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CONDITIONAL FORMULAE FOR GIBBS-TYPE EXCHANGEABLE
RANDOM PARTITIONS1
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Gibbs-type random probability measures and the exchangeable random
partitions they induce represent an important framework both from a theoret-
ical and applied point of view. In the present paper, motivated by species
sampling problems, we investigate some properties concerning the condi-
tional distribution of the number of blocks with a certain frequency generated
by Gibbs-type random partitions. The general results are then specialized to
three noteworthy examples yielding completely explicit expressions of their
distributions, moments and asymptotic behaviors. Such expressions can be
interpreted as Bayesian nonparametric estimators of the rare species variety
and their performance is tested on some real genomic data.

1. Introduction. Let X be a complete and separable metric space equipped
with the Borel σ -algebra X and denote by P the space of probability distribu-
tions defined on (X,X ) with σ(P) denoting the Borel σ -algebra of subsets of P .
By virtue of de Finetti’s representation theorem, a sequence of X-valued random
elements (Xn)n≥1, defined on some probability space (�,F ,P), is exchangeable
if and only if there exists a probability measure Q on the space of probability
distributions (P, σ (P)) such that

P[X1 ∈ A1, . . . ,Xn ∈ An] =
∫
P

n∏
i=1

P(Ai)Q(dP)(1)

for any A1, . . . ,An in X and n ≥ 1. The probability measure Q directing the
exchangeable sequence (Xn)n≥1 is also termed de Finetti measure and takes on
the interpretation of prior distribution in Bayesian applications. The representation
theorem can be equivalently stated by saying that, given an exchangeable sequence
(Xn)n≥1, there exists a random probability measure (r.p.m.) P̃ , defined on (X,X )

and taking values in (P, σ (P)), such that

P[X1 ∈ A1, . . . ,Xn ∈ An|P̃ ] =
n∏

i=1

P̃ (Ai)(2)
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almost surely, for any A1, . . . ,An in X and n ≥ 1. In this paper we will focus
attention on almost surely discrete r.p.m.’s, that is, P̃ is such that P[P̃ ∈ Pd ] = 1
with Pd ∈ σ(P) indicating the set of discrete probability measures on (X,X )

or, equivalently, (Xn)n≥1 is directed by a de Finetti measure Q that is concen-
trated on Pd . An almost surely discrete r.p.m. (without fixed atoms) can always
be written as

P̃ = ∑
i≥1

p̃iδX̂i
(3)

for some sequences (X̂i)i≥1 and (p̃i)i≥1 of, respectively, X-valued random loca-
tions and nonnegative random weights such that P[∑i≥1 p̃i = 1] = 1 almost surely.

In the following we will assume that the two sequences in (3) are independent.
These specifications imply that a sample (X1, . . . ,Xn) from the exchangeable se-
quence generates a random partition �n of the set of integers Nn := {1, . . . , n}, in
the sense that any i �= j belongs to the same partition set if and only if Xi = Xj .
The random number of partition sets in �n is denoted as Kn with respective fre-
quencies N1, . . . ,NKn . Accordingly, the sequence (Xn)n≥1 associated to a r.p.m.
P̃ as in (3) induces an exchangeable random partition � = (�n)n≥1 of the set
of natural numbers N. The distribution of � is characterized by the sequence
{p(n)

k : 1 ≤ k ≤ n,n ≥ 1} such that

p
(n)
k (n) = P[�n = π ],(4)

for π a partition of Nn into k blocks with vector frequencies n = (n1, . . . , nk) such
that

∑k
j=1 nj = n. Hence, (4) identifies, for any n ≥ 1, the probability distribution

of the random partition �n of Nn and is known as the exchangeable partition prob-
ability function (EPPF), a concept introduced by J. Pitman [21] as a major develop-
ment of earlier results on exchangeable random partitions due to J. F. C. Kingman
(see, e.g., [15, 16]). It is worth noting that EPPFs can be defined either by start-
ing from an exchangeable sequence associated to a discrete r.p.m. and looking at
the induced partitions or by defining directly the partition distribution. In the latter
case, the distribution of the random partitions �n must satisfy certain consistency
conditions and a symmetry property that guarantees exchangeability. A compre-
hensive account on exchangeable random partitions can be found in [23] together
with an overview of the numerous application areas and relevant references.

1.1. Gibbs-type r.p.m.’s and partitions. We now recall the definition of a gen-
eral class of r.p.m.’s and of the exchangeable random partitions they induce to-
gether with some of distinguished special cases. This important class, introduced
and thoroughly studied in [11], is characterized by the fact that its members in-
duce exchangeable random partitions admitting EPPFs with product form, a fea-
ture which is crucial for guaranteeing mathematical tractability. Before introducing
the definition, set Dn,j := {(n1, . . . , nj ) ∈ {1, . . . , n}j :

∑j
i=1 ni = n} and denote by

(a)q = �(a + q)/�(a) the qth ascending factorial of a for any integer q ≥ 1.
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DEFINITION 1. Let (Xn)n≥1 be an exchangeable sequence associated to an
almost surely discrete r.p.m. (3) for which locations (X̂i)i≥1 and weights (p̃i)i≥1

are independent. Then the r.p.m. P̃ and the induced exchangeable random partition
are said of Gibbs-type if, for any n ≥ 1, 1 ≤ j ≤ n and (n1, . . . , nj ) ∈ Dn,j , the
corresponding EPPF can be represented as follows:

p
(n)
j (n1, . . . , nj ) = Vn,j

j∏
i=1

(1 − σ)ni−1(5)

for σ ∈ (−∞,1) and a set of nonnegative weights {Vn,j :n ≥ 1,1 ≤ j ≤ n} satis-
fying the recursion Vn,j = Vn+1,j+1 + (n − σj)Vn+1,j with V1,1 = 1.

Hence, a Gibbs-type random partition is completely specified by the choice of
σ < 1 and the weights Vn,j ’s. The role of σ is crucial since it determines the
clustering structure as well as the asymptotic behavior of Gibbs-type models. As
for the latter aspect, for any n ≥ 1 define

cn(σ ) := 1(−∞,0)(σ ) + log(n)1{0}(σ ) + nσ1(0,1)(σ )

where 1A denotes the indicator function of set A. Then, for any Gibbs-type
r.p.m. there exists a strictly positive and almost surely finite random variable Sσ ,
usually termed σ -diversity, such that

Kn

cn(σ )

a.s.−→ Sσ ,(6)

for n → +∞. See [22], Section 6.1, for details. Finally, it is worth recalling that
the solutions of the backward recursions defining the Vn,j ’s form a convex set
whose extreme points are determined in [11], Theorem 12, providing a complete
characterization of Gibbs-type models according to the values of σ they assume.
In the next subsection we concisely point out three important explicit special cases
to be dealt with also in the sequel.

1.2. Examples. We will illustrate three noteworthy examples of Gibbs-type
r.p.m.’s that correspond to different choices of σ and the Vn,j ’s in Definition 1. The
first one is the Dirichlet process [9], which corresponds to a Gibbs-type r.p.m. char-
acterized by σ = 0 and Vn,j = θj /(θ)n with θ > 0. The implied EPPF coincides
with

p
(n)
j (n1, . . . , nj ) = θj

(θ)n

j∏
i=1

(ni − 1)!(7)

and is well known in Population Genetics as the Ewens model. See [6] and refer-
ences therein.

The most interesting special case for our purposes is a generalization of (7)
that has been provided by J. Pitman in [21]. It corresponds to the exchange-
able random partition generated by the two-parameter Poisson–Dirichlet process,
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which coincides with a Gibbs-type r.p.m. with σ ∈ (0,1) and, for any θ > −σ ,
Vn,j = ∏j−1

i=0 (θ + iσ )/(θ)n. The EPPF turns out to be

p
(n)
j (n1, . . . , nj ) =

∏j−1
i=0 (θ + iσ )

(θ)n

j∏
i=1

(1 − σ)ni−1.(8)

Clearly, the Ewens model (7) is recovered from (8) by letting σ → 0. The r.p.m.
and the partition distribution associated to (8) will be equivalently termed the
PD(σ, θ) process or Pitman model.

Finally, another notable example of Gibbs-type r.p.m. has been recently pro-
vided in [10]. It is characterized by σ = −1 and weights of the form

Vn,j = (γ )n−j

∏j−1
i=1 (i2 − γ i + ζ )∏n−1
i=1 (i2 + γ i + ζ )

,(9)

where ζ and γ are chosen such that γ ≥ 0 and i2 − γ i + ζ > 0 for all i ≥ 1. In the
sequel we will term both the r.p.m. and the induced exchangeable random partition
as the Gnedin model.

1.3. Aims and outline of the paper. The main applied motivation of the present
study is related to species sampling problems. Indeed, in many applications that
arise, for example, in population genetics, ecology and genomics, a population is
a composition of individuals (e.g., animals, plants or genes) of different species:
the X̂i’s and the p̃i ’s in (3) can then be seen as species labels and species propor-
tions, respectively. In most cases one is interested in the p̃i’s or in some function-
als of them: this naturally leads to work with the random partitions induced by an
exchangeable sequence. The number of distinct partition blocks Kn takes on the
interpretation of the number of different species detected in the observed sample
(X1, . . . ,Xn) and the Nj ’s are the species frequencies. Given the relevance and
intuitiveness of such an applied framework, throughout the paper we will often
resort to the species metaphor even if the tools we will introduce and the results
we will achieve are of interest beyond the species sampling framework.

Our first goal consists in analyzing certain distributional properties of Gibbs-
type r.p.m.’s. Specifically, we are interested in determining the probability distri-
bution of the number of partition blocks having a certain size or frequency. In other
words, given an exchangeable sequence (Xn)n≥1 as in (1) associated to a Gibbs-
type r.p.m., we investigate distributional properties of: (i) the number of species
with frequency l in a sample of size n, namely, Ml,n = ∑Kn

i=1 1{l}(Ni); (ii) the num-

ber of species Ml,n+m = ∑Kn+m

i=1 1{l}(Ni) with frequency l in an enlarged sample
of size n+m, for m ≥ 0, conditionally on the species composition detected within
a n-size sample (X1, . . . ,Xn). Note that the latter problem is considerably more
challenging since it requires to account for the allocation of (Xn+1, . . . ,Xn+m) be-
tween “old” and “new” species together with the sequential modification of their
frequencies, conditional on (X1, . . . ,Xn).
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Solving problem (ii) is also the key for achieving our second goal, namely, the
derivation of estimators for rare species variety, where rare species are identified
as those with a frequency not greater than a specific abundance threshold τ . This
is of great importance in numerous applied settings. For example, in ecology con-
servation of biodiversity is a fundamental theme and it can be formalized in terms
of the number of species whose frequency is greater than a specified threshold.
Indeed, any form of management on a sustained basis requires a certain number of
sufficiently abundant species (the so-called breeding stock). We shall address the
issue be relying on a Bayesian nonparametric approach: the de Finetti measure as-
sociated to a Gibbs-type r.p.m. represents the nonparametric prior distribution and
relying on the conditional (or posterior) distributions in (ii), one derives the de-
sired estimators as conditional (or posterior) expected values. Bayesian estimators
for overall species variety, namely, the estimation of the distinct species (regard-
less of the respective frequencies), have been introduced and discussed in [8, 17,
18, 20]. Further contributions at the interface between Bayesian Nonparametrics
and Gibbs-type random partitions can be found in [12, 13, 19]. None of the exist-
ing work provides estimators for the number of species with specific abundance.
Here we fill in this important gap and, besides providing general results valid for
the whole family of Gibbs-type r.p.m.’s, we specialize them to the three examples
outlined in Section 1.2. This leads to explicit expressions that are of immediate use
in applications.

The paper is structured as follows. Section 2 provides distributional results on
the unconditional structure of Ml,n and the conditional structure of Ml,n+m, given
the species composition detected in a sample of size n, for general Gibbs-type
r.p.m.’s together with the corresponding estimators. Section 3 focuses on the three
special cases of the Dirichlet process, and the models of Gnedin and of Pitman. In
particular, for these special cases we also provide asymptotic results concerning
the conditional distribution of Ml,n+m, given the species composition detected in a
sample of size n, as the size of the additional sample m increases. The framework
for genomic applications, including platforms under which such estimation prob-
lems arise, is presented in Section 4, where the methodology is also tested on real
genomic data. In Section 5 the proofs of the results of Sections 2 and 3 and some
useful techniques are described.

2. Distribution of cluster frequencies.

2.1. Probability distribution of Ml,n. We start our analysis of distributional
properties of Gibbs-type random partitions by focusing on the unconditional dis-
tribution of the number of blocks with a certain size l, Ml,n. The blocks with
relatively low frequency are typically referred to as small blocks (see, e.g., [25]),
which, in terms of species sampling, will represent the rare species.

First note that the EPPF (5) yields the probability distribution of Mn :=
(M1,n, . . . ,Mn,n). Specifically, the so-called Gibbs-type sampling formula deter-
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mines the probability distribution of Mn and it corresponds to

P[Mn = (m1, . . . ,mn)] = Vn,jn!
n∏

i=1

(
(1 − σ)i−1

i!
)mi 1

mi ! ,(10)

for any (m1, . . . ,mn) ∈ {0,1, . . .}n such that
∑n

i=1 imi = n and
∑n

i=1 mi = j . The
next proposition provides explicit expressions for the r th factorial moments of
Ml,n in terms of generalized factorial coefficients C (n, k;σ). Recall that, for any
n ≥ 1 and k ≤ n, C (n, k;σ) is defined as (σ t)n = ∑n

k=0 C (n, k;σ)(t)k for σ ∈ R

and, moreover, is computable as C (n, k;σ) = (1/k!)∑k
j=0(−1)j

(k
j

)
(−σj)n with

the proviso C (0,0;σ) = 1, C (n,0;σ) = 0 for any n > 0 and C (n, k;σ) = 0
for any k > n. For an exhaustive account on generalized factorial coefficients the
reader is referred to [4].

PROPOSITION 1. Let (Xn)n≥1 be an exchangeable sequence associated to a
Gibbs-type r.p.m. Then, for any l = 1, . . . , n and r ≥ 1,

E
[
(Ml,n)[r]

] =
(

(1 − σ)l−1

l!
)r

(n)[lr]
n∑

j=1

Vn,j

C (n − rl, j − r;σ)

σ j−r
,(11)

where (a)[q] = a(a − 1) · · · (a − q + 1) for any q ≥ 1.

By using standard arguments involving probability generating functions, one
can use the factorial moments (11) for determining the probability distribution of
Ml,n. This will be illustrated for the three examples in Section 3. The asymptotic
behavior of Ml,n, as n → ∞, is determined in [23], Lemma 3.11: if P̃ is a Gibbs-
type r.p.m. with σ ∈ (0,1), then for any l ≥ 1

Ml,n

nσ

d−→ σ(1 − σ)l−1

l! Sσ(12)

as n → +∞, where Sσ is the σ -diversity defined in (6). Some recent interesting
developments on the asymptotic behavior of the random variable Ml,n associated
to a generic exchangeable random partition are provided in [25].

2.2. Conditional formulae. Unlike the study of unconditional properties of
Gibbs-type random partitions, that are the focus of a well-established literature
with plenty of results, the investigation of conditional properties for this family
of partitions has been only recently started in [20] and many issues are still to be
addressed. We are going to focus on determining the distribution of Ml,n+m con-
ditional on the number of distinct species Kn, and on their respective frequencies
N1, . . . ,NKn , recorded in the sample (X1, . . . ,Xn). This will also serve as a tool
for predicting the value of the number of distinct species that will appear l times
in the enlarged sample (X1, . . . ,Xn+m), given the observed sample (X1, . . . ,Xn).
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Let X∗
1, . . . ,X∗

Kn
denote the labels identifying the Kn distinct species detected

in the sample (X1, . . . ,Xn). One can, then, define

L(n)
m :=

m∑
i=1

Kn∏
j=1

1{X∗
j }c (Xn+i) = card({Xn+1, . . . ,Xn+m} ∩ {X∗

1, . . . ,X∗
Kn

}c)

as the number of observations from the additional sample of size m that do not
coincide with any of the Kn distinct species in the basic sample. Correspondingly,
X∗

Kn+1, . . . ,X
∗
Kn+K

(n)
m

are the labels identifying the additional K
(n)
m = Kn+m − Kn

distinct species generated by these L
(n)
m observations. Then we can define

SKn+i :=
m∑

j=1

1{X∗
Kn+i}(Xn+j ), Sq :=

m∑
j=1

1{X∗
q }(Xn+j )

for i = 1, . . . ,K
(n)
m and q = 1, . . . ,Kn, where one obviously has

∑K
(n)
m

i=1 SKn+i =
L

(n)
m . For our purposes, it is useful to resort to the decomposition Ml,n+m = Ol,m +

Nl,m where

Ol,m :=
Kn∑
q=1

1{l}(Nq + Sq), Nl,m :=
K

(n)
m∑

i=1

1{l}(SKn+i)(13)

for any l = 1, . . . , n + m. It is apparent that Ol,m = 0 for any l > n + m and
Nl,m = 0 for any l > m. Hence, Ol,m is the number of distinct species, among
the Kn detected in the basic sample (X1, . . . ,Xn), that have frequency l in the en-
larged sample of size n+m. Analogously, Nl,m is the number of additional distinct
species, generated by L

(n)
m observations in (Xn+1, . . . ,Xn+m), with frequency l in

the enlarged sample. For notational convenience we introduce random variables
O

(n)
l,m and N

(n)
l,m that are defined in distribution as follows:

P
[
O

(n)
l,m = x

] = P[Ol,m = x|Kn = j,N = n],
P

[
N

(n)
l,m = y

] = P[Nl,m = y|Kn = j,N = n]
for any 1 ≤ j ≤ n, n ∈ Dn,j and n,m ≥ 1. Moreover, we set Cj,r as the space
of all vectors c(r) = (c1, . . . , cr) ∈ {1, . . . , j}r such that ci �= c� for any i �= � and
max1≤i≤r nci

≤ l. Finally,

Iσ

(
l,m, r,n, c(r))

:= r!
(

m

l − nc1, . . . , l − ncr ,m − lr + |nc(r) |
) r∏

i=1

(nci
− σ)l−nci

,

where |nc(r) | := ∑r
i=1 nci

. The next result provides an explicit expression for

the r th factorial moments of O
(n)
l,m in terms of noncentral generalized facto-

rial coefficients defined by C (n, k;γ,σ ) := (σ t − γ )n = ∑n
k=0 C (n, k;σ, γ )(t)k
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with σ, γ ∈ R. Recall also that C (n, k;σ, γ ) = (1/k!)∑k
j=0(−1)j

(k
j

)
(−σj − γ )n

with the proviso C (0,0;σ, γ ) = 1, C (n,0;σ) = (−γ )n for any n > 0 and
C (n, k;σ, γ ) = 0 for any k > n.

THEOREM 1. Let (Xn)n≥1 be an exchangeable sequence associated to a
Gibbs-type r.p.m. Then, for any l = 1, . . . , n + m, r ≥ 1 and n ∈ Dn,j

E
[(

O
(n)
l,m

)
[r]

] = ∑
c(r)∈Cj,r

Iσ

(
l,m, r,n, c(r))

×
m∑

k=0

Vn+m,j+k

Vn,j

(14)

× C (m − rl + |nc(r) |, k;σ,−n + |nc(r) | + (j − r)σ )

σ k
.

It is worth observing that the moments in (14), for any r ≥ 1, characterize the
distribution of O

(n)
l,m. Such a distribution is interpretable as the posterior probability

distribution, given the observations (X1, . . . ,Xn), of the number of distinct species
that (i) appear with frequency l in a sample of size n + m; (ii) had been already
detected within (X1, . . . ,Xn). Therefore, we will refer to O

(n)
l,m as the number of

“old” species with frequency l. The Bayesian nonparametric estimator, under a
quadratic loss function, coincides with the expected value of O

(n)
l,m and is easily

recovered from (14).

COROLLARY 1. Let (Xn)n≥1 be an exchangeable sequence associated to a
Gibbs-type r.p.m. Conditionally on a sample (X1, . . . ,Xn), the expected number
of “old” distinct species that appear with frequency l, for any l = 1, . . . , n + m, in
a sample of size n + m is given by

Ô
(n)
l,m := E

[
O

(n)
l,m

]

=
l∑

t=1

(
m

l − t

)
mt(t − σ)l−t(15)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m − (l − t), k;σ,−n + t + (j − 1)σ )

σ k
,

with mt ≥ 0 being the number of distinct species with frequency t observed in
the basic sample, namely, mt = ∑Kn

i=1 1{t}(Ni). Moreover, (Kn,M1,n, . . . ,Ml,n) is

sufficient for predicting O
(n)
l,m over the whole sample of size n + m.

An analogous result of Theorem 1 can be established for N
(n)
l,m. Indeed, if we set

Jσ (l,m, r) :=
(

m

l, . . . , l,m − rl

)
[(1 − σ)l−1]r ,
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one can show the following theorem.

THEOREM 2. Let (Xn)n≥1 be an exchangeable sequence associated to a
Gibbs-type r.p.m. Then, for any l = 1, . . . ,m and r ≥ 1,

E
[(

N
(n)
l,m

)
[r]

] = Jσ (l,m, r)

m−rl∑
k=0

Vn+m,j+k+r

Vn,j

C (m − rl, k;σ,−n + jσ )

σ k
.(16)

Hence, (16) characterizes the probability distribution of N
(n)
l,m. This can be

seen as the posterior probability distribution, conditional on the observations
(X1, . . . ,Xn), of the number of distinct species that (i) appear with frequency l

in a sample of size n + m; (ii) do not coincide with any of the Kn dis-
tinct species already detected within (X1, . . . ,Xn). For this reason N

(n)
l,m is re-

ferred to as the number of “new” species with frequency l. Thus, the Bayesian
nonparametric estimator, under a quadratic loss function, is easily recovered
from (16).

COROLLARY 2. Let (Xn)n≥1 be an exchangeable sequence associated to a
Gibbs-type r.p.m. Conditionally on a sample (X1, . . . ,Xn), the expected number
of “new” distinct species that appear with frequency l, for any l = 1, . . . ,m, in a
sample of size n + m is given by

N̂
(n)
l,m := E

[
N

(n)
l,m

]
(17)

=
(

m

l

)
(1 − σ)l−1

l∑
k=0

Vn+m,j+k+1

Vn,j

C (m − l, k;σ,−n + jσ )

σ k
.

Hence, Kn is sufficient for predicting N
(n)
l,m.

REMARK 1. According to the definition of the random variable N
(n)
l,m, one has

Ê(n)
m := E

[
K(n)

m |Kn = j,N = n
] =

m∑
l=1

N̂
(n)
l,m,(18)

providing an alternative derivation of the Bayesian nonparametric estimator for
the number of “new” distinct species obtained in [20]. A detailed discussion of the
estimator (18) and its relevance in genomics can be found in [17].

At this point we turn our attention to characterizing the following random vari-
able:

M
(n)
l,m

d= O
(n)
l,m + N

(n)
l,m,(19)
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whose probability distribution coincides with the distribution of the number
Ml,n+m of clusters of size l featured by (X1, . . . ,Xn+m) conditional on the ba-
sic sample (X1, . . . ,Xn). In particular, if we set

Hσ

(
l,m, r, t,n, c(t))
:= t !

(
m

l, . . . , l, l − nc1, . . . , l − nct ,m − rl + ∣∣nc(t)

∣∣
)

× [(1 − σ)l−1]r−t
t∏

i=1

(nci
− σ)l−nci

,

an analogous result of Theorems 1 and 2 can be established for M
(n)
l,m.

THEOREM 3. Let (Xn)n≥1 be an exchangeable sequence associated to a
Gibbs-type r.p.m. Then, for any l = 1, . . . ,m + n and r ≥ 1,

E
[(

M
(n)
l,m

)
[r]

]

=
r∑

t=0

(
r

t

) ∑
c(t)∈Cj,t

Hσ

(
l,m, r, t,n, c(t))

(20)

×
m−rl+|nc(t) |∑

k=0

Vn+m,j+k+r−t

Vn,j

× C (m − rl + |nc(t) |, k;σ,−n + |nc(t) | + (j − t)σ )

σ k
.

Hence, (20) characterizes the probability distribution of M
(n)
l,m. This is inter-

preted as the posterior probability distribution, given the observation (X1, . . . ,Xn),
of the number of distinct species that appear with frequency l in a sample of size
n + m. Thus, the Bayesian nonparametric estimator, under a quadratic loss func-
tion, is easily recovered from (20). Clearly, according to (19), this also corresponds
to the sum of the estimators in (15) and (17).

3. Illustrations. We now apply the general results of Section 2 and specialize
them to some noteworthy examples of Gibbs-type models. We will devote particu-
lar attention to the two-parameter Poisson–Dirichlet process since it is particularly
suited for species sampling applications in general [18] and for genomic applica-
tions in particular, as will be seen in Section 4.

3.1. The Dirichlet process. Denote the signless Stirling number of the first
kind by |s(n, k)| and recall that limσ→0 σ−kC (n, k, σ ) = |s(n, k)| for any n ≥ 1
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and 1 ≤ k ≤ n. Now, let P̃ be a Dirichlet process with parameter θ and, considering
the form of the Vn,j weights and Theorem 1, one readily obtains

E
[
(Ml,n)[r]

] = (n)[rl]
lr (θ)n

n−rl+r∑
j=1

θj |s(n − rl, j − r)| = (n)[rl]
lr (θ)n

(θ)[n−rl].

Using the classical sieve formula, one easily shows the following, which appears
to be new even in the case of Ewens partitions with the exception of the case l = 1
obtained in [7].

PROPOSITION 2. If (Xn)n≥1 is an exchangeable sequence associated to a
Dirichlet process with parameter θ > 0, then, for any n ≥ 1 and l = 1, . . . , n,
the distribution of Ml,n is of the form

P[Ml,n = ml] = n!
ml !(θ)n

θml

lml

[n/l]−ml∑
t=0

(−1)t (θ)[n−ml−t l]
(n − mll − t l)!

θ t

lt
.(21)

On the basis of the result stated in Proposition 2, one can derive the asymptotic
behavior of Ml,n, namely, that, for any l ≥ 1,

Ml,n
d−→ Wl(22)

as n → +∞, where Wl is a random variable distributed according to a Poisson
distribution with parameter θ/ l. The limit result (22) is known in the literature and
has been originally obtained in [1, 3]. See also [2] and references therein.

Turning attention to the conditional case, one can easily derive the following
results. Theorem 1 provides an expression for the probability distribution of O

(n)
l,m,

that is,

P
[
O

(n)
l,m = ml

]

=
m−ml∑
t=0

(−1)t
(

ml + t

t

) ∑
c(ml+t)∈Cj,ml+t

m!∏ml+t
i=1 (l − nci

)!(m − νt )!

×
ml+t∏
i=1

(nci
)l−nci

(θ + n − ∑ml+t
i=1 nci

)m−νt

(θ + n)m
,

where we set νt = ∑ml+t
i=1 (l−nci

). Analogously, Theorem 2 provides an expression

for the probability distribution of N
(n)
l,m, that is,

P
[
N

(n)
l,m = ml

] = θml

tml

m−ml∑
t=0

(
−θ

l

)t m!
t !ml !(m − lml − lt)!

(θ + n)m−lml−lt

(θ + n)m
.
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Similarly, according to Corollaries 1 and 2, and using the limiting result for non-
central generalized factorial coefficients

lim
σ→0

C (n, k;σ, γ )

σ k
=

n∑
i=k

(
n

i

)
|s(i, k)|(−γ )n−i ,

the Bayesian estimators of the number of “old” and of “new” species of size l

generated by (X1, . . . ,Xn+m), conditional on (X1, . . . ,Xn), are given by

Ô
(n)
l,m =

l∑
t=1

(
m

l − t

)
mt(t)l−t

(θ + n − t)m−(l−t)

(θ + n)m
(23)

and

N̂
(n)
l,m = (l − 1)!

(
m

l

)
θ

(θ + n + m − l)l
.(24)

In particular, from (23) and (24) the Bayesian estimator of the number of clusters of
size l over an enlarged sample of size n + m, conditional on the partition structure
of the n observed data, is given in the following proposition.

PROPOSITION 3. If (Xn)n≥1 is an exchangeable sequence associated to a
Dirichlet process with parameter θ , then

M̂
(n)
l,m =

(
m

l

)
θ(l − 1)!

(θ + n + m − l)l
+

l∑
t=1

(
m

l − t

)
mt(t)l−t

(θ + n − t)m−l+t

(θ + n)m

for any l ∈ {1, . . . , n + m}.
Finally, by combining (16) and (20) a simple limiting argument leads to show

that, as m → +∞ and for any l ≥ 1, N
(n)
l,m

d−→ W
(n)
l and

M
(n)
l,m

d−→ W
(n)
l ,(25)

where W
(n)
l is a random variable distributed according to a Poisson distribution

with parameter (θ + n)/l. Clearly, (25) reduces to (22) in the unconditional case
corresponding to n = 0.

3.2. The two-parameter Poisson–Dirichlet process. The Pitman model with
parameters (σ, θ) in (8), or PD(σ, θ) process, stands out for its analytical tractabil-
ity and for its modeling flexibility. In particular, within the species sampling con-
text, the presence of the additional parameter σ ∈ (0,1), w.r.t. the simple Dirichlet
model, allows to model more effectively both the clustering structure featured by
the Xi’s and the growth rate of Kn. Therefore, given its importance, we devote
special attention to this process. A few additional asymptotic results that comple-
ment, for the specific case we are analyzing, those recalled in Section 2 for general
Gibbs-type r.p.m.’s are of particular interest.
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3.2.1. Distributional results. Let us first state a result concerning the uncon-
ditional distribution of Ml,n, namely, the number of clusters with frequency l in a
sample of size n.

PROPOSITION 4. Let (Xn)n≥1 be an exchangeable sequence associated to a
PD(σ, θ) process with σ ∈ (0,1) and θ > −σ . Then,

P[Ml,n = ml] =
n−ml∑
t=0

(−1)t
n!

t !ml!(n − lml − lt)!σ
ml+t

(
θ

σ

)
ml+t

(26)

×
(

(1 − σ)l−1

l!
)ml+t (θ + (ml + t)σ )n−lml−lt

(θ)n
.

Hence, (26) provides the marginal distribution of the Pitman sampling for-
mula (10), corresponding to Vn,j = σ j (θ/σ )j /(θ)n, and, to the authors’ knowl-
edge, it is not explicitly reported in the literature.

Turning attention to the conditional case, one can easily derive the following
results.

PROPOSITION 5. Let (Xn)n≥1 be an exchangeable sequence associated to a
PD(σ, θ) process with σ ∈ (0,1) and θ > −σ . Then,

P
[
O

(n)
l,m = ml

]

=
m−ml∑
t=0

(−1)t
(

ml + t

t

)

× ∑
c(ml+t)∈Cj,ml+t

(
m

l − nc1, . . . , l − ncml+t ,
∑ml+t

i=1 (l − nci
)

)
(27)

×
ml+t∏
i=1

(nci
− σ)l−nci

×
(θ + n − ∑ml+t

i=1 nci
+ (ml + t)σ )

m−∑ml+t

i=1 (l−nci
)

(θ + n)m

for any l ∈ {1, . . . , n} and ml ∈ {1, . . . , n} such that mll ≤ n.

From (27) one can deduce a completely explicit expression for the Bayesian
estimator of the number of “old” species with frequency l in the whole sample
X1, . . . ,Xn+m, namely,

Ô
(n)
l,m = E

[
O

(n)
l,m

] =
l∑

t=1

(
m

l − t

)
mt(t − σ)l−t

(θ + n − t + σ)m−(l−t)

(θ + n)m
,(28)
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which can be readily used in applications, as will be shown in Section 4. In a simi-
lar fashion it is possible to deduce the distribution of the number of “new” species
that will appear l times in (Xn+1, . . . ,Xn+m) conditional on the observations
(X1, . . . ,Xn). Indeed, one can show the following:

PROPOSITION 6. Let (Xn)n≥1 be an exchangeable sequence associated to a
PD(σ, θ) process with σ ∈ (0,1) and θ > −σ . Then,

P
[
N

(n)
l,m = ml

] =
m−ml∑
t=0

(−1)t
(

m

t,ml,m − lml − lt

) ml+t−1∏
i=0

(θ + jσ + iσ )

(29)

×
(

(1 − σ)l−1

l!
)ml+t (θ + n + (ml + t)σ )m−l(ml+t)

(θ + n)m
,

for any n ≥ 1, j = 1, . . . , n, l ≥ 1 and ml ≥ 1 such that mll ≤ m.

REMARK 2. One can alternatively prove (29) by relying on the so-called
quasi-conjugacy property of the two-parameter Poisson–Dirichlet process, a con-
cept introduced in [20]. Indeed, it suffices to marginalize an updated Pitman sam-
pling formula and (29) easily follows. Moreover, if n = j = 0 in (29), one recovers
the marginal distribution of Ml,n as described in (26) and, if one additionally sets
σ = 0, the distribution of Ml,n corresponding to the Ewens partition in (21) is
obtained.

The Bayesian estimator for the number of “new” species with frequency l over
the enlarged sample n + m coincides with

N̂
(n)
l,m = E

[
N

(n)
l,m

] =
(

m

l

)
(1 − σ)l−1(θ + jσ )

(θ + n + σ)m−l

(θ + n)m
(30)

for any l ∈ {1, . . . ,m}. Having determined Ô
(n)
l,m and N̂

(n)
l,m, one finds out that

a Bayesian estimator of the total number of species with frequency l among
(X1, . . . ,Xn+m), given (X1, . . . ,Xn), is given by the following:

PROPOSITION 7. If (Xn)n≥1 is an exchangeable sequence with P̃ in (2) being
the PD(σ, θ) process, for any l = 1, . . . , n + m,

M̂
(n)
l,m =

l∑
t=1

(
m

l − t

)
mt(i − σ)l−t

(θ + n − t + σ)m−(l−t)

(θ + n)m
(31)

+
(

m

l

)
(1 − σ)l−1(θ + jσ )

(θ + n + σ)m−l

(θ + n)m
.

Of course, Theorem 3 allows a direct evaluation of M̂
(n)
l,m above and yields mo-

ments of any order r ≥ 1 of M
(n)
l,m.
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3.2.2. Asymptotics. We now study the asymptotic behavior of M
(n)
l,m and N

(n)
l,m,

as m → ∞. However, before proceeding, let us first recall a well-known result
concerning the asymptotics of Ml,n as n increases. To this end, let fσ be the density
function of a positive σ -stable random variable and Yq , for any q ≥ 0, a positive
random variable with density function

fYq (y) = �(qσ + 1)

σ�(q + 1)
yq−1/σ−1fσ (y−1/σ ).

Then, for any l ≥ 1

Ml,n

nσ

d−→ σ(1 − σ)(l−1)

l! Yθ/σ

as n → +∞. See [23] for details. We now provide a new result concerning the
limiting behavior in the conditional case and, specifically, of M

(n)
l,m and of N

(n)
l,m as

m → ∞. It will be shown that they converge in distribution to the same random
element that still depends on Yq for a suitable choice of q .

THEOREM 4. Let (Xn)n≥1 be an exchangeable sequence associated to a
PD(σ, θ) process. For any 1 ≤ j ≤ n and l ≥ 1, one has

N
(n)
l,m

mσ

d−→ σ(1 − σ)l−1

l! Zn,j(32)

as m → +∞, where Zn,j
d= Bj+θ/σ,n/σ−jY(θ+n)/σ and Bj+θ/σ,n/σ−j is a beta

random variable with parameters (j + θ/σ,n/σ − j) independent of Y(θ+n)/σ .
Moreover,

M
(n)
l,m

mσ

d−→ σ(1 − σ)l−1

l! Zn,j(33)

as m → +∞.

The limit in (32) and (33) implies that Kn is asymptotically sufficient for pre-
dicting the conditional number of distinct species with frequency l to be generated
by the additional sample (Xn+1, . . . ,Xn+m) as its size m increases. Such a limit in-
volves the beta-tilted random variable Zn,j , originally introduced in [8] by investi-
gating the asymptotic behavior of the conditional number of “new” distinct species
K

(n)
m generated by the additional sample as its size m increases. Specifically,

K
(n)
m

mσ
→ Zn,j ,

almost surely, as m → +∞. It is worth noting that beta-tilted random variables of
similar type have been recently the object of a thorough investigation in [14] in the
context of the so-called Lamperti-type laws.

REMARK 3. Note that from (32) and (33) one obtains the unconditional result
of [23] by setting n = j = 0. Moreover, one recovers a result in [8], which states
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that, conditional on (X1, . . . ,Xn), m−σK
(n)
m

d→ Zn,j , as m → ∞. Indeed, K
(n)
m =∑L

(n)
m

l=1 N
(n)
l,m and L

(n)
m diverges as m → +∞: hence, the limit in distribution for K

(n)
m

can be deduced from (32) upon noting that
∑

l≥1(l!)−1σ(1 − σ)l−1 = 1.

3.3. The Gnedin model. Consider now the Gnedin model (9) with parameters
ζ = 0 and γ ∈ [0,1). The corresponding random partition is representable as a
mixture partitions of the type (8), however, with parameters (−1, κ), each of which
generates a partition with a finite number of blocks κ . The mixing distribution for
the total number of blocks is p(κ) = 1{1,2,...}(κ)γ (1 − γ )κ−1/κ!.

PROPOSITION 8. Let (Xn)n≥1 be an exchangeable sequence associated to the
Gnedin model with parameters (0, γ ). Then

E
[
(Ml,n)[r]

]
= 1{rl}(n)

r!l(γ )rl−r (1 − γ )r−1

(1 + γ )rl−1
+ 1{rl+1,...}(n)

n(γ )rl−r (1 − γ )r

(1 + γ )n−1
(34)

×
n−rl−1∑

k=0

(
n − rl − 1

k

)
(r + k)!
(1 + k)!(γ + rl − r)n−rl−1−k(r + 1 − γ )k.

From (34) one can determine the probability distribution of Ml,n. Indeed, if
n/l /∈ N, then

P[Ml,n = ml]
= 1{1,...,n}(lml)n

ml !(1 + γ )n−1

×
[n/l]∑
r=ml

(−1)r−ml

(r − ml)! (γ )rl+r (1 − γ )r

×
n−rl−1∑

k=0

(
n − rl − 1

k

)
(r + k)!
(1 + k)!(γ + rl + r)n−rl−1−k(r + 1 − γ )k.

On the other hand, if n/l ∈ N, then

P[Ml,n = ml] = 1{1,...,n}(lml)n

ml !(1 + γ )n−1

×
{
(−1)n/l−ml

(n/l − 1)!(γ )n−n/l(1 − γ )n/l−1

(n/l − ml)!

+
n/l−1∑
r=ml

(−1)r−ml

(r − ml)! (γ )rl+r (1 − γ )r
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×
n−rl−1∑

k=0

(
n − rl − 1

k

)
(r + k)!
(1 + k)!

× (γ + rl + r)n−rl−1−k(r + 1 − γ )k

}
.

Moreover, for any l ≥ 1,

Ml,n
d−→ 0(35)

as n → +∞. Note that the limiting result in (35) is not surprising since a Gnedin
r.p.m. induces a random partition of N into an almost surely finite number of blocks
even though with infinite expectation [10].

As for the posterior distribution of the number of clusters of size l, we now use
the general results outlined in Section 2 to provide some explicit forms for the
distribution of O

(n)
l,m and N

(n)
l,m.

PROPOSITION 9. Let (Xn)n≥1 be an exchangeable sequence associated to the
Gnedin model with parameters ζ = 0 and γ ∈ [0,1). Then,

P
[
O

(n)
l,m = ml

] = 1{1,...,n}(lml)m!
(n)m(γ + n)m

×
[n/l]∑
r=ml

(−1)r−ml

(
r

ml

)
(m + n + j − r − rl − 1)!

× ∑
c(r)∈Cj,r

1

(m − rl + |nc(r) |)!
r∏

i=1

(nci
− σ)l−nci

(l − nci
)!

×
m−rl+|nc(r) |∑

k=0

(
m − rl + |nc(r) |

k

)

× (j)k(γ + n − j)m−k

(n − |nc(r) | + j − r − 1 + k)! .
Moreover,

P
[
N

(n)
l,m = ml

] = 1{1,...,m}(lml)m!
(n)m(γ + n)m

×
[n/l]∑
r=ml

(−1)r−ml
(m − rl + n + j)!
(r − ml)!(m − rl)!

×
m−rl∑
k=0

(
m − rl

k

)
(γ + n − j)m−r−k(j)k+r (j − γ )k+r

(n + j + k)! .
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One can further deduce the conditional expected values of O
(n)
l,m and of N

(n)
l,m

which take on the following forms:

Ô
(n)
l,m = 1

(n)m(γ + n)m

×
l∑

t=1

mt

(
m

l − t

)
(t + 1)l−t (m + n + j − l − 2)!

×
m−l+t∑
k=0

(
m − l + t

k

)
(γ + n − j)m−k(j)k

(n + j − t − 2 + k)! ,

N̂
(n)
l,m = m!(1 + γ )n−1(n + j)m−l

(n)m(γ + n)m

m−l∑
k=0

(
m − l

k

)
(j)k(j − γ )k+1

(n + j)k
.

As in previous examples, these quantities can, then, be used in order to provide a
Bayesian estimator M̂

(n)
l,m = Ô

(n)
l,m + N̂

(n)
l,m of the number of species of size l over the

enlarged sample of size n + m, conditional on the sample (X1, . . . ,Xn).
Finally, by combining Theorems 2 and 3 with the specific weights (9) it can be

easily verified that for any l ≥ 1

N
(n)
l,m

d−→ 0, M
(n)
l,m

d−→ 0

as m → +∞. As in the unconditional case, these limits are not surprising due to
the almost sure finiteness of the number of blocks of a random partition induced
by the Gnedin model.

4. Genomic applications. A Bayesian nonparametric model (2), with P̃ be-
ing a Gibbs-type r.p.m. with σ > 0, is particularly suited for inferential problems
with a large unknown number of species given it postulates an infinite number of
species. These usually occur in genomic applications, such as the analysis of Ex-
pressed Sequence Tags (EST), Cap Analysis Gene Expression (CAGE) or Serial
Analysis of Gene Expression (SAGE). See, for example, [5, 17, 26]. The typical
situation is as follows: a sample of size n sequenced from a genomic library is
available and one would like to make predictions, over an enlarged sample of size
n + m and conditionally on the observed sample, of certain quantities of interest.
The most obvious quantity is the number of distinct species to be observed in the
enlarged sample, which represents a measure of the overall genes variety. The re-
sulting Bayesian nonparametric estimators proposed in [18, 20] have already been
integrated into the web server RichEst© [5]. However, estimators for the over-
all genes variety are certainly useful but necessarily need to be complemented by
an effective analysis of the so-called “rare genes variety” (see, e.g., [26]). There-
fore, from an applied perspective it is important to devise estimators of the number
of genes that appear only once, the so-called unigenes or, more generally, of the
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number of genes that are observed with frequency less than or equal to a spe-
cific abundance threshold τ . The results deduced in the present paper perfectly
fit these needs. Indeed, conditional on an observed sample of size n, the quantity
M̂

(n)
1,m = E[M(n)

l,m] is a Bayesian estimator of the number of genes that will appear
only once in a sample of size n+m and can be easily determined from Theorem 3.
In a similar fashion, having fixed a threshold τ ,

M̂(n)
τ =

τ∑
l=1

M̂
(n)
l,m(36)

is a Bayesian estimator of the rare genes variety, namely, the number of species
appearing with frequency less than τ in a sample of size n + m.

Having laid out the framework and described the estimators to be used, we
now test the proposed methodology on some real genomic data. To this end, we
deal with a widely used EST data set obtained by sequencing a tomato-flower
cDNA library (made from 0–3 mm buds of tomato flowers) from the Institute for
Genomic Research Tomato Gene Index with library identifier T1526 [24]. The
observed sample consists of n = 2586 ESTs with j = 1825 unique genes, whose
frequencies can be summarized by

mi,2586 = 1434,253,71,33,11,6,2,3,1,2,2,1,1,1,2,1,1

with i ∈ {1,2, . . . ,14} ∪ {16,23,27}, which means that we are observing 1434
genes which appear once, 253 genes which appear twice, etc.

As for the specific model (2) we adopt, P̃ is a PD(σ, θ) process. The reason
we rely on such a specification is two-fold: on the one hand, it yields tractable
estimators that can be exactly evaluated and, on the other, it is a very flexible
model since it encompasses a wide range of partitioning structures according as to
the value of σ . On the basis of our choice of the nonparametric prior, we only need
to specify the parameter vector (σ, θ). This is achieved by adopting an empirical
Bayes procedure [18]: we fix (σ, θ) so as to maximize (8) corresponding to the
observed sample (j, n1, . . . , nj ), that is,

(σ̂ , θ̂ ) = arg max
(σ,θ)

∏j−1
i=1 (θ + iσ )

(θ + 1)n−1

j∏
i=1

(1 − σ)ni−1.(37)

The quantities we wish to estimate are N
(n)
τ = ∑τ

l=1 Nl,m and O
(n)
τ = ∑τ

l=1 Ol,m.
These quantities identify the number of distinct genes with abundances not greater
than τ or, in genomic terminology, with expression levels not greater than τ that
are present among the “new” genes detected in the additional sample and the “old”
genes observed in the basic sample, respectively. The overall number of rare dis-
tinct genes is easily recovered as M

(n)
τ = N

(n)
τ + O

(n)
τ . The corresponding estima-

tors can be deduced from (28), (30) and (31). In the present genomic context one
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can reasonably identify the rare genes as those presenting expression levels less
than or equal to τ = 3,4,5, which are the thresholds we employ for our analysis.

We first perform a cross-validation study for assessing the performance of our
methodology when used to predict rare genes abundance. To this end, 10 subsam-
ples of size 1000 have been drawn without replacement from the available 2586
EST sample. For each of the subsamples we have generated, the corresponding
values of (σ, θ) have been fixed according to (37). Predictions have, then, been
performed for an additional sample of size m = 1586, which corresponds to the
remaining observed genes. Table 1 below reports the true and estimated values for
the O

(n)
τ , N

(n)
τ and M

(n)
τ and shows the accurate performance of the proposed esti-

mators. Such a result is a fortiori appreciable if one considers that predictions are
made over an additional sample of size larger than 1.5 times the observed sample.

TABLE 1
Cross-validation study based on subsamples of size 1000 and prediction on the remaining m = 1586
data. The reported estimated and true quantities are the number of rare genes (i.e., with expression

levels less than or equal to τ , for τ = 3,4,5) among the “old” genes (O(n)
τ ), the “new” genes

(N(n)
τ ) and all genes (M(n)

τ )

τ = 3,n = 1000 τ = 4,n = 1000 τ = 5,n = 1000

N. O
(n)
τ N

(n)
τ M

(n)
τ O

(n)
τ N

(n)
τ M

(n)
τ O

(n)
τ N

(n)
τ M

(n)
τ

1 est. 750 1010 1759 777 1014 1791 793 1016 1809
true 767 991 1758 793 998 1791 803 999 1802

2 est. 739 1006 1744 765 1010 1775 781 1011 1792
true 753 1005 1758 785 1006 1791 794 1008 1802

3 est. 730 1003 1733 755 1007 1762 770 1008 1779
true 742 1016 1758 772 1019 1791 783 1019 1802

4 est. 765 1043 1807 789 1047 1836 804 1048 1852
true 772 986 1758 800 991 1791 811 991 1802

5 est. 741 971 1712 771 976 1748 788 978 1766
true 761 997 1758 788 1003 1791 797 1005 1802

6 est. 758 1027 1785 784 1031 1816 800 1033 1833
true 770 988 1758 798 993 1791 809 993 1802

7 est. 739 997 1735 766 1002 1768 783 1003 1786

true 758 1000 1758 787 1004 1791 796 1006 1802

8 est. 734 984 1719 763 989 1752 780 991 1770
true 747 1011 1758 779 1012 1791 790 1012 1802

9 est. 729 969 1698 759 974 1733 777 975 1752
true 747 1011 1758 779 1012 1791 789 1013 1802

10 est. 757 1020 1777 784 1025 1809 800 1026 1826
true 774 984 1758 799 992 1791 807 995 1802
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TABLE 2
Estimates for an additional sample corresponding to m ∈ {250,500,750,1000} given the observed
EST data set of size n = 2586 with j = 1825 distinct genes: estimates for the number of rare genes

(i.e., with expression levels less than or equal to τ , for τ = 3,4,5) among the “old” genes (O(n)
τ ),

the “new” genes (N(n)
τ ) and all genes (M(n)

τ )

τ = 3 τ = 4 τ = 5

n = 2586, j = 1825 n = 2586, j = 1825 n = 2586, j = 1825

m Ô
(n)
τ N̂

(n)
τ M̂

(n)
τ Ô

(n)
τ N̂

(n)
τ M̂

(n)
τ Ô

(n)
τ N̂

(n)
τ M̂

(n)
τ

250 1745 138 1882 1782 138 1920 1798 138 1935
500 1730 272 2002 1773 272 2045 1793 272 2064
750 1715 402 2117 1763 402 2165 1787 403 2189

1000 1700 529 2229 1753 530 2283 1780 530 2310

We now deal with the whole data set and provide estimates of rare genes abun-
dance after additional sequencing. To this end, we consider, as possible sizes of
the additional sample, m ∈ {250,500,750,1000}. As for the prior specification
of (σ, θ), the maximization in (37) leads to (σ̂ , θ̂ ) = (0.612,741). The resulting
estimates of O

(n,j)
τ , N

(n,j)
τ and M

(n,j)
τ are reported in Table 2.

5. Proofs. We start by providing a lemma concerning the marginal frequency
counts of the partition blocks induced by Gibbs-type random partition. In addi-
tion to the notation introduced in Section 2, we define the following shortened set
notation:

An,m(j,n, s, k) := {
Kn = j,N = n,L(n)

m = s,K(n)
m = k

}
and

An(j,n) := {Kn = j,N = n}
for any n = (n1, . . . , nj ) ∈ Dn,j . Further additional notation will be introduced in
the proofs when necessary.

LEMMA 1. Let (Xn)n≥1 be an exchangeable sequence associated to a Gibbs-
type r.p.m. For any x ∈ {1, . . . , j}, let q(x) = (q1, . . . , qx) with 1 ≤ q1 < · · · < qx ≤
j and define the vector of frequency counts Sq(x) := (Sq1, . . . , Sqx ). Then,

P[Sq(x) = sq(x) |An,m(j,n, s, k)]

= (m − s)!
(m − s − |sq(x) |)!

x∏
i=1

(nqi
− σ)sqi

sqi
!(38)

×
(n − |nq(x) | − (j − x)σ )m−s−|sq(x) |

(n − jσ )m−s
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for any vector sq(x) = (sq1, . . . , sqx ) of nonnegative integers such that |sq(x) | =∑x
i=1 sqi

≤ m − s. Moreover, for any y ∈ {1, . . . , k}, let r(y) = (r1, . . . , ry)

with 1 ≤ r1 < · · · < ry ≤ k and define the vector of frequency counts S∗
r(y) :=

(Sj+r1, . . . , Sj+ry ). Then

P[S∗
r(y) = sr(y) |An,m(j,n, s, k)]

= s!
(s − |sr(y) |)!

y∏
i=1

(1 − σ)sj+ri
−1

sj+ri !
(39)

× (k − y)!
k! σy C (s − |sr(y) |, k − y;σ)

C (s, k;σ)

for any vector sr(y) = (sj+r1, . . . , sj+ry ) of positive integers such that |sr(y) | =∑y
i=1 sj+ri ≤ s. Moreover, the random variables Sq(x) and S∗

r(y) are independent,

conditionally on (Kn,N,L
(n)
m ,K

(n)
m ).

PROOF. We start by recalling some useful conditional formulae for Gibbs-
type random partitions recently obtained in [20]. In particular, from [20], Corol-
lary 1, one has the conditional probability

P
[
K(n)

m = k,L(n)
m = s|An(j,n)

]
(40)

= Vn+m,j+k

Vn,j

(
m

s

)
(n − jσ )m−s

C (s, k, σ )

σ k
.

On the other hand, for any vectors of nonnegative integers sq(j) = (s1, . . . , sj ) such
that |sq(j) | = m − s, and for any vector of positive integers sr(k) = (sj+1, . . . , sj+k)

such that |sr(k) | = s, according to [20], equation (28), the expression

Vn+m,j+k

Vn,j

j∏
i=1

(ni − σ)si

k∏
�=1

(1 − σ)sj+�−1(41)

is the conditional probability, given An(j,n), of observing a sample Xn+1, . . . ,

Xn+m such that: (i) L
(n)
m = s elements generate K

(n)
m = k new distinct species with

frequencies sr(k) and (ii) the remaining m − s elements coincide with any of the j

distinct species in X1, . . . ,Xn and display a vector of frequencies sq(j) . Hence,

(41) determines the conditional probability distribution of (Sq(j) ,S∗
r(k) ,L

(n)
m ,K

(n)
m ),

given X1, . . . ,Xn. A combination of (40) and (41) implies that

σk ∏j
i=1(ni − σ)sqi

−1
∏k

�=1(1 − σ)sj+r�
−1(m

s

)
(n − jσ )m−sC (s, k, σ )

(42)

yields the conditional probability, given An,m(j,n, s, k), of observing a sam-
ple Xn+1, . . . ,Xn+m such that: (i) the k new distinct species featured by s of
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the m observations have frequencies sr(k) and (ii) the remaining m − s elements
coincide with any of the j distinct species in X1, . . . ,Xn and display a vec-
tor of frequencies sq(j) . Hence, (42) determines the conditional probability dis-

tribution of (Sq(j) ,S∗
r(k)), given (X1, . . . ,Xn,L

(n)
m ,K

(n)
m ). Consider now the set

Ij,x := {1, . . . , j} \ {q1, . . . , qx} and the corresponding partition set defined as fol-
lows:

D(0)
m−s−s∗,j−x :=

{
(si, i ∈ Ij,x) : si ≥ 0 and

∑
i∈Ij,x

si = m − s − s∗
}
,

where we set s∗ := ∑x
i=1 sqi

. In a similar vein, let us introduce the set Ik,y :=
{1, . . . , k} \ {r1, . . . , ry} and the corresponding partition set defined as follows:

Ds−s∗∗,k−y :=
{
(sj+i , i ∈ Ik,y) : sj+i > 0 and

∑
i∈Ik,y

sj+i = s − s∗∗
}
,

where we set s∗∗ := ∑y
i=1 sj+ri . By virtue of [4], equation (2.6.1), one can write

1

(k − y)!
∑

Ds−s∗∗,k−y

s!
k∏

i=1

(1 − σ)sj+i−1

sj+i !
(43)

= s!
(s − s∗∗)!∏y

i=1 sri !
C (s − s∗∗, k − y,σ )

σ k−y

and, by virtue of [20], Lemma (A.1), one can write

∑
D(0)

m−s−s∗,j−x

(
m − s

s1, . . . , sj

) j∏
i=1

(1 − σ)ni+si−1

= (m − s)!(n∗ − (j − x)σ )m−s−s∗

(m − s − s∗)!∏x
i=1 sqi

!(44)

×
x∏

i=1

(1 − σ)nqi
+sqi

−1
∏

�∈Ij,x

(1 − σ)n�−1,

where we set n∗ := ∑
i∈Ij,x

ni = n − ∑x
i=1 nqi

. A simple application of the iden-
tities (43) and (44) to the conditional probability (42) proves both the conditional
independence between Sq(x) and S∗

r(y) and the two expressions in (38) and (39).
�

5.1. Proof of Proposition 1. For any n ≥ 1 and 1 ≤ j ≤ n let Mn,j be the
partition set of Nn containing all the vectors mn = (m1, . . . ,mn) ∈ {0,1, . . . , n}n
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such that
∑n

i=1 mi = j and
∑n

i=1 imi = n. Hence, resorting to the probability dis-
tribution (10), one obtains for any r ≥ 1

E
[
(Ml,n)[r]

] = n!
n∑

j=1

Vn,j

∑
mn∈Mn,j

(ml)[r]
n∏

i=1

(
(1 − σ)i−1

i!
)mi 1

mi !

= n!
n∑

j=1

Vn,j

∑
mn∈Mn,j

(
(1 − σ)l−1

l!
)ml 1

(ml − r)!

× ∏
1≤i �=l≤n

(
(1 − σ)i−1

i!
)mi 1

mi !

= n!
(

(1 − σ)l−1

l!
)r n∑

j=1

Vn,j

∑
mn−rl∈Mn−rl,j−r

n−rl∏
i=1

(
(1 − σ)i−1

i!
)mi 1

mi ! .

Finally, a direct application of [4], equation (2.82), implies the following identity:

∑
mn∈Mn−rl,j−r

n∏
i=1

(
(1 − σ)i−1

i!
)mi 1

mi ! = (n)[lr]
n!σ j−r

C (n − lr, j − r;σ),

and the proof is completed.

5.2. Proof of Theorem 1. According to the definition of the random variable
Ol,m in (13), for any r ≥ 1 one can write

E
[(

O
(n)
l,m

)r ] =
m∑

s=0

s∑
k=0

P
[
L(n)

m = s,K(n)
m = k|An(j,n)

]

× E

[( j∑
i=1

1l(ni + Si)

)r ∣∣∣An,m(j,n, s, k)

]
.

It can be easily verified that a repeated application of the binomial expansion im-
plies the following identity:

( j∑
i=1

1{l}(ni + Si)

)r

=
j∑

x=1

r−1∑
i1=1

i2−1∑
i2=1

· · ·
ix−2−1∑
ix−1=1

(
r

i1

)(
i1

i2

)
· · ·

(
ix−2

ix−1

)
(45)

× ∑
c(x)∈Cj,x

x∏
t=1

(
1{l}(nct + Sct )

)ix−t−ix−t+1
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provided i0 ≡ r . Observe that the previous sum can be expressed in terms of Stir-
ling numbers of the second kind S(n,m); indeed, since m!S(n,m) is the number of
ways of distributing n distinguishable objects into m distinguishable groups, one
has

1

m!
n−1∑
i1=1

i1−1∑
i2=1

· · ·
im−2−1∑
im−1=1

(
n

i1

)(
i1

i2

)
· · ·

(
im−2

im−1

)
= S(n,m),(46)

for any n ≥ 1 and 1 ≤ m ≤ n. In particular, combining the identity (45) with (46),
one obtains

E
[(

O
(n)
l,m

)r ∣∣L(n)
m = s,K(n)

m = k
]

(47)

=
j∧r∑
x=1

S(r, x)x! ∑
c(x)∈Cj,x

P[Sc(x) = l1x − nc(x) |An,m(j,n, s, k)],

where we set 1x := (1, . . . ,1) and nc(x) = (nc1, . . . , ncx ). In (47) the bound j ∧r on
the sum over the index x is motivated by the fact that S(r, x) = 0 if x > r . Hence,
the identity (47) combined with (38) yields the following expression:

E
[(

O
(n)
l,m

)r |L(n)
m = s,K(n)

m = k
]

=
j∧r∑
x=1

S(r, x)x! ∑
c(x)∈Cj,x

(m − s)!
(m − s − xl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!(48)

× (n − |nc(x) | − (j − x)σ )m−s−xl+|nc(x) |
(n − jσ )m−s

.

Observe that in (48) the sum over the index x, for x = 1, . . . , j ∧ r , is equivalent
to a sum over the index x for x = 1, . . . , r . Indeed, if j > r , then the sum over the
index x is nonnull for x = 1, . . . , r because S(r, x) = 0 for any x = r +1, . . . , j ; on
the other hand, if j < r , then the sum over the index x is nonnull for x = 1, . . . , j

because the set Cj,x is empty for any x = j + 1, . . . , r . Accordingly, resorting
to [20], Corollary 1, one can rewrite the expected value above as

E
[(

O
(n)
l,m

)r]

=
m∑

s=0

s∑
k=0

Vn+m,j+k

Vn,j

(
m

s

)
C (s, k;σ)

σ k

r∑
x=1

S(r, x)x!

× ∑
c(x)∈Cj,x

(m − s)!
(m − s − xl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!

× (
n − |nc(x) | − (j − x)σ

)
m−s−xl+|nc(x) |
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=
r∑

x=1

S(r, x)x! ∑
c(x)∈Cj,x

m!
(m − xl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!

×
m−xl+|nc(x) |∑

k=0

Vn+m,j+k

Vn,j

σ−k

m−xl+|nc(x) |∑
s=k

(
m − xl + |nc(x) |

s

)

× (
n − |nc(x) | − (j − x)σ

)
m−xl+|nc(x) |−sC (s, k;σ)

=
r∑

x=1

S(r, x)x! ∑
c(x)∈Cj,x

m!
(m − xl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!

×
m−xl+|nc(x) |∑

k=0

Vn+m,j+k

Vn,j

× C (m − xl + |nc(x) |, k;σ,−n + |nc(x) | + (j − x)σ )

σ k
,

where the last equality follows from [4], equation (2.56). The proof of (14) is, thus,
completed by using the relation between the r th moment with the r th factorial
moment.

5.3. Proof of Theorem 2. The proof is along lines similar to the proof of The-
orem 1. In particular, it can be easily verified that a repeated application of the
binomial expansion implies the following identity:

(
k∑

i=1

1{l}(Sj+i )

)r

=
k∑

y=1

r−1∑
i1=1

i2−1∑
i2=1

· · ·
iy−2−1∑
iy−1=1

(
r

i1

)(
i1

i2

)
· · ·

(
iy−2

iy−1

)

× ∑
c(y)∈Ck,y

y∏
t=1

(
1{l}(Sj+ct )

)iy−t−iy−t+1 .

Hence, according to the definition of the random variable Nl,m in (13) and by
combining the identity (46) with (39), one has

E
[(

N
(n)
l,m

)r |L(n)
m = s,K(n)

m = k
]

=
k∑

y=1

S(r, y)y!
(

k

y

)
P[S∗

c(y) = l1y |An,m(j,n, s, k)](49)

=
k∑

y=1

S(r, y)
s!

(s − yl)!
[σ(1 − σ)l−1]y

(l!)y
C (s − yl, k − y;σ)

C (s, k;σ)
,
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where we set 1y := (1, . . . ,1). Hence, (49) combined with (40) leads to the fol-
lowing expression:

E
[(

N
(n)
l,m

)r ]

=
m∑

s=0

s∑
k=0

Vn+m,j+k

Vn,j

(
m

s

)
(n − jσ )m−s(50)

×
r∧k∑
y=1

S(r, y)
s!

(s − yl)!
[σ(1 − σ)l−1]y

(l!)y
C (s − yl, k − y;σ)

σ k
.

In (50) note that the sum over the index y, for y = 1, . . . , k, is equivalent to a sum
over the index y for y = 1, . . . , r . Indeed, if k > r , then the sum over the index y is
nonnull for y = 1, . . . , r because S(r, y) = 0 for any y = r + 1, . . . , k; on the other
hand, if k < r , then the sum over the index y in nonnull for y = 1, . . . , k because
C (s − yl, k − y;σ) = 0 for any y = k + 1, . . . , r . Based on this, one can rewrite
the expected value above as

E
[(

N
(n)
l,m

)r ] =
r∑

y=1

S(r, y)
[(1 − σ)l−1]y

(l!)y
m∑

s=yl

(
m

s

)
(n − jσ )m−s

s!
(s − yl)!

×
s∑

k=y

Vn+m,j+k

Vn,j

C (s − yl, k − y;σ)

σ k−y

=
r∑

y=1

S(r, y)
[(1 − σ)l−1]y

(l!)y
m−yl∑
s=0

(
m

s + yl

)
(n − jσ )m−s−yl

(s + yl)!
(s)!

×
s+yl−y∑

k=0

σ−k Vn+m,j+k+y

Vn,j

C (s, k;σ)

=
r∑

y=1

S(r, y)
[(1 − σ)l−1]y

(l!)y
m!

(m − yl)!
m−yl∑
k=0

σ−k Vn+m,j+k+y

Vn,j

×
m−yl∑
s=k

(
m − yl

s

)
(n − jσ )m−yl−sC (s, k;σ)

=
r∑

y=1

S(r, y)[(1 − σ)l−1]y m!
(l!)y(m − yl)!

×
m−yl∑
k=0

σ−k Vn+m,j+k+y

Vn,j

C (m − yl, k;σ,−n + jσ ).
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The proof of (16) is, thus, completed by using the relation between the r th moment
with the r th factorial moment.

5.4. Proof of Theorem 3. The proof follows from conditional independence
between the random variables Sq(x) and Sr(y) , given (Kn,Nn,L

(n)
m ,K

(n)
m ), as stated

in Theorem 1. Indeed, according to the definition of the random variable Ml,m, for
any r ≥ 1 one can write

E
[(

M
(n)
l,m

)r ]
(51)

=
r∑

t=0

(
r

t

) m∑
s=0

s∑
k=0

αt(l)βr−t (l)P
[
L(n)

m = s,K(n)
m = k|An(j,n)

]
,

where

αt(l) := E
[(

O
(n)
l,m

)t |L(n)
m = s,K(n)

m = k
]

=
j∧t∑
x=1

x!S(t, x)
∑

c(x)∈Cj,x

P[Sc(x) = l1x − nc(x) |An,m(j,n, s, k)],

and

βr−t (l) := E
[(

N
(n)
l,m

)r−t |L(n)
m = s,K(n)

m = k
]

=
k∧(r−t)∑

y=1

y!S(r − t, y)
∑

c(y)∈Ck,y

P[S∗
c(y) = l1y |An,m(j,n, s, k)].

In particular, by combining (51) with (48) and (49), one has

E
[(

M
(n)
l,m

)r ]

=
r∑

t=0

(
r

t

) m∑
s=0

s∑
k=0

P
[
L(n)

m = s,K(n)
m = k|An(j,n)

]

×
t∑

x=1

S(t, x)x! ∑
c(x)∈Cj,x

(m − s)!
(m − s − xl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!

× (n − |nc(x) | − (j − x)σ )m−s−xl+|nc(x) |
(n − jσ )m−s

×
r−t∑
y=1

S(r − t, y)
s!

(s − yl)!
[σ(1 − σ)l−1]y

(l!)y

× C (s − yl, k − y;σ)

C (s, k;σ)
.
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Using the same arguments applied in the last part of Theorems 2 and 1, the expres-
sion (51) combined with (40) leads to the following:

E
[(

M
(n)
l,m

)r]

=
r∑

t=0

(
r

t

) t∑
x=1

S(t, x)

r−t∑
y=1

S(r − t, y)x! [(1 − σ)l−1]y
(l!)y

× ∑
c(x)∈Cj,x

m!
(m − xl − yl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!(52)

×
m−xl−yl+|nc(x) |∑

k=0

Vn+m,j+k+y

Vn,j

× C (m − xl − yl + |nc(x) |, k;σ,−n + |nc(x) | + (j − x)σ )

σ k
.

The expression in (52) can be further simplified by applying well-known properties
of the Stirling numbers of the second kind. In particular, according to the identity

S(r, y + x)

(
y + x

x

)
=

r−y∑
t=x

(
r

t

)
S(t, x)S(r − t, y)

(see [4], Chapter 2), one can write

E
[(

M
(n)
l,m

)r ] =
r∑

x=0

r−x∑
y=0

S(r, y + x)

(
y + x

x

)
x! [(1 − σ)l−1]y

(l!)y

× ∑
c(x)∈Cj,x

m!
(m − xl − yl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!

×
m−xl−yl+|nc(x) |∑

k=0

Vn+m,j+k+y

Vn,j

× C (m − xl − yl + |nc(x) |, k;σ,−n + |nc(x) | + (j − x)σ )

σ k

=
r∑

y=0

S(r, y)

y∑
x=0

(
y

x

)
x! [(1 − σ)l−1]y−x

(l!)y−x

× ∑
c(x)∈Cj,x

m!
(m − yl + |nc(x) |)!

x∏
i=1

(nci
− σ)l−nci

(l − nci
)!
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×
m−yl+|nc(x) |∑

k=0

Vn+m,j+k+y−x

Vn,j

× C (m − yl + |nc(x) |, k;σ,−n + |nc(x) | + (j − x)σ )

σ k
.

The proof of (20) is thus completed by using the relation between the r th moment
with the r th factorial moment.

5.5. Proofs for the Dirichlet process.

5.5.1. Proof of Propositions 2 and 3. The distribution of Ml,n is determined
by its factorial moments as

P[Ml,n = ml] = 1{1,...,n}(mll)

ml !
n∑

k=ml

(−1)k−ml

(k − ml)! E
[
(Ml,n)[k]

]

= n!
ml !(θ)n

[n/l]∑
k=ml

(−1)k−ml

(k − ml)!
(θ)[n−kl]

lk(n − kl)!
and, from this, (26) easily follows. On the other hand, Proposition 3 is a trivial
consequence of (23) and (24).

5.6. Proofs for the Pitman model.

5.6.1. Proof of Proposition 4. This again follows from the application of the
sieve formula, as discussed in the proof of Proposition 2.

5.6.2. Proof of Proposition 5. From Theorem 1 one finds that

E
[(

O
(n)
l,m

)
[r]

] = r!m!
(θ + n)m

∑
c(r)∈Cj,r

1

(m − rl + |nc(r) |)!
r∏

i=1

(nci
− σ)l−nci

(l − nci
)!

×
m−rl+|nc(r) |∑

k=0

(
θ

σ
+ j

)
k

× C
(
m − rl + |nc(r) |, k;σ,−n + |nc(r) | + (j − r)σ

)
.

By definition,

n∑
k=0

C (n, k;σ, γ )(t)k = (σ t − γ )n
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and this entails

E
[(

O
(n)
l,m

)
[r]

] = r!m!
(θ + n)m

∑
c(r)∈Cj,r

1

(m − rl + |nc(r) |)!
r∏

i=1

(nci
− σ)l−nci

(l − nci
)!

× (θ + n − |nc(r) | + rσ )m−rl+|nc(r) |.

The usual application of the sieve formula yields (27).

5.6.3. Proof of Proposition 6. Follows from Theorem 2, along the same lines
as in the proof of Proposition 3.4.

5.6.4. Proof of Theorem 4. Our strategy will consist in examining the asymp-
totic behavior of the r th moments of N

(n)
l,m and of M

(n)
l,m, for any r ≥ 1, as m in-

creases. To this end, it is worth referring to the following decomposition that im-
plicitly follows from the proof of Theorem 3. Indeed, it can be seen that

E
[(

M
(n)
l,m

)r] = E
[(

O
(n)
l,m

)r ] + E
[(

N
(n)
l,m

)r ] +
r−1∑
i=1

(
r

i

)
B(i)(σ, n, j,n,m),

where

E
[(

O
(n)
l,m

)r] = m!
(θ + n)m

j∧r∑
x=1

x!S(r, x)
∑

c(x)∈Cj,x

x∏
r=1

(ncr − σ)l−ncr

(l − ncr )!

× (θ + n − |nc(x) | + xσ)m−xl+|nc(x) |
(m − xl + |nc(x) |)! ,

E
[(

N
(n)
l,m

)r] = m!
(θ + n)m

[m/l]∧r∑
y=1

S(r, y)
σ y[(1 − σ)l−1]y

(l!)y
(
j + θ

σ

)
y

× (θ + n + yσ)m−ly

(m − yl)! ,

B(i)(σ, n, j,n,m) = m!
(θ + n)m

j∧i∑
x=1

x!S(i, x)
∑

c(x)∈Cj,x

x∏
r=1

(ncr − σ)l−ncr

(l − ncr )!

×
m∧(r−i)∑

y=1

S(r − i, y)
σ y[(1 − σ)l−1]y

(l!)y
(
j + θ

σ

)
y

× (θ + n − |nc(x) | + σx)m−yl−xl+nci
+|nc(x) |

(m − yl − xl + |nc(x) |)! .
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By virtue of Stirling’s approximation formula, one has, as m → +∞,

E
[(

O
(n)
l,m

)r]
∼ m−θ−n+1�(θ + n)

×
j∧r∑
x=1

∑
c(x)∈Cj,x

x!S(r, x)
mθ+n−|nc(x) |−1+xσ

�(θ + n − |nc(x) | + xσ

x∏
t=1

(nct − σ)l−nct

(l − nct )!
,

where an ∼ bn means that an/bn → 1, as n → ∞. The term that asymptotically
dominates the right-hand side of the asymptotic equivalence above, as m → ∞,
can be bounded by

m(j∧r)σ−|nc(j∧r) | �(θ + n)(j ∧ r)!S(r, (j ∧ r))

�(θ + n − |nc(j∧r) | + (j ∧ r)σ )

(j∧r)∏
t=1

(nct − σ)l−nct

(l − nct )!
.

Since |nc(j∧r) | ≥ 1, one has

lim
m→∞

E[(O(n)
l,m)r ]

mrσ
= 0.

In a similar fashion note that, as m → ∞, the following asymptotic equivalence
holds true:

E
[(

N
(n)
l,m

)r ] ∼ �(θ + n)m1−θ−n

×
r∑

y=1

S(r, y)
σ y[(1 − σ)l−1]y

(l!)y
(j + θ/σ)y

�(θ + n + yσ)
mθ+n+yσ−1,

which, in turn, yields

lim
m→+∞

E[(N(n)
l,m)r ]

mrσ
=

(
σ(1 − σ)l−1

l!
)r �(θ + n)(j + θ/σ)r

�(θ + n + rσ )
.

Finally, still as m → ∞,

Bi (σ, n, j,n,m) ∼ �(θ + n)

mθ+n−1

j∧i∑
x=1

x!S(i, x)
∑

c(x)∈Cj,x

x∏
t=1

(nct − σ)l−nct

(l − nct )!

×
r−i∑
y=1

S(r − i, y)
σ y[(1 − σ)l−1]y

(l!)y

× (j + θ/σ)y

�(θ + n − |nc(x) | + xσ)
mθ+n−1+xσ−|nc(x) |

and, since |nc(x) | ≥ 1 for any x = 1, . . . , (j ∧ i), one has

lim
m→∞

1

mrσ
Bi (σ, n, j,n,m) = 0
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for any i = 1, . . . , r − 1. These limiting relations plainly lead to conclude that

lim
m→+∞ E

[
m−rσ (

M
(n)
l,m

)r ] =
(

σ(1 − σ)l−1

l!
)r �(θ + n)(j + θ/σ)r

�(θ + n + rσ )

=
(

σ(1 − σ)l−1

l!
)r

E[Zr
n,j ].

According to [8], Proposition 2, the distribution of the random variable Zn,j is
uniquely characterized by the moment sequence (E[(Zn,j )

r ])r≥1. Similar argu-

ments lead to determine the limiting distribution of the random variable N
(n)
l,m/mσ ,

as m → +∞.

5.7. Proofs for the Gnedin model.

5.7.1. Proof of Propositions 8 and 9. The proof of (34) follows from (11)
and (9), after noting that C (n, k;−1) = (−1)kn!(n − 1)!/[k!(k − 1)!(n − k)!]. As
for the determination of the distributions of O

(n)
l,m and N

(n)
l,m, one uses the fact that

C (n, k;−1, γ ) = (−1)k
(n−γ−1

n−k

)
n!/k! along with the results stated in Theorems 1

and 2.
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