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Abstract 

Aldehyde dehydrogenase (ALDH) enzymes are involved in maintaining cellular 

homeostasis by metabolizing both endogenous and exogenous reactive aldehydes. They modulate 

several cell functions including proliferation, differentiation, survival as well as cellular response to 

oxidative stress. We previously reported that ALDH3A1 expression is inversely correlated with the 

activation of PPAR (Peroxisome Proliferators-Activated Receptor), a category of orphan nuclear 

hormone receptors, in both rat and human cells. PPARγ is involved in cell proliferation. In this 

study, we have used PPARγ transfection and inhibition to examine the relationship between 

ALDH3A1 and PPARγ and their role as regulators of cell proliferation. Induction of PPARγ in 

A549 and NCTC 2544 cells by transfection caused a decrease in ALDH3A1 and inhibition of cell 

proliferation, a result we obtained previously using ligands that induce PPARγ. A reduction of 

PPARγ expression using siRNA increased ALDH3A1 expression and cell proliferation. In cells 

induced to proliferate in a model of tissue regeneration, ALDH3A1 expression increased during the 

period of proliferation, whereas PPARγ expression decreased. In conclusion, through modulation of 

PPARγ or ALDH3A1, it may be possible to reduce cell proliferation in tumor cells or stimulate cell 

proliferation in normal cells during tissue regeneration. 

 

Keywords: ALDH3A1, PPARγ, tumor cells, tissue regeneration 
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1. Introduction 

Enzymes belonging to aldehyde dehydrogenase (ALDH) family are involved in maintaining 

cellular homeostasis through the metabolism of both endogenous and exogenous reactive aldehydes 

[1,2]. In this way, they modulate several cell functions, such as proliferation, differentiation, 

survival and response to oxidative stress in normal and tumor cells [3-8]. Recently, the correlation 

between ALDH activity and cell proliferation has been documented in several types of stem cells 

[9, 10]. For example, human progenitor cells with high ALDH activity more effectively engraft into 

damaged mouse livers, improving recovery from toxic insult [11]. Among human ALDH 

isoenzymes, ALDH1A1 is considered a specific marker for both normal and cancer stem cells [12-

14]. 

Another member of ALDH family is ALDH3A1 (ALDH; EC 1.2.1.3) that is a homodimer 

constitutively expressed in various tissues, including cornea, stomach, esophagus and lung, whereas 

it is induced in several neoplastic tissues [2]. We previously demonstrated that, during chemically-

induced hepatocarcinogenesis in rat and in a variety of tumor cell lines, transformed cells show 

increased ALDH3A1 expression that appears coupled to proliferation [15,16]. ALDH3A1 has a 

cytosolic location, and it is also present in the nucleus, where it may exert cell cycle regulation. 

This enzyme catalyzes the oxidation of various lipid peroxidation-derived aldehydes including αβ 

hydroxyalkenals such as 4-hydroxynonenal. Moreover, ALDH3A1 oxidizes oxazaphosphorines 

such as cyclophosphamide, contributing to drug resistance in various tumor types [2]. 

In light of above-described role of ALDHs in cell proliferation, modulation of signal 

transduction pathways involved in regulating its expression could be crucial in both normal and 

pathological conditions. We previously reported that ALDH3A1 expression is correlated with 

PPAR (Peroxisome Proliferators-Activated Receptors) activation in both rat and human cells [17-

19]. PPARs are orphan nuclear hormone receptors belonging to the nuclear receptor superfamily. 

Three mammalian PPAR subtypes have been documented, viz. PPARα, PPARβ/δ, PPARγ. All 

exhibit distinct patterns of tissue distribution and are involved in multiple distinctive, often 
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complementary, physiologic pathways and functions [20-22]. PPARγ directly regulates a large 

number of target genes that mediate gluconeogenesis, lipid uptake, lipid synthesis, lipid storage and 

lipolysis [23-25]. We previously demonstrated that this isotype also modulates other cell functions, 

such as proliferation. In the presence of PPARγ ligands, a time- and dose-dependent decrease in cell 

proliferation coupled with decreased ALDH3A1 expression and activity was observed [17-19]. 

There are several mechanisms by which PPARγ could affect ALDH3A1 expression. PPAR 

activation could indirectly modulate ALDH3A1 via inhibition of NF-κB. PPARγ inhibits NF-κB 

transcriptional activity by binding to the NF-κB components p50 and p65 [26,27] and ALDH3A1 

gene contains several NF-κB and AP-1 binding sites in its promoter region [28,29]. PPARγ could 

directly modulate ALDH3 expression, since a putative peroxisome proliferator response sequence 

(PPRE) containing the canonical DR1 motif was found in intron 11 of ALDH3A1 gene using a 

bioinformatics approach (PROGRAM NHR SCAN) (unpublished data). 

In this study, we have used PPARγ transfection and inhibition to examine the relationship 

between ALDH3A1 and PPARγ and their potential as markers and regulators of cell proliferation in 

healthy and diseased tissue. 

 

2. Materials and methods 

2.1. Cell cultures 

A549 human lung adenocarcinoma cells (ATCC, USA) were cultured in HAM F-12K 

medium supplemented with 2 mM glutamine, 1% (v/v) antibiotic/antimycotic solution and 10% 

(v/v) fetal bovine serum (FBS). NCTC 2544 human keratinocytes (ICLC, Italy) were cultured in 

MEM medium supplemented with 2 mM glutamine, 1% (v/v) antibiotic/antimycotic solution and 

10% (v/v) fetal bovine serum (FBS). All cells were maintained at 37°C in a humidified atmosphere 

of 5% CO2 in air. 

2.2. Transient Transfection Assay 
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A549 and NCTC 2544 cells were seeded at 2.5 X 105 cells/well in 6-well plates and allowed 

to grow to 70% confluence. Transfections were performed using the cationic polymer reagent 

ExGen 500 (Fermentas Life Sciences, Germany) according to the instructions of the manufacturer. 

Cells were transfected with 3 or 5 µg of expression vector (pSG5) for human PPARγ (a gift from 

CIG of Lausanne, Switzerland) or 3 µg of pSV-β-galactosidase (Promega, USA) as a control for 

transfection efficiency. Twenty-four hr after transfection, the medium was replaced with fresh 

medium. Twenty-four or 48 hr thereafter, cells were washed with PBS, trypsinized, and centrifuged 

at 600g for 10 min for the assays (listed below). 

2.3. Treatment with PPARγ antagonist 

A549 and NCTC 2544 cells were seeded in 25-cm2 plates at 25,000 cell/ cm2. Twenty-four hr after 

cell seeding, culture medium was supplemented with PPARγ antagonist (10 µM GW9662) 

dissolved in DMSO (maximum final concentration 0.05%)  or an equivalent volume of antagonist 

vehicle. Forty-eight hr thereafter, cells were washed with PBS trypsinized, and centrifuged at 600g 

for 10 min for the assays (listed below). 

2.4. PPARγ silencing by small RNA interference 

RNA interference experiments to suppress PPARγ expression were performed using 

FlexiTube siRNA Premix (Qiagen, Italy). The following target sequence was used: 5’-

GAGGGCGATCTTGACAGGAAA-3’. The siRNA and negative control were transfected into 

NCTC 2544 cells, seeded at 1.5 x 105 cells/well in 12-well plates, according to the manufacturer's 

instructions. Twenty-four hr later, cells were washed with PBS, trypsinized and centrifuged at 600g 

for 10 min for the assays (listed below). 

2.5. Colonization by NCTC 2544 cells of polypropylene mesh prosthesis in a composite form 

NCTC 2544 cells were seeded at 1 x 105 cells/well in 6-well plates. A piece of 

polypropylene composite mesh was anchored to the bottom of each well with a small biologically-

inert sterile sticker to serve as a prosthesis. Composite mesh prosthesis (R&D DIPRO medical 

devices, Italy) provides a smooth, non-erosive, anti-adhesive side and a macroporous side that 
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allows cell ingrowth. After 3 and 6 d, cells were detached from prosthesis by trypsinization and 

centrifuged at 600g for 10 min for the assays (listed below).  

2.6. Cell growth assay 

Cell growth was determined by counting the number of cells using a Bürker chamber.  

2.7. Western blot analysis and ALDH enzymatic activity assays 

Collected cells were suspended in lysis buffer (106 cells/ 50 µl) containing 0.02 M Tris-HCl 

(pH 7.4), 0.15 M NaCl, 5 mM EDTA, 1 mM PMSF, 15 µg/ml leupeptin, 0.1% NP-40 substitute, and 

1 mM Na-orthovanadate. Suspensions were kept on ice for 30 min and sonicated three times for 3 s 

using a Branson Sonifier 250 (VWR Scientific, OH, USA). Levels of ALDH3A1, PPARγ, GAPDH, 

and β-actin were determined by Western blot analysis, as previously described [17]. Polyclonal anti-

PPARγ, anti-GAPDH (purchased from Santa-Cruz Biotechnology Inc., CA, USA), monoclonal anti-

β-actin (purchased from Sigma, MO, USA) or anti-ALDH3A1 (prepared by Vasiliou V.) antibodies 

were used. ALDH activity was determined as described by Canuto et al. [16] using 2.5 mM 

benzaldehyde as substrate and NADP+ as coenzyme. 

2.8. Real-Time PCR 

Total RNA was isolated from NCT 2544 keratinocytes using a RNEasy1 Mini Kit (Qiagen, 

GmbH, Germany) according to the manufacturer’s protocol. One µg of RNA was reverse 

transcribed in cDNA using the High Capacity cDNA Archive kit (Applied Biosystems, Foster City, 

CA). PCR was performed using IQTM SYBRGreen Supermix (Bio-Rad, Hercules, CA) in an 

iCycler system (Bio-Rad). Each sample was tested three times and the threshold cycle (Ct) values 

from each reaction were averaged. The change was quantified as the relative expression compared 

to that of control, calculated as 2-∆∆Ct , where ∆Ct = (Ct sample – Ct GAPDH) and ∆∆Ct = (∆Ct 

sample - ∆Ct control). Human primer sequences used for real-time PCR were: GAPDH, FW) 

GTCGGAGTCAACGGATTTGG, RV) GGGTGGAATCATATTGGAACATG; PPARγ, FW) 

GCCGAGAAGGAGAAGC, RV) TGGTCAGCGGGAAGG; ALDH3A1, FW) 

GTACATGATCCAGAAGC, RV) ATGGTGAGGTTGAAGG. 
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2.9. Light microscope analysis 

Medium was removed from each well containing prostheses colonized by NCTC 2544 cells 

to observe the colonization by light microscope. 

2.10. Protein determination 

Protein content was determined with the Protein Assay Kit 2 (BIO-RAD, Laboratories, CA). 

2.11. Statistical analysis 

Data are expressed as means ± S.D. Differences between group means were assessed by 

analysis of variance, followed by post-hoc Newman-Keuls analysis. The effect of PPARγ antagonist 

treatment, or of time on prosthesis were assessed by Student’s unpaired t-test. P < 0.05 was 

considered to be significant.  

 

3. Results and discussion 

 

3.1 Inverse correlation between ALDH3A1 and PPARγ in human lung tumor and normal cells. 

In our previous studies carried out in human tumor cells, we showed that ligands of PPARγ, 

such as arachidonic and docosahexaenoic acids, decreased cell proliferation with coincident 

induction of PPARγ and decrease in ALDH3A1 expression and activity [19,30]. To examine further 

the inverse correlation between these two factors, two different approaches were taken: induction or 

inhibition of PPARγ. PPARγ induction was achieved through PPARγ transfection. Inhibition of 

PPARγ was obtained by using a selective antagonist, GW9662, or a siRNA method. Experiments 

were conducted in two different cell lines: lung tumor cells (A459) and normal keratinocytes 

(NCTC 2544). 

3.1.1. PPARγ transfection. 

 A459 and NCTC 2544 cells that were transfected with plasmid SG5 containing cDNA of 

PPARγ grew more slowly than control cells (Figure 1). The culture medium was also evaluated for 

the cells detached from the monolayer, but no cells were counted in it (data not shown)]. As 
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expected, higher levels of PPARγ protein were observed in cells transfected with plasmid SG5 

containing cDNA of PPARγ (Figure 2). Expression of ALDH3A1 protein revealed opposite 

behaviour in being reduced in these same cells (Figure 2). These results are consistent with our 

previous results in which specific ligands were used to induce PPARγ [19, 30] and support the 

proposal that induction of PPARγ causes a decrease of ALDH3A1 with the consequent inhibition of 

cell proliferation. 

3.1.2. PPARγ inhibition. 

An inverse relationship between PPARγ expression and ALDH3A1 and cell proliferation 

was established in the above experiments using the transfection to manipulate PPARγ levels. 

Experiments using the PPARγ antagonist, GW9662, provided equivocal results. GW9662 treatment 

had no effect on cell proliferation (Figure 3A) or on PPARγ expression (Figure 3B). However, 

GW9662 treatment caused an increase in ALDH3A1 protein expression (Figure 4A) that was not 

accompanied by a significant increase of specific ALDH3A1 activity (Figure 4B). Small RNA 

interference was used as another approach to reduce PPARγ effects. In these experiments, PPARγ 

expression was suppressed in keratinocytes. This intervention increased cell proliferation (Figure 

5A), decreased PPARγ, evaluated as mRNA (Figure 5B) and protein content (Figure 5C), and 

increased ALDH3A1, evaluated also as mRNA (Figure 5B) and protein content (Figure 5C). These 

results would have been predicted from our PPARγ transfection results. It is difficult to rationalize 

the different results obtained with PPARγ antagonist and gene silencing. The failure of GW9662 to 

affect cell proliferation may have occurred if the concentrations of the antagonist were insufficient. 

However, the concentration utilized in the present study is comparable with those shown to be 

effective in other studies [19]. 

3.2. ALDH3A1 and PPARγ in tissue regeneration. 

 In the light of above results, it is conceivable that ALDH3A1 and PPARγ could function to 

modulate cell proliferation. For example, proliferation could be stimulated by increasing ALDH or 

inhibiting PPARγ, as noted above. To further examine their physiological roles in cell proliferation, 
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changes in expression were examined in a model of tissue regeneration. Keratinocytes were grown 

on a composite mesh prosthesis. The scaffold of the prosthesis serves as a support upon which 

seeded cells colonize, migrate and grow [31,32]. In this model, cells attached and grew on the mesh 

prosthesis (Figure 6A). Over the course of 6 d, cells continued to grow (Figure 6B). Consistent with 

the results obtained in normal tissue culture plates, ALDH3A1 protein expression increased over 

time while PPARγ protein content decreased (Figure 6C). Therefore, PPARγ and ALDH3A1 could 

be considered as markers of cell proliferation. Furthermore, manipulation of the activity or effects 

of these molecules may be a novel approach for promoting cell proliferation, e.g., by stimulating 

ALDH activity through the application of an activator [33,34]. Should this prove to be effective, 

such treatments could be used to promote tissue repair or regeneration. Conversely, inhibition of 

ALDH3A1 or activation of PPARγ may be used to suppress cell proliferation, e.g., to elicit an 

antitumor effect. 

 

4. Conclusions 

 Using overexpression, gene silencing and antagonist inhibition to modulate the expression 

or effects of PPARγ, the present study demonstrated that ALDH3A1 expression is inversely 

regulated by PPARγ and ALDH3A1 expression is directly correlated with cell proliferation. 

Therefore, modulation of PPARγ or ALDH3A1 may be a novel approach to manipulate cell 

proliferation and provide benefit in the treatment of cancer or tissue repair. 
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Figure Captions 

 

Figure 1 

Inhibition of cell proliferation by transfection of cells with pSG5 containing PPARγ. Human lung 

tumor cells (A549) and keratinocytes (NCTC 2544) were transfected with 3 or 5 µg pSG5 with 

PPARγ (PPARgamma 3, PPARgamma 5, respectively) or pSV-β-galactosidase (C) and harvested 

for cell counting 24 or 48 hr later. Data are represented as means ± S.D. from 3 experiments. For 

each type of cells and for 24 or 48 hours, means with different letters are significantly different 

from one another (p<0.05) as determined by analysis of variance followed by post-hoc Newman-

Keuls analysis.] 

 

Figure 2 

Effect of transfection with pSG5 containing PPARγ on PPARγ and ALDH3A1 protein expression. 

Human lung tumor cells (A549) and keratinocytes (NCTC 2544) were transfected with 3 or 5 µg 

pSG5 with PPARγ (γ3, γ 5, respectively) or pSV-β-galactosidase (C) and harvested for Western 

blot analysis of PPARγ and ALDH3A1 protein content 24 or 48 hr later. With regard to PPARγ, both 

isoforms PPARγ1 and γ2 were detected by polyclonal antibody. The densitometry value given for 

each protein is referred to the corresponding β-actin value and expressed by arbitrarily normalizing 

the control value as 100. The densitometry values of PPARγ1 were not calculated, being 0 the 

control value. 

C+, positive control for ALDH3A1 

 

Figure 3 

Failure of PPARγ antagonist to affect cell proliferation or PPARγ expression. Human lung tumor 

cells (A549) and keratinocytes (NCTC 2544; NCTC) were treated with PPARγ antagonist (10µM 
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GW9662; GW) or an equivalent volume of vehicle (C) for 48 hr.  Cells were then harvested for cell 

counting (panel A) or Western blot analysis of PPARγ (panel B). The number of cells/cm2 counted 

in the monolayer (panel A) are represented as means ± S.D. from 3 experiments. The densitometry 

value given for each protein is referred to the corresponding β-actin value and expressed by 

arbitrarily normalizing the control value as 100. 

 

 

Figure 4 

Modulation of ALDH3A1 expression and activity by a PPARγ antagonist. Human lung tumor cells 

(A549) and keratinocytes (NCTC 2544; NCTC) were treated with PPARγ antagonist (10µM 

GW9662; GW) or an equivalent volume of vehicle (C) for 48 hr. Cells were then harvested for 

measurement of Western blot analysis of ALDH3A1 (panel A) or ALDH3A1 specific activity 

(panel B). The densitometry value given for each protein is referred to the corresponding β-actin 

value and expressed by arbitrarily normalizing the control value as 100. Specific activity, 

determined spectrophotometrically using benzaldehyde as substrate and NADP+ as coenzyme, is 

expressed as nmoles NADP reduced per min per mg protein. Specific activity results are presented 

as means ± S.D. from 3 experiments. 

C+, positive control for ALDH3A1 

 

Figure 5 

Effect of PPARγ silencing on cell proliferation and PPARγ and ALDH3A1 expression. Human 

keratinocytes (NCTC 2544) were not transfected (C) or transfected with siRNA to suppress PPARγ 

expression (PPARgamma-siRNA or γ) or with non-silencing RNA (C-siRNA or C-). Twenty-four 

hr later, cells were harvested for cell counting (panel A), for real-time PCR of mRNA content for 

PPARγ or ALDH3A1 (panel B), or western blot analysis of protein content of PPARγ and 

ALDH3A1 (panel C) . The number of cells/cm2 counted in the monolayer (panel A) are represented 
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as means ± S.D. from 3 experiments. The densitometry value given for each protein is referred to 

the corresponding β-actin value and expressed by arbitrarily normalizing the control value as 100. 

For cell number, and PPARγ and ALDH3A1 mRNA content, means with different letters are 

significantly different from one another (p<0.05) as determined by analysis of variance followed by 

post-hoc Newman-Keuls analysis. 

 

Figure 6 

PPARγ and ALDH3A1 expression in a model of tissue repair. Keratinocytes (NCTC 2544 cells) 

were seeded on a composite mesh prosthesis. Cells were then harvested for counting (panel B) or 

Western blot analysis of PPARγ and ALDH3A1 (panel C) at 3 and 6 days after cell seeding. 

Panel A shows the cells grown on composite mesh at 3 days evaluated by light microscopy. Total 

cell numbers are presented as means ± S.D. from 3 experiments. The densitometry value given for 

each protein is referred to the corresponding β-actin value and expressed by arbitrarily normalizing 

the control value as 100. 

C+, positive control for ALDH3A1 

*  P < 0.05, compared to number of cells at day 3, Student's unpaired t-test. 

 














