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The computational scheme for the evaluation of the second-order electric susceptibility tensor in
periodic systems, recently implemented in the CRYSTAL code within the coupled perturbed Hartree–
Fock �HF� scheme, has been extended to local-density, gradient-corrected, and hybrid density
functionals �coupled-perturbed Kohn–Sham� and applied to a set of cubic and hexagonal
semiconductors. The method is based on the use of local basis sets and analytical calculation of
derivatives. The high-frequency dielectric tensor ���� and second-harmonic generation susceptibility
�d� have been calculated with hybrid functionals �PBE0 and B3LYP� and the HF approximation.
Results are compared with the values of �� and d obtained from previous plane-wave local density
approximation or generalized gradient approximation calculations and from experiment. The
agreement is in general good, although comparison with experiment is affected by a certain degree
of uncertainty implicit in the experimental techniques. © 2010 American Institute of Physics.
�doi:10.1063/1.3447387�

I. INTRODUCTION

The coupled perturbed Hartree–Fock �CPHF� method for
computing nonlinear optical properties of solid-state systems
has recently been implemented in a development version of
the CRYSTAL program1 within the periodic boundary condi-
tions. Following Otto2,3 and other authors,4–8 we describe the
effect of a static electric field �E0� applied to a crystal by
inclusion of an additional perturbative term in the Hartree–
Fock �HF� Hamiltonian of the form

�̂�k� = ıE0 · eık·r�ke−ık·r, �1�

with r and k representing any point in the real and the recip-
rocal space, respectively.

The total energy of the system can be expanded in a
perturbative series of the field components �denoted by indi-
ces t, u, and v� starting from the total energy of the unper-
turbed system �Etot

�0��,

Etot = Etot
�0� − �

t

�tEt
0 −

1

2�
t,u

�tuEt
0Eu

0

−
1

3! �
t,u,v

�tuvEt
0Eu

0Ev
0 + ¯ . �2�

All tensors of increasing rank in Eq. �2�, such as the perma-
nent electric dipole moment ���, the polarizability ���, and
the hyperpolarizability ���, can be computed by subsequent
differantiation of Etot with respect to the applied field com-
ponents.

CPHF represents a suitable and efficient analytical
method to evaluate the components of the tensors appearing
in Eq. �2�. The implementation of CPHF in CRYSTAL

9–12 is
based on the equations proposed by Hurst and Dupuis13 and
adapted to the periodic boundary condition context.4–6 All
equations refer to a local basis set consisting of Gaussian-
type atomic orbitals. The method is applicable to the calcu-
lation of linear and nonlinear optical properties of zero-,
one-, two-, and three-dimensional systems with high accu-
racy and efficiency, even in the case of large unit cells.10–12

This represents an important advancement in quantum
ab initio modeling of electric field effects in materials, be-
cause all previous calculations reported in the literature, ei-
ther based on the same method7,8,14 or the modern theory of
polarization,15–17 concerned special cases such as polymers
or small unit-cell three-dimensional crystals.

Preliminary HF calculations of the polarizability10 and
the first and second hyperpolarizabilities12 on model systems,
such as LiF with different periodicity �ideal LiF molecule,
linear chain of LiF units, single layer, crystalline solid�, dem-
onstrated inner consistency and high numerical accuracy of
our implementation of the method. Nevertheless, HF is
known to generally undershoot the values of the �hyper�po-
larizability, particularly because of large overestimation of
band gaps �the differences between energy eigenvalues are
part of the perturbative formulas, as shown in Sec. II�. For
this reason, density functional theory �DFT� is generally rec-
ognized as a more appropriate choice in the calculation of
dielectric properties of materials, with the exception of one-
dimensional conjugated polymers,18–20 as well as other delo-
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calized two-dimensional and three-dimensional systems,
where conventional functionals are inadequate. In particular,
we expect that hybrid functionals may produce results in
better agreement with experiment than other pure DFT func-
tionals because they reproduce band gaps more reliably in
many cases. Indeed, the good performance of our implemen-
tation of the coupled-perturbed Kohn–Sham �CPKS� method
for the calculation of the polarizability of crystalline solids
has been shown in Ref. 21 for magnesium oxide, diamond,
and silicon. Preliminary CPHF and CPKS calculations of the
first hyperpolarizability have also been performed
for urea molecular crystal and potassium dihydrogen
phosphate.22,23

In the present paper, we present some formal aspects of
our extension to the CPKS calculations of the first static
hyperpolarizability tensor. We also analyze the importance of
the main computational parameters involved in the calcula-
tion systematically, with reference to a set of semiconductors
which has been investigated with different functionals. Re-
sults are compared with previous calculations and experi-
mental data. All experimental data we refer to were obtained
in the UV-visible range of the electric field or extrapolated to
the static limit. Although comparability of static electric sus-
ceptibilities with data measured at finite frequency fields is
not straightforward, it is expected not to be critical for this
set of large, or relatively large, band-gap semiconductors.
Also, phonon contributions to the polarizability and the
second-harmonic generation �SHG� electric susceptibility,
which are not taken into account in our calculations, can be
considered negligible in this case.

The paper is organized as follows. In Sec. II we recon-
sider some steps of the computational scheme in order to
show how the CPHF method has been extended to DFT. We
also address long-range interaction terms in the Hamiltonian
to which we referred collectively as two-electron integrals in
Refs. 10 and 12, with no specification of the special treat-
ment that makes periodic boundary calculations feasible and
efficient. In Sec. III we first analyze the dependence of the
achieved accuracy on the main computational parameters,
such as basis set, choice of the DFT functional, and integra-
tion grid in reciprocal space. Then, we illustrate the results
obtained from the calculation of the static polarizability and
first hyperpolarizability for semiconductors having no inver-
sion symmetry such as cubic SiC, BN, AlN, AlP, GaP, and
hexagonal SiC and AlN.

II. THE METHOD

The components of the polarizability and first hyperpo-
larizability tensors for a periodic system in a local basis set
can be calculated as second and third derivatives of the total
energy �Eq. �2�� relative to the various components of the
electric field.4,5,10,13 A previous work12 led us to the follow-
ing expression for the polarizability �:

�tu = −
2

nk
R�P̂t,u�

k

BZ

�
j

occ

�
l

virt

� jl
�t�Ulj

�u�� , �3�

and to the 2n+1 formulation for the first hyperpolarizability
�:
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�ku
�
 + �tuv

DFT� , �4�

in the crystalline orbital �CO� basis set; all matrices depend
on the k point; for brevity, however, these dependences have
been omitted in the formulas.

In the above equations,

• nk is the number of k points in the first Brillouin zone
�BZ�.

• R is the real part of the expression in parentheses.

• P̂t,u,v is the permutation operator of the t, u, and v field
components.

• �ij
�t� is the t component of �̂�k� �Eq. �1�� in the unper-

turbed CO basis set developing on the atomic orbital
�AO� ��

g located in the g-cell,

�ij
�t� = �

�	

all

C�i
�0����	

�t� C	j
�0�. �5�

• Gij
�u� is the derivative of the Fock/Kohn–Sham matrix

element between the ith and jth CO with respect to the
u component of the applied electric field.

• Uij
�v� is a nondiagonal �occupied-virtual� element of the

matrix describing the first derivative of the CO eigen-
vectors with respect to the field in the v direction,

Cj
�v� = �

j

Uij
�v�Ci

�0�, �6�

and such that

Uij
�v� =

Gij
�v�

Ej
�0� − Ei

�0� , �7�

where Ei
�0� is an eigenvalue of the ith unperturbed CO

orbital.

• �tuv
DFT appears in DFT approximations only and contains

third-order derivatives of the exchange-correlation �XC�
density functional �this term is discussed at the end of
this section�.

In CRYSTAL, the Fock matrix F is first calculated in the
AO basis and then Fourier transformed to the CO basis, and
so is its derivative with respect to the field. This latter de-
pends not only on the field perturbation matrix ��t� but also
on the two-electron integrals multiplied by the first-order
perturbation density matrix D�t�,

D�	
g�t� = �

k
eık·g�

i

occ

�C�i
�t��k��C	i

�0��k� + C�i
�0��k��C	i

�t��k�� , �8�

where C�t� is defined in Eq. �6�.
We now examine the problem of the calculation of such

derivatives in the case of a DFT calculation with a hybrid
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functional, such as B3LYP. Other approximations, such as
local density approximation �LDA�, generalized gradient ap-
proximation �GGA�, or HF, can be considered particular
cases of that more general case. Hybrid functionals incorpo-
rate a fraction aX of “exact” exchange and a complementary
fraction of exchange functional of the density �fX�, which
can be summed to the correlation part of the density func-
tional �fC� to give

fXC�
, ��
�2� = �1 − aX�fX�
, ��
�2� + fC�
, ��
�2� . �9�

For simplicity, we refer to a closed-shell system so that the
functional depends on the total electron density 
 and the
module squared of its gradient, ��
�2.

We focus on Fe−e, the electron-electron repulsive inter-
action part of F, as the other contributions to F, i.e., the
kinetic energy and electron-nuclear attraction integrals evalu-
ated with reference to the AOs are not affected by the field
�they contain no dependence on the density matrix�10,11,13

and field derivatives are null. On the contrary, Fe−e depends
explicitly on the density matrix and, according to Eq. �7�, the
change of the system operated by the perturbing field is con-
tained in the derivatives of the density matrix. Fe−e in CRYS-

TAL, with the choice of a hybrid-functional DFT approxima-
tion, would include the following terms:

Fe−e = Fsr
C + Fwo

C + Flr
C + aX�Fsr

X + Fwo
X � + FDFT

XC . �10�

Coulomb interactions between every electron in the refer-
ence unit cell and all the electrons of the infinite system are
evaluated at different levels of approximation, depending on
the kind of mutual interaction, i.e., short-range interactions
�Fsr

C�, weakly overlapping electron distributions within a de-
fined quantum radius �Fwo

C �, and long-range interactions
�Flr

C�. Similarly, exchange contributions are subdivided into
short-range �Fsr

X� and weakly overlapping interactions �Fwo
X �.

The rest comes from the XC functional of the electron den-
sity and its gradient.

We now consider all terms in Eq. �10� for one general
element of the Fe−e matrix in more detail.

�a� Only interactions between overlapping electron distri-
butions are evaluated as actual two-electron Coulomb
integrals,

�Fsr
C��	

g = �

,�

�
g�

�

D
�
g��

g�

�

���
0 �	

g��

g���

g�+g�� . �11�

�b� Integrals relative to weakly overlapping electron distri-
butions within the so-called “quantum zone”24,25 are
evaluated through multipolar expansions, ��

m��	g� and

���
m��
�g��, of the two-electron distributions at their re-

spective centroids coupled by potential terms �V���
mm��

with the same quantum numbers �, ��, m, and m�,

�Fwo
C ��	

g = �
�,m,��,m�

��
m��	g�


�

,�

�
g�

V���
mm���	
�gg��D
�

g����
m��
�g�� , �12�

the sum over g� lattice vectors being included in V���
mm�.

�c� Out of the “quantum zone,” Coulomb contributions to
F are computed as multipolar expansions of the inter-
action of every AO pair with the electron potential gen-
erated by the sublattice of every atom A in the unit cell,
��

m��	g ,A�, saturated by ��
m�A�, the corresponding

atomic multipole moments,25

�Flr
C��	

g = �
A

�
�,m

��
m�A���

m��	g,A� . �13�

Only ��
m�A� multipoles contain an explicit dependence

on the density matrix

��
m�A� = �

��A
�
	,g�

D�	
g� ��

m��	g�� . �14�

�d� As for the Coulomb part, only exchange integrals in-
volving overlapping electron distributions are com-
puted exactly,

�Fsr
X��	

g = −
1

2�

�

�
g�

�

D
�
g��

g�

�

���
0 �


g���	
g��

g�+g�� . �15�

�e� Exchange integrals involving weakly overlapping elec-
tron distributions are approximated by coupling multi-
polar expansions like in case �b� �Eq. �12��,

�Fwo
X ��	

g = −
1

2�
�,m

�



�
g�

��
m��
g���

�

D
�
g�
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��,m�

�
g�

V���
mm���
	�gg�g�����

m��	�gg�g�� .

�16�

�f� Following Pople et al.,26 the DFT XC part of the Fock
matrix is calculated by the following formula:

FDFT
XC = �

i

wi	 � fXC

�

��

0 �	
g + 2

� fXC

� ��
�2
� 
 · ����

0 �	
g�


ri

.

�17�

The contributions in Eq. �17� are evaluated at points ri

of a grid and summed �numerical integration�. Each
grid point is associated with a geometrical weight wi

according to an atomic partition.27 An efficient compu-
tational scheme for the implementation of Eq. �17� was
proposed by Treutler and Ahlrichs.28

For all terms in Eq. �10�, except FDFT
XC , the derivatives

with respect to the components of the applied field are ob-
tained simply by replacing the density matrix elements in
Eqs. �11�–�16� with the corresponding density matrix ele-
ments derived by the field. The DFT-XC part depends on the
density matrix elements through the electron density, which
is expressed at each point ri as


�ri� = �
�,	

�
g

D�	
g ��

0 �ri��	
g�ri� , �18�

where the sums extend to all atomic orbitals contributing to
the electron density at ri. Also in this case, the derivative of
the density with respect to the tth component of the applied
field �
t� is obtained simply by replacing all D�	

g elements
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with D�	
g t in Eq. �18�. The same rule holds for the field de-

rivative of the density gradient ��
t�, because the two differ-
entiation variables are independent of each other. However,
the full derivative of Eq. �17� is complicated by the depen-
dence of the functional on the density29

�FDFT
XC ��	

gt = �i
wi�	 �2fXC

�
2 
t + 2
�2fXC

�
 � ��
�2
� 
 · �
t
��

0 �	
g

+ 2	 �2fXC

�
 � ��
�2

t + 2

�2fXC

����
�2�2 � 
 · �
t


 � 
 · ����

0 �	
g� + 2

� fXC

� ��
�2
� 
t · ����

0 �	
g��

ri

.

�19�

Weights wi are purely geometric entities and do not depend
on the applied field, nor do the atomic orbitals.

At variance with Eq. �17�, second-order derivatives of
the XC density functional appear in Eq. �19�. In the calcula-
tion of � �Eq. �4��, the �DFT term also contains third-order
derivatives of the XC density functional,

�tuv
DFT = �i

wi	 �3fXC

�
3 
t
u
v + 2
�3fXC

�
2 � ��
�2


P̂t,u,v�
t
u � 
 · �
v� + 4
�3fXC

�
 � ���
�2�2


P̂t,u,v�
t � 
 · �
u � 
 · �
v�

+ 8
�3fXC

����
�2�3 � 
 · �
t � 
 · �
u � 
 · �
v

+ 2
�2fXC

�
 � ��
�2
P̂t,u,v�
t � 
u · �
v�

+ 4
�2fXC

����
�2�2 P̂t,u,v��
 · �
t � 
u · �
v�

ri

. �20�

These XC functional derivatives are calculated using the XC-

FUN library written by Ekström30,31 for arbitrary-order XC
functional derivatives using automatic differentiation, which
has been interfaced to the CRYSTAL program.

III. RESULTS AND DISCUSSION

With the extension of our CPHF implementation to DFT
�CPKS� we are in a position to assess reliability and accuracy
of ab initio single-determinantal approximations in the cal-
culation of optical properties of materials. In particular, we
consider how the choice of Hamiltonian, basis set, and com-
putational parameters influences the determination of the
static dielectric tensor and first nonlinear electric susceptibil-
ity. In a three-dimensional crystal, the dielectric tensor com-
ponents are proportional to the corresponding components of
the polarizability tensor �Eq. �3�� through the following rela-
tion:

�tu = �tu + 4�V−1�tu, �21�

with V denoting the unit cell volume, and the first nonlinear
electric susceptibility components are proportional to the first
hyperpolarizability �Eq. �4��,

�tuv
�2� = 2�V−1�tuv. �22�

Therefore, � and ��2� depend on the derivatives of the density
matrix and the perturbative matrices �, as stated in Eqs. �3�
and �4�. Both the density matrix derivatives and � are
strongly affected by the system band structure, as differences
of unperturbed CO energies appear in their definition.10 For
example, differences between occupied and virtual orbital
energies appear in the denominator of Eq. �7� to define the
matrix U�t� which operates a unitary transformation of the
unperturbed to the perturbed eigenvectors, in terms of which
the D�t� matrices are expressed �Eqs. �6�–�8��. It is then to be
expected that well determined band gaps are crucial for the
accurate calculation of the � and ��2� tensors, particularly in
the case of compounds with small band gaps, where the de-
nominator in Eq. �7� may be correspondingly small and large
U�t� matrix elements are to be expected. On the other hand, it
is well known that band gap widths predicted by ab initio
calculations vary considerably with the various Hamilto-
nians. LDA, for example, is known to largely underestimate
band gaps, whereas HF generally overestimates them, even
by a factor of 2 or more, so that some insulators are predicted
to be metallic by LDA, whereas their insulating properties
are overemphasized by HF. Consequently, HF is expected to
produce low values for the electric susceptibility tensor com-
ponents and LDA large values.

The dielectric tensor � is diagonal in all cases here con-
sidered and all its components are equivalent by symmetry in
cubic SiC, BN, AlN, AlP, and GaP �zinc-blende structure�,
whereas there are two nonequivalent components ��xx=�yy

and �zz� in hexagonal SiC and AlN �wurtzite structure�. Simi-
larly, there exists only one non-null component of ��2�, i.e.,
�xyz

�2� , for the cubic systems and two, �xxz
�2� and �zzz

�2�, in the case
of the hexagonal systems.

The influence of the parameters controlling the calcula-
tion of the dielectric � and the SHG electric suceptibility
d= �1 /2���2� tensors has been analyzed for cubic SiC �d de-
pends only on the electronic contribution at high frequencies
such as ���. Most of these parameters also determine the
accuracy of the calculated properties of the unperturbed sys-
tem and their effect is known. However, how far they affect
� and d still needs to be checked. In particular, we examined
the dependence of the results on the basis set, the truncation
of the Coulomb and exchange series, the kind of grid used to
integrate the XC density functional, the density of the
Monkhorst net for integrations in the reciprocal space, the
convergence level of the SCF cycle, as well as the conver-
gence level of the coupled-perturbed cycle.

Convergence of the SCF cycle is evaluated by TE, a
parameter measuring the total energy difference �Etot �in
hartree� between two subsequent cycles: the SCF procedure
stops when �Etot�10−TE. As transformations from the AO to
the CO basis and vice versa are intrinsic in our implementa-
tion of the coupled-perturbed method, TE needs to be large
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enough that sufficient accuracy in the determination of the
eigenvectors for the unperturbed system is guaranteed. In the
case of SiC, the uncertainty in the determination of � is
found to be below 0.002% with TE=6, the default value for a
total-energy calculation,32 and it is below 0.01% for d. This
is beyond the general accuracy of experimental measure-
ments for both � and d. With TE=9 also the value of d be-
comes accurate up to the fourth decimal digit, the error being
below 0.001%. A similar parameter, TCP, is used to evaluate
convergence of the coupled-perturbed cycle based on the as-
sessment of the accuracy of the polarizability �. Tests on SiC
show that the same kind of accuracy obtained for � is ob-
tained also for d.

The importance of the definition of the Monkhorst net in
the calculation of � and d deserves some attention as the nets
used for total energy calculations do not appear to be equally
adequate in this case for small unit cell systems. This is
documented in Table I. S is the shrinking factor used to gen-
erate the commensurate net of points at which the Fock ma-
trix is diagonalized and the CPHF equations are integrated
�the total number of points in the first Brillouin zone is S3

with no symmetry�. Table I shows that at the lowest reported
level, S=8, the error with respect to the converged result is
about 1% and it reduces to 0.01% at S=14.

Other important parameters for an accurate evaluation of
� and d are the thresholds used for the truncation of the
Coulomb and exchange series, collectively denoted as TI in
Table II. TI represents a set of five computational parameters
identified as T1, T2, T3, T4, and T5 in the CRYSTAL

manual.32 Results in Table II were obtained with the follow-
ing setting: T1=T2=T3=T4=TI, T5=2TI �default setting:
TI=6�. The cost of the SCF calculations is mostly determined
by the calculation of two-electron integrals, whose number is
controlled by TI, so that this is an important parameter to be
kept under control. Data for two different functionals,
B3LYP and PBE, are shown in Table II in order to allow for
a comparison between a situation where only the Coulomb
series are calculated �PBE� and that where also the exact-
exchange series are involved �B3LYP�. TI appears to be the
most delicate parameter in the evaluation of � and, particu-
larly, of d. The default value of TI �TI=6� adopted in the
CRYSTAL code provides B3LYP results that differ from well
converged values �TI=20� by about 2%, worse than with
PBE by one order of magnitude. At TI=10, the B3LYP error
decreases to about 1% �0.1% with PBE�. More severe con-

ditions reduce the numerical error to less than 1%. In con-
trast, the definition of the DFT integration grid is not more
critical in the evaluation of � and d than for total energy
calculations. A change from the predefined32 “small” grid �55
radial points and 434 angular points� to the “XL” grid �75
radial points and 974 angular points� gives an improvement
smaller than 0.1%.

Table III shows the importance of including polarization
functions into a double-zeta basis set �8-41G for Si and
6-21G for C� for the calculation of � and d. In particular,
both � and d vary monotonically when improving the basis
set and their values change by at least two to three orders of
magnitude more rapidly than Etot; � increases by about 7%
between basis sets A and I and d decreases by nearly 18%,
whereas the corresponding Etot changes by less than 0.02%.
d appears to be generally more responsive to basis set
changes than � because the description of higher-order atom
polarizabilities requires the inclusion of higher angular-
momentum orbitals. For example, augmenting basis set A
with one d-type AO for Si �basis set B� improves the value of
d only by approximately 1/4 with respect to the most accu-
rate value reported in the table �basis set I�, while having a
negligible effect on � and, on the other hand, a relatively
strong impact on Etot. As expected, addition of d-type AOs is

TABLE I. Dependence of the dielectric constant � and the second-harmonic
generation electric susceptibility d= �1 /2��xyz

�2� �in pm/V� of cubic silicon
carbide on the Monkhorst net shrinking factor S. All calculations were per-
formed at the experimental lattice parameter �aexp=4.358 Å� with the
B3LYP functional and the 8-41�d�G �Si� and 6-21�d�G �C� basis sets.

S � d

8 5.9458 12.2054
10 5.9030 12.1096
12 5.8948 12.0903
14 5.8932 12.0862
16 5.8929 12.0854
18 5.8929 12.0853

TABLE II. Effect of the computational parameter TI controlling the trunca-
tion of the Coulomb and exact exchange �B3LYP only� series on � and d for
cubic SiC with the B3LYP and PBE approximations. The higher the TI, the
more accurate the selection of the integrals to be calculated �for further
details see text and Ref. 32�. Other conditions and units are as in Table I.

TI

B3LYP PBE

� d � d

6 5.8924 12.0141 6.5985 16.9359
7 5.8970 12.0559 6.6007 16.9594
8 5.8948 12.0903 6.6004 16.9714

10 5.9028 12.1204 6.6004 16.9618
12 5.9071 12.1814 6.6005 16.9666
14 5.9126 12.2412 6.6003 16.9651
16 5.9140 12.2567 6.6002 16.9682
18 5.9083 12.2351 6.6002 16.9653
20 5.9150 12.2669 6.6002 16.9651

TABLE III. Dependence of � and d of cubic SiC on the basis set. �X

�bohr−2� denotes the exponents of the polarization AOs at atom X with the
highest angular momentum. �E is the total energy difference �mHa� from
the total energy obtained with basis set A ��327.5270 hatree�. Units and
other computational conditions are as in Table I.

Si C �Si �C �E � d

A 8-41 6-21 ¯ ¯ 0 5.6999 12.7824
B 8-41�d� 6-21 0.55 ¯ 39.2 5.6821 12.2089
C 8-41�d� 6-21�d� 0.55 0.61 42.1 5.8948 12.0903
D 8-41�dd� 6-21�d� 2.12, 0.42 0.61 46.6 5.9819 11.7821
E 8-41�dd� 6-21�dd� 2.12, 0.42 1.3, 0.4 47.6 6.0476 11.2014
F 8-41�dd,f� 6-21�dd� 0.45 ¯ 53.4 6.0801 10.8073
G 8-41�dd,f� 6-21�dd,f� 0.45 0.5 54.5 6.0981 10.5535
H 8-41�dd,ff� 6-21�dd,f� 1.35, 0.45 0.5 54.8 6.0998 10.5529
I 8-41�dd,ff� 6-21�dd,ff� 1.35, 0.45 1.5, 0.5 54.8 6.1035 10.5064
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more important than further addition of f-type AOs. How-
ever, whereas f-type AOs account only for 1% improvement
in the value of � �upon an overall 7% change�, they contrib-
ute almost 1/3 of the correction to d from basis set improve-
ments, the inclusion of a second set of f-type polarization
functions being less important.

We can now compare results obtained from different
definitions of the Hamiltonian. We use the experimental ge-
ometry, S=12, TE=10, TI=8 �tighter tolerances need to be
used in order to evaluate the exchange series within the HF
calculations in order to achieve good SCF convergence; in
particular, ITOL4 and ITOL5 �Ref. 32� were set to 14 and
28, respectively� and basis set I in Table III for SiC.

The values of � and d predicted for cubic SiC with the
different forms of the Hamiltonian �Table IV� appear to be
closely related to the predicted gap width. Smaller gaps, as
determined within the LDA and GGA approximations, cor-
respond to higher values of � and d, whereas low values of �
and d are obtained with HF, which is known to overestimate
band gaps dramatically. Correspondingly, intermediate esti-
mates are obtained with the hybrid functionals B3LYP and
PBE0, which are known to approximate band gap widths
fairly well in most cases. Such a trend for � is to be expected,
because the gap appears in transition energies in the denomi-
nator of the U-matrix �Eq. �7�� so that the larger the gap, the
smaller the perturbation and response property, and vice
versa. The same trend is shown by d in this case, but the
interpretation is less straightforward, because d includes both
positive and negative transition terms, whose balance is not
easily predictable.

We compare these results with those obtained from pre-
vious calculations by different methods and data from ex-
perimental measurements. The LDA value of d for cubic SiC
reported in Ref. 33 is reasonably close to the LDA result
reported in this work. The value calculated by Adolph et al.34

is, instead, lower than the other calculated results, in spite of

the same kind of approximations being used. The reason for
this discrepancy may be associated with the use of a numeri-
cal basis set. Hybrid functionals generally decrease the val-
ues of d, not only as a consequence of increasing the gap
with respect to LDA, but also because of the change in ma-
trices U and G in Eq. �4�. In this respect, this is a more
genuine and consistent effect than application of the scissors
operator33 or inclusion of the GW correction,34 which only
affects the gap. Experimental values are reported in the
equivalent hexagonal crystallographic system and the values
reported in Table IV were transformed by the following iden-
tities: dxyz= �
3 /2�dzzz=−
3dxxz. Only few experimental data
are available. In particular, Lundquist et al.35 measured d on
a polycrystalline �-BIC film and even the relation dzzz /dxxz

=−2, which should hold for cubic systems, is far from being
verified �dzzz /dxxz=−2.8� and the values obtained from trans-
formation of both dxxz and dzzz to dxyz are reported in Table
IV. Therefore, the comparison between calculated and ex-
perimental results is affected by this kind of uncertainty.

SiC also exists under about a hundred different poly-
types, thus offering the possibility of analyzing how the crys-
talline structure affects the SHG susceptibility.34 For this rea-
son it has been the object of careful investigation. Among
these various polytypes we considered two different hexago-
nal phases, 2H–SiC and 6H–SiC, possessing anisotropic �
and d tensors �Table V�. The consequent deviation of the
dzzz /dxxz ratio from �2 is remarkable for 2H–SiC, ranging
between �1.29 �HF� and �0.84 �PBE0�. Chen et al.33 and
Adolph et al.34 report an even larger deviation from the iso-
tropic limit for the dzzz /dxxz ratio, ranging from �0.62 to
�0.71, whereas our corresponding LDA value is �0.93. Un-
fortunately, no experimental data are available for compari-
son in this case.

The d tensor is much less anisotropic in 6H–SiC. The
deviation of the dzzz /dxxz ratio from the isotropic limit is
largest ��1.84� in the HF approximation and smallest
��2.02� with LDA. Aulbur et al.,36 Chen et al.,33 and Adolph
et al.34 report values ranging from �1.78 to �1.85. On the
experimental side, Singh et al.37 predict a ratio of �1.67
with an uncertainty of about �0.3. The other experimental
data reported in Table V correspond to ratios as large as �6
or �10 and appear to be less reliable. Considering the actual
values of � and d, our LDA and PBE results best approxi-
mate the data reported in Ref. 37.

In Tables VI and VII the results for a series of III–V
cubic semiconductors from the present work are compared
with those from previous calculations and experimental mea-
surements, when available. Basis sets of the same quality as
I in Table III were used for B, Ga, N, and P atoms. Electric
properties appear to be related to both the band structure and
ion size, so that � for AlP and GaP is about twice as large as
for BN and AlN, whereas d for phosphides �d being very
sensitive to cation-anion difference� is at least ten times as
large as for nitrides. The band gap in BN �9–11 eV� is much
larger than in the other cases, with GaP exhibiting the lowest
gap �2.9 eV� and the direct influence of band gaps on the
values of the polarizability through the matrix U has already
been pointed out. It has also to be recalled that such a rela-
tion is less straightforward for d and this explains why d for

TABLE IV. Dielectric constant ��� and SHG electric susceptibility �d
= �1 /2���2�� of cubic SiC obtained with different methods. The results from
the present work �rows 1–5� were obtained with basis set I in Table III at the
experimental lattice parameters: 4.358 Å. d is in pm/V and the gap is in eV.

Method � d Gap

LDA 6.85 15.0 6.32
PBE 6.85 14.8 6.26
B3LYP 6.10 10.5 8.02
PBE0 6.19 10.5 8.28
HF 5.05 5.54 15.3
PW-LDA 12.4a

+scissors 8.00a

PW-LDA 8.83b

PW-LDA-GW 7.45b

+scissors 5.71b

Experiment 6.52c 6.2–8.7d 6.0e

6.22e

aReference 33.
bReference 34.
cReference 40.
dReference 35 ��=1064 nm�.
eReference 41.
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AlN is in the same order of magnitude as for BN. At the
same time, the growing size of ions associated with increas-
ing unit cells, from a lattice parameter of 3.62 Å for BN to
5.45 Å for GaP, makes them increasingly more polarizable.
The overall agreement of our LDA results with previous cal-
culations at the same approximation level is good, particu-
larly with the results reported in Refs. 33, 36, 38, and 39.
The use of a basis set including d- and f-type polarization
functions is very important for obtaining accurate values of d
for all these systems. The d values obtained with basis sets of
lower quality, like basis C in Table III, still have at least 50%
error. Comparison among calculated results is more difficult
in the case of GaP, because these are rather sparse, and the
same sparsity is observed also in the experimental data avail-
able for d.

Experimental data are also available for AlN, which ex-
ists in the wurtzite structure and exhibits anisotropic behav-
ior, as lattice parameters are 3.11 and 4.98 Å, respectively
�3.11
3=5.39�. Results are reported in Table VIII. In con-
trast with SiC, the two independent components of d show
the same sign and all methods and measurements predict

small values. The agreement of results obtained with differ-
ent methods is fairly good also in this case, particularly for
the dzzz component, which is not as small as dxxz. However,
comparison of calculated to experimental results is affected
in this case by the uncertainty of the experimental measure-
ments: � is reported as “dielectric constant,” with no distinc-
tion between anisotropic components, and the uncertainty on
dzzz extends to more than 50% of its values.

IV. CONCLUSIONS

The CPHF/CPKS method, recently implemented in the
CRYSTAL program, has been applied to the calculation of the
static dielectric and the second-order electric susceptibility
tensors for a set of semiconductors, with the aim of assessing
the general performance of the method as compared to other
theoretical methods and experimental measurements. These
calculations of ��2� of three-dimensional systems were per-
formed with local basis sets and different approximations of
the XC density functional, including hybrid functionals.

The present work establishes a protocol to obtain accu-
rate estimates of the ��2� tensor components with respect to
the choice of the basis set and appropriate computational
conditions. In particular, availability of a well designed basis
set, enriched with polarization functions with relatively high-
order angular momentum, is more important in this case than
for a standard SCF calculation. Use of a denser Pack–
Monkhorst net and more severe TI thresholds for the trunca-
tion of the Coulomb and exchange series �TI=10 instead of
6� is also important to improve the quality of results. If these
conditions are met, the method is accurate and efficient.

TABLE V. Dielectric ��� and SHG electric susceptibility �d� tensor compo-
nents of hexagonal 2H–SiC and 6H–SiC obtained with different methods at
the experimental lattice parameters �3.079 and 5.053 Å for 2H–SiC and
3.081 and 15.125 Å for 6H–SiC�. Computational conditions and units are as
in Table IV.

Method �xx �zz dxxz dzzz Gap

2H–SiC LDA 6.85 7.22 �7.70 7.13 4.65
PBE 6.83 7.22 �7.63 6.57 4.69

B3LYP 6.07 6.37 �5.78 5.66 6.29
PBE0 6.16 6.48 �5.78 4.84 6.51

HF 5.00 5.21 �3.19 4.10 12.9
PW-LDAa �6.6 4.7
+scissorsa �4.4 3.1
PW-LDAb �3.55 2.25

PW-LDA-GWb �1.95 1.25
+scissorsb �1.75 1.1

6H–SiC LDA 6.90 7.14 �9.06 18.3 5.04
PBE 6.89 7.14 �8.94 17.6 5.08

B3LYP 6.11 6.26 �6.15 11.8 6.69
PBE0 6.20 6.36 �6.15 11.6 6.92

HF 5.04 5.12 �3.22 5.89 13.4
PW-LDAc 7.0 7.24 �7.5 13.8 6.95
+scissorsc 6.27 6.46 �5.2 9.3
PW-LDAa �8.0 14.7
+scissorsa �5.5 10.0
PW-LDAb �4.9 9.05

PW-LDA-GWb �2.3 4.15
+scissorsb �2.55 4.55

Experiment 6.67d 6.88d −9.8�1d 16.4�1.5d 4.3e

6.52f 6.70f −2�1g 12�0.5g

�2.5h 25h

aReference 33.
bReference 34.
cReference 36.
dReference 37 ��=1064 nm�.
eReference 41.
fReference 40.
gReference 42 ��=1064 nm�.
hReference 35 ��=1064 nm�.

TABLE VI. Dielectric constant ��� and SHG electric susceptibility �d� of
zinc-blende BN and AlN obtained with different methods and all-electron
basis sets for all atoms �6-21�d� for B and N, 8-21�d� for Al�. The experi-
mental lattice parameters �3.616 Å for BN, 4.318 Å for AlN� were used.
Other computational conditions and units are as in Table IV.

Method � d Gap

BN LDA 4.63 2.97 8.75
PBE 4.65 2.90 8.89

B3LYP 4.37 2.46 10.9
PBE0 4.42 2.39 11.3

HF 3.95 1.82 19.3
PW-LDAa,b 4.56 2.80
PW-LDAc 2.6
+scissorsc 1.7 14.5

LMTO-LDAd 4.14
Experimente 4.5 8.2

AlN LDA 4.57 0.0046 4.45
PBE 4.58 0.18 4.42

B3LYP 4.09 �0.12 6.30
PBE0 4.18 0.16 6.41

HF 3.42 0.03 13.5
PW-LDAa,c 4.61 0.01
+scissorsc 0.005

LMTO-LDAd 3.90

aReference 38.
bReference 36.
cReference 33.
dReference 43.
eReference 41.
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Comparison with results obtained in previous calcula-
tions is only possible for the LDA approximation, with the
exception of one GGA calculation for AlP and GaP.45 Despite
the difference in the basis set �Gaussian functions versus
plane waves� and the method used to compute derivatives
with respect to the electric field �fully analytical versus nu-
merical�, our CPKS calculations �LDA� are in generally
good agreement with those reported in the literature. The
agreement with experimental results is generally satisfactory.
In many cases, however, such a comparison is affected by
various sources of non-negligible errors, either associated
with the experimental techniques or due to the sample fea-
tures, such as for example a polycrystalline structure. More-
over, the dependence of the electric susceptibility on the field
frequency should be accounted for in our calculation, par-
ticularly for the SHG process where the UV-visible reso-
nances are reached twice as fast as in the dispersion of the
high-frequency dielectric �� function. This will be the object
of future work.
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