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ABSTRACT. In this article, we define and investigate a novel class of non-parametric prior distribu-
tions, termed the class C. Such class of priors is dense with respect to the homogeneous normalized
random measures with independent increments and it is characterized by a richer predictive struc-
ture than those arising from other widely used priors. Our interest in the class C is mainly motivated
by Bayesian non-parametric analysis of some species sampling problems concerning the evaluation
of the species relative abundances in a population. We study both the probability distribution of the
number of species present in a sample and the probability of discovering a new species conditionally
on an observed sample. Finally, by using the coupling from the past method, we provide an exact
sampling scheme for the system of predictive distributions characterizing the class C.
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1. Introduction

Since the introduction of the Dirichlet process by Ferguson (1973) various approaches for
constructing random probability measures, whose distributions act as non-parametric priors,
have been proposed in the literature. This article deals with random probability measures
obtained by means of the so-called ‘normalization’ approach. In Bayesian non-parametrics
the ‘normalization’ approach was first rigorously introduced in Regazzini et al. (2003) where
a rich class of non-parametric priors, namely normalized random measures with indepen-
dent increments (NRMIs), is defined according to the normalization of suitably time-changed
increasing processes with independent increments. Structural properties of the class of NRMIs
have been further investigated in a series of subsequent papers by Nieto-Barajas et al. (2004),
James et al. (2006) and James et al. (2009). In particular, James et al. (2009) stated a slightly
more general definition of NRMIs in terms of the normalization of completely random
measures (CRMs), a notion introduced by Kingman (1967). See Lijoi & Prünster (2010) for
a comprehensive and stimulating review on this topic.

The idea of normalizing CRMs to define non-parametric priors is clearly inspired by the
definiton of the Dirichlet process in terms of the normalization of a Gamma CRM. Let �
be a non-negative finite measure on (X,X) with X being a complete and separable metric
space equipped with the Borel �–algebra X. A Dirichlet process on X with parameter � is
obtained by normalizing a Gamma CRM on X with parameter �, i.e. a CRM character-
ized by a Lévy intensity measure � of the form �(ds, dx)= s−1 e−s ds�(dx). More generally,
an NRMI is defined as a random probability measure obtained when the Gamma CRM is
replaced by any CRM with finite total mass and characterized by some Lévy intensity measure
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�(ds, dx)=�(ds |x)�(dx). If � is of the form �(ds, dx)=�(ds)�(dx) then it is termed homo-
geneous and the corresponding CRM (NRMI) is termed homogeneous CRM (homogeneous
NRMI). Several examples of homogeneous NRMIs have been introduced in the recent
literature. The most notable in terms of a sufficient mathematical tractability is the so-called
normalized generalized Gamma process (Lijoi et al., 2007a) which includes as special cases
the Dirichlet process, the normalized stable process (Kingman, 1975) and the normalized
inverse-Gaussian process (Lijoi et al., 2005b).

Our interest in NRMIs is mainly motivated by their application as non-parametric priors for
Bayesian analysis of species sampling problems. In recent years, there has been an enormous
growth in the proposal of Bayesian non-parametric methods for several applied problems;
see Müller & Quintana (2004), Müller & Quintana (2010) and Dunson (2008) for interest-
ing reviews. One of such recent application concerns precisely species sampling problems
which gained a renewed interest due to their importance in genomics and ecology. In species
sampling problems one is interested in determining the species composition of a certain popu-
lation containing an unknown number of species and only a sample drawn from it is available.
Specifically, given a sample (X1, . . ., Xn) consisting of a collection of k ≤ n species (X ∗

1 , . . ., X ∗
k )

with frequencies (n1, . . ., nk), interest typically lies in evaluating the species variety of the under-
lying population by estimating both the number of new species to be observed in an additional
sample (Xn+1, . . ., Xn+m) and the probability of discovering a new species at the (n+m+1)th
draw. A Bayesian non-parametric approach for evaluating the species variety in a population
has been set forth in Lijoi et al. (2007b); see also Lijoi et al. (2008a) for a theoretical study and
Lijoi et al. (2007c) for a practitioner oriented illustration. The process (Xi)i≥1 is modelled as
an X-valued exchangeable sequence and, by de Finetti’s theorem, the Xis can be represented as
independent samples from a distribution p̃ on (X,X) having prior distribution �:

Xi | p̃ i.i.d.∼ p̃,

p̃ ∼�. (1)

In Lijoi et al. (2007b) Bayesian non-parametric estimators for quantities of interest in
species sampling problems have been derived under the hypothesis that p̃ is an almost sure
discrete random probability measure on X characterized by a system of predictive distributions
of the type

P(Xn+1 ∈· |X1, . . ., Xn)=g0(n, k) E [p̃(·)]+g1(n, k)
k∑

j =1

(nj −�)�X ∗
j
(·), (2)

where � ∈ [0, 1) and the weights g0 and g1 are functions satisfying the relation g0(n, k)+
g1(n, k)(n−�k)=1 for any n≥1 and k ≤n. A random probability measure whose predictive
distributions satisfy the representation (2) is termed Gibbs-type random probability measure;
see Gnedin & Pitman (2005) and Pitman (2006). Further investigations related to Gibbs-type
random probability measures, Bayesian non-parametrics and NRMIs can be found in
Ho et al. (2007) and Lijoi et al. (2008b).

According to the predictive distribution in (2), for any Gibbs-type random probability
measure the number of species k in the observed sample (X1, . . ., Xn) turns out to be a suffi-
cient statistic for predicting the number of new species to be observed in an additional sam-
ple. In principle one would like priors which lead to richer predictive structures, in which the
probability of sampling a new species depends explicitly on both k and (n1, . . ., nk). However,
by dropping the Gibbs structure, serious issues of mathematical tractability arise. In this
paper we consider random probability measures which are not of Gibbs-type. In particular,
we define and investigate a class of homogeneous NRMIs characterized by a system of
predictive distributions of the type
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P(Xn+1 ∈· |X1, . . ., Xn)=w0(n, k, (n1, . . ., nk))E[p̃]+
k∑

j =1

wj(n, k, (n1, . . ., nk))�X ∗
j
(·), (3)

where the weights w0(n, k, (n1, . . ., nk)) and wj(n, k, (n1, . . ., nk)) are functions explicitly depend-
ing on the number of species k and on the entire vector of frequencies (n1, . . ., nk). We term
this novel class of homogeneous NRMIs, the class C. To our knowledge, the only example
currently known in the literature of a random probability measure characterized by a system
of predictive distributions of the type (3) is the so-called generalized Dirichlet process intro-
duced by Regazzini et al. (2003). We refer to Lijoi et al. (2005a) and Favaro et al. (2010)
for further developments of the generalized Dirichlet process with applications to mixture
models and species sampling problems.

Besides the richer predictive structure the class C is characterized by two other appealing
properties. Any homogeneous NRMI can be arbitrarily well approximated by an NRMI in
C, i.e. the class C is dense with respect to the homogeneous NRMIs and, for any NRMI in C,
an exact sampling scheme for the predictive distributions can be implemented by exploiting
the coupling from the past method in Propp & Wilson (1996). The denseness of the class C
implies, from a Bayesian standpoint, that, for any NRMI prior, one can select a random dis-
tribution from C such that the differences between the two prior models are negligible. Under
the model assumption (1) with p̃ being an NRMI in the class C, we derive explicit expressions
for quantities of interest in species sampling problems such as the probability distribution of
the number of species in a sample (X1, . . ., Xn) drawn from p̃ and the probability distribu-
tion of the number of new species to be observed in an additional sample (Xn+1, . . ., Xn+m),
conditionally on an observed sample. However, it is worth pointing out that the evaluation
of such explicit expressions is a difficult task since it requires the evaluation of partial Bell
polynomials, which is known to be feasible only for small sample sizes. In this respect, the
proposed exact sampling scheme represents a valid alternative to the direct evaluation of the
partial Bell polynomials and, consequently, it provides a useful tool for making inference in
species sampling problems.

The article is structured as follows. In section 2 we provide a concise account on NRMIs.
In section 3 we define and investigate the class C. In particular, we focus on the system of
predictive distributions characterizing the class C and we derive some quantities of interest in
species sampling problems. In section 4 we describe the exact sampling scheme for the system
of predictive distributions characterizing the class C. The Appendix contains a short review
on Bell polynomials. The proofs of the results stated in section 3 can be found online in the
Supporting Information.

2. NRMIs

We start with the definition of CRM as introduced by Kingman (1967). Let X be a complete
and separable metric space endowed with the Borel �-algebra X. We let MX stand for the
space of finite measures on (X,X) endowed with the Borel �-algebra MX.

Definition 1. Let �̃ be a measurable mapping from a probability space (�,F, P) into (MX,MX)
such that for any B1, . . ., Bn in X, with Bi ∩Bj =∅ for any i /= j, the random variables �̃(B1), . . .,
�̃(Bn) are mutually independent. The measurable map �̃ is called CRM.

An important property of CRMs is their almost sure discreteness (see Kingman, 1993;
James, 2003). A CRM �̃ can be represented as the sum of two components: a CRM with
non-negative random jumps (Si)i≥1 at random X-valued locations (X̄ i)i≥1 and a CRM with
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non-negative random jumps (Ji)i≥1 at fixed X-valued locations (x̄i)i≥1. Accordingly, if we set
�̃c =∑i≥1 Si�X̄ i

, then

�̃= �̃c +
∑
i≥1

Ji�x̄i .

The CRM �̃c can be characterized by using the so-called Lévy–Khintchine representation;
for any non-negative function f

E
[
e−∫

X f (x)�̃c(dx)
]
= exp

{
−
∫

R+×X

(1− e−s f (x))�(ds, dx)
}

, (4)

where � is a measure on R+ ×X, termed Lévy intensity measure, which satisfies the inequal-
ity
∫

min(s, 1) d�<+∞. It is useful to factorize the Lévy intensity measure � as �(ds, dx)=
�(ds |x)�(dx), where � is a non-negative finite measure on (X,X) and � is a kernel on X ×
B(R+), i.e. �(· |x) is a measure for any x in X and x 
→�(B |x) is X-measurable for any B
in B(R+). If �(· |x)=�(·) then the non-negative random jumps (Si)i≥1 are independent with
respect to the random locations (X̄ i)i≥1 and both the Lévy intensity measure � and the CRM
�̃c are termed homogeneous. As one may observe from (4), CRMs are closely connected to the
so-called Poisson random measures. Indeed, the CRM �̃c can be represented as a functional
of a Poisson random measure �̃ on R+ ×X with mean intensity measure �. It can be shown
that

�̃c(B)
d=
∫

B

∫
R+

s�̃(ds, dx)

for any B ∈X. See Kingman (1993) for a survey on this topic. We can now state the definition
of NRMI.

Definition 2. Let �̃ be a CRM such that 0 < �̃(X) <+∞ almost surely. The random probability
measure p̃= �̃/�̃(X) is termed NRMI.

Both finiteness and positiveness of the total mass �̃(X) are necessary for normalizing �̃. We
can use a Lévy intensity measure �, such that �(R+ ×X)=+∞, for defining a CRM �̃, with-
out fixed points of discontinuity, such that P(0 < �̃(X) < +∞)=1. This condition on the
Lévy measure � is equivalent to requiring that the CRM �̃ has infinitely many jumps.

Let us consider model (1), with p̃= �̃/�(X) being an NRMI without fixed points of dis-
continuity, and a sample (X1, . . ., Xn) consisting of a collection of k ≤n distinct observations
(X ∗

1 , . . ., X ∗
k ) with frequencies (n1, . . ., nk). To characterize the posterior distribution of the

NRMI p̃, James et al. (2009) introduced a latent random variable Un. Let G1,n be a Gamma
random variable, independent of the total mass T = �̃(X), having mean n and variance n; the
density function of the latent variable Un =G1,n/T is

fUn (u)= un−1

�(n)

∫
R+

tn e−ut fT (t) dt,

where � denotes the Gamma function and fT denotes the density function of the random
variable T . Moreover, the conditional density function of Un, given (X1, . . ., Xn), is

f (X1, ...,Xn)
Un

(u)∝un−1 e−�(u)
k∏

i =1

∫
R+

sni e−us�(ds |X ∗
i ),

where �(u)=∫
R+×X

(1− e−us)�(ds, dx). The following important result by James et al. (2009)
states that the posterior distribution of p̃, given the sample (X1, . . ., Xn), is a mixture of
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NRMIs. This result is stated using the notation �̃(Un ,X1, ...,Xn) for denoting a CRM having a
distribution identical to the conditional distribution of �̃ given (Un, X1, . . ., Xn).

Theorem 1. (Cf. James et al. (2009)) Let p̃ be an NRMI obtained by normalizing a CRM �̃
with Lévy intensity measure �(ds |x)�(dx). Then

�̃(Un ,X1, ...,Xn) d= �̃(Un) +
k∑

i =1

J (Un ,X1, ...,Xn)
i �X ∗

i
,

where

(i) �̃(Un) is a CRM with Lévy intensity measure �(Un)(ds, dx)= e−Uns�(ds |x)�(dx);
(ii) X ∗

i , for i =1, . . ., k, are fixed locations and J (Un ,X1, ...,Xn)
i , for i =1, . . ., k, are random

jumps with density functions proportional to sni e−Uns�(ds |X ∗
i );

(iii) �̃(Un) and J (Un ,X1, ...,Xn)
i , i =1, . . ., k, are independent.

Moreover, the conditional distribution of p̃, given (Un, X1, . . ., Xn), coincides with the distribution
of the random probability measure

p̃(Un ,X1, ...,Xn) d=w
�̃(Un)

T (Un)
+ (1−w)

∑k
i =1 J (Un ,X1, ...,Xn)

i �X ∗
i∑k

i =1 J (Un ,X1, ...,Xn)
i

,

where T (Un) = �̃(Un)(X) and w=T (Un)(T (Un) +∑k
i =1 J (Un ,X1, ...,Xn)

i )−1.

3. The class C
In this section, we define and study a novel class of NRMIs that we will call the class C. Let
�̃ be a homogeneous CRM characterized by a Lévy intensity measure � of the form

�(ds, dx)=�(ds)�(dx)=
�∑

i =0

	i e−
ssi−1 ds�(dx), (5)

where �∈ N0, 
 and 	0 are strictly positive, 	= (	0, . . ., 	�) is a non-negative vector and � is
a non-atomic measure on (X, X ) with total mass a =�(X). We can write �=a�0 for some
probability measure �0. The kernel � in (5) is a weighted sum of functions belonging to the
class

K :={s 
→ e−
ssi−1 : 
> 0 and i ∈N0}.

Weighted sums of kernels belonging to K have important applications in the Bayesian litera-
ture. These weighted sums can be used, as proposed in Dalal & Hall (1983), for specifying
mathematically tractable prior distributions for exchangeable Poisson random variables. More
generally, Dalal & Hall (1983) introduced the idea of using mixtures of natural conjugate
prior distributions for parametric models belonging to the exponential family because of two
major reasons: these mixtures allow one to consider a large class of prior distributions, much
larger than the conjugate priors, and, at the same time, the resulting posterior distributions
have attractive closed form representations. Similarly, we use the kernels K because they allow
us to define a large class of NRMIs and because posterior distributions of these random
probability measures, in light of the results in James et al. (2009), have convenient represen-
tations. We can now state the definition of an NRMI belonging to the class C.

Definition 3. Let �̃ be a CRM with Lévy intensity measure of the form (5). A random proba-
bility measure p̃ in the class C with parameter (�, �, 
, 	) is defined as p̃= �̃/�̃(X).
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3.1. Denseness of C in the class of homogeneous NRMIs

An interesting feature of the class C is the denseness with respect to the homogeneous
NRMIs, i.e. any homogeneous NRMI can be arbitrarily well approximated by an NRMI
in the class C. In this subsection, given a homogeneous NRMI p̃ with intensity measure �,
we formalize the idea of specifying a sequence (�i)i≥1 of Lévy measures representable as in
(5) approximating �. Then, this sequence is used for defining NRMIs (p̃i)i≥1 in the class C
that approximate the random probability measure p̃. In the next paragraphs we describe a
constructive definition of the approximating sequence (�i)i≥1.

Let �̃ be a CRM with a Lévy intensity measure �(ds, dx)=�(ds)�(dx) such that
�(R+ ×X) < +∞. The finiteness of � implies that �̃ has a finite number of jumps. The number
of jumps M is a Poisson random variable and we can write

�̃=
∑
i≤M

Si�X̄ i
,

where (S1, . . ., SM ) are the random jumps and (X̄ 1, . . ., X̄M ) are the corresponding X-valued
random locations. To define an approximating sequence of Lévy intensity measures (�i)i≥1, we
consider a collection of non-negative random variables (Si, j)i≥1, j≥1. These random variables,
conditionally on M and (S1, . . ., SM ), are independently distributed and

Si, j |M , S1, . . ., SM
d=
{

0 if M < j,
Gi, min{i2,I (i,Sj )} if M ≥ j,

(6)

where I (i, Sj) := inf{l ∈ N : l ≥ iSj} and Ga,b denotes a Gamma random variable with mean
b/a and variance b/a2. It can be easily verified that

lim
i→+∞

E

⎡
⎣∑

j≤M

(Sj −Si, j)2

⎤
⎦=0.

The collection of random variables (Si, j)i≥1, j≥1 allows us to define a sequence of homogeneous
CRMs (�̃i)i≥1 such that, for every i ≥1, the CRM �̃i , conditionally on �̃, has M non-negative
random jumps (Si,1, . . ., Si,M ) at the X-valued locations (X̄ 1, . . ., X̄M ). The random measure
�̃i , for i ≥1, has a random number of identically distributed jumps and expression (6) implies
that the Lévy measures of this CRM is

�i(ds, dx)=�i(ds)�(dx)=
i2∑

j =1

	i, j e−issj−1 ds�(dx),

where

	i, j := i j

�(j)
�(s ∈R+ : min{i2, I (i, s)}= j).

The next proposition states that the sequence of CRMs (�̃i)i≥1 approximates the CRM �̃.

Proposition 1. Let �̃ and (�̃i)i≥1 be homogeneous CRMs defined on the same probability space.
Assume that �̃ has a finite Lévy measure �. Denote by (S1, . . ., SM ) and (X̄ 1, . . ., X̄ M ) the
random jumps and the discontinuity points of �̃. If �̃i , for every i ≥1, has discontinuity points
(X̄ 1, . . ., X̄ M ) and, conditionally on �̃, has independent random jumps (Si,1, . . ., Si,M ) distributed
as in (6), then, for any �> 0

lim
i→+∞

P(sup
B∈X

|�̃(B)− �̃i(B)|> �)=0. (7)
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In the next paragraphs, we extend the described construction of a sequence of finite Lévy
measures to approximate a homogeneous CRM �̃ with intensity measure �(ds, dx) such that
�(R+ × X)= +∞. That is, we consider a CRM �̃ such that the NRMI p̃= �̃/�̃(X) is a well
defined random distribution with an infinite number of discontinuity points. For any �> 0,
the CRM �̃ can be decomposed into the sum of two independent CRMs,

�̃= �̃(0,�] + �̃(�, +∞), (8)

where �̃(0,�] is a homogeneous CRM with Lévy intensity measure �(0,�] on (0, �]×X and �̃(�, +∞)

is a homogeneous CRM with Lévy intensity measure �(�, +∞) on (�, +∞) × X. The decom-
position (8) is directly suggested by the representation of the CRM �̃ as a functional of a
Poisson random measure with intensity �. Indeed, expression (8) exploits the fact that the sum
of two independent Poisson random measures characterized by mean intensity measures �(0,�]

and �(�, +∞) is a Poisson random measure with intensity measure �(0,�] + �(�, +∞). The decom-
position (8) implies that �= �(0,�] + �(�, +∞). This decomposition has a clear interpretation: the
CRM �̃(�,∞) includes the jumps in �̃ having magnitude larger than � while the CRM �̃(0,�]

includes all the remaining jumps in �̃.
The CRM �̃(�, +∞) has a finite number of non-negative random jumps. Therefore, accord-

ing to proposition 1, we can define a sequence of homogeneous CRMs (�̃∗
i )i≥1 such that for

any i ≥1 the CRM �̃∗
i is characterized by a Lévy intensity measure �∗

i of the form

�∗
i (ds, dx)=�∗

i (ds)�(dx)=
�i∑

j =1

	i, j e−
i ssj−1 ds�(dx)

and

P

(
sup
B∈X

|�̃(1/i, +∞)(B)− �̃∗
i (B)|>

1
i

)
<

1
i
. (9)

Proposition 1 states that, given a CRM having finite intensity measure, for any pair of posi-
tive numbers (�, �), we can define a CRM, whose intensity measure can be represented as
a weighted sum of Gamma densities, such that the probability of a distance in total varia-
tion between the two CRMs larger than � is less than �. Analogously, the next proposition
considers the CRMs (�̃(1/i, +∞))i≥1 and each of these CRMs is approximated by a CRM �̃∗

i

satisfying (9). We also define, for every i ≥1, a CRM

�̃i := �̃∗
i +
i , (10)

where 
i is a Gamma CRM, with Lévy measure �
i (ds, dx)= (
i /is) e−
i s ds�(dx), and is inde-
pendent of �̃∗

i . Observe that �̃i is a CRM having Lévy measure

�i(ds, dx)=�i(ds)�(dx)=
�i∑

j =0

	i, j e−
i ssj−1 ds�(dx), (11)

where 	i,0 = 
i /i. Therefore the NRMI p̃i = �̃i /�̃(X) belongs to the class C. The next proposi-
tion points out that the sequence of homogeneous NRMIs (p̃i)i≥1 approximates the random
distribution p̃.

Proposition 2. Let �̃ and �̃(0,1/i], �̃(1/i,∞), �̃∗
i , �̃i , 
i , for i ≥1, be CRMs with intensity measures �,

�(0,1/i], �(1/i,∞), �∗
i , �i and �
i . If expressions (8), (9), (10) and (11) hold , �(ds, dx)=�(ds)�(dx),

�
i (ds, dx)=(
i /is) e−
i sds�(dx), �̃∗
i and 
i are independent, �̃(X) > 0 almost surely, p̃= �̃/�̃(X)

and, for i ≥1, p̃i = �̃i /�̃i(X) then, for every �> 0
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lim
i→+∞

P( sup
B∈X

|p̃(B)− p̃i(B)|> �)=0. (12)

3.2. Predictive distributions of C and applications to species sampling problems

Consider model (1), with p̃ belonging to the class C. By the almost sure discreteness of p̃, the
random vector (X1, . . ., Xn) induces a distribution on the partitions of the set {1, . . ., n}. The
underlying map, for obtaining this distribution, given (X1, . . ., Xn), indicates the partition such
that, for any pair of integers i and j in {1, . . ., n}, the two integers belong to the same subset
if and only if Xi =Xj . We use Kn for denoting the number of subsets. Let (X ∗

1 , . . ., X ∗
Kn

) be the
points of X observed in (X1, . . ., Xn). We use Nj to denote the cardinality

∑n
i =1 1(X ∗

j =Xi),
for j =1, . . ., Kn. The probabilities of the partitions of {1, . . ., n} can be represented by means
of a function depending only on the number of subsets Kn and the subsets’ cardinalities
N1, . . ., NKn . This function is called exchangeable partition probability function (EPPF). We
use p(n)

k (n1, . . ., nk) to denote the probability of a specific partition of {1, . . ., n} with Kn =k
subsets having cardinalities (N1, . . ., NKn )= (n1, . . ., nk). We refer to Pitman (1995) and Pitman
(2006) for insightful and comprehensive discussions on this topic.

A simple application of proposition 3 in James et al. (2009) allows us to obtain an explicit
expression for the EPPF when the exchangeable random variables (Xi)i≥1 are sampled from
an NRMI p̃ belonging to the class C with parameter (�, �, 
, 	):

p(n)
k (n1, . . ., nk)= ak
a	0 e−a

∑�
i =1 	i�(i)
−i

�(n)

×
∑

(r1, ..., rk )∈G�, k

k∏
l =1

	rl
�(rl +nl )gn, k(�, 	, 
, |r|, a), (13)

where

gn,k(�, 
, 	, |r|, a) :=
∫ +∞

0

tn−1 ea
∑�

i =1 	i�(i)(
+ t)−i

(
+ t)a	0 + |r|+n
dt,

G�,k :={0, 1, . . ., �}k and |r| :=∑k
i =1 ri .

Remark 1. It is worth observing an alternative representation of the EPPF (13). It can be
verified by simple algebra that

p(n)
k (n1, . . ., nk)=

∑
j1≥0

∑
j2≥0

. . .
∑
j�≥0

(
�∏

i =1

(a	i�(i)
−i)ji e−a	i�(i)
−i

ji !

)

×
∑

(r1, ...,rk )∈G�,k

∏k
i =1 �(ri +ni)a	ri


−ri

(
∑�

i =1 iji +
∑k

i =1 ri +a	0)n,1

, (14)

where (a)n,b =∏n−1
i =0(a + ib) denotes the Pochhammer symbol for the nth factorial power of

a with increment b. Expression (14) can be used to compute upper and lower bounds of
p(n)

k (n1, . . ., nk) by interpreting the quantity
∑�

i =1 iji in (14) as the sum of independent random
variables.

Expression (13) allows us to verify that an NRMI in the class C with parameter (�, �, 
, 	)
is characterized by a system of predictive distributions of the form (3);
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w0(n, k, (n1, . . ., nk))

=
a
∑

(r1, ...,rk +1)∈G�,k +1

∏k +1
l =1 	rl

�(rl +nl )gn+1, k +1(�, 	, 
, |r|, a)

n
∑

(r1, ...,rk )∈G�,k

∏k
l =1 	rl

�(rl +nl )gn, k(�, 
, 	|r|, a)

and

wj(n, k, (n1, . . ., nk))

=
∑

(r1, ...,rk )∈G�,k

∏k
l =1 	rl

�(rl +nl +1(l = j))gn+1,k(�, 	, 
, |r|, a)

n
∑

(r1, ...,rk )∈G�,k

∏k
l =1 	rl

�(rl +nl )gn, k(�, 
, 	, |r|, a)

with the proviso that nk +1 =1. Before proceeding we compare the predictive structures of
the Gibbs-type random probability measures and the introduced class C. For the Gibbs-type
random probability measures, the predictive distribution (2) is a linear combination of the
prior guess E[p̃(·)]=�0(·) and a weighted empirical distribution. The random variable Xn+1 is
not identical to any of the observed variables (X1, . . ., Xn) with probability g0(n, k), whereas
it coincides with X ∗

j with probability g1(n, k)(nj −�), for j =1, . . ., k. In the limiting case of
the Dirichlet process, the dependence on k disappears; this, which is a characterizing prop-
erty of the Dirichlet process (see Zabell, 1982), represents a severe limitation for predictive
purposes. The predictive distributions associated with a random probability measure in the
class C are characterized by a more elaborate structure. The predictive distribution is still
a linear combination of the prior guess �0 and a weighted empirical distribution, but now
the conditional probability w0(n, k, (n1, . . ., nk)) that Xn+1 is a new species depends on the
observed frequencies (n1, . . ., nk).

In the next proposition, we derive the distribution of the number of distinct observations
Kn to be observed in a sample (X1, . . ., Xn) drawn from an NRMI p̃ in C. The proposition
is stated using the definition of the (n, k)th partial Bell polynomial associated with a non-
negative sequence of real numbers w• :={wi , i ≥ 1}. A brief account on partial Bell poly-
nomials is given in the Appendix.

Proposition 3. Let (Xn)n≥1 be an exchangeable sequence governed by an NRMI p̃ in the class
C with parameter (�, �, 
, 	). Then

P(Kn =k)= ak
a	0 e−a
∑�

i =1 	i�(i)
−i

�(n)

×
∫ +∞

0

tn−1 ea
∑�

i =1 	i�(i)(
+ t)−i

(
+ t)a	0
Bn,k(w•(t; �, 
, 	)) dt, (15)

where Bn,k(w•(t; �, 
, 	)) is the (n, k)th partial Bell polynomial characterized by the sequence
w•(t; �, 
, 	) such that wi(t; �, 
, 	)=∑�

l =0 	l (
+ t)−i−l�(i + l).
The next proposition shows that the expected value and variance of the random variable

Kn can be easily derived.

Proposition 4. Let (Xn)n≥1 be an exchangeable sequence governed by an NRMI p̃ in the class
C with parameter (�, �, 
, 	). Then, for any n > 1
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P(Kn =1+Kn−1)=
∑
j≥0

P

(
�∑

i =1

iYi = j

)
�∑

i =0

(a	0 + j)(n−1),1�(i +1)	i

−ia

(a	0 + j + i)n,1
, (16)

where Y1, . . ., Y� is a collection of independent Poisson random variables with parameters
�(1)	1


−1, . . ., �(�)	�

−1, respectively. Moreover, for any 1 < m < n

P(Km =1+Km−1, Kn =1+Kn−1)

=a2
∑
j≥0

P

(
�∑

i =1

iYi = j

)
(a	0 + j)m−1,1

×
�∑

i1 =0

�∑
i2 =0

(a	0 + j + i1 +m)n−m−1, 1�(i1 +1)	i1

−i1�(i2 +1)	i2


−i2

(a	0 + j + i1 + i2)n,1
. (17)

In the next two propositions we denote by X (1,n) := (X1, . . ., Xn) a sample of size n and,
analogously, we use X (n+1,m) := (Xn+1, . . ., Xn+m) to denote an additional sample of size m,
whose characteristics can be predicted based on X (1,n). We also define the random variable
K (n)

m :=Kn+m − Kn. Note that K (n)
m indicates the number of new distinct observations in the

additional sample X (n+1,m). The probability distribution of the random variable Kn in (15)
can be interpreted as the prior distribution for the number of species to be observed in the
sample X (1,n). This distribution represents the starting point for deriving, given X (1,n), the
conditional distribution of K (n)

m and the conditional probability of observing a new species
at the (n+m+1)th draw; we use K (n+m)

1 =1 to denote this event. The next two propositions
provide explicit expressions for these two quantities.

Proposition 5. Let (Xn)n≥1 be an exchangeable sequence governed by an NRMI p̃ in the class
C with parameter (�, �, 
, 	). Then

P(K (n)
m = j |X (1,n))= ak + j
a	0 e−a

∑�
i =1 	i�(i)
−i

p(n)
k (n1, . . ., nk)�(n+m)

×
∑

(r1, ...,rk )∈G�,k

k∏
l =1

	rl
�(rl +nl )

m∑
s = j

(
m
s

)
(n+ |r|)m−s,1

×
∫ +∞

0

tn+m−1 ea
∑�

i =1 	i�(i)(
+ t)−i

(
+ t)a	0 + |r|+n+m−s
Bs, j(w•(t; �, 
, 	)) dt, (18)

where Bn,k(w•(t; �, 
, 	)) is the (n, k)th partial Bell polynomial characterized by the sequence
w•(t; �, 
, 	) such that wi(t; �, 
, 	)=∑�

l =0 	l (
+ t)−i−l�(i + l) and p(n)
k (n1, . . ., nk) is the EPPF

in (13).

The conditional distribution (18) can be interpreted as the predictive distribution of the
number of new species to be observed in the additional sample X (n+1,m). This conditional
distribution exhibits dependence on both the number of species k and the frequencies (n1, . . ., nk)
observed in X (1,n). In contrast, under a Gibbs-type model, as shown in Lijoi et al. (2007b)
the conditional distribution of K (n)

m , given X (1,n), depends only on the number of species k in
X (1,n).

Proposition 6. Let (Xn)n≥1 be an exchangeable sequence governed by an NRMI p̃ in the class
C with parameter (�, �, 
, 	). Then
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P(K (n+m)
1 =1 |X (1,n))= ak +1
a	0 e−a

∑�
i =1 	i�(i)
−i

�(n+m+1)p(n)
k (n1, . . ., nk)

�∑
i =0

	i�(i +1)

×
∑

(r1, ...,rk )∈G�,k

k∏
l =1

	rl
�(rl +nl )

m∑
j =0

m∑
s = j

(
m
s

)
a j

(
n+

k∑
h=1

rh

)
m−s,1

×
∫ +∞

0

tn+m ea
∑�

v=1 	v�(v)(
+ t)−v

(
+ t)a	0 + i +1+ |r|+n+m−s
Bs, j(w•(t; �, 
, 	)) dt,

where Bn,k(w•(t; �, 
, 	)) is the (n, k)th partial Bell polynomial characterized by the sequence
w•(t; �, 
, 	) such that wi(t; �, 
, 	)=∑�

l =0 	l (
+ t)−i−l�(i + l) and p(n)
k (n1, . . ., nk) is the EPPF

in (13).

4. An exact sampling scheme

In this section, we propose a coupling from the past algorithm (Propp & Wilson, 1996) for
sampling from the predictive distributions characterizing NRMIs in the class C.

If p̃= �̃/�̃(X), then the CRM �̃ can be represented as the sum of (�+1) independent CRMs
(�̃0, �̃1, . . ., �̃�) such that �̃i , for i =0, . . ., �, has Lévy intensity measure �i(dx, ds)=	i e−
ssi−1

ds�(dx). The number of jumps in �̃i , for i =1, . . ., �, has a Poisson distribution. For any
i =1, . . ., � let Hi(B) stand for the number of jumps in �̃i contained in B ∈X; that is, Hi

is a Poisson random measure with intensity ��(i)
−i	i . The jumps in �̃i are independent
Gamma random variables with mean (i/
). We observe, by directly exploiting the fact that a
normalized Gamma CRM is a Dirichlet process, that the conditional distribution of p̃ given
H1, . . ., H� is the law of a Dirichlet process with parameter 	0�+H , where H =∑�

i =1 iHi . The
conditional distribution of X (1,n) given H1, . . ., H� has a simple closed form. We also use the
latent variable Un introduced in James et al. (2009); this random variable, given (�̃0, �̃1, . . .�̃�)
and X (1,n), has a conditional Gamma distribution with mean n/�̃(X).

The posterior characterization of an NRMI p̃ discussed in James et al. (2009) allows
us to derive the conditional distribution of H(X) given (Un, X (1,n)). The random variable
Hi(X\{X ∗

1 , . . ., X ∗
Kn

}), for i =1, . . ., �, given (Un, X (1,n)), has a conditional Poisson distribution
with mean∫ ∫

	i e−Uns−
ssi−1 ds�(dx)=�(X)�(i)(
+Un)−i	i , (19)

and

P
(
(H(X ∗

1 ), . . ., H(X ∗
Kn

)) = (i1, . . ., ik) |Un, X (1,n)
)

=1(Kn =k)
Kn∏

j =1

	ij

∫
e−Uns−
ssij −1+Nj ds∑�

h=0 	h

∫
e−Uns−
ssh−1+Nj ds

(20)

for every k =1, . . ., n and (i1, . . .ik)∈{0, . . ., �}k . Moreover, the random variables

H1(X\{X ∗
1 , . . ., X ∗

Kn
}), . . ., H�(X\{X ∗

1 , . . ., X ∗
Kn

}),
Kn∑

i =1

H(X ∗
i ),

given (Un, X (1,n)), are conditionally independent. It follows that, for i ≥ 0, the conditional
probability P(H(X)= i | Un, X (1,n)) can be computed by using expressions (19) and (20). It
is known that, if p̃ is defined by normalizing a Gamma CRM, then X (1,n) and Un are inde-
pendent. This fact implies that, if p̃ belongs to the C class, then
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P(Un ∈du |X (1,n), H(X))=P(Un ∈du |H(X))

=
∫

e−tutnun−1 e−
t
H(X)+a	0 tH(X)+a	0−1

�(n)�(H(X)+a	0)
dt. (21)

The reported conditional distributions illustrate that it is simple to construct a Gibbs
sampling algorithm that iteratively generates random variables from the conditional distri-
bution of H(X) given (Un, X (1,n)), and from the full conditional of Un given (H(X), X (1,n)).
This Gibbs sampler constitutes the skeleton of our algorithm.

Observe that if Un can be exactly generated conditionally on X (1,n), then we can sample
from the predictive distribution. Indeed, for every B ∈X

P(Xn+1 ∈B |Un, X (1,n))

=
∑

P(H(X\{X ∗
1 , . . ., X ∗

Kn
}), H(X ∗

1 ), . . ., H(X ∗
Kn

) |X (1,n), Un)

×P(Xn+1 ∈B |H(X\{X ∗
1 , . . ., X ∗

Kn
}), H(X ∗

1 ), . . ., H(X ∗
Kn

), X (1,n))

=
∑

P(H(X\{X ∗
1 , . . ., X ∗

Kn
}), H(X ∗

1 ), . . ., H(X ∗
Kn

) |X (1,n), Un)

× (H(X\{X ∗
1 , . . ., X ∗

Kn
})+a	0)�0(B)+∑Kn

j =1(H(X ∗
j )+Nj)1(X ∗

j ∈B)

a	0 +H(X)+n
,

where the sum is over the possible values of (H(X\{X ∗
1 , . . ., X ∗

Kn
}), H(X ∗

1 ), . . ., H(X ∗
Kn

)). Simi-
larly, the sequence (Xi)i > n, conditionally on (Un, X (1,n)) and H , is identical in distribution to
an exchangeable sequence sampled from a Dirichlet process parameterized by the measure
	0�+H +∑n

i =1 �Xi .
Before stating the algorithm we briefly review the coupling from the past method intro-

duced by Propp & Wilson (26). Consider a space Z with a partial order 
. The space Z has
a maximal element z and a minimal element z; i.e. the relations z 
z and z 
z hold for every
z ∈Z. Let � be a distribution on Z. We define two classes of random processes

L := (L−j)j≥0 and V := (V−j)j≥0.

The trajectories of L−j := (Li
−j)i≥−j and V−j := (V i

−j)i≥−j start at time −j and, for every i ≥−j,
both Li

−j and V i
−j are Z-valued variables. The starting values are L−j

−j = z and V −j
−j = z. The

random processes L−j and V−j are Markov chains having identical transition probabilities
and could be used for implementing a Markov Chain Monte Carlo algorithm for approxi-
mate sampling � distributed variables. The definition of V and L satisfies a monotonicity
condition and a coalescence condition. The former is verified if, for every pair (j1, j2) and
i ≥ max(−j1, − j2), the relation V i

−j1
� Li

−j1
holds almost surely, the event V i

−j1
� V i

−j2
im-

plies V i +1
−j1

�V i +1
−j2

and, similarly, the event Li
−j1

�Li
−j2

implies Li +1
−j1

�Li +1
−j2

. The latter is ver-
ified if the binary sequence (1(Li

0 =V i
0))i≥0 converges almost surely to 1. Propp & Wilson

(1996) proved that, under these assumptions, the limits limj V 0
−j and limj L0

−j are well defined
and almost surely identical. Moreover, the equality P(limj V 0

−j ∈ B)=�(B) holds for every
measurable set B. Finally, the variable C :=min{j ≥ 1 : V 0

−j =L0
−j} is well defined, for every

j ≥ C, the equalities V 0
−C =L0

−C =V 0
−j =L0

−j hold and, if it is feasible to generate V 0
−C , then

the � distributed random variable limj V 0
−j can be exactly generated.

We can now start describing an exact algorithm for generating (Un, H(X)) conditionally on
X (1,n) by defining the transition probabilities of the Markov chains L−j and V−j . We define
Z := [0, ∞]2 and introduce the notation Li

−j = (Li
−j,1, Li

−j,2) and V i
−j = (Li

−j,1, Li
−j,2) for empha-

sizing that Li
−j and V i

−j are random vectors. The transitions Li
−j →Li +1

−j have strict similarities
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with the previously outlined Gibbs sampler. The random variable Li +1
−j,1, conditioned on Li

−j ,
can be generated by sampling from the conditional distribution of Un given (H(X), X (1,n)),
assuming H(X)=Li

−j,2. The random variable Li +1
−j,2, conditioned on (Li

−j , Li +1
−j,1), can be

generated by sampling from the conditional distribution of H(X) given (Un, X (1,n)), assuming
Un =Li +1

−j,1. These two steps describe the transition probabilities of L−j and V−j ; we recall that
the transition probabilities of these Markov chains are identical. We complete the definitions
of L−j and V−j by setting L−j

−j = (0, ∞), V −j
−j = (∞, 0) and P(L−j +1

−j,1 =0 |L−j
−j = (0, ∞))=1.

To jointly define L and V, we introduce the independent random elements �= (�i)i∈Z,
∇=(∇i)i∈Z and �= (�i(t))t≥0, i∈Z, where Z is the set of the integer numbers. The random
variables (�i)i∈Z are independently and uniformly distributed on the unit interval, (∇i)i∈Z is a
sequence of independent Gamma random variables with mean n and variance n, and
(�i(t))t > 0, i∈Z are independent increasing Gamma processes such that, for every t > 0, �i(t)
is a Gamma random variable with mean t and variance t. We can now define, for j ≥0 and
i ≥−j, the random variables (Li

−j,1, Li
−j,2) and (V i

−j,1, V i
−j,2) by using a system of equations:

for every i ≥−j

Li +1
−j,1 = 
∇i

�i(a	0 +Li
−j,2)

, V i +1
−j,1 = 
∇i

�i(a	0 +V i
−j,2)

, (22)

and

Li +1
−j,2 = inf{h∈N0 : F (h, Li +1

−j,1)≥�i}, V i +1
−j,2 = inf{h∈N0 : F (h, V i +1

−j,1 )≥�i}, (23)

where F is a real function on N0 × [0, ∞) such that F (h, u) is the conditional probability of
the event H(X) ≤ h given X (1,n) and the latent variable Un =u. Expression (23) is a direct
application of the so-called probability integral transform method. Equations (22) and (23)
are consistent with the previously reported definitions of the Markov chains L−j and V−j .
Indeed, expression (21) shows that the conditional density of Un given (H(X), X (1,n)) can be
represented as a mixture of Gamma distributions with fixed shape parameter.

We use the following partial order: (u1, h1) 
 (u2, h2) if and only if u1 ≤ u2 and h1 ≥ h2.
Expression (22) shows that P(Li +1

−j1,1 ≤Li +1
−j2,1 |Li

−j1

Li

−j2
)=1. Moreover, expressions (19) and

(20) imply that, for every h, if u1 ≤u2, then,

P(H(X)≤h |X (1,n), Un =u1)≤P(H(X)≤h |X (1,n), Un =u2).

These facts imply that the definition of L and V satisfies the monotonicity requirement.
Expressions (22) and (23) imply that L and V satisfy the coalescence condition, indeed, for
every � such that P(H(X)=0 |X (1,n), Un =0) >�> 0,

P

(⋂
i≥l

{Li
−j =V i

−j}| min{�h; h=−j, − j +1, . . ., l −2}<�

)
=1.

We specify a procedure for generating the variables (Li
−j , V i

−j)1≤j≤C,−j≤i≤0. We recall that
C =min{j ≥1 : V 0

−j =L0
−j}. The algorithm, for every 1≤ j ≤C, sequentially generates the vari-

ables (Li
−j , V i

−j)−j≤i≤0 after (Li
−j +1, V i

−j +1)−j < i≤0. At each iteration 1≤ j ≤C, for every −j < i ≤ 0,
the vector (Li

−j , V i
−j) is generated after (Li−1

−j , V i−1
−j ). We also recall that the distribution � of

V 0
−C and the conditional distribution P(Un, H(X) |X (1,n)) are identical. At the beginning of

the jth iteration �−j , ∇−j and �−j(�(X)) are generated to compute (L−j +1
−j , V −j +1

−j ) by using (22)
and (23) and the equalities L−j

−j = (0, ∞) and V −j
−j = (∞, 0). We use the proviso �−j(∞)−1 =0.

After the random variables (Li
−j , V i

−j) have been computed, where 1 ≤ j ≤ C and −j < i < 0,
consistently with the fact that the variables (�i , ∇i) as well as some terms of the sequence
�i(t), t =�(X), �(X)+1, . . ., have already been generated, the algorithm, given these variables,
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generates �i(�(X)+Li
−j,2) and �−j(�(X)+V i

−j,2) to compute (Li +1
−j , V i +1

−j ) by using expres-
sions (22) and (23). That is, at each step the algorithm generates the components of (�, ∇, �)
that are necessary for computing a pair of Z-valued variables (Li

−j , V i
−j) conditionally on the

previously generated components. These components can be easily generated from the con-
ditional distributions. The random vector (�−j , ∇−j), j =1, 2. . ., is independent of the com-
plementary components of (�, ∇, �); we only need to generate a Uniform random variable
and a Gamma random variable. The definition of (�, ∇, �) also implies that, when we gener-
ate �−j(t), it suffices to condition on those terms of the sequence �i(t), t =�(X), �(X)+1, . . .,
that have already been generated. Moreover, for every t > 0, t1 < t2 < · · ·< tl and j =1, . . ., l −1,

P(�i(t)∈du |�i(t1), . . ., �i(tl ))=
⎧⎨
⎩

P(�i(t)∈du |�i(t1)) if 0 < t ≤ t1,
P(�i(t)∈du |�i(tj), �i(tj +1)) if tj < t ≤ tj +1,
P(�i(t)∈du |�i(tl )) if tl ≤ t.

(24)

We only need to generate linear transformations of Beta or Gamma random variables. Impor-
tantly, expression (24) implies that for generating �i(�(X)+Li

−j,2) and �i(�(X)+V i
−j,2) given

the previously observed components of (�, ∇, �) we only need the values of Li
−j,2, V i

−j,2,
Li

−j +1,2, V i
−j +1,2, �i(�(X)+Li

−j +1,2) and �i(�(X)+V i
−j +1,2), indeed, the monotonicity con-

dition guarantees that

· · ·V i
−j +2,2 ≤V i

−j +1,2 ≤V i
−j,2 ≤Li

−j,2 ≤Li
−j +1,2 ≤Li

−j +2,2 ≤· · · .

We conclude this section with a few examples representative of the computational effi-
ciency of the proposed algorithm. To evaluate the computational efficiency we considered
some alternative scenarios and sampled iteratively from the target distribution �. Figure 1
shows Monte Carlo approximations of the distributions of the times to coalescence C of
the algorithm for nine different scenarios. The first line of Fig. 1 represents three different
Lévy intensity measures; each graph illustrates a different map s → �(ds)�(X). The second
line of Fig. 1 emphasizes that the three alternative probability models are representative of
remarkably different a priori beliefs on the unknown discrete distribution p̃; each graph shows
the expected values of the 12 largest normalized jumps of p̃. The expected values have been
computed using the Monte Carlo method. The third line illustrates the observed times to
coalescence when the sample size is n=100, k =10 and n1 =n1 = · · ·n10; each histogram is
based on 100 iterations of the algorithm. The fourth line represents the times to coalescence
when k =4, n1 =40, n2 =30, n3 =20 and n4 =10. The fifth line considers k =7, n1 =70 and
n2 =n3 = · · ·n7 =5.

Table 1 illustrates the computational times in seconds necessary for sampling 100 indepen-
dent variables from the target distribution �. We consider again three alternative models; for
all the three models 
=�(X)=1 and �=9. The 1st model is parameterized by 	i =1/(i +1)!
for i =0, . . ., 9, the 2nd one by 	i =0.3/i! for i =0, . . ., 9 and the 3rd by 	i =0.1(i +1)/i! for
every i =0, . . ., 9. Table 1 gives the computational times that were necessary for sampling 100
variables from the target distribution in the nine scenarios that we considered. The algorithm
has been implemented using the R language.

Table 1. Computational times in seconds for sampling 100 variables from �

Frequencies Model 1 Model 2 Model 3

k =10; n1 = · · ·=n10 =1000 13.8 11.6 8.9
k =4; n1 =4000, n2 =3000, n3 =2000, n4 =1000 4.5 3.8 3.1
k =7; n1 =7000, n2 = · · ·=n7 =500 4.5 4.2 3.5
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Fig. 1. Times to coalescence for nine alternative scenarios.
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Appendix

Bell Polynomials

The partition polynomials, introduced by Bell (1927), have found many applications in com-
binatorics, probability theory and statistics. A particular type of partition polynomials are
the so-called Bell polynomials (see Comtet, 1974).

Definition 4. Let w• :={wi , i ≥1} be a sequence of real numbers. Then the (n, k)th partial Bell
polynomial Bn,k(w•) is defined by the expansion

exp{xw(t)}=
+∞∑
n=0

+∞∑
k =0

Bn,k(w•)xk tn

n!

where w(t) is the exponential generating function of the sequence w• and w0 =w(0)=0.

From definition 4 it is possible to isolate Bn,k(w•) by differentiating the appropriate number
of times and then setting x = t =0, i.e.

Bn,k(w•)= ∂n

∂tn

1
k!

∂k

∂xk
exp{xw(t)}

∣∣∣∣
x =0, t =0

for all n≥0 and k ≥0. This shows that Bn,k(w•) corresponds to the nth Taylor coefficient of
(1/k!)wk(t) or wk(t)/k!=∑+∞

n=0 Bn,k(w•)tn/n!. By setting k =0 one gets B0,0 =1 and Bn,0 =0 for
n≥1, whereas for k =1 one has Bn,1 =wn for all n≥0. Also, since w0 =0, one has

1
k!

wk(t)= 1
k!

(
w1t +w2

t2

2!
+ · · ·

)k

=wk
1

tk

k!
+ · · · (25)

so that Bn,k(w•)=0 whenever k > n and Bn,n(w•)=wn
1 for all n ≥ 0. Partial Bell polynomials

can be computed by resorting to the following recurrence relation

Bn,k(w•)=
n−k +1∑

m=1

(
n
m

)
wmBn−m,k−1(w•).
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