.)

The time evolution of single patches is handled by PLUTO, as
illustrated in Section 3. Before starting the time evolution, the
ghost cells surrounding the patches must be filled according
to one of these three possibilities: (1) assigning “physical”
boundary conditions to the ghost cells which lie outside the
computational domain (e.g., the red area in Figure 1); (2)
exchanging boundary conditions with the adjacent patches of the
same level (e.g., the blue area in Figure 1); and (3) interpolating
values from the parent coarser level for ghost cells which cover
cells of a coarser patch (e.g., the yellow area in Figure 1).

As schematically illustrated in Figure 3 in two dimensions,
the coarse-to-fine prolongation needed in case (3) (green dashed
lines) is based on a piecewise linear interpolation at points
marked by crosses using the linear slopes computed from the
surrounding coarse cells. In three dimensions the interpolant has

7



The Astrophysical Journal Supplement Series, 198:7 (31pp), 2012 January Mignone et al.

main program

initialize(0 max) Assign initial conditions on entire level hierarchy.

for q = 0, . . . , Nsteps

advance(0, qΔt0, Δt0) Advance base level 0 for Nsteps timesteps.
endfor

end main program

procedure advance( , Δt )

if (need to regrid) Tag cells for refinement (Eq. 50) and generate new
grids on levels + 1 max. Fill new cells inter-
polating from coarse levels (Eq. 45).

tag and regrid( )
endif

fill boundaries(U ,U −1∗)
Fill ghost zones on level : physical boundaries,
exchange values with adjacent patches, interpolate
from level − 1 (Eq. 45 and 46).

evolve(U , Δt )

Advance in time level from t to t + Δt (Eq.
15) and store fluxes at coarse-fine boundaries for
conservative refluxing.

if ( max) then
Δt +1 = Δt /r
for q = 0, . . . , r -1

Advance in time level +1 for r timesteps.advance( + 1, t + qΔt +1, Δt +1)
endfor

average down(U +1,U ) Average level + 1 down to level (Eq. 47).

reflux(U , δFd) Add conservative flux correction (Eq. 48 and 49) to
level

endif

end procedure

Figure 4. Pseudocode for the recursive level integration in the block-structured
AMR.

Table 1
Systems of Coordinates Adopted in PLUTO-CHOMBO

Label Cartesian Cylindrical

x1 x r
x2 y z

x3 z /

V1 x r2/2
V2 y z

V3 z /

A1,+ ΔyΔz r+Δz

A2,+ ΔzΔx rΔr

A3,+ ΔxΔy /

V ΔxΔyΔz rΔrΔz

the general form

U�+1
l,m,n = U�

i,j,k +
3∑

d=1

V�+1
d − V�

d

V�
d,+ − V�

d,−
ΔdU�

i,j,k, (45)

where V�
d is the volume coordinate of cell centers of level � in

direction d and V�
d,± is its value on the right and left faces of the

cell, respectively (see Table 1 for definitions). The linear slopes
ΔdU�

i,j,k are calculated as central differences, except for cells
touching the domain boundary, where one-sided differences are
employed. The MC limiter (Equation (34)) is applied to the
linear slopes so that no new local extrema are introduced.

Notice that, since two contiguous levels are not always
synchronized (see Figure 2), coarse values at an intermediate
time are needed to prolong the solution from a coarse level to

Figure 5. Schematic visualization of the refluxing operation needed at
fine–coarse interfaces to preserve the conservative properties of the solution.
One cell on the coarser level � and the cells of level � + 1 adjacent to one side
are represented, assuming a refinement ratio r� = 2. Whenever level � and
� + 1 are synchronized, the coarse flux (red arrow) must be replaced by the spa-
tial and temporal average of the finer fluxes crossing the fine–coarse interface
(blue arrows, Equation (48)) and the solution must be corrected accordingly
(Equation (49)).

(A color version of this figure is available in the online journal.)

the ghost zones of a finer level. Coarse values of level � are
therefore linearly interpolated between time t� and time t� + Δt�

and the piecewise linear interpolant (Equation (45)) is applied
to the coarse solution:

U�∗
i,j,k = (1 − α)U�

i,j,k(t�) + αU�
i,j,k(t� + Δt�), (46)

where α = (t�+1 − t�)/Δt�. This requires that, everytime level
� and level � + 1 are synchronized, a time step on level � must
be completed before starting the time integration of level � + 1.
Therefore, the time evolution of the entire level hierarchy is
performed recursively from level � = 0 up to � = �max, as
schematically illustrated by the pseudocode in Figure 4.

When two adjacent levels are synchronized, some corrections
to the solution are performed to enforce the conservation
condition on the entire level hierarchy. To maintain consistency
between levels, the solution on the finer level � + 1 is restricted
to the lower level � by averaging down the finer solution in a
conservative way (red dotted lines in Figure 3)

U�
i,j,k =

r�(i+1)−1∑
l=r�i

r�(j+1)−1∑
m=r�j

r�(k+1)−1∑
n=r�k

V�+1
l,m,nU�+1

l,m,n

V�
i,j,k

, (47)

where V�
i,j,k is the volume of cell i, j, k of level �.

Moreover, the flux through an edge which is shared between
a cell of level � and (r�)2 cells of level �+ 1 must be corrected to
maintain the conservative form of the equations. For example, if
the cell i, j, k on level � shares its left boundary with (r�)2 cells
of level �+1 (see Figure 5), the flux calculated during the coarse
integration must be replaced with the average in time and space
of the fluxes crossing the (r�)2 faces of the finer level cells. In
this particular example, the flux correction is defined as

δF�
d = −A�

d,−F�
d,− +

1

r�

r�∑
q=1

r�(j+1)−1∑
m=r�j

r�(k+1)−1∑
n=r�k

A�+1
d,+F�+1,q

d,m,n,+,

(48)
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where the index q sums over the time steps of level � + 1,
while m and n are the indexes transverse to direction d. The
flux correction is added to the solution on level � after the time
integration of level � and � + 1 has been completed:

U�
i,j,k = U�

i,j,k + Δt�
δF�

d

V�
i,j,k

. (49)

Finally, when levels from � up to �max are synchronized, it is
possible to tag the cells which need refinement and generate a
new hierarchy of grids on levels from � + 1 up to �max, which
covers the tags at each level. Whenever new cells are created
on level � + 1 it is possible to fill them interpolating from level
� according to Equation (45). It is important to notice that this
interpolant preserves the conservative properties of the solution.

4.1. Refinement Criteria

In PLUTO-CHOMBO, zones are tagged for refinement when-
ever a prescribed function χ (U) of the conserved variables and of
its derivatives exceeds a prescribed threshold, i.e., χ (U) > χr .
Generally speaking, the refinement criterion may be problem
dependent, thus requiring the user to provide an appropriate
definition of χ (U). The default choice adopts a criterion based
on the second derivative error norm (Löhner 1987), where

χ (U) =
√√√√ ∑

d

∣∣Δd,+1/2σ − Δd,−1/2σ
∣∣2∑

d

(∣∣Δd,+1/2σ
∣∣ +
∣∣Δd,−1/2σ

∣∣ + εσd,ref
)2 , (50)

where σ ≡ σ (U) is a function of the conserved variables,
Δd,± 1

2
σ are the undivided forward and backward differences

in the direction d, e.g., Δx,± 1
2
σ = ±(σi±1 − σi). The last term

appearing in the denominator, σd,ref , prevents regions of small
ripples from being refined (Fryxell et al. 2000) and it is defined
by

σx,ref = |σi+1| + 2|σi | + |σi−1|. (51)

Similar expressions hold when d = y or d = z. In the
computations reported in this paper we use ε = 0.01 as the
default value.

4.2. Time Step Limitation of Point-local Source Terms

In the usual AMR strategy, grids belonging to level � are
advanced in time by a sequence of steps with typical size

Δt�,n+1 = Δt0
min

(2)�
, (52)

where we assume, for simplicity, a grid jump of 2. Here, Δt0
min

is chosen by collecting and re-scaling to the base grid the time
steps from all levels available from the previous integration step
n:

Δt0
min = min

0����max

[(2)�Δt�,n], (53)

where Δt�,n is computed using Equation (24). However, this
procedure may become inefficient in the presence of source
terms whose timescale does not depend on the grid size. As an
illustrative example, consider a strong radiative shock propa-
gating through a static cold medium. In the optically thin limit,
radiative losses are assumed to be local functions of the state
vector, but they do not involve spatial derivatives. If the fastest
timescale in the problem is dictated by the cooling process, the

time step estimate should then become approximately the same
on all levels, Δt ≈ Δt�rad ≈ Δt0

rad, regardless of the mesh size.
However from the previous equations, one can see that finer
levels with � > 0 will advance with a time step (2)� smaller
than required by the single grid estimate. Equation (52) is nev-
ertheless essential for proper synchronization between nested
levels.

Simple considerations show that this deficiency may be cured
by treating split and leaf cells differently. Split zones in a given
level � are, in fact, overwritten during the projection step using
the more accurate solution computed on children cells belonging
to level �+1. Thus, accurate integration of the source term is not
important for these cells and could even be skipped. From these
considerations, one may as well evaluate the source-term-related
time step on leaf cells only, where the accuracy and stability of
the computed solution is essential. This simple expedient should
speed up the computations by a factor of approximately (2)�,
thus allowing us to take full advantage of the refinement offered
by the AMR algorithm without the time step restriction. Besides,
this should not alter or degrade the solution computed during
this single hierarchical integration step as long as the projection
step precedes the regrid process.

The proposed modification is expected to be particularly
efficient in those problems where radiative losses are stronger
in proximity of steep gradients.

4.3. Parallelization and Load Balancing

Both PLUTO and PLUTO-CHOMBO support calculations
in parallel computing environments through the MPI library.
Since the time evolution of the AMR hierarchy is performed
recursively, from lower to upper levels, each level of refinement
is parallelized independently by distributing its boxes to the
set of processors. The computation on a single box has no
internal parallelization. Boxes are assigned to processors by
balancing the computational load on each processor. Currently,
the workload of a single box is estimated by the number of
grid points of the box, considering that the integration requires
approximately the same amount of flops per grid point. This is
not strictly true in some specific case, e.g., in the presence of
optically thin radiative losses, and a strategy to improve the load
balance in such situations is currently under development. On
the basis of the box workloads, CHOMBO’s load balancer uses
the Kernighan–Lin algorithm for solving knapsack problems.

CHOMBO weak scaling performance has been thoroughly
benchmarked: defining the initial setup by spatially replicating
a 3D hydrodynamical problem proportionally to the number
of CPUs employed, the execution time stays constant with
excellent approximation (see Van Straalen et al. 2009 for more
details).

To test the parallel performance of PLUTO-CHOMBO in real
applications, we performed a number of strong scaling tests by
computing the execution time as a function of the number of
processors for a given setup. While this is a usual benchmark
for static grid calculations, in the case of AMR computations
this diagnostic is strongly problem dependent and difficult to
interpret.

In order to find some practical rule to improve the scaling of
AMR calculations, we investigated the dependency of the paral-
lel performance on some parameters characterizing the adaptive
grid structure: the maximum box size allowed and the num-
ber of levels of refinement employed using different refinement
ratios. As a general rule, the parallel performance deteriorates
when the number of blocks per level becomes comparable to the
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Figure 6. Density profiles for the 1D shock tube problem at t = 0.4 with α = π .
Solid lines correspond to admissible analytic solutions with (black) and without
(red) a compound wave. The numerical solution (symbols) is obtained with 400
grid points.

(A color version of this figure is available in the online journal.)

number of processors or, alternatively, when the ideal workload
per processor (i.e., the number of grid cells of a level divided
by the number of CPUs) becomes comparable to the maximum
box size. As we will show, decreasing the maximum possible
block size can sensibly increase the number of boxes of a level
and therefore improves the parallel performance. On the other
hand, using less refinement levels with larger refinement ratios
to achieve the same maximum resolution can lower the exe-
cution time, reducing the parallel communication volume and
avoiding the integration of intermediate levels.

In Sections 5 and 6, we present several parallel scaling tests
and their dependence on the aforementioned grid parameters.

5. MHD TESTS

In this section, we consider a suite of test problems specifi-
cally designed to assess the performance of PLUTO-CHOMBO
for classical MHD flows. The selection includes 1D, 2D, and 3D
standard numerical benchmarks already presented elsewhere in
the literature as well as applications of astrophysical relevance.
The single patch integrator adopts the characteristic tracing step
described in Section 3.2 with either PPM, WENO, or linear
interpolations carried out in characteristic variables. The ideal
EOS with Γ = 5/3 is used throughout this section.

5.1. Shock Tube Problems

The shock tube test problem is a common benchmark for an
accurate description of both continuous and discontinuous flow
features. In the following, we consider 1D and 3D configurations
of standard shock tubes proposed by Torrilhon (2003) and Ryu
& Jones (1995).

5.1.1. One-dimensional Shock Tube

Following Torrilhon (2003), we address the capability of the
AMR scheme to handle and refine discontinuous features as
well as to correctly resolve the non-uniqueness issue of MHD
Riemann problems in FV schemes (Torrilhon 2003; Torrilhon
& Balsara 2004, and references therein). Left and right states
are given by{

VL = (1, 0, 0, 0, 1, 1, 0, 1)T for x1 < 0 ,

VR = (0.2, 0, 0, 0, 1, cos(α), sin(α), 0.2)T for x1 > 0 ,

(54)

Figure 7. Density profiles for the 1D shock tube problem at t = 0.4 inproximity
of the compound wave, with α = 3. The AMR levels vary from 0 to 10 as
reported in the legend, exploring cases of equivalent resolution of 512 (solid),
1024 (dot), 2048 (dash), 4096 (dot-dash), 8192 (three-dot-dashed), 16,384 (long
dash), and 1,048,576 (solid red) points. At high resolution the solution converges
to the regular one. This figure is analogous to Figure 3 of Fromang et al. (2006).

(A color version of this figure is available in the online journal.)

where V = (ρ, vx, vy, vz, Bx, By, Bz, p
)

is the vector of prim-
itive variables. As discussed by Torrilhon (2003), for a wide
range of initial conditions MHD Riemann problems have unique
solutions, consisting of Lax shocks, contact discontinuities, or
rarefaction waves. Nevertheless, certain sets of initial values ex-
ist that can result in non-unique solutions. When this occurs,
along with the regular solution arises one that allows for irregu-
lar MHD waves, for example, a compound wave. A special case
where the latter appears is when the initial transverse velocity
components are zero and the magnetic field vectors on either
side of the interface are anti-parallel. Such a case was noted by
Brio & Wu (1988) and can be reproduced by simply choosing
α = π in our initial condition.

A 1D non-unique solution is calculated using a static grid
with 400 zones, x ∈ [−1, 1.5]. Left and right boundaries are set
to outflow and the evolution stops at time t = 0.4, before the fast
waves reach the borders. The resulting density profile is shown
in Figure 6. The solid lines denote the two admissible exact
solutions: the regular (red) and the one containing a compound
wave (black), the latter situated at x ∼ −0.24. It is clear that
the solution obtained with the Godunov-type code is the one
with the compound wave (symbols).

The crucial problematic of this test occurs when α is close
to but not exactly equal to π . Torrilhon (2003) has proven that
regardless of scheme, the numerical solution will erroneously
tend to converge to an “irregular” one similar to α = π
(pseudoconvergence), even if the initial conditions should have
a unique, regular solution. This pathology can be cured either
with high-order schemes (Torrilhon & Balsara 2004) or with a
dramatic increase in resolution on the region of interest, proving
AMR to be a useful tool. To demonstrate this we choose α = 3
for the field’s twist.

Starting from a coarse grid of 512 computational zones, we
vary the number of refinement levels, with a consecutive jump
ratio of 2. The 10 level run (solid red line) incorporates also a
single jump ratio of 4 between the sixth and seventh refinement
levels, reaching a maximum equivalent resolution of 1,048,576
zones (see Figure 7). The refinement criterion is set upon the
variable σ = (B2

x +B2
y +B2

z )/ρ using Equation (50) with a thresh-
old χr = 0.03, whereas integration is performed using PPM
with a Roe Riemann solver and a Courant number Ca = 0.9.
As resolution increases the compound wave disentangles and
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Table 2
CPU Running Time for the 1D MHD Shock Tube Using Both Static

and AMR Computations

Static Run AMR Run Gain

Nx Time Level Ref Ratio Time
(s) (s)

512 0.5 0 2 0.5 1
1024 1.9 1 2 1.1 1.7
2048 7.5 2 2 2.3 3.3
4096 31.6 3 2 4.5 7.0
8192 138.0 4 2 8.7 15.9
16384 546.1 5 2 16.9 32.3
1048576 2.237 × 106a 10 2 (4) 1131.1 1977.8

Notes. The first and second columns give the number of points Nx and
corresponding CPU for the static grid run (no AMR). The third, fourth, and fifth
columns give, respectively, the number of levels, the refinement ratio, and CPU
time for the AMR run at the equivalent resolution. The last row refers to the
solid red line of Figure 7, where a jump ratio of four was introduced between
levels six and seven to reach an equivalent of ∼106 grid points. The last column
shows the corresponding gain factor calculated as the ratio between static and
AMR execution time.
a CPU time has been inferred from ideal scaling.

the solution converges to the expected regular form (Torrilhon
2003; Fromang et al. 2006). In Table 2, we compare the CPU
running time of the AMR runs versus static uniform grid com-
putations at the same effective resolution. With 5 and 10 levels
of refinement (effective resolutions 16,384 and 1,048,576 zones,
respectively) the AMR approach is ∼32 and ∼1978 times faster
than the uniform mesh computation, respectively.

5.1.2. Three-dimensional Shock Tube

The second Riemann problem was proposed by Ryu & Jones
(1995) and later considered also by Tóth (2000), Balsara &
Shu (2000), Gardiner & Stone (2008), Mignone & Tzeferacos
(2010), and Mignone et al. (2010). An initial discontinuity is
described in terms of primitive variables as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

VL =
(

1.08, 1.2, 0.01, 0.5,
2√
4π

,
3.6√
4π

2√
4π

, 0.95

)T

for x1 < 0

VR =
(

1, 0, 0, 0,
2√
4π

,
4√
4π

,
2√
4π

, 1

)T

for x1 > 0

,

(55)
where V = (ρ, v1, v2, v3, B1, B2, B3, p) is the vector of primi-
tive variables. The subscript “1” gives the direction perpendic-
ular to the initial surface of discontinuity whereas “2” and “3”
correspond to the transverse directions. We first obtain a 1D so-
lution on the domain x ∈ [−0.75, 0.75] using 6144 grid points,
stopping the computations at t = 0.2.

In order to test the ability of the AMR scheme to main-
tain the translational invariance and properly refine the flow
discontinuities, the shock tube is rotated in a 3D Cartesian do-
main. The coarse level of the computational domain consists of
[384 × 4 × 4] zones and spans [−0.75, 0.75] in the x-direction
while y, z ∈ [0, 0.015625]. The rotation angles, γ around the
y-axis and α around the z-axis, are chosen so that the planar
symmetry is satisfied by an integer shift of cells (nx, ny, nz).
The rotation matrix can be found in Mignone et al. (2010). By
choosing tan α = −r1/r2 and tan β = tan γ / cos α = r1/r3,

one can show (Gardiner & Stone 2008) that the three integer
shifts nx, ny, nz must obey

nx − ny

r1

r2
+ nz

r1

r3
= 0 , (56)

where cubed cells have been assumed and (r1, r2, r3) = (1, 2, 4)
will be used. Computations stop at t = 0.2 cos α cos γ , once
again before the fast waves reach the boundaries. We employ
four refinement levels with consecutive jumps of 2, correspond-
ing to an equivalent resolution of 6144 × 64 × 64 zones. The
refinement criterion is based on the normalized second deriva-
tive of (|Bx |+|By |)ρ with a threshold value χr = 0.1. Integration
is done with PPM reconstruction, a Roe Riemann solver, and a
Courant number of Ca = 0.4.

The primitive variable profiles (symbols) are displayed in
Figure 8 along the x-direction,5 together with the 1D reference
solution in the x ∈ [−0.25, 0.55] region. In agreement with the
solution of Ryu & Jones (1995), the wave pattern produced con-
sists of a contact discontinuity that separates two fast shocks,
two slow shocks, and a pair of rotational discontinuities. A 3D
close-up of the top-hat feature in the density profile is shown
in Figure 9, along with AMR levels and mesh. The discon-
tinuities are captured correctly, and the AMR grid structure
respects the plane symmetry. Our results favorably compare
with those of Gardiner & Stone (2008), Mignone & Tzefer-
acos (2010), Mignone et al. (2010), and previous similar 2D
configurations.

The AMR computation took approximately 3 hr and 53 min-
utes on two 2.26 GHz quad-core Intel Xeon processors (eight
cores in total). For the sake of comparison, we repeated the same
computation on a uniform mesh of 768 × 8 × 8 zones (1/8 of
the effective resolution) with the static grid version of PLUTO
employing ≈79 s. Thus, extrapolating from ideal scaling, the
computational cost of the fixed grid calculation is expected to
increase (at least) by a factor 212 giving an overall gain of the
AMR over the uniform grid approach of ∼23.

5.2. Advection of a Magnetic Field Loop

The next test problem considers the 2D advection of a
magnetic field loop. This test, proposed by Gardiner & Stone
(2005), aims to benchmark the scheme’s dissipative properties
and the correct discretization balance of multidimensional terms
through monitoring the preservation of the initial circular shape
of the loop.

As in Gardiner & Stone (2005) and Fromang et al. (2006),
we define the computational domain by x ∈ [−1, 1] and
y ∈ [−0.5, 0.5] discretized on a coarse grid of 64 × 32 grid
cells. In the initial condition, both density and pressure are
uniform and equal to 1, while the velocity of the flow is given
by v = V0 cos αêx + V0 sin αêy with V0 = √

5, sin α = 1/
√

5,
and cos α = 2/

√
5. The magnetic field is then defined through

the magnetic vector potential as

Az =
{
A0(R − r) if r � R ,
0 if r > R ,

(57)

where A0 = 10−3, R = 0.3, and r =
√

x2 + y2. The simulation
evolves until t = 2, when the loop has thus performed two
crossings through the periodic boundaries. The test is repeated

5 Note that similar plots were produced in MT and Mignone et al. (2010) but
erroneously labeled along the “rotated direction” rather than the x-axis.
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Figure 8. Primitive variable profiles for the 3D shock tube problem at t = 0.02 cos α cos γ , along the x-direction. Density and thermal pressure are plotted in the top
panels while vector field components normal (“1”) and transverse (“2” and “3”) to the initial surface of discontinuity are shown in the middle and bottom panels. We
show a smaller portion of the domain, x ∈ [−0.25, 0.55], in order to emphasize the change of resolution by symbol density.

Figure 9. Close-up of the top-hat feature in the density profile for the 3D shock
tube problem, along with AMR level structure and the mesh. Different colors
are used to distinguish grid levels.

(A color version of this figure is available in the online journal.)

with two, three, and four levels of refinement (jump ratio of
2), resulting to equivalent resolutions of [256 × 128], [512 ×
256], and [1024 × 512], respectively. Refinement is triggered
whenever the second derivative error norm of (B2

x + B2
y ) × 106,

computed via Equation (50), exceeds the threshold χr = 0.1.
The integration is carried out utilizing WENO reconstruction
and the Roe Riemann solver, with Ca = 0.4.

The temporal evolution of magnetic energy density is seen
in Figure 10, with four levels of refinement. As the field
loop is transported inside the computational domain, the grid
structure changes to follow the evolution and the field lines

retain the initial circular form. An efficient way to quantitatively
measure the diffusive properties of the scheme is to monitor the
dissipation of the magnetic energy. In the top panel of Figure 11,
we plot the normalized mean magnetic energy as a function of
time. By increasing the levels of refinement the dissipation of
magnetic energy decreases, with 〈B2〉 ranging from ∼94% to
∼98% of the initial value. In order to quantify the computational
gain of the AMR scheme, we repeat the simulations with a
uniform grid resolved onto as many points as the equivalent
resolution, without changing the employed numerical method.
The speed-up is reported in the bottom panel of Figure 11.

5.3. Resistive Reconnection

Magnetic reconnection refers to a topological rearrangement
of magnetic field lines with opposite directions, accompanied
with a conversion of magnetic energy into kinetic and thermal
energy of the plasma. This is believed to be the basic mechanism
behind energy release during solar flares. The first solution to the
problem was given independently by Sweet (1958) and Parker
(1957), treating it as a 2D boundary layer problem in the laminar
limit.

According to the Sweet–Parker model, the magnetic field’s
convective inflow is balanced by ohmic diffusion. Along with
the assumption of continuity, this yields a relation between
reconnection and plasma parameters. If L and δ are the boundary
layer’s half length and width, respectively, we can write the
reconnection rate E as

E ≡ uin

uout
∼ δ

L
∼ 1√

S
. (58)
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Figure 10. Magnetic energy density for the 2D field loop problem at t = 0, 0.7, 1.4, 2. Overplotted are the refinement levels.

(A color version of this figure is available in the online journal.)

Figure 11. Upper panel: normalized magnetic energy for the field loop advection
problem as a function of time. Lower panel: computational time as a function
of equivalent resolution.

With uin and uout we denote the inflow and outflow speeds,
into and out of the boundary layer, respectively. The Lundquist
number for the boundary layer is defined as S = uAL/η,
with uA being the Alfvén velocity directly upstream of the
layer, η the magnetic resistivity, and L the layer’s half-length.
This dependency of the reconnection rate with the square
root of magnetic resistivity is called the Sweet–Parker scal-
ing and has been verified both numerically (Biskamp 1986;
Uzdensky & Kulsrud 2000) and experimentally (Ji et al.
1998).

Following the guidelines of the Geospace Environment Mod-
eling (GEM) Magnetic Reconnection Challenge (Birn et al.
2001), the computational domain is a 2D Cartesian box, with
x ∈ [−Lx/2, Lx/2] and y ∈ [−Ly/2, Ly/2] where we choose
Lx = 25.6 and Ly = 12.8. The initial condition consists of
a Harris current sheet: the magnetic field configuration is de-
scribed by Bx(y) = B0 tanh(y/λ) whereas the flow’s density is
ρ = ρ0sech2(y/λ)+ρ∞, where λ = 0.5, ρ0 = 1, and ρ∞ = 0.2.
The flow’s thermal pressure is deduced assuming equilibrium
with magnetic pressure, P = B2

0/2 = 0.5. The initial magnetic
field components are perturbed via

dBx = −Ψ0(π/Ly) sin(πy/Ly) cos(2πx/Lx)

dBy = Ψ0(2π/Lx) sin(2πx/Lx) cos(πy/Ly).
(59)

where Ψ0 = 0.1. The coarse grid consists of [64 × 32] points,
and additional levels of refinement are triggered using the
following criterion based on the current density:

|ΔxBy − ΔyBx |
|ΔxBy | + |ΔyBx | +

√
ρ/ξ

>
χmin − χmax

1 + (1 − ξ )2
+ χmax, (60)

where ΔxBy and ΔyBx are the undivided central differences
of By and Bx in the x- and y-direction, respectively, and
ξ = Δx0/Δx� � 1 is the ratio of grid spacings between the base
(0) and current level (l). The threshold values χmin = 0.2 and
χmax = 0.37 are chosen in such a way that refinement becomes
increasingly harder for higher levels. We perform test cases
using either five levels of refinement with a consecutive jump
ratio of 2, or three levels with a jump ratio of 2:4:4 reaching, in
both cases, an equivalent resolution of 2048×1024 mesh points.
Boundaries are periodic in the x-direction, whereas perfectly
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Figure 12. Upper row: temporal evolution of the current density and magnetic field lines for the resistive reconnection problem, with η = 8 × 10−3. Snapshots refer
to t = 0, 50, 100. Lower row: pressure profiles for various values of resistivity η, along with the AMR level structure at t = 50. The refinement strategy consists of
three levels with jump ratios of 2:4:4 (equivalent resolution of 2048 × 1024 mesh points).

(A color version of this figure is available in the online journal.)

Figure 13. Time average of δ/L, analogous to the magnetic reconnection rate
E , as a function of resistivity. Symbols represent the actual data, whereas
overplotted (dashed line) is the Sweet–Parker scaling ∼√

η, along with a best fit
(solid line). The numerical results are in agreement with the theoretical scaling.

conducting boundary walls are set at y = ±Ly/2. We follow
the computations until t = 100 using PPM reconstruction with
a Roe Riemann solver and a Courant number Ca = 0.8. In
Figure 12, we display the temporal evolution of the current
density for a case where the uniform resistivity is set to
η = 8 × 10−3. A reconnection layer is created in the center of
the domain, which predisposes resistive reconnection (Biskamp
1986). In agreement with Reynolds et al. (2006) the maximum
value of the current density decreases with time (Figure 4 of
that study). As seen in the first two panels (t = 0, 50), the
refinement criterion is adequate to capture correctly both the
boundary layer and the borders of the magnetic island structure.
In the rightmost panel (t = 100), we also draw sample magnetic
field lines to better visualize the reconnection region.

In order to compare our numerical results with theory, we
repeated the computation, varying the value of the magnetic
resistivity η. For small values of resistivity (large Lundquist
numbers S), the boundary layer is elongated and presents large
aspect ratios of A ≡ L/δ. Biskamp (1986) reports that for A
beyond the critical value of Acrit � 100 the boundary layer
is tearing unstable, limiting the resistivity range in which the
Sweet–Parker reconnection model operates. Since in the Sun’s

Figure 14. Parallel speed-up at t = 50 as a function of the number of processors
(NCPU) for the resistive reconnection problem. The different lines refer to the
execution times obtained with five levels of refinement with consecutive jumps
of 2 (red squares), three levels with jump ratios of 2:4:4 (green crosses), and a
fixed uniform grid with 2048 × 1024 zones (black plus signs). The dotted line
gives the ideal scaling whereas the number of blocks on the finest level at the
end of integration is reported above each curve.

(A color version of this figure is available in the online journal.)

corona S can reach values of ∼1014 � Smax, secondary island
formation must be taken into account (Cassak & Drake 2009).
In this context, ensuring that we respect Biskamp’s stability
criterion, we calculate the temporal average of δ/L, analogous
to the reconnection rate E , for various η and reproduce the
Sweet–Parker scaling (Figure 13). The boundary layer’s half
-width (δ) and half-length (L) are estimated from the e-folding
distance of the peak of the electric current, while the AMR
scheme allows us to economically resolve the layer’s thickness
with enough grid points.

Parallel performance for this problem is shown in Figure 14,
where we plot the speed-up S = T1/TNCPU as a function of the

14



The Astrophysical Journal Supplement Series, 198:7 (31pp), 2012 January Mignone et al.

Figure 15. Time evolution of the pressure profiles along with sample magnetic field lines, for the current sheet problem. Temporal snapshots refer to t = 0.5, 1, 1.5, 2
(upper four) and t = 2.5, 3, 3.5, 4 (lower four).

(A color version of this figure is available in the online journal.)

number of processors NCPU for the three- and five-level AMR
computations as well as for fixed uniform grid runs carried out
at the equivalent resolution of 2048 × 1024 zones. Here, T1 is
the same reference constant for all calculations and is equal to
the (inferred) running time of the single processor static mesh
computation while TNCPU is the execution time measured with
NCPU processors. The scaling reveals an efficiency (defined as
S/NCPU) larger than 0.8 for less than 256 processors with the
three- and five-level computations being, respectively, eight to
nine and four to five times faster than the fixed grid approach.
The number of blocks on the finest level is maximum at the
end of integration and is slightly larger for the three-level run
(1058 versus 835). This result indicates that using fewer levels
of refinement with larger grid ratios can be more efficient than
introducing more levels with consecutive jumps of 2, most
likely because of the reduced integration cost due to the missing
intermediate levels and the decreased overhead associated with
coarse-fine level communication and grid generation process.
Efficiency quickly drops when the number of CPU tends to
become, within a factor of between two and three, comparable
to the number of blocks.

5.4. Current Sheet

The current sheet problem proposed by Gardiner & Stone
(2005) and later considered by Fromang et al. (2006) in the
AMR context is particularly sensitive to numerical diffusion.
The test problem follows the evolution of two current sheets,
initialized through a discontinuous magnetic field configuration.
Driven solely by numerical resistivity, reconnection processes
take place, making the resulting solution highly susceptible to
grid resolution.

The initial condition is discretized onto a Cartesian 2D grid
x, y ∈ [0, 2], with 64 × 64 zones at the coarse level. The fluid
has uniform density ρ = 1 and thermal pressure P = 0.1. Its
bulk flow velocity v is set to zero, allowing only for a small
perturbation in vx = v0 sin(π y), where v0 = 0.1. The initial
magnetic field has only one non-vanishing component in the
vertical direction,

By =
{−B0 if |x − 1| � 0.5,

B0 otherwise, (61)

where B0 = 1, resulting in a magnetically dominated configu-
ration. Boundaries are periodic and the integration terminates at
t = 4. We activate refinement whenever the maximum between
the two error norms (given by Equation (50)) computed with the
specific internal energy and the y-component of the magnetic
field exceeds the threshold value χr = 0.2. In order to filter
out noise between magnetic island we set ε = 0.05. We allow
for four levels of refinement and carry out integration with the
Roe Riemann solver, the improved WENO reconstruction, and
a CFL number of 0.6.

In Figure 15, we show temporal snapshots of pressure profiles
for t = 0.5, 1.0, 1.5, 2, 3.5, and 4.0, along with sample
magnetic field lines. Since no resistivity has been specified,
the elongated current sheets are prone to tearing instability as
numerical resistivity is small with respect to Biskamp’s criterion
(Biskamp 1986). Secondary islands, “plasmoids,” promptly
form and propagate parallel to the field in the y-direction. As
reconnection occurs, the field is dissipated and its magnetic
energy is transformed into thermal energy, driving Alfvén and
compressional waves which further seed reconnection (Gardiner
& Stone 2005; Lee & Deane 2009). Due to the dependency of
numerical resistivity on the field topology, reconnection events
are most probable at the nodal points of vx . At the later stages
of evolution, the plasmoids eventually merge in proximity of
the anti-nodes of the transverse speed, forming four larger
islands, in agreement with the results presented in Gardiner
& Stone (2005). A close-up on the bottom left island is shown
in Figure 16, at the end of integration. The refinement criterion
on the second derivative of thermal pressure, as suggested by
Fromang et al. (2006), efficiently captures the island features of
the solution.

5.5. Three-dimensional Rayleigh–Taylor Instability

In this example, we consider the dynamical evolution of two
fluids of different densities initially in hydrostatic equilibrium.
If the lighter fluid is supporting the heavier fluid against gravity,
the configuration is known to be subject to the Rayleigh–Taylor
instability. Our computational domain is the box spanned by
x, z ∈ [−1/2, 1/2], y ∈ [−3/2, 1/2] with gravity pointing in
the negative y-direction, i.e., g = (0,−1, 0). The two fluids are
separated by an interface initially lying in the xz-plane at y = 0,
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Figure 16. Close-up of the bottom left island at t = 4 for the current sheet
problem. Pressure contours along with the refinement levels and grid are shown.

(A color version of this figure is available in the online journal.)

with the heavy fluid ρ = ρh at y > 0 and ρ = ρl at y < 0. In
the current example we employ ρh = 4, ρl = 1 and specify the
pressure from the hydrostatic equilibrium condition:

p(y) = 100

γ
− ρy , (62)

so that the sound crossing time in the light fluid is 0.1. The seed
for instability is set by perturbing the velocity field at the center
of the interface:

vy = − exp[−(5r)2]

10 cosh(10y)2
, (63)

where r = √
x2 + z2. We assume a constant magnetic field

B = (Bx, 0, 0) parallel to the interface and oriented in the

x-direction with different field strengths, Bx = 0 (hydro limit),
Bx = 0.2Bc (moderate field), and Bx = 0.6Bc (strong field).
Here, Bc = √

(ρh − ρl)gL is the critical field value above which
instabilities are suppressed (Stone & Gardiner 2007). We use
the PPM method with the Roe Riemann solver and a Courant
number Ca = 0.45. The base grid has 16 × 32 × 16 cells and
we perform two sets of computations using (1) four refinement
levels with a grid spacing ratio of 2 and (2) two refinement levels
with a grid jump of 4, in both cases achieving the same effective
resolution (256 × 512 × 256). Refinement is triggered using
the second derivative error norm of density and a threshold value
χref = 0.5. Periodic boundary conditions are imposed at the x-
and z-boundaries while fixed boundaries are set at y = −3/2
and y = 1/2.

Results for the unmagnetized, weakly, and strongly magne-
tized cases are shown at t = 3 in Figure 17. In all cases, we
observe the development of a central mushroom-shaped finger.
Secondary instabilities due to Kelvin–Helmholtz modes develop
on the side and small-scale structures are gradually suppressed
in the direction of the field as the strength is increased. Indeed,
as pointed out by Stone & Gardiner (2007), the presence of a
uniform magnetic field has the effects of reducing the growth
rate of modes parallel to it, although the interface still remains
Rayleigh–Taylor unstable in the perpendicular direction due to
interchange modes. As a net effect, the evolution becomes in-
creasingly anisotropic as the field strengthens.

Parallel performance is plotted, for the moderate field case,
in Figure 18 where we measure the speed-up factors of the four-
and two-level computations versus the number of CPUs. Here,
the speed-up is defined by S = T1/TNCPU , where T1 is the inferred
running time relative to the four-level computation on a single
processor. The two-level case shows improved performance over
the four-level calculation both in terms of CPU cost as well as
parallel efficiency S/NCPU. Indeed the relative gain between the
two cases approaches a factor of two for an increasing number of
CPUs. Likewise, the efficiency of the fewer level case remains
above � 0.8 up to 512 processors and drops to ∼0.61 (versus

Figure 17. Three-dimensional view of the Rayleigh–Taylor instability problem showing density at t = 3 for the unmagnetized (left panel), weakly magnetized (middle
panel), and strongly magnetized case (right panel) using four levels of refinement. In each panel, we also show a sliced box emphasizing the grid refinement ratios.

(A color version of this figure is available in the online journal.)
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Figure 18. Parallel speed-up vs. number of processors NCPU for the 3D
Rayleigh–Taylor problem computed with two (green crosses) and four (red
squares) refinement levels between t = 2 and t = 2.25. The dotted line gives
the ideal scaling. The number of blocks on the finest level at t = 2 is printed
above and below the corresponding curves.

(A color version of this figure is available in the online journal.)

∼0.44 for the four-level case) at the largest number of employed
cores (1024), which is less than the number of blocks on the
finest grid.

5.6. Two-dimensional Shock–Cloud Interaction

The shock–cloud interaction problem has been extensively
studied and used as a standard benchmark for the valida-
tion of MHD schemes and intercode comparisons (see Dai &
Woodward 1994; Balsara 2001a; Lee & Deane 2009, and refer-
ences therein). In an astrophysical context, it addresses the fun-
damental issue of the complex morphology of supernova rem-
nants as well as their interaction with the interstellar medium.
Energy, mass, and momentum exchange leading to cloud crush-
ing strongly depends on the orientation of the magnetic field
and the resulting anisotropy of thermal conduction.

Following Orlando et al. (2008), we consider the 2D Cartesian
domain x ∈ [−4, 4], y ∈ [−1.4 × 6.6] (in parsecs) with the
shock front propagating in the positive y-direction and initially
located at y = −1. Ahead of the shock, for y > −1, the
hydrogen number density n1 has a radial distribution of the
form:

n1 = na − na − nc

cosh[σ (r/rcl)σ ]
, r =

√
x2 + y2, (64)

where nc = 1 cm−3 is the hydrogen number density at the
cloud’s center, na = 0.1nc is the ambient number density,
rcl = 1 pc is the cloud’s radius (σ = 10), and r is the radial
distance from the center of the cloud. The ambient medium
has a uniform temperature Ta = 104 K in pressure equilibrium
with the cloud, with a thermal pressure of p1 = 2kBnaTa where
kB is the Boltzmann constant (we assume a fully ionized gas).
Downstream of the shock, density, and transverse components
of the magnetic field are compressed by a factor of n2/n1 =

(Γ + 1)/(Γ − 1) while pressure and normal velocity are given by

p2 = 2n2kBTs, vy,2 =
√

2

Γ − 1

2kBTsX

mH
, (65)

where X = 1/1.26 is the hydrogen mass fraction and Ts = 4.7×
106 K is the post-shock temperature. The normal component of
the magnetic field (By) remains continuous through the shock
front.

We perform two sets of simulations with a magnetic field
strength of |B| = 1.31 μG, initially parallel (case Bx4) or per-
pendicular (case By4) to the shock front. Adopting the same no-
tations as Orlando et al. (2008), we solve in each case the MHD
equations with (TN) and without (NN) thermal conduction ef-
fects for a total of four cases. Thermal conductivity coefficients
along and across the magnetic field lines (see Equation (6)) are
given, in cgs units, by

k‖ = 9.2 × 10−7T 5/2, k⊥ = 5.4 × 10−16 n2
H√

T B2
. (66)

The resolution of the base grid is set to 322 points and five levels
of refinement are employed, yielding an equivalent resolution
of 1024 × 1024. Upwind characteristic tracing (Section 3.2)
together with PPM reconstruction (Equation (33)) and the
HLLD Riemann solver are chosen to advance the equations in
time. Open boundary conditions are applied on all sides, except
at the lower y-boundary where we keep constant inflow values.
The CFL number is Ca = 0.8. Refinement is triggered upon
density with a threshold of χref = 0.15.

In Figures 19 and 20, we show the cloud evolution for the
four different cases at three different times t = 1, 2, 3 (in units
of the cloud crushing time τcc = 5.4 × 103 yr). Our results
are in excellent agreement with those of Orlando et al. (2008),
confirming the efficiency of thermal conduction in suppressing
the development of hydrodynamic instabilities at the cloud
borders. The topology of the magnetic field can be quite effective
in reducing the efficiency of thermal conduction. For a field
parallel to the shock front (TN-Bx4), the cloud’s expansion
and evaporation are strongly limited by the confining effect of
the enveloping magnetic field. In the case of a perpendicular
field (TN-By4), on the contrary, thermal exchange between
the cloud and its surroundings becomes more efficient in the
upwind direction of the cloud and promotes the gradual heating
of the core and the consequent evaporation in a few dynamical
timescales. In this case, heat conduction is strongly suppressed
laterally by the presence of a predominantly vertical magnetic
field.

5.7. Radiative Shocks in Stellar Jets

Radiative jet models with a variable ejection velocity are
commonly adopted to reproduce the knotty structure observed
in collimated outflows from young stellar objects. The time
variability leads to the formation of a chain of perturbations that
eventually steepen into pairs of forward/reverse shocks (the
“internal working surfaces”; see, for instance, de Colle & Raga
2006; Raga et al. 2007; Teşileanu et al. 2009) which are held
responsible for the typical spectral signature of these objects.
While these internal working surfaces travel down the jet, the
emission from post-shocked regions occurs on a much smaller
spatial and temporal scale, thus posing a considerable challenge
even for AMR codes.
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Figure 19. Top panel: density maps (gr cm−3 in log scale) for the shock–cloud interaction at t = 1, 2, 3 for a magnetic field initially parallel to the shock interface
(Bx4). Here, the time unit is defined as the cloud crushing time and is equal to 5400 yr. Bottom panel: magnetic field strength (in units of 10−6 G) with the distribution
of patches at levels three and four superimposed. The left and right half of each panel shows the results computed with the PPM method without (NN) and with (TN)
thermal conduction, respectively. The resolution of the base grid is 322 and five levels of refinement are used.

(A color version of this figure is available in the online journal.)

Figure 20. Same as Figure 19 but for a field initially pointing in the y-direction (that is, perpendicular to the shock front).

(A color version of this figure is available in the online journal.)

As an example application, we solve the MHD equations
coupled to the chemical network described in Teşileanu et al.
(2008), evolving the time-dependent ionization and collisionally
excited radiative losses of the most important atomic/ionic
species: H, He, C, N, O, Ne, and S. While hydrogen and helium
can be at most singly ionized, we only consider the first three
(instead of five) ionization stages of the other elements, which
suffice for the range of temperatures and densities considered
here. This amounts to a total of 19 additional non-homogeneous
continuity/rate equations, such as Equation (3).

The initial condition consists of an axisymmetric supersonic
collimated beam in cylindrical coordinates (r, z) in equilibrium
with a stationary ambient medium. Density and axial velocity
can be freely prescribed as

ρ(r) = ρa +
ρj − ρa

cosh
(
r4
/
r4
j

) , vz(r) = vj

cosh
(
r4
/
r4
j

) , (67)

where ρj and ρa = ρj/5 are the jet and ambient mass density,
vj = 200 km s−1 is the jet velocity, and rj = 2 × 1015 cm
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is the radius. The jet density is given by ρj = njμjma ,
where nj = 103 is the total particle number density, μj is
the mean molecular weight, and ma is the atomic mass unit.
Both the initial jet cross section and the environment are neutral
with the exception of C and S, which are singly ionized. The
steady state results from a radial balance between the Lorentz
and pressure forces and has to satisfy the time-independent
momentum equation:

dp

dr
= −1

2

1

r2

d(rBφ)2

dr
, (68)

where, for simplicity, we neglect rotations and assume a purely
azimuthal magnetic field of the form

Bφ(r) = −Bm

r

√
1 − exp[−(r/a)4]. (69)

Here, a = 0.9rj is the magnetization radius and Bm is a
constant that depends on the jet and ambient temperatures.
Direct integration of Equation (68) yields the equilibrium profile

p(r) = pj − 1

2

B2
m

√
π erf(r2/a2)

a2
, (70)

where pj = ρjkBTj/(μjma) is the jet pressure on the axis, μj

is the mean molecular weight, ma is the atomic mass unit, kB is
the Boltzmann constant, and Tj is the jet temperature. The value
of Bm is recovered by solving Equation (70) in the r → ∞ limit
given the jet and ambient temperatures Tj = 5 × 103 K and
Ta = 103 K, respectively. Our choice of parameters is similar to
the one adopted by Raga et al. (2007).

The computational domain is defined by r/rj ∈ [0, 12.5],
z/rj ∈ [0, 25] with axisymmetric boundary conditions holding
at r = 0. At z = 0 we keep the flow variables constant and
equal to the equilibrium solution and add a sinusoidal time
variability of the jet velocity with a period of 20 yr and an
amplitude of 40 km s−1 around the mean value. Free outflow
is assumed on the remaining sides. We integrate the equations
using linear reconstruction with the MC limiter, Equation (34),
and the HLLC Riemann solver. The time step is computed from
Equations (23) and (24) using a Courant number Ca = 0.6, a
relative tolerance εc = 0.02 and following the considerations
given in Section 4.2. Shock-adaptive hybrid integration is used
by locally switching to the more diffusive MinMod limiter
(Equation (35)) and the HLL Riemann solver, according to the
mechanism outlined in Appendix B.

The base grid consists of 128×256 zones, and five additional
levels with grid refinement jumps of 2:2:2:4:4 are used. At the
effective resolution of 16,384 × 32,768 zones the minimum
length scale that can be resolved corresponds to 1.526×1012 cm
(≈ 0.1 AU), the same as model M3 of Raga et al. (2007). Zones
are tagged for refinement when the second derivative error norm
of density exceeds the threshold value χref = 0.15. In order to
enhance the resolution of strongly emitting shocked regions,
we prevent levels higher than two from being created if the
temperature does not exceed 5 × 103 × �, where � is the level
number.

The results are shown, after ≈63.4 yr, in Figure 21 where
the steepening of the perturbations leads to the formation of
forward/reverse shock pairs. Radiative losses become strongly
enhanced behind the shock fronts where temperature attains
larger values and the compression is large. This is best illustrated
in the close-up views of Figure 21 where we display density,

temperature, hydrogen fraction, and magnetization for the sec-
ond (upper panel) and third shocks (lower panel), respectively,
located at z ≈ 14.2 and z ≈ 7.34 (in units of the jet radius). Ow-
ing to a much shorter cooling length, tc ∼ p/Λ, a thin radiative
layer forms the size of which, depending on local tempera-
ture and density values, becomes much smaller than the typical
advection scale. An extremely narrow 1D cut shows, in
Figure 22, the profiles of temperature, density, and ioniza-
tion fractions across the central radiative shock, resolved at
the largest refinement level. Immediately behind the shock
wave, a flat transition region with constant density and tem-
perature is captured on ∼6 grid points and has a very small
thickness ∼0.005rj . A radiatively cooled layer follows be-
hind where temperature drops and the gas reaches the largest
ionization degree. Once the gas cools below 104 K, radia-
tive losses become negligible and the gas is accumulated in
a cold dense adiabatic layer. A proper resolution of the thin
emission layers is thus crucial for correct and accurate pre-
dictions of emission lines and intensity ratios in stellar jet
models (Teşileanu et al. 2011). Such a challenging computa-
tional problem can be tackled only by means of adaptive grid
techniques.

6. RELATIVISTIC MHD TESTS

In this section, we apply PLUTO-CHOMBO to test problems
involving relativistic magnetized flows in one, two, and three
dimensions. Both standard numerical benchmarks and applica-
tions will be considered. By default, the conservative MUSCL-
Hancock predictor scheme (Equation (43)) together with linear
reconstruction on primitive variables are used during the com-
putation of the normal predictors.

6.1. One-dimensional Shock Tube

Our first test consists of an initial discontinuity located at
x = 0.5 separating two regions of fluids characterized by

(By, Bz, p) =
{

(7, 7, 103) for x < 0.5
(0.7, 0.7, 0.1) for x > 0.5 (71)

(see Balsara 2001b; Mignone & Bodo 2006; van der Holst et al.
2008, and references therein). The fluid is initially at rest with
uniform density ρ = 1 and the longitudinal magnetic field is
Bx = 10.

We solve the equations of relativistic MHD with the ideal
gas law (Γ = 5/3) using the five-wave HLLD Riemann solver
of Mignone et al. (2009) and Ca = 0.6. The computational
domain [0, 1] is discretized using five levels of refinement
with consecutive grid jump ratios of 4:2:2:2:2 starting from
a base grid (level zero) of 400 grid zones (yielding an effective
resolution of 25, 600 zones). Refinement is triggered upon the
variable σ = (B2

y + B2
z )/(ργ ) using Equation (50) with a

threshold χr = 0.1. At t = 0.4 the resulting wave pattern
(Figure 23) is comprised of two left-going rarefaction fans
(fast and slow) and two right-going slow and fast shocks. The
presence of magnetic fields makes the problem particularly
challenging since the contact wave, slow, and fast shocks
propagate very close to each other, resulting in a thin relativistic
blast shell between x ≈ 0.88 and x ≈ 0.9.

In Table 3, we compare, for different resolutions, the CPU
timing obtained with the static grid version of the code versus the
AMR implementation at the same effective resolution, starting
from a base grid of 400 zones. In the unigrid computations,
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Figure 21. Radiative jet structure at t ≈ 63.4 yr. On the left we display a full view of the temperature distribution (right) and AMR block structure (left). The smaller
panels to the right show close-up views of number density (left half, in cm−3), temperature (right half, in 104 K), neutral hydrogen (left half), and magnetization
B2

φ/(2p) (right half) for the second (top panels) and third (bottom panels) shock, respectively. The AMR block structure is overplotted in the right half of each panel.

(A color version of this figure is available in the online journal.)

Figure 22. One-dimensional enlarged cuts at r ≈ 0.1133rj across the middle
shock in the radiative jet model at t = 63.4 yr. Temperature density distributions
are plotted in the top panel while the first ionization stage of O, H, N, and neutral
sulphur are plotted in the bottom panel.

Figure 23. Density (top left), longitudinal velocity (top right), the y-components
of magnetic field, and velocity (bottom left and right) for the 1D relativistic
magnetized shock tube problem at t = 0.4. We employ a base grid of 400 cells
with five levels of refinement with consecutive jump ratios of 4:2:2:2:2, yielding
an equivalent resolution of 25,600 zones. The grid hierarchy is shown in the top
left panel (dashed red line) while magnifications of the thin shell are plotted, for
each quantity, using symbols in the interior plot windows.

(A color version of this figure is available in the online journal.)
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Figure 24. Horizontal cuts for the rotated inclined Alfvén test at t = 0.4/
√

2 (symbols) and for the 1D reference solution at t = 0.4 (solid line). The top row shows,
from left to right, proper density, gas pressure, and Lorentz factor. In the middle and bottom rows, we plot the components of velocity and magnetic field normal (v1
and B1) and transverse (v2, v3 and B2, B3) to the surface of discontinuity.

Table 3
CPU Performance for the 1D RMHD Shock Tube

Static Run AMR Run Speed-up

Nx Time Level Ref Ratio Time
(s) (s)

1600 6.1 1 4 1.8 3.4
3200 29.9 2 2 3.8 7.9
6400 124.5 3 2 8.2 15.2
12800 502.3 4 2 18.1 27.8
25600 2076.1 5 2 41.2 50.4

Notes. The first and second columns give the number of points
Nx and corresponding CPU for the static grid run (no AMR). The third, fourth,
and fifth columns give, respectively, the number of levels, the refinement ratio,
and CPU time for the AMR run at the equivalent resolution. The last column
shows the corresponding speed-up factor.

halving the mesh size implies approximately a factor of four in
the total running time whereas it implies only a factor of two
in the AMR approach. At the largest resolution employed here,
the overall gain is approximately 50. This example confirms that
the resolution of complex wave patterns in RMHD can largely
benefit from the use of adaptively refined grids.

6.2. Inclined Generic Alfvén Test

The generic Alfvén test (Giacomazzo & Rezzolla 2006;
Mignone et al. 2009) consists of the following non-planar initial

discontinuity:{
VL = (1, 0, 0.3, 0.4, 1, 6, 2, 5)T for x1 < 1/2 ,

VR = (0.9, 0, 0, 0, 1, 5, 2, 5.3)T for x1 > 1/2 ,
(72)

where, as in Section 5.1.1, V = (ρ, v1, v2, v3, B1, B2, B3, p)
is given in the frame of reference aligned with the direction
of motion x1. The ideal EoS (Equation (10)) with Γ = 5/3 is
adopted.

Here, we consider a 2D version by rotating the discontinuity
front by π/4 with respect to the mesh and following the evolution
until t = 0.4 cos π/4. The test is run on a coarse grid of 64 × 4
zones covering the domain x ∈ [0, 1], y ∈ [−1/32, 1/32]
with six additional levels of refinement resulting in an effective
resolution of 4096 × 256 zones (a factor of two in resolution
is used between levels). In order to trigger refinement across
jumps of a different nature, we define the quantity σ = B2/(ργ )
together with Equation (50) and a threshold value χr = 0.03.
The Courant number is Ca = 0.6 and the HLLD Riemann
solver is used throughout the computation. Boundary conditions
assume zero gradients at the x-boundaries while translational
invariance is imposed at the top and bottom boundaries where,
for any flow quantity q, we set q(i, j ) = q(i ± 1, j ∓ 1).

The breaking of the discontinuity, shown in Figure 24, leads
to the formation of seven waves including a left-going fast
rarefaction, a left-going Alfvén discontinuity, a left-going slow
shock, a tangential discontinuity, a right-going slow shock, a
right-going Alfvén discontinuity, and a right-going fast shock.
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Figure 25. Close-up of the central region in the inclined Alfvén test at
t = 0.4/

√
2 showing σ = B2/(ργ ) with the overplotted block distribution.

The base grid has 64 × 4 zones and five levels of refinement are used.

(A color version of this figure is available in the online journal.)

Our results indicate that refined regions are created across
discontinuous fronts which are correctly followed and resolved,
in excellent agreement with the reference solution (obtained
on a fine 1D grid). Note also that the longitudinal component
of the magnetic field, B1, does not present spurious jumps
(Figure 24) and shows very small departures from the expected
constant value. In the central region, for 0.4 � x � 0.6,
rotational discontinuities and slow shocks are moving slowly
and very adjacent to each other, thus demanding relatively high
resolution to be correctly captured. With the given prescription,
grid adaptation efficiently provides adequate resolution where
needed. This is best shown in the close-up of the central
region, Figure 25, showing σ together with the AMR block
structure.

A comparison of the performance between static and adaptive
grid computations is reported in Table 4 using different resolu-
tions and mesh refinements. At the resolution employed here,
the gain is approximately a factor of eight.

6.3. Relativistic Rotor Problem

The 2D rotor problem (Del Zanna et al. 2003; van der Holst
et al. 2008; Dumbser et al. 2008) consists of a rapidly spinning
disk embedded in a uniform background medium (ρ = p = 1)
threaded by a constant magnetic field B = (1, 0, 0). Inside the
disk, centered at the origin with radius R = 0.1, the density is
ρ = 10 and the velocity is prescribed as v = ω(−y, x, 0),
where ω = 9.95 is the angular frequency of rotation. The
computational domain is the square x, y ∈ [−1/2, 1/2] with
outflow (i.e., zero gradient) boundary conditions. The ideal EoS
with Γ = 5/3 is used. Computations are performed on a base
grid with 642 grid points and six levels of refinement using the
HLL Riemann solver and a CFL number Ca = 0.5. Zones are
tagged for refinement whenever the second derivative error norm
of E/(ργ ), computed with Equation (50), exceeds χr = 0.15.
The effective resolution amounts therefore to 40962 zones, the
largest employed so far (to the extent of our knowledge) for this
particular problem.

Results are shown at t = 0.4 in Figure 26 where one can see
an emerging flow structure enclosed by a circular fast forward
shock (r ≈ 0.425) traveling into the surrounding medium. An
inward fast shock bounds the innermost oval region where
density has been depleted to lower values. The presence of the
magnetic field slows down the rotor, and the maximum Lorentz
factor decreases from 10 to ≈2.2. The numerical solution
preserves the initial point symmetry and density corrugations,
present in lower resolution runs, seem drastically reduced at this
resolution, in accordance with the findings of van der Holst et al.

Table 4
CPU Performance for the 2D Inclined Generic Alfvén Test

Static Run AMR Run Speed-up

Nx Time Level Ref Ratio No. of Blocks Time
(s) (s)

128 1.8 1 2 4 1.1 1.6
256 10.8 2 2 14 6.1 1.8
512 75.2 3 2 44 33.0 2.3
1024 557.8 4 2 126 185.9 3.0
2048 4390.5 5 2 306 900.0 4.9
4096 35250.0 6 2 761 4346.9 8.1

Note. The base grid for the AMR computation is 64 × 4 zones.

(2008). Divergence errors are mostly generated in proximity of
the outer fast shock and are damped while being transported out
of the domain at the speed of light in the GLM formulation.
We monitor the growth of such errors by plotting the volume
average of |∇ · B| as a function of time, showing (bottom panel
in Figure 26) that the growth of monopole errors is limited to
the same values of van der Holst et al. (2008; the factor of four
comes from the fact that our computational domain is two times
smaller).

Parallel performance for this particular test is shown in
Figure 27 plotting the speed-up, defined as S = 8T u

8 /TNCPU ,
where T u

8 is the execution time of the uniform grid run
performed at the same effective resolution (40962) on eight
processors while TNCPU is the running time measured with NCPU
processors. AMR scaling has been quantified for computations
using maximum patch sizes of 16 and 32 grid points resulting,
respectively, in 11,921 and 6735 total number of blocks at the
end of integration. Approximately half of it belongs to the
finest level, as reported in Figure 27. In general, the AMR
approach offers a 5–10 speed-up gain in terms of execution
time over the uniform, static grid approach. For NCPU < 256
the parallel efficiency, measured as S/NCPU, is larger than 0.7
while it tends to be reduced for more processors. Computations
carried with fewer blocks (i.e., larger block sizes) tend to be
more efficient when fewer CPUs are in use since inter-processor
communications are reduced. However, this cost obviously
becomes larger at 512 (or more) processors resulting in a loss
of efficiency.

6.4. Cylindrical Blast Wave

Strong symmetric explosions in highly magnetized environ-
ments can become rather arduous benchmarks probing the
code’s ability to evolve strongly magnetized shocks (see, for
instance, Komissarov 1999; Leismann et al. 2005; Mignone &
Bodo 2006; Del Zanna et al. 2003; Beckwith & Stone 2011).
Failures may lead to unphysical densities or pressures when-
ever the scheme does not introduce adequate dissipation across
oblique discontinuities and/or if the divergence-free condition
is not properly controlled.

The 2D setup considered here consists of the Cartesian square
[−6, 6] × [−6, 6] initially filled with constant density and
pressure values ρ = 10−4 and p = 5 × 10−3 and threaded
by a constant horizontal magnetic field with strength B0 = 1.
A cylinder with radius r = 0.8 and centered at the origin
delimits a higher density and pressure region where ρ = 10−2,
p = 1. The ideal EoS with Γ = 4/3 is used. Our choice of
parameters results in a low β plasma (2p/B2 = 10−2) and
corresponds to the strongly magnetized cylindrical explosion
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Figure 26. Relativistic rotor problem at t = 0.4 using six levels of refinement on a base grid with 642 zones. From left to right, top to bottom: density, gas pressure,
magnetic field density, Lorentz factor (magnetic field lines are overplotted), block distribution, and domain average of |∇ · B|.
(A color version of this figure is available in the online journal.)

Figure 27. Parallel scalings for the 2D relativistic rotor from 8 to 512 CPUs.
The red and green lines (squares and crosses, respectively) give the speed-up
factors corresponding to computations with maximum block sizes of 16 and 32
zones, respectively. The number of blocks on the finest level (� = 6) at the end
of integration is reported above and below the corresponding curve. The dotted
black line gives the perfect scaling, while the solid black line corresponds to
computations carried out with the static grid version of the code at the same
effective resolution (40962 zones).

(A color version of this figure is available in the online journal.)

discussed by Beckwith & Stone (2011). We point out that this
configuration differs from the one discussed in Komissarov

(1999) and Mignone & Bodo (2006) by having the ambient
pressure be 10 times larger. This allows to run the computation
without having to introduce any specific change or modification
in the algorithm, such as shock flattening or redefinition of
the total energy. We adopt a base grid of 48 zones in each
direction with outflow boundary conditions holding on all sides.
Integration proceeds until t = 4 using the HLLC Riemann
solver (Mignone & Bodo 2006) using five levels of refinement,
reaching an effective resolution of 15362 zones. Total energy
triggers refinement with a threshold of χref = 0.025.

The overpressurized region, Figure 28, sets an anisotropic
blast wave delimited by a weak fast forward shock propagating
almost radially. The explosion is strongly confined along the
x-direction by the magnetic field where plasma is accelerated to
γmax ≈ 1.76. The inner structure is delimited by an elongated
structure enclosed by a slow shock adjacent to a contact
discontinuity. The two fronts blend together as the propagation
becomes perpendicular to the field line. Since the problem
is purely 2D, rotational discontinuties are absent. The block
distribution, shown in the lower panel of Figure 28, shows
that refinement clusters around the outer discontinuous wave
as well as the multiple fronts delimiting the extended inner
region. The total number of blocks is 2258 with the finest level
giving a relative contribution of ∼0.55 and a corresponding
volume filling factor of ∼0.12. The numerical solution retains
the expected degree of symmetry and the agreement with earlier
results demonstrate that the code can robustly handle strongly
magnetized relativistic environments within the GLM-MHD
formalism. Results obtained with four processors show that
calculation done with AMR is faster than the static grid runs
by a factor of ∼4.5.
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Figure 28. Cylindrical relativistic blast wave at t = 4. The base level grid has 482 zones and five levels of refinement are used. On the top panels: logarithmic scale
maps of density (left), pressure (middle) and magnetic field (right). On the bottom panels: Energy density (left), Lorentz factor (middle, magnetic field lines are
overplotted) and block structure showing levels 3 to 5 (right).

(A color version of this figure is available in the online journal.)

6.5. Spherical Blast Wave

In the next example, we consider a 3D extension of the
cylindrical blast wave problem presented in Del Zanna et al.
(2007). The initial condition consists of a sphere with radius
r = 0.8 centered at the origin filled with hot gas having
ρ = 10−2, p = 1 (the ideal EoS with Γ = 4/3 is used). Outside
this region, density and pressure decrease linearly reaching the
constant ambient values ρ = 10−4, p = 5 × 10−3 for r � 1.
The plasma is at rest everywhere and a constant magnetic field
is set oblique to the mesh, i.e., B = B0(êx + êy)/

√
2 with

B0 = 0.1. The computational domain is the Cartesian box
[−6, 6]3 covered by a base grid of 40 zones in each direction
with outflow boundary conditions holding on all sides. Using
the HLLD Riemann solver, we follow integration until t = 4
using four levels of refinement (effective resolution 6403) and a
CFL number Ca = 0.4. Zones are tagged for refinement upon
density fluctuations with a threshold value of χref = 0.15.

Results shown in Figure 29 reveal an oval-shaped explosion
enclosed by an outer fast shock propagating almost radially. A
strong reverse shock confines a prolate spheroidal region where
the magnetic field has been drained and inside which expansion
takes place radially. The largest Lorentz factor ∼6.3 is attained
in the direction of magnetic field lines close to the ellipsoid
poles.

In order to measure parallel performance on a fixed number
of blocks, we have integrated the solution array starting from
t = 3.5 for a fixed number of steps by enforcing zero interface
flux. Results are shown in Figure 30 where we compare two
sets of “frozen-flux” computations with maximum block sizes
of 20 and 40 mesh points corresponding, respectively, to 27,661

(22,598 on the finest level) and 11,229 (9462 on the finest level)
total number of blocks. In the former case, the larger number of
patches allows us to reach a better efficiency (more than 0.75)
whereas the latter case performs worse for increasing number
of processors. Even if the finest level has a number of blocks
still larger than the maximum number of CPUs employed, many
boxes are much smaller than the maximum block size allowed.
The ideal workload per processor (i.e., the number of cells of the
finest level divided by the number of processors) is comparable
to the maximum block size in the 1024 CPUs run and becomes
smaller in the 2048 CPUs run. In this latter case, the workload
of the processors integrating the larger blocks is therefore larger
than the ideal one and most of the CPUs must wait for these
processors to complete the integration. This could explain the
poor parallel performance of this test problem.

6.6. Kelvin–Helmholtz Flow

In the next example (Bucciantini & Del Zanna 2006; Mignone
et al. 2009), we consider a 2D planar domain with x ∈ [0, 1],
y ∈ [−1, 1] initially filled with a (relativistically) hot gas with
constant density ρ = 1 and pressure p = 20. An initially
perturbed shear velocity profile of the form

(vx, vy, vz) =
[
V0 tanh

y

α
, ε sin(2πx) exp

(
− y2

β2

)
, 0

]
(73)

is set across the domain, where V0 = 1/4 is the nominal flow
velocity, ε = V0/100 is the amplitude of the perturbation while
α = 0.01, β = 0.1. The TM EoS, Equation (11), is used
during the evolution to recover the gas enthalpy from density and
pressure. The magnetic field is initially uniform and prescribed
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Figure 29. Density, Lorentz factor, gas, and magnetic pressures slice cuts for the relativistic magnetized blast wave in three dimensions at t = 4. Four levels of
refinement are used to achieve an effective resolution of 6403. The box in the lower half-semispace emphasizes jump ratios across levels. Oblique magnetic field lines
are overplotted.

(A color version of this figure is available in the online journal.)

in terms of the components parallel and perpendicular to the
plane of integration:

(Bx, By, Bz) = (
√

2σpolp, 0,
√

2σtorp), (74)

where σpol = 0.01, σtor = 1. We perform the integration on a
base grid of 32×64 cells with six additional levels of refinement,
reaching an effective resolution of 2048 × 4096 zones. The
Courant number is set to Ca = 0.8 and refinement is triggered
whenever Equation (50) computed with the total energy density
exceeds χr = 0.14. Open boundary conditions hold at the lower

and upper y-boundaries while periodicity is imposed in the
x-direction.

Figure 31 shows density and magnetic field distributions
at t = 5, which approximately marks the transition from
the linear phase to the nonlinear evolution (see the discus-
sion in Mignone et al. 2009). Both density and magnetic
field are organized into filaments that wrap around, form-
ing a number of vortices arranged symmetrically with re-
spect to the central point. Refined levels concentrate mainly
around the location of the fluid interface and accurately follow
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Figure 30. Parallel scalings for the 3D relativistic blast wave problem from 32
to 2048 processors. The red and green lines (squares and crosses, respectively)
give the speed-up factors corresponding to “frozen-flux” computations with
maximum block sizes of 20 and 40 zones, respectively. The number of blocks
on the finest level, reported above and below each line, stays constant in time.
Ideal scaling is given by the dotted black line.

(A color version of this figure is available in the online journal.)

the formation of the central vortex and the more elongated
adjacent ones. The computation preserves the initial point sym-
metry even if the grid generation algorithm does not neces-
sarily do so. The lower resolution outside this region con-
tributes to damp acoustic waves as they travel toward the
outer boundaries and eventually reduces the amount of spurious
reflections.

In Figure 32, we compare the parallel speed-up between a
number of adaptive grid calculations using either six levels (grid
jump of 2) or three levels (grid jump of 4) and the equivalent
uniform grid run with 2048 × 4096 zones. Generally, the AMR
approach is ≈40 faster than the fixed grid run. In addition, the
three-level computation seems to perform somewhat better than
the six-level run although the number of blocks on the finest
levels is essentially the same at the end of computation (1085
and 1021, respectively). Parallel scaling sensibly deteriorates
when the number of blocks per processor becomes less than
three or four, in accordance with the results of previous tests.

6.7. Three-dimensional Shock–Cloud Interaction

In the next example, we consider a 3D extension of the
planar relativistic shock–cloud interaction originally presented
in Mignone & Bodo (2006). The initial condition consists
of a high-density (ρ = 10) spherical clump (radius 0.15)

Figure 31. Relativistic Kelvin–Helmholtz instability at t = 5 using six additional levels of refinement starting from a base grid of 32 × 64 zones. The panel on the left

shows density (upper half) and the quantity (B2
x +B2

y )
1
2 /Bz (lower half) on the whole computational domain. Selected regions are enlarged in the two panels on the right.

(A color version of this figure is available in the online journal.)
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Figure 32. Parallel speed-up up to 512 processors for the 2D relativistic
Kelvin–Helmholtz instability problem. Speed-up is computed as the ratio
8T u

8 /TNCPU between the execution time of the static uniform grid run at the
same effective resolution (2048 × 4096) on eight processors and the running
time measured with NCPU processors. Red lines corresponds to the three-level
run using max grid sizes of 16 (squares) and 32 (crosses). Green lines correspond
to the six-level computations.

(A color version of this figure is available in the online journal.)

centered at (0.8, 0, 0) adjacent to a shock wave located at
x = 0 with downstream and upstream values given by
(ρ, vx, Bz, p) = (39.5052, 0, 1.9753, 129.72386) for x < 0
and (ρ, vx, Bz, p) = (1, −√

0.99, 0.5, 10−3) for x � 0. The
remaining quantities are set to zero. The computational do-
main is the box x ∈ [0, 2], y, z ∈ [−1/2, 1/2]. At the base
level we fix the resolution to 64 × 32 × 32 zones and employ
four levels of refinement equivalent to an effective resolution
of 1024 × 512 × 512. The refinement criterion (Equation (50))

uses the conserved density for zone tagging with a threshold
χr = 0.2. The equations of relativistic MHD are solved us-
ing the TM EoS (Mignone & McKinney 2007), the HLLD
Riemann solver, and linear reconstruction with the harmonic
limiter (Equation (41)). Shock-adaptive hybrid integration pro-
vides additional numerical dissipation in proximity of strong
shock waves by switching the integration scheme to the HLL
Riemann solver and the MinMod limiter (Equation (35)), ac-
cording to the strategy described in Appendix B. For efficiency
purposes, we take advantage of the symmetry across the xy- and
xz-planes to reduce the computation to one quadrant only.

Figure 33 shows a 3D rendering of density and magnetic
pressure through a cross-sectional view of the xy- and xz-planes
at t = 1. The collision generates a fast, forward bow shock
propagating ahead and a backward reverse shock transmitted
back into the cloud. The cloud becomes gradually wrapped by
the incident shock into a mushroom-shaped shell reaching a
large compression (ρmax ≈ 121, B2/2 ≈ 157). Grid refinement
concentrates mainly around the incident and forward shocks and
the tangential discontinuities bordering the edge of the cloud.

6.8. Propagation of Three-dimensional
Relativistic Magnetized Jet

As a final application, we discuss the 3D propagation of a
relativistic magnetized jet carrying an initially purely azimuthal
magnetic field. Indeed, the presence of a substantial toroidal
component of the field is commonly invoked and held responsi-
ble for the acceleration and collimation of jets from active galac-
tic nuclei. From an astrophysical point of view, relativistic jets
appear to be quite stable although cylindrical MHD configura-
tions are expected to be unstable to reflection, Kelvin–Helmholtz
and current driven modes thus posing an unsolved issue, see
Mignone et al. (2010), and reference therein.

Following Mignone et al. (2009), we set the box x, y ∈
[−12.5, 12.5], z ∈ [0, 50] as our computational domain, initially
filled with constant uniform density and pressure ρa and pa.

Figure 33. The interaction of a magnetized relativistic shock with a density cloud at t = 1. Density and magnetic pressure B2/2 are shown in the left and right
panels, respectively. For each quantity, a volumetric rendering is shown in the upper half whereas an intensity color map in the middle vertical and horizontal planes
is displayed below. The base grid corresponds to 64 × 322 and four levels of refinement are employed (effective resolution 1024 × 5122).

(A color version of this figure is available in the online journal.)
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The beam is injected at the lower boundary for z � 0,
r =

√
x2 + y2 � 1 with a density ρj , a longitudinal velocity

corresponding to a Lorentz factor γj , and an azimuthal magnetic
field given by

Bφ =
{

γjbmr/a for r < a,
γjbma/r for a < r < 1,
0 otherwise,

(75)

where bm is the magnetic field strength in the fluid’s frame and
a = 0.5 is the magnetization radius. The pressure profile is
found by imposing radial momentum balance across the beam
giving

p(r) = pa + b2
m

[
1 − min

(
r2

a2
, 1

)]
, (76)

where pa is the ambient pressure defined in terms of the sonic
Mach number M:

pa = ρjv
2
j (Γ − 1)

Γ(Γ − 1)M2 − Γv2
j

, (77)

with Γ = 5/3 although the TM EoS (Equation (11)) is used
during the evolution. The actual value of bm may be found by
prescribing the magnetization parameter σφ defined as the ratio
between beam-averaged magnetic energy density and thermal
pressure. The final result yields (Mignone et al. 2009)

bm =
√

−4paσφ

a2(2σφ − 1 + 4 log a)
. (78)

For the present simulation, we adopt γj = 7, M = 3, σφ = 1.3,
ρj = 1, and ρa = 103, thus corresponding to a magnetically
dominated, underdense relativistic jet.

We follow the simulation up to t = 130 (in units of the speed
of light crossing of the jet radius), starting with a base grid of
32×32×64 with four levels of refinement. The refinement ratio
between consecutive levels is 2 so that, at the finest resolution,
we have ≈20 points per beam radius. Zones belonging to
levels zero, one, and two are tagged for refinement using the
normalized second derivative Equation (50) of the total energy
density with a threshold χr = 0.25. Zones at the finest level
grid are instead created by using B2/(γρ) in place of the total
energy density. The rationale for choosing this selective rule
is to provide the largest resolution on the jet material only,
still being able to track the sideway expansion of the cocoon
at lower resolution. We use the HLLD Riemann solver with
the harmonic limiter (Equation (41)) except at strong shocks
where we employ the multidimensional shock dissipation switch
outlined in Appendix B. The Courant number is Ca = 0.3.

The jet structure, Figure 34, shows that the flow maintains
a highly relativistic central spine running through multiple
recollimation shocks where jet pinching occurs. At the jet
head the beam decelerates to sub-relativistic velocities favoring
the formation of a strongly magnetized termination shock
where B2 ≈ 26γ 2ρ. Here, the presence of a predominant
toroidal magnetic field induces CD kink instabilities which
are responsible for the observed jet wiggling and symmetry
breaking (see Mignone et al. 2010). This test shows that PLUTO-
CHOMBO can be effectively used in simulations involving
relativistic velocities, highly supersonic flows, and strongly
magnetized environments.

At t = 130 the finest level grid has a volume filling factor of
≈11% with 10,761 blocks while level three occupies ≈41%

of the total volume with 5311 blocks. For this particular
application, the benefits offered by grid adaptivity are more
evident at the beginning of the computation when most of the
computational zones in the domain are unrefined. In this respect,
we have found that the CPU time increases (for t � 130) with
the number of steps n approximately as a+bn+cn2 +dn3, where
a ≈ 1.46, b ≈ 0.079, c ≈ 5.03 × 10−4, and d ≈ 2.38 × 10−6.
This suggests that, as long as the filling factor remains well
below 1, the AMR calculation with the proposed refinement
criterion should be at least ∼2.5 times faster than an equivalent
computation using static mesh refinement and considerably
larger if compared to a uniform grid run at the effective
resolution.

7. SUMMARY

In this paper, we have presented a cell-centered implemen-
tation of the PLUTO code for multidimensional AMR compu-
tations targeting Newtonian and relativistic magnetized flows.
A block-structured approach has been pursued by taking full
advantage of the high-level parallel-distributed infrastructure
available in the CHOMBO library. This choice provides the
necessary level of abstraction in delivering AMR functionality
to the code, allowing, at the same time, full compatibility with
most of the modular implementations already available with the
static grid version. This eases up the process of adding or replac-
ing physics modules as long as they comply with the interface
requirements.

A novel extension to incorporate diffusion terms, such as
viscosity, resistivity, and heat conduction without the need for
operator splitting, has been illustrated in the context of the di-
mensionally unsplit CTU time-stepping scheme. In addition,
the scheme has also been extended to the realm of relativistic
MHD (RMHD) using a characteristic projection-free, MUSCL-
Hancock normal predictor step. The integration scheme retains
second-order spatial and temporal accuracy requiring six Rie-
mann solvers per cell per step. Interface states are calculated us-
ing the PPM integration although alternatives based on WENO,
or linear slope-limited schemes are also available. The pro-
posed cell-centered version of PLUTO-CHOMBO enforces the
divergence-free condition by augmenting the system of equa-
tions with a GLM (see Dedner et al. 2002), in the implemen-
tation outlined by Mignone & Tzeferacos (2010). The choice
of the GLM-MHD formalism has proven to be a convenient
starting point in porting a significant fraction of the static grid
code implementations to the AMR framework. Although fu-
ture extensions will also consider other strategies to enforce the
∇ ·B = 0 condition, the proposed formulation offers substantial
ease of implementation and a viable robust alternative to a CT
approach which typically requires additional care for prolonga-
tion and restriction operations at fine–coarse interfaces (see, for
instance, Balsara 2001a, 2004; Cunningham et al. 2009).

A suite of several test problems including standard numer-
ical benchmarks and astrophysical applications for MHD and
RMHD has been selected to assess the efficiency of PLUTO-
CHOMBO in resolving complex flow patterns viable through
an adaptive grid approach in one, two, and three dimensions.
Examples include simple shock tube problems, resistive sheets,
radiative and thermally conducting flows, fluid instabilities, and
blast wave explosions in highly magnetized environments. The
computational saving offered by an adaptive grid technique has
been shown, for many of the selected test, to be several times
or even order of magnitudes faster than a static grid integration.
Parallel performance, evaluated for some of the proposed tests,
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Figure 34. Three-dimensional visualization of the relativistic magnetically dominated jet at t = 130 using four levels of refinement. In the top panels, we show the
distribution of the Lorentz factor (left) and magnetic to kinetic energy ratio |B|2/(γ 2ρ) (right). In the bottom panels, we show the thermal pressure distribution (left)
and a slice cut of density together with the grid structure (right).

(A color version of this figure is available in the online journal.)

29



The Astrophysical Journal Supplement Series, 198:7 (31pp), 2012 January Mignone et al.

suggests good scalability properties for 2D and 3D problems as
long as the number of grids per processor is larger than a factor
between two and three.

Both the static and AMR version of PLUTO are dis-
tributed as a single software package publicly available at
http://plutocode.ph.unito.it while the CHOMBO library can
be freely downloaded from https://seesar.lbl.gov/anag/chombo/.
The AMR version of PLUTO has been designed to retain salient
features characterizing the static grid version (Mignone et al.
2007) such as modularity—the possibility of easily combin-
ing different numerical schemes to treat different physics-,
portability-, and user-friendliness. While stable code releases
along with extensive documentation and benchmarks are made
available on the Web, the code is being actively developed and
future development will address additional new physical aspects
as well as improved numerical algorithms.

This work has been supported by the PRIN-INAF 2009 grant.
We acknowledge the CINECA Awards N. HP10CJ1J54 and
N. HP10BHHHEJ, 2010 under ISCRA initiative for the avail-
ability of high performance computing resources and support.
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IBM Power 6 p575 cluster running AIX 6 or the 0.85 GHz
IBM BlueGene/P cluster running CNL. A.M. wishes to thank
S. Orlando for helpful discussions on the inclusion of thermal
conduction and for kindly making available the MHD shock
cloud initial configuration.

APPENDIX A

DISCRETIZATION OF THE THERMAL
CONDUCTION FLUX

The discretization of the heat conduction flux, Equation (6),
reflects the mixed parabolic/hyperbolic mathematical nature
of the underlying differential operators, as anticipated in
Section 2.1.1. From the diffusion limit, |Fclass|/q → 0, we com-
pute Fclass at cell interfaces using second-order accurate central
difference expressions for ∇T , e.g., at constant x-faces,

∂T

∂x

∣∣∣∣
i+1/2

≈ Ti+1,j − Ti,j

Δx
,

∂T

∂y

∣∣∣∣
i+1/2

≈ (Ti+1,j+1 + Ti,j+1) − (Ti+1,j−1 + Ti,j−1)

4Δy
(A1)

and similarly at constant y- and z-faces. In the purely hyperbolic
limit, |Fclass|/q → ∞, we see that Fc → q t̂ where t̂ =
Fclass/|Fclass| is a unit vector in the direction of the heat flux.
To gain more insights, we rewrite the 1D energy equation in this
limit by keeping only pressure-related terms, that is,

∂

∂t

(
p

γ − 1

)
− ∂

∂x

(
5φρc3

isotx
) = 0 , (A2)

where ciso = √
p/ρ is the isothermal speed of sound and

tx = êx · t̂. Equation (A2) is a nonlinear advection equation of
the form ∂tu + ∂xf = 0, where u = p/(γ − 1) and f = −qtx is
the hyperbolic saturated flux. A stable discretization is therefore
provided by adopting an upwind scheme (Balsara et al. 2008)

such as

qi+1/2 =

⎧⎪⎪⎨
⎪⎪⎩

5φ√
ρi+1/2

p
3/2
L if tx < 0 ,

5φ√
ρi+1/2

p
3/2
R otherwise .

(A3)

In the previous equation ρi+1/2 = (ρL + ρR)/2, pL and pR
are computed from the left/right input states for the Riemann
problem. Finally, we define the thermal conduction flux at
constant x-faces (for instance) as the harmonic mean between
the two regimes,

(êx · Fc)i+1/2 = qi+1/2

|Fclass|i+1/2 + qi+1/2
(êx · Fclass)i+1/2, (A4)

where qi+1/2 is computed from Equation (A3).

APPENDIX B

MULTIDIMENSIONAL SHOCK DETECTION AND
ADAPTIVE HYBRID INTEGRATION

In regions of strong shocks or gradients spurious numerical
oscillations may arise and quickly lead to the occurrence
of unphysical states characterized, for example, by negative
pressures, energies, densities, or, in the case of relativistic flows,
superluminal speeds. Such episodes are usually limited to very
few grid zones and are originated by either insufficient numerical
diffusion or lack of a physical solution of the Riemann problem.

To circumvent this potential hitch, PLUTO provides a safe-
guard built-in mechanism that (1) flag zones that may poten-
tially reside inside a strong shock wave and (2) introduces addi-
tional numerical dissipation by locally replacing the integration
scheme with a more diffusive one. For these reasons, most of
the interpolation schemes and Riemann solvers available with
PLUTO embody a hybrid selective mechanism that allows to
switch, if required, to a more dissipative choice. This process
is controlled by a 3D array of integers where each element rep-
resents a set of flags that can be individually turned on or off
by simple bitwise operations. Zones are flagged according to a
flexible shock-detection criterion,

|Δxq|
min(qi+1, qi−1)

+
|Δyq|

min(qj+1, qj−1)
+

|Δzq|
min(qk+1, qk−1)

> εq

and ∇ · v < 0 , (B1)

where Δd is a standard central difference operator, q is the
thermal (default) or magnetic pressure, v is the velocity, and
εq is a free adjustable parameter (default is 5). The first
condition detects zones within a strong gradient while the second
one is switched on where compressive motion takes place.
When both conditions are met, we flag the zone {i, j, k} to
be updated with the HLL Riemann solver. At the same time
we also flag all neighboring zones whose interpolation stencil
includes the shocked zone to be interpolated using slope-limited
reconstruction with the MinMod limiter. We note that both flags
may be selected and combined independently and, in any case,
preserve the second-order accuracy of the scheme.
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