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53, Italia
2,3Formerly at Dipartimento di Matematica, Università di Torino. Torino, via Carlo Alberto
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Abstract. In previous papers we determined necessary and sufficient conditions for the
existence of a class of natural Hamiltonians with non-trivial first integrals of arbitrarily high
degree in the momenta. Such Hamiltonians were characterized as (n+1)-dimensional extensions
of n-dimensional Hamiltonians on constant-curvature (pseudo-)Riemannian manifolds Q. In this
paper, we generalize that approach in various directions, we obtain an explicit expression for
the first integrals, holding on the more general case of Hamiltonians on Poisson manifolds,
and show how the construction of above is made possible by the existence on Q of particular
conformal Killing tensors or, equivalently, particular conformal master symmetries of the
geodesic equations. Finally, we consider the problem of Laplace-Beltrami quantization of these
first integrals when they are of second-degree.

1. Introduction
In recent years, several progresses have been done in the field of integrable and superintegrable
Hamiltonian systems, both classical and quantum, by the introduction of new techniques for the
study of higher-degree polynomial first integrals and higher-order symmetry operators. After
researches exposed in [4], [7] and [10] is now possible to explicitly build and analyze Hamiltonian
systems possessing symmetries of arbitrarily-high degree. For a more detailed introduction see
the contribution to the QTS 7 proceedings written by W. Miller Jr. In several papers ([4], [5],
[6]) we developed the analysis of a class of systems which, in dimension two, are a subset of
the celebrated Tremblay-Turbiner-Winternitz (TTW) systems and are strictly related with the
Jacobi-Calogero and Wolfes three-body systems [4], [6]. In [5] we generalized these systems to
higher-dimensions by introducing a (n + 1)-dimensional extension H of a given n-dimensional
natural Hamiltonian L. We obtained necessary and sufficient conditions for the existence of a
first integral of H in a particular form, one necessary condition being the constant curvature of
the configuration manifold on which L is defined (for superintegrable systems with higher-degree
first integrals on constant curvature manifolds see also [8]). The first integral of H, which is
independent from those of L, is polynomial in the momenta and can be explicitly constructed
through a differential operator. In the present paper, we generalize the analysis done in [5] in
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several directions. In Sec. 2 we extend the construction to non natural Hamiltonians on a general
Poisson manifolds and obtain, also in this case, an explicit expression for the polynomial first
integral. In Sec. 3 we restrict ourselves to cotangent bundles of (pseudo-)Riemannian manifolds
and consider a wider class of higher-degree first integrals, we prove that a necessary condition for
their existence is the presence of a particular class of conformal Killing tensors or, equivalently,
of conformal master symmetries of the geodesic equations; we end the section with an example
showing how the method can provide several independent first integrals of degree m. In Sec.
4 we characterize our construction in an invariant way and determine necessary and sufficient
conditions for the constant curvature or conformal flatness of the configuration manifold of
H, conditions employed in Sec. 5, where the quantization of the second-degree first integrals
obtained by our method is considered.

2. Extensions on a Poisson manifold
Let us consider a Poisson manifold M and a one-dimensional manifold N . For any Hamiltonian
function L ∈ F(M) with Hamiltonian vector field XL, we consider its extension on M̃ =
T ∗N ×M given by the Hamiltonian

H =
1

2
p2u + α(u)L+ β(u) (1)

where (pu, u) are canonical coordinates on T ∗N and α(u) 6= 0. The Hamiltonian flow of (1) is

XH = pu
∂

∂u
− (α̇L+ β̇)

∂

∂pu
+ αXL,

where dots denotes total derivative w.r.t. the (single) variable u.
It is immediate to see that any first integral of L is also a constant of motion of H, when

considered as a function on M̃ . We recall that a function F is a first integral of H if and only
if XHF = {H,F} = 0.

In [5] we determined on L, α and β necessary and sufficient conditions for the existence of
two functions γ ∈ F(N) and G ∈ F(M) such that, given the differential operator

U = pu + γ(u)XL, (2)

the function Um(G) obtained applying m 6= 0 times U to G is a non trivial additional first
integral for H.

In particular, if L is a natural Hamiltonian on the cotangent bundle of a (pseudo-)Riemannian
manifold (Q,g)

L =
1

2
gijpipj + V

and α is assumed to be not constant, an integral of the form Um(G) exists, with G not dependent
on the momenta, if and only if G satisfy for some constant c 6= 0 the equations:

∇i∇jG+mcgijG = 0, (3)

∇iV∇iG = 2mcV G. (4)

If a solution of the previous equations exists, then the extended Hamiltonian (1) and the
differential operator (2) take the form

H =
1

2
p2u +

mc

S2
κ(cu+ u0)

L (5)

U = pu +
1

Tκ(cu+ u0)
XL (6)
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where the trigonometric tagged functions (see [3, 9]) are employed

Sκ(x) =


sin
√
κx√
κ

κ > 0

x κ = 0
sinh
√
|κ|x√
|κ|

κ < 0

Tκ(x) =


tan
√
κx√
κ

κ > 0

x κ = 0
tanh
√
|κ|x√
|κ|

κ < 0

Here we show that an analogous result holds in a general situation.

Proposition 1. Let H be the extension (1) of the Hamiltonian L on the Poisson manifold M̃ ,
let U the differential operator (2) and G ∈ F(M) a function such that XL(G) 6= 0. Then, Um(G)
is a first integral for H if and only if G satisfies

X2
L(G) + 2m(cL+ L0)G = 0 c, L0 ∈ R. (7)

and α, β and γ satisfy

α = −mγ̇, (8)

β = mL0γ
2 + β0, β0 ∈ R, (9)

γ̈ + 2cγγ̇ = 0. (10)

Proof. In [5] it is proved that we have that XHU
m(G) = 0 for a function G ∈ F(M) if and only

if L, α, β satisfy

(mγ̇ + α)XL(G) = 0, (11)

αγX2
L(G)−m(α̇L+ β̇)G = 0. (12)

Because XL(G) 6= 0, from (11) it follows that

α = −mγ̇ (13)

and condition (12) becomes

γ̇γ
X2
L(G)

G
= mγ̈L− β̇.

Since γ̇ = −α/m 6= 0, we get

X2
L(G)

G
= m

γ̈

γγ̇
L− β̇

γγ̇
, (14)

which derived with respect to u gives

d

du

(
γ̈

γγ̇

)
L =

d

du

(
β̇

mγγ̇

)
.

But L is a non-constant function on M , hence the functions γ̈ and β̇ must be both proportional
to γγ̇:

γ̈ = −2cγγ̇ = −c d
du

(
γ2
)
,

β̇ = 2mL0γγ̇ = mL0
d

du

(
γ2
)
.

By integrating and substituting in (14), we obtain conditions (7) and (9).
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Remark 1. If XL(G) = 0 we trivially have Um(G) = pmu , which is a first integral of H only if
α and β are constant. Hence, it is a constant of motion functionally dependent on L and H.

Remark 2. The equation (7) is obviously equivalent to

{L, {L,G}} = −2m(cL+ L0)G;

this condition can be interpreted in terms of master symmetries: the Hamiltonian vector field
XG is a master symmetry for the Hamiltonian vector field XL on the hypersurfaces L = 0 or
G = 0. Further remarks about the special case when L is a natural Hamiltonian are at the end
of Sec. 3.

By integrating the equations for α, β and γ in Proposition 1 the explicit expression for the
extended Hamiltonian H and the differential operator U can be found. From equation (7) we
have [5]

Theorem 2. Let H be the extension (1) of the Hamiltonian L on the Poisson manifold M̃ , let
U the differential operator (2) and G ∈ F(M) a function satisfying XL(G) 6= 0 and (7). Then,
UmG is a first integral of H if and only if H and U are in either one of the two following forms
characterized by the value of c in (7)

i) for c 6= 0

H =
1

2
p2u +

mc

S2
κ(cu+ u0)

(L+ V0) +W0, (15)

U = pu +
1

Tκ(cu+ u0)
XL,

ii) for c = 0

H =
1

2
p2u +mA(L+ V0) +B(u+ u0)

2, (16)

U = pu −A(u+ u0)XL,

with κ, V0,W0 ∈ R, B = mL0A
2 and A 6= 0.

Proof. By Proposition 1, α, β, γ must satisfy (8), (9), (10). In the case c 6= 0 equation (10)
becomes γ̇ + c(γ2 + κ) = 0, whose solution is

γ =
1

Tκ(cu+ u0)
.

Hence,

α =
mc

S2
κ(cu+ u0)

,

β =
mcV0

S2
κ(cu+ u0)

+W0,

with V0 = L0/c and W0 = β0 −mκL0. In the case c = 0, equation (10) gives γ̇ + A = 0 with
A 6= 0 in order to avoid α = 0. Hence,

α = mA,

β = mAV0 +B(u+ u0)
2,

γ = −A(u+ u0),

where V0 is now an arbitrary constant.
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Remark 3. The constants u0, V0 and W0 are not essential. Indeed, H and L are defined up to
additive constant W0 and V0 while u0 can be eliminated by a translation of u. In the case c 6= 0,
the choice V0 = W0 = 0 gives the expressions (5) and (6) for H and U obtained in [5]. Moreover,
by including the constant L0 in the Hamiltonian L, the condition (7) assumes the simpler form

X2
L(G) + 2mcLG = 0.

Once L and G satisfy condition (7) the first integrals Um(G) are explicitly determined for
any G : M −→ R.

Theorem 3. Under the hypothesis of Proposition 1 the functions UmG can be explicitely written
as

UmG = PmG+DmXLG, (17)

where

Pm =

[m/2]∑
k=0

(
m
2k

)
γ2kpm−2ku (−2m(cL+ L0))

k,

Dm =

[m/2]−1∑
k=0

(
m

2k + 1

)
γ2k+1pm−2k−1u (−2m(cL+ L0))

k, m > 1,

where [·] denotes the integer part and D1 = γ.

Proof. From equation (7) it follows that for all k ∈ N we have

X2k+1
L G = (−2m(cL+ L0))

kXLG, X2k
L G = (−2m(cL+ L0))

kG. (18)

By expanding Um using the binomial formula

UmG = (pu + γXL)m =
m∑
k=0

(
m
k

)
pku(γXL)m−k,

and separating even and odd terms in k, by taking in account relations (18) we get equation
(17).

The setting described in the previous section can be further generalized as follows. Let XL

be a Hamiltonian vector field on a Poisson manifold M̃ , let on M̃

XH = Y + f3XL,

for a vector field Y and
U = f1 + f2XL,

where fi : M̃ → R. Following the same proof procedure as in [5] we get

Proposition 4. If XL(fi) = 0 and [Y,XL] = 0 then XHU
m(G) = 0, i.e. Um(G) is a first

integral of H, if and only if(
f1Y + (mY (f2) + f1f3)XL + f2XLY + f2f3X

2
L

)
(G) = −mY (f1)G. (19)
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Proof. If XL(fi) = 0 and [Y,XL] = 0,then

{H,L} = 0,

[XH , U ] = Y (f1) + Y (f2)XL,

[[XH , U ], U ] = 0.

Thus,

XHU
m = Um−1(m[XH , U ] + UXH) =

= Um−1
(
mY (f1) + f1Y + (mY (f2) + f1f3)XL + f2XLY + f2f3X

2
L

)
.

and the thesis follows.
The analysis of such a generalization will not be considered here.

3. Extensions of a natural Hamiltonian
In the following sections we will assume that L is a natural n-dimensional Hamiltonian on
M = T ∗Q for a (pseudo-)riemannian manifold (Q,g):

L =
1

2
gij(qh)pipj + V (qh), (20)

where gij are the contravariant components of the metric tensor and V a scalar potential. This
assumption, together with the hypothesis that G is polynomial of degree d in the momenta (pi),
allows us to expand condition (7) into an equality of two polynomials in (pi) of degree d + 2
that can be splitted into several differential conditions involving the metric, the potential and
the coefficients of G. Indeed, being L a natural Hamiltonian, we have (in [5] the equation for
X2
L was mistyped, however, this does not affects any of the results of the paper,

XL = pi∇i −∇iV
∂

∂pi
,

X2
L = pipj∇i∇j −∇iV∇i − 2pj∇iV∇j

∂

∂pi
− pi∇i∇jV

∂

∂pj
+∇iV∇jV

∂2

∂pi∂pj
.

In [5] we dealt with the case c 6= 0, d = 0, i.e. G independent of momenta, obtaining the
conditions (3) and (4). The maximal dimension of the space of solutions of equation (3) is
n+ 1 and it is achieved only if the metric g on Q has constant curvature. We call complete the
solutions G of (3) satisfying this integrability condition (see [5]).

In the following, we analyze in details the d = 1 case (G linear in the momenta), in order to
show how the procedure works.

Proposition 5. Let be G = λl(qi)pl +W (qi). Then, UmG is a first integral of H if and only if

∇(i∇jλl) +mcg(ijλl) = 0, (21)

∇i∇jW +mcgijW = 0, (22)

∇iV (∇iλl + 2∇lλi) + λi∇l∇iV − 2mλl(cV + L0) = 0, (23)

∇iV∇iW − 2m(cV + L0)W = 0, (24)
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Proof. For G linear in the momenta we have

XLG = pipl∇iλl −∇iV λi + pi∇iW,
X2
LG = pipjpl∇i∇jλl − pl(∇iV (∇iλl + 2∇lλi) + λi∇l∇iV ) +

+ pipj∇i∇jW −∇iV∇iW,

and condition (7) holds if and only if

pipjpl(∇i∇jλl +mcgijλl) + pipj(∇i∇jW +mcgijW )−
pl(∇iV (∇iλl + 2∇lλi) + λi∇l∇iV − 2mλl(cV + L0))+

2m(cV + L0)W −∇iV∇iW+ = 0,

which is equivalent to eqs. (21, 22, 23, 24).

Remark 4. The coefficients of terms with even and odd degree in the momenta are involved
in different equations: eq.s (22) and (24) contain the ones of a G independent of pi. Hence,
for λi = 0 we recover the d = 0 case: (22) and (24) are the expansion in coordinates of (3)
and (4) for G = W . For W 6= 0 the compatible potentials V have to satisfy both conditions
(24) and (23), thus it is impossible to get new potentials other than those compatible with a G
independent of the momenta i.e., satisfying conditions (22–24).

From (22) one can derive (see [5]) integrability conditions for W

(Rhijk −mc(ghjgik − ghkgij))∇h lnW = 0. (25)

If these equations are identically satisfied we have complete integrability which is equivalent to
constant curvature of Q, otherwise W must satisfy all equations (22) and (25). For example,
when Q has dimension two, we have from (25)

(R1212 −mcdet(gij))∇1 lnW = 0,

and
(R2121 −mc det(gij))∇2 lnW = 0.

Therefore, because of the symmetries of the Riemann tensor, we have

Theorem 6. If Q has dimension 2, then equations (22) admit non-constant solutions W only
if Q has constant curvature.

For each l, the integrability conditions of (21) are weaker than those for the Hessian equation
for G(qi) (3) and therefore the curvature of Q could be non-constant.

We give two examples in order to illustrate the Proposition 5.

Example 1. As shown in [5] and recalled above, when Q has constant curvature, equation
(3), or equivalently equation (22), admits a solution depending on n + 1 real parameters (ai).
Let Gi be a solution determinated by the choice of a particular set of the (ai), let us assume
that Gi 6= Gj . It is then natural to consider the relations between UmGi and UmGj and see if
some choice of the parameters can provide new independent first integrals of the system. For
example, let L be the natural Hamiltonian on the constant curvature manifold Q = S2 with
(q1 = θ, q2 = φ)

L =
1

2
(p2θ +

1

sin2 θ
p2φ) + V. (26)

A complete solution of a 0th degree G(θ, φ, a1, a2, a3) has been computed in [5]

G = (a1 sinφ+ a2 cosφ) sin θ + a3 cos θ. (27)
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and for a3 = 0, the integration of equation (4) – or equivalently (24) – gives

V =
1

cos2 θ
F ((a1 sinφ− a2 cosφ) tan θ) .

For different sets of the parameters (ak), U
mGi and UmGj are no longer simultaneously first

integrals of H unless if F = F0 = constant, and therefore

V =
F0

cos2 θ
. (28)

In this case, let be G1 = G(a1 = 1, a2 = 0, a3 = 0) and G2 = G(a1 = 0, a2 = 1, a3 = 0).
Hence, for any extension of L of the form (1) with α given by (8), the five functions L0 = L,
L1 = p2 = pφ, H, UmG1 and UmG2 are functionally independent first integrals of H. For
m = 2, recalling that c = K/m, the curvature of Q = S2 is K = 1 and choosing for the other
free parameters of α the values κ = 0 and u0 = 0, we have α = 4

u2
, and U2G1 and U2G2 are

U2G1 = (sinφ sin θ)

(
p2u − p2θ

4

u2
− F0

8

u2 cos2 θ

)
+ pθpu

4

u
cos θ sinφ

+ pφpu
4

u

cosφ

sin θ
− p2φ

4

u2
sinφ

sin θ
,

U2G2 =
(cos4 θ + sin2 θ − cos2 θ) cosφ

sin3 θ

(
p2u − p2θ

4

u2
− F0

8

u2 cos2 θ

)
+ pθpu

4

u
cos θ cosφ− pφpu

4

u

sinφ

sin θ
− p2φ

4

u2
cosφ

sin θ
.

Example 2. We can use a complete solution G(qi, ak) of (3) in order to construct solutions λi

of (21). Namely, we can choose λi = Gi, i = 1, . . . , n where Gi denotes any particular solution
of (3). We remark that it is not necessary that Gi 6= Gj for i 6= j, or Gi 6= 0 for all i. By
substituting the λi into (23), the equations become n second-order PDE in V whose solutions
provide examples of compatible potentials. For instance, let us consider again L given by (26)
on Q = S2. We can choose for λi the particular values λ1 = cos(θ), λ2 = 0 of (27) as coefficients
for a linear homogeneous G. Then, equations (23) can be integrated yielding,

V =
c1 + c2 sin θ

cos2 θ
,

which, for c2 6= 0 does not satisfies (4) with G given by (27), hence, for this potential the
construction of UmG is possible only when G depends on the momenta. For the different choice
of λi, λ1 = 0, λ2 = cos θ, the integration of (23) gives

V =
c1

sin2 θ
,

which is compatible with G given by (27) for a1 = a2 = 0. The expressions of UmG can be
computed by using (17).

Remark 5. By considering the functions λi as the components of a vector field Λ, equation
(21) can be written as

[g, [g,Λ]] = −mcΛ� g, (29)

where [·, ·] are the Schouten-Nijenhuis brackets and � denotes symmetrized tensor product.
This means that [g,Λ] is a particular kind of conformal Killing tensor, or, equivalently, that

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012101 doi:10.1088/1742-6596/343/1/012101

8



Λ is a particular conformal master symmetry of the geodesic equations, where the conformal
factor is a constant multiple of Λ, instead of an arbitrary vector field. In a similar way, for G
polynomial in the momenta of degree k with highest degree term given by λi1...ikpi1 . . . pik , it
is straightforward to show that a necessary condition for UmG to be first integral of H is still
of the form (29), where now Λ is a k-tensor field. In the 0-th degree case G = W (qi) eq. (29)
becomes [g,∇W ] = −mcW g.

Definition 1. We call self-conformal (s-conformal in short) the (k+ 1)-order conformal Killing
tensor field [g,Λ] such that

[g, [g,Λ]] = Cg �Λ,

C ∈ R, is satisfied. In this case, the k-order tensor Λ is said to be a s-conformal master
symmetry of the geodesic equations of g.

In the case of C = 0, i.e. c = 0, s-conformal Killing tensors and master symmetries become
the usual conformal Killing tensors and master symmetries.

Theorem 7. Let G be a k-degree polynomial of degree k in the momenta. A necessary condition
for UmG to be first integral of H is that the tensor Λ of components λi1...ik given by the
coefficients of the highest-degree term of G is a self-conformal master symmetry of the geodesic
equations of g or, equivalently, that [g,Λ] is a self-conformal tensor field of g with C = −mc.

The existence of a complete solution introduced in [5] and recalled above can be restated as
follows

Corollary 8. Equation (3) admits a complete solution G = W (qi) if and only if the dimension
of the space of the s-conformal Killing vectors ∇G, with C = −mc, is maximal and equal to
n+ 1.

4. Intrinsic characterisation of the extended Hamiltonians
We show under which geometrical conditions a (n+ 1)-dimensional natural Hamiltonian can be
written as the extension (15) of a natural Hamiltonian L. Let us consider a natural Hamiltonian

H =
1

2
g̃abpapb + Ṽ (30)

on a (n + 1)-dimensional Riemannian manifold (Q̃, g̃) and let X be a conformal Killing vector
of g̃, that is a vector field satisfying

[X, g̃] = LX g̃ = φg̃,

where φ is a function on Q̃ and [·, ·] are the Schouten-Nijenhuis brackets. We denote by X[ the
corresponding 1-form obtained by lowering the indices by means of the metric tensor g̃.

Theorem 9. If on Q̃ there exists a conformal Killing vector field X with conformal factor φ
such that

dX[ ∧X[ = 0, (31)

dφ ∧X[ = 0, (32)

d ‖X‖ ∧X[ = 0, (33)

X(Ṽ ) = −φṼ , (34)

R̃(X) = kX, k ∈ R, (35)

where R̃ is the Ricci tensor of the Riemannian manifold, then, there exist on Q̃ coordinates
(u, qi) such that ∂u coincides up to a rescaling with X and the natural Hamiltonian (30) has the
form (15).
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Proof. Condition (31) means that X is normal i.e., orthogonally integrable: locally there exists a
foliation of n dimensional diffeomorphic manifolds Q such that TPQ = X⊥ = {v ∈ TQ̃|g̃(v,X) =
0}; it follows that there exists a coordinate system (q0 = u, qi) for i = 1, . . . , n such that ∂u
is parallel to X and the components g̃0i vanish for all i = 1, . . . , n. Furthermore, by (32) the
conformal factor φ is constant on the leaves Q (v(φ) = 0 for all v ∈ X⊥); thus, φ depends only
on u. By expanding the condition that X = F (qa)∂u is a conformal Killing vector{

1
2 g̃

00(qa)p2u + 1
2 g̃
ij(qa)pipj , F (qa)pu

}
= φ(u)

(
1
2 g̃

00(qa)p2u + 1
2 g̃
ij(qa)pipj

)
we get the equations

g̃00(2∂uF − φ)− F∂ug̃00 = 0 (36)

g̃hj∂hF = 0 j = 1, . . . , n (37)

g̃ijφ+ F∂ug̃
ij = 0 i, j = 1, . . . , n (38)

By (37), we have F = F (u), hence due to (38) we get that ∂u ln g̃ij is a function of u, the same
function for all i, j. Thus, without loss of generality we can assume g̃ij = gij(qh)α(u). Moreover,
Eq. (36) implies that, up to a rescaling of u, g̃00 is independent of u. By imposing X(Ṽ ) = −φV ,
we obtain ∂u ln Ṽ = −φ/F , that means Ṽ = α(u)V (qh), thus we get

H =
1

2
g00(qh)p2u + α(u)

(
1

2
gij(qh)pipj + V (qh)

)
.

Finally, condition (33) means that the norm of X is constant on Q, that is F (u)2g00(qi) is
independent of (qi). This shows that up to a rescaling and a change of sign of H we can assume
g00 = 1 and in the coordinate system (u, qi) (30) has the required form (15). By computing
again the Poisson bracket, we get relations between φ, α and F : α = k(F )−2 and φ = 2Ḟ with
k a real not vanishing constant. When X is a proper conformal Killing vector, we can assume
that α is proportional to F (u)−2. The covariant components of the Ricci tensor of Q̃ are given
in Lemma 10, in particular we have for i = 1, . . . , n

R̃00 = n
F̈

F
, R̃0i = 0.

Hence, X = F (u)∂u is an eigenvector of the Ricci tensor with eigenvalue ρ = n F̈F , which is
constant if and only if F is proportional to Sκ(cu+ u0).

Remark 6. If φ = 0 (i.e., X is a Killing vector), then α and F are necessarily constant and this
gives the geodesic term of the case c = 0, but equation (34) does not characterize the potential
of the Hamiltonian (16).

Remark 7. It is straightforward to check that for a Hamiltonian of the form H = 1
2p

2
u+F−2(u)L

with L a natural n-dimensional Hamiltonian, X = f∂u is a CKV with conformal factor φ = 2Ḟ
such that X(F−2(u)V ) = −φ(F−2(u)V ). Hence, conditions of the above theorem are necessary
for having an extended Hamiltonian of our form.

We want now to study the geometric properties of the metric g̃ obtained by an extension of
a metric g, in particular when g is of constant curvature.

In the following, we assume α(u) = f−2 in order to simplify computations. In particular, f
is allowed to be pure imaginary.
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Lemma 10. Let (gij) be the components of a n-dimensional metric on Q in the coordinates (qi).

We consider the (n+ 1)-dimensional metric on Q̃ having components g̃ab (a, b = 0, . . . n, i, j =
1, . . . n) with respect to coordinates (q0 = u, qi) defined as follows

g̃ab =


1 a = b = 0,
0 a = 0, b 6= 0,
f2(u)gij(q

h) a = i, b = j.
(39)

Then, the relations between the covariant components of the Riemann tensors associated with g̃
and g are for all h, i, j, k = 1, . . . , n

R̃hjkl = f2Rhjkl −
ḟ2

f2
(g̃hkg̃jl − g̃hlg̃jk), (40)

R̃0jkl = 0, (41)

R̃0j0l = − f̈
f
g̃jl. (42)

Moreover, the covariant components of the Ricci tensors Rij and R̃ab of the two metrics are
related, for all h, i, j, k = 1, . . . , n, by

R̃00 = n
f̈

f
, (43)

R̃0i = 0, (44)

R̃ij = Rij +
(
ff̈ + (n− 1)ḟ2

)
f−2g̃ij , (45)

and the relation between the Ricci scalars R and R̃ is

R̃ =
R

f2
+ n

2ff̈ + (n− 1)ḟ2

f2
, (46)

where ḟ and f̈ denote the first and second derivative w.r.t. u of f(u).

Expressions (40), (45), and (46) become simpler when Q is of constant curvature, while the
other formulas remain unchanged.

Lemma 11. Under the hypotheses of Lemma 10 with n > 1, if g is a metric of constant
curvature K, then the non zero covariant components of the Riemann tensor R̃ associated with
g̃ are, for all h, i, j, k = 1, . . . , n

R̃hjkl =
K − ḟ2

f2
(g̃hkg̃jl − g̃hlg̃jk), (47)

Moreover, the covariant components of the Ricci tensor R̃ij and the Ricci scalar R̃ are, for
i, j = 1, . . . , n,

R̃ij =
(
ff̈ + (n− 1)(ḟ2 −K)

)
f−2g̃ij , (48)

R̃ = n
2ff̈ + (n− 1)(ḟ2 −K)

f2
. (49)
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Theorem 12. Let (Q,g) be a n-dimensional Riemannian manifold of constant curvature
K = mc and (Q̃, g̃) the extended manifold with metric (39), therefore

i) the metric g̃ is of constant curvature if and only if either n = 1 or m = 1 or K = c = ḟ = 0,

ii) the metric g̃ is conformally flat if and only if either n > 2 or g̃ is of constant curvature.

Proof. For n = 1 the extended metric is, up to a rescaling of q1,

g̃ab =

(
1 0
0 f2

)
,

which is of constant curvature if and only if f̈ is proportional to f which is true if f is any
trigonometric tagged function. For n ≥ 2, due to the Bianchi identities, the metric is of constant
curvature if the ratios

R̃abcd/(g̃acg̃bd − g̃adg̃bc)

are independent of (a, b, c, d), that is by (47), (41), and (42)

f̈f +K − ḟ2 = 0, (50)

which for c 6= 0, i.e. f2 =
S2
κ(
K
m
u+u0)

K , becomes

K2(m2 − 1)

m2
= 0,

which holds only for m = 1 or for K = c = 0, when f is constant (see Theorem 2) and (50)
holds.

For n = 2 the three-dimensional extended metric g̃ is conformally flat if and only if the
Weyl-Schouten tensor

R̃abc = ∇̃cR̃ab − ∇̃R̃ac +
1

2n

(
g̃ac∇̃bR̃− g̃ab∇̃cR̃

)
,

where ∇̃ denotes the covariant derivative w.r.t. g̃, vanishes. By applying the formulas derived
in Lemma 11 we have that the only non vanishing components of R̃abc are, for i, k = 1, 2,

R̃i0k =
ḟ

f3
g̃ik(f̈f +K − ḟ2),

which, as shown above, vanish only for m = 1 or in the case when 0 = K = c and f is constant.
For n > 2 the (n+ 1)-dimensional extended metric g̃ is conformally flat if and only if the Weyl
tensor

C̄abcd = R̃abcd +
1

n− 1

(
g̃acR̃bd − g̃adR̃bc + g̃bdR̃ac − g̃bcR̃ad

)
+

+
R̃

n(n− 1)
(g̃adg̃bc − g̃acg̃bd) .

vanishes and, by applying Lemma 11, this is true for all manifold Q of constant curvature.

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012101 doi:10.1088/1742-6596/343/1/012101

12



5. Quantization
We consider here quantization for the case m ≤ 2 only. For m = 1, it is well known how to
associate a first order symmetry operator with any constant of motion linear in the momenta. In
[2] the quantization of quadratic in the momenta first integrals of natural Hamiltonian functions
has been analyzed and we recall here the results relevant for our case.

Let Ĥ be the Hamiltonian operator associated with the Hamiltonian H = 1
2g
ijpipj + V , we

have

Ĥ = −~
2
∇i(gij∇j) + V = −~

2
∆ + V,

where ∆ is the Laplace-Beltrami operator. Let T = 1
2T

ijpipj + VT be a first integral of H, let

T̂ = −~2

2
∇i(T ij∇j) + VT . (51)

We have (Proposition 2.5 of [2])

Proposition 13. Let be {H,T} = 0, then [Ĥ, T̂ ] = 0 if and only if

δC = δ(TR−RT ) = 0, (52)

where R is the Ricci tensor, T and R are considered as endomorphisms on vectors and one-forms
and

(δA)ij...k = ∇rArij...k,
is the divergence operator for skew-symmetric tensor fields A.

For our purposes we need to apply (52) to the Ricci tensor of the extended metric and to the
constant of the motion T = U2G. By assuming constant the curvature K of Q, the components
of R̃ab are given by inserting f2 = 1

KS
2
κ(Km u + u0) or f2 = 1

mA in Lemmas 10 and 11; the
covariant components of the Ricci tensor are given respectively by

R̃00 = −nκK
2

m2
,

R̃0i = 0,

R̃ij =
K2

m2

(
nκ+

(n− 1)(m2 − 1)

(Tk(
K
mu+ u0))2

)
gij ,

for K 6= 0 and R̃ab = 0 for K = 0.
In order to make computations easier, we remark that for A, B two-tensors on a Riemannian

manifold (Q̃, g̃) we have

(AB −BA)ac = AabB
b
c −Ba

bA
b
c = AadBcd − gadgecBdbAbe. (53)

Lemma 14. For any symmetric tensor T ij the (1,1) components of C = TR̃− R̃T , where R̃ is
the Ricci tensor of g̃, are

C0
0 = 0,

Ci0 = T 0iW,

C0
i = −g̃ijT 0jW,

Cij = 0,

where

W = (n− 1)
f̈f − ḟ2 +K

f2
. (54)

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012101 doi:10.1088/1742-6596/343/1/012101

13



Remark 8. We immediately have that if W = 0 then C = 0 and, by Proposition 13 , {H,T} = 0

implies [Ĥ, T̂ ] = 0. However, by Theorem 12, W = 0 if and only if either n = 1, m = 1 or f is
constant, i.e., if and only if g̃ is of constant curvature.

Theorem 15. For m = 2, {H,T} = 0 implies [Ĥ, T̂ ] = 0 if and only if g̃ is of constant curvature
i.e., if and only if n = 1 or f is constant.

Proof. If K = 0, and therefore c = 0 and f is constant, then W = 0. Otherwise, when K 6= 0
and c 6= 0, by computing T = U2G and by applying Proposition 3 we get

T 00 = G,

T 0i = γ∇iG,

T ij = −K
2
γ2Ggij ,

VT = −2Kγ2GV,

where γ is given by

γ = (Tκ(
K

m
u+ u0))

−1,

as proved in Theorem 2. A straightforward computation gives

δC0 = γW
(
gil∂2ilG+ ∂lG(∂ig

il + gil∂i ln
√
g)
)

=

= γW∆G = −γnKWG,

δCi = f∂iG
d

du
(γfW ) ,

where g = det(gij). By inserting the expressions of γ and of f2 =
S2
κ(
K
m
u+u0)

K we have that there
are no non-trivial (G 6= const.) solutions to δC = 0 other than those such that W = 0, that is,
after Remark 8, when n = 1 or Q̃ is of constant curvature.

In a recent paper [1], where particular conformally flat, non-constant curvature manifolds are
considered, it is shown that even if the Laplace-Beltrami quantization of some first integrals
of the Hamiltonian fails, their quantization is somehow made possible by considering the
conformal Schrödinger operator instead of the standard (Laplace-Beltrami) one. The conformal
Schrödinger operator is related to the standard one by a similarity transformation and an
additional term proportional to the scalar curvature. The two operators share the same energy
spectrum but not the eigenfunctions. In Theorem 12, we proved that our extended Hamiltonians
for n > 2 have always conformally flat configuration manifolds, therefore, the method exposed
in [1] could be, at least in principle, applicable.

If we denote by ∆̃ the Laplace-Beltrami operator of (Q̃, g̃) and by ∆ the Laplace-Beltrami
operator of the constant curvature manifold (Q,g), a direct calculation shows that

∆̃ = ∂2u + n
ḟ

f
∂u +

K

f2
∆, (55)

and [∆̃,∆] = 0. Therefore, being

Ĥ = −~
2

(∂2u + n
ḟ

f
∂u) +

K

f2
L̂,

with

L̂ = −~
2

∆ + V,

we have
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Proposition 16. L̂ is a symmetry operator of Ĥ:

[Ĥ, L̂] = 0.

Since Ĥ and L̂ have common eigenfunctions, from Ĥψ = hψ and L̂ψ = λψ we obtain for the
eigenfunction of Ĥ the following characterization

Proposition 17. The function ψ(u, qi) is an eigenfunction of Ĥ if and only if ψ is an

eigenfunction of L̂ and

−~
2

(∂2uψ + n
ḟ

f
∂uψ) +

(
Kλ

f2
− h
)
ψ = 0. (56)
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