
PHYSICAL REVIEW E 84, 041107 (2011)

Statistics of cross sections of Voronoi tessellations
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In this paper, we investigate relationships between the volumes of cells of three-dimensional Voronoi
tessellations and the lengths and areas of sections obtained by intersecting the tessellation with a randomly
oriented plane. Here, in order to obtain analytical results, Voronoi cells are approximated to spheres. First, the
probability density function for the lengths of the radii of the sections is derived and it is shown that it is related
to the Meijer G function; its properties are discussed and comparisons are made with the numerical results. Next,
the probability density function for the areas of cross sections is computed and compared with the results of
numerical simulations.
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I. INTRODUCTION

Three-dimensional Voronoi tessellations provide a pow-
erful method of subdividing space in random partitions and
have been used in a variety of fields, such as computational
geometry and numerical computing (see, for instance [1] and
the references therein), data analysis and compression [2],
geology [3], and molecular biology [4,5]. However, in many
experimental conditions it is not possible to directly observe
the cells themselves, just their planar or linear sections:
thus it is of interest to study the relationships between the
geometric properties of three-dimensional structures and their
lower-dimensional sections [6].

A basic result has been proved in [7]: the intersection
between an arbitrary but fixed plane and a spatial Voronoi
tessellation is not necessarily a planar Voronoi tessellation. An
analysis of some aspects of the sections of Voronoi diagrams
can be found in [6]. However, a far as we know, no analytical
formulas have been derived for the distributions of the lengths
and areas of the planar sections: this is precisely the aim of
this paper.

Following [6], a three-dimensional Voronoi diagram will be
denoted by V , and section of dimensionality s will be denoted
by V(s,3).

In the next section, some probability density functions used
to fit empirical, or simulated, distributions of Voronoi cells
size will be reviewed and, in Sec. III, results will be presented
on the distribution of the lengths and areas of V(2,3).

II. PROBABILITY DENSITY FUNCTIONS
OF VORONOI TESSELLATIONS

A Voronoi tessellation is said to be a Poisson Voronoi
diagram (PVD), denoted by Vp, if the centers generating the
cells are uniformly distributed. In the case of one-dimensional
PVD, with average linear density λ, a rigorous result can be
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derived, namely that the distribution of the lengths of the
segments has the probability density function

p(l) = 4λ2l exp (−2λl), (1)

or, by using the standardized variable x = l/〈l〉 = λl [8],

p(x) = 4x exp (−2x). (2)

No analytical results are known for the distribution of the sizes
of Voronoi diagrams in two dimensions (2D) or 3D; typically
distributions of the surfaces or volumes of the Voronoi cells are
fitted with a three-parameter generalized gamma probability
density function (PDF) of the standardized variable x [9,10],

g(x; a,b,c) = c
ba/c

�(a/c)
xa−1 exp (−bxc). (3)

It should be noted that from g(x; a,b,c) other, simpler,
probability density functions can be derived that have been also
used to model empirical distributions of PVD: for instance,
by setting a = b and c = 1, the one-parameter distribution
proposed in [8] results in

h(x; b) = bb

�(b)
(x)b−1 exp(−bx), (4)

with variance

σ 2
h = 1

c
. (5)

Similarly, set a = b = (3d + 1)/2, c = 1, where d is the
dimensionality of the cells: Eq. (3) then becomes

p(x; d) =
(

3d + 1

2

) 3d+1
2

x
3d−1

2 exp [−(3d + 1)x/2], (6)

with variance

σ 2
p = 2

3d + 1
. (7)

This PDF has been shown to give a good fit for Poisson Voronoi
diagrams [11], even though it has no free parameters: it will
be used in the following to model distributions of the volumes
of three-dimensional Voronoi tessellations.
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FIG. 1. Planar cross sections of a three-dimensional Voronoi
tessellation.

III. SECTIONS

Consider a three-dimensional Poisson Voronoi diagram
and suppose it intersects a randomly oriented plane γ : the
resulting cross sections are polygons, as in the example shown
in Fig. 1.

In order to obtain analytical results for the distributions of
the lengths and areas of Vp(2,3), some simplifying hypothesis
is needed: here the cells will be supposed to be spheres. This
is, admittedly, a rather rough approximation, but, on the other
hand, it makes all cuts of the same simple shape, i.e., circles,
irrespective of the orientation of the cutting plane. As shown in
the sequel, this approximation allows for deriving an analytical
form for the distributions of the radii lengths and the areas of
cell sections.

Let fV (V ) be the probability density function for the cell
volumes; then the PDF fR(R) for the lengths of their radii is
given by

fR(R) = fV

(
4
3πR3

)
4πR2. (8)

The use of Eq. (8) and of the standardized PDF (6), with d = 3,
leads to

fR(R) = 4 × 105

243
π5R14 exp

(
−20

3
πR3

)
. (9)

A plot of fR is shown in Fig. 2.
Consider now the intersection of a sphere of radius R with a

randomly oriented plane: the PDF of r , the length of the radius
of the resulting circle, is [3]

πc(r) =
∫ ∞

r

fR(R)
1

R

r√
R2 − r2

dR. (10)

FIG. 2. PDF fR as a function of R.

The probability of a plane’s intersecting a sphere is propor-
tional to R [3] so, in conclusion, the PDF of r can be written
as

fr (r) = α

∫ ∞

r

fR(R)
r√

R2 − r2
dR. (11)

Insertion of Eq. (9) into (11) results in the formula

fr (r)= α
4 × 105

243
π5

∫ ∞

r

R14 exp

(
−20

3
πR3

)
r√

R2 − r2
dR.

(12)

The integral (12) can be solved by making use of a computer
algebra system such as MAPLE: the result is

fr (r)=2/3α
6
√

3 3
√

10 3
√

πrG
4,1
3,5

(
100

9
π2r6

∣∣∣∣
5/6,1/6,1/2

7/3,2/3,1/3,0, 17
6

)
,

(13)

where G is the Mejier G function [12–14]; the numerical
value of α, obtained via normalization of fr , is α = 1.649.
A plot of fr is shown in Fig. 3. The Meijer G function is
very complicated and Eq. (13) does not lend itself to ready

FIG. 3. Probability density function fr as a function of r .
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interpretation; moreover, to the best of our knowledge, it allows
no simple approximations (see [15]).

However, some insight into the form of fr can be gained
by considering Taylor expansions. In the interval [0,0.1]fr is
linear, fr (r) ≈ 2.78r , while for r close to 1, in the interval
[0.9,1], it is well approximated by a quadratic polynomial:

fr (r) ≈ −0.006(r − 1) + 0.136(r − 1)2. (14)

The mode occurs in the interval [0.5,0.6], where a close
approximation of fr is given by

fr (r) ≈ 2.48 + 0.58r − 95.528(r − 0.55)2

− 202.18(r − 0.55)3 + 1901.87(r − 0.55)4. (15)

From this formula, the mode m can be easily computed:
m = 0.553.

The mean and variance of fr are 〈r〉 = 0.487 and σ 2
r =

0.025, respectively; fr is moderately left skewed (skewness
γr = −0.522) and is slightly platykurtic (excess kurtosis kr =
−0.111). For comparison, note that fR is more symmetric
( skewness γR = 0.014) and has fatter tails (excess kurtosis
kR = −0.005).

The distribution function Fr is

Fr (r) = 1

90
α35/6102/3G

4,2
4,6

(
100

9
π2r6

∣∣∣∣
1,7/6,1/2,5/6

8/3,1,2/3,1/3, 19
6 ,0

)
1√
3π

.

(16)

The PDF fA of the areas of Vp(2,3) can be obtained from fr

by means of the transformation

fA(A) = fr

[ (
A

π

)1/2 ]
π−1/2

2
A−1/2, (17)

that is,

fA(A) = 0.549 6
√

3 3
√

10G
4,1
3,5

(
100

9

A3

π

∣∣∣∣
5/6,1/6,1/2

7/3,2/3,1/3,0, 17
6

)
π−2/3.

(18)

Since, for r close to 0, fr (r) ∼ r from Eq. (17), it follows that
fA(0) �= 0 and this result has been also verified by numerical
simulations we have carried out (see also [6] for a further
example). Indeed, it is easy to verify that fA(0) = 0.443.
Figure 4 shows the graph of fA.

The mode of fA is mA = 0.858, its mean and variance
are 〈A〉 = 0.824 and σ 2

A = 0.204, respectively; fA is approx-
imately symmetric (skewness γA = 0.278), and its excess
kurtosis is kA = −0.337, indicating that the transformation
from fr to fA yields a PDF with a lower and broader peak and
with shorter and thinner tails.

The distribution function FA is given by

FA = 0.018 35/6102/3G
4,2
4,6

(
100

9

A3

π

∣∣∣∣
1,7/6,1/2,5/6

8/3,1,2/3,1/3, 19
6 ,0

)
1√
3π

.

(19)

A comparison has been carried out between the distribution
functions Fr , FA, as given by Eqs. (16) and (19), respectively,
and the results of a numerical simulation, performed as fol-
lows: starting from 300 000 three-dimensional cells, 100 168

FIG. 4. PDF fA as a function of A.

irregular polygons were obtained by adding together results of
cuts by 41 triples of mutually perpendicular planes.

The area of the irregular polygons has been obtained with
the algorithm described in [16]: briefly, each cut defines a
two-dimensional grid and the polygons’ areas we measured
by counting the number of points of the grid belonging to a
given cell.

As concerns the linear dimension, in our approximation the
two-dimensional cells were considered circles and thus, for
consistency, the radius r of an irregular polygon was defined as

r =
(

A

π

)1/2

, (20)

that is, r is the radius of a circle with the same area of the
polygon, A. The empirical distribution of radii is shown in
Fig. 5 together with the graph of Fr : the maximum distance
between the empirical and analytical curves is dmax = 0.044.

Likewise, a comparison between FA and the simulation is
shown in Fig. 6; in this case, dmax = 0.039.

FIG. 5. Comparison between theoretical distribution (continuous
line) and data (empty circles) for the distribution of radii r of 2D
cells which result from an intersection with a plane. The maximum
distance between the two curves is dmax = 0.044.
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FIG. 6. Comparison between data (empty circles) and theoretical
curve (continuous line) of the distribution of areas. The maximum
distance between the two curves is dmax = 0.039.

IV. CONCLUSIONS

In this paper, analytical formulas have been provided which
model the distributions of the lengths and areas of the planar
sections of three-dimensional Poisson Voronoi diagrams: in
particular, it has been shown that they are related to the Meier
G function.

This finding is consistent with the analytical results pre-
sented in [17], where it is proved that nonlinear combinations

of gamma variables, such as products or quotients, have
distributions proportional, or closely related, to the Meijer G

distribution.
The analytical distributions Fr and FA been compared with

results of numerical simulations: in evaluating the differences
between analytical and empirical distributions, it must be kept
in mind that the cells were approximated as spheres and that
the distributions used here have no free parameters that can
be adjusted to optimize the fit. The results obtained here may
be useful for applications in stereology in that they allow for
predicting the distributions of linear and planar measures of
sections, given an arrangement of three-dimensional cells. This
method can also have application to astrophysics, namely in
the analysis of the spatial distributions of the voids between
galaxies, that are experimentally measured as two-dimensional
slices [18] and that can be identified with two-dimensional cuts
of a three-dimensional structure. For instance, the distribution
of the radius between galaxies of the Sloan Digital Sky Survey
Data Release 7 (SDSS DR7) has been reported in [18]; this
catalog contains 1054 radii re of voids. To compare these
experimental data with the results obtained here, one should
know the values of Re, the radii of voids in three dimensions;
however by making use of standardized variables x = r/〈r〉,
xe = re/〈re〉, one obtains for the standard deviation, based
on observations σxe

= 0.26, close to the theoretical value,
σx = 0.32. Finally, the 2D cuts presented in this paper may
be related to Laguerre decompositions (weighted Voronoi
decomposition) [19–21], with a weighting factor depending
on the distance between the cells and the cutting plane.
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