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We define a type system with intersection types for an extension of lambda-calculus with unbind and
rebind operators. In this calculus, a termt with free variablesx1, . . . ,xn, representing open code, can
be packed into anunboundterm 〈 x1, . . . ,xn | t 〉, and passed around as a value. In order to execute
inside code, an unbound term should be explicitlyreboundat the point where it is used. Unbinding
and rebinding are hierarchical, that is, the termt can contain arbitrarily nested unbound terms, whose
inside code can only be executed after a sequence of rebinds has been applied. Correspondingly,
types are decorated with levels, and a term has typeτk if it needsk rebinds in order to reduce to
a value of typeτ. With intersection types we model the fact that a term can be used differently in
contexts providing a different numbers of unbinds. In particular, top-level terms, that is, terms not
requiring unbinds to reduce to values, should have avaluetype, that is, an intersection type where
at least one element has level 0. With the proposed intersection type system we get soundness under
the call-by-value strategy, an issue which was not resolvedby previous type systems.

Introduction

In previous work [12, 13] we introduced an extension of lambda-calculus with unbind and rebind opera-
tors, providing a simple unifying foundation for dynamic scoping, rebinding and delegation mechanisms.
This extension relies on the following ideas:

• A term 〈 Γ | t 〉, whereΓ is a set of typed variables calledunbinders, is a value, of a special type
code, representing “open code” which may contain free variablesin the domain ofΓ.

• To be used, open code should bereboundthrough the operatort[r], wherer is a (typed) substitution
(a map from typed variables to terms). Variables in the domain of r are calledrebinders. When
the rebind operator is applied to a term〈 Γ | t 〉, a dynamic check is performed: if all unbinders are
rebound with values of the required types, then the substitution is performed, otherwise a dynamic
error is raised.

For instance, the term1 〈 x,y | x+ y 〉[x 7→ 1,y 7→ 2] reduces to 1+ 2, whereas both〈 x,y | x+ y 〉[x 7→ 1]
and〈 x:int | x + 1 〉[x:int→ int 7→ λy.y + 1] reduce toerror.

Unbinding and rebinding are hierarchical, that is, the termt can contain arbitrarily nested unbound
terms, whose inside code can only be executed after a sequence of rebinds has been applied2. For
instance,two rebinds must be applied to the term〈 x | x+ 〈 x | x 〉 〉 in order to get an integer:

∗This work has been partially supported by MIUR DISCO - Distribution, Interaction, Specification, Composition for Object
Systems- and IPODS - Interacting Processes in Open-ended Distributed Systems.

1In the examples we omit type annotations when they are irrelevant.
2See the Conclusion for more comments on this choice.
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〈 x | x+ 〈 x | x 〉 〉[x 7→ 1][x 7→ 2] −→ (1+ 〈 x | x 〉)[x 7→ 2]
−→ (1[x 7→ 2])+ (〈 x | x 〉[x 7→ 2])
−→ 1+2

Correspondingly, types are decorated with levels, and a term has typeτk if it needsk rebinds in order
to reduce to a value of typeτ . With intersection types we model the fact that a term can be used differently
in contexts which provide a different numberk of unbinds. For instance, the term〈 x | x+ 〈 x | x 〉 〉 above
has typeint2∧ code

0, since it can be safely used in two ways: either in a context which provides two
rebinds, as shown above, or as a value of typecode, as, e.g., in:

(λy.y[x 7→ 1][x 7→ 2])〈 x | x+ 〈 x | x 〉 〉

On the other side, the term〈 x | x+ 〈 x | x 〉 〉 doesnot have typeint1, since by applying only one rebind
with [x 7→ 1] we get the term 1+ 〈 x | x 〉 which is stuck.

The use of intersection types allows us to get soundness w.r.t. the call-by-value strategy. This issue
was not resolved by previous type systems [12, 13] where, forthis reason, we only considered the call-
by-name reduction strategy. To see the problem, consider the following example.

The term

(λy.y[x 7→ 2])(1+ 〈 x | x 〉)

is stuck in the call-by-value strategy, since the argument is not a value, hence should be ill typed, even
though the argument has typeint1, which is a correct type for the argument of the function. By using
intersection types, this can be enforced by requiring arguments of functions to havevalue types, that is,
intersections where (at least) one of the conjuncts is a typeof level 0. In this way, the above term is ill
typed. Note that a call-by-name evaluation of the above termgives

(λy.y[x 7→ 2])(1+ 〈 x | x 〉) −→ (1+ 〈 x | x 〉)[x 7→ 2]
−→ (1[x 7→ 2])+ (〈 x | x 〉[x 7→ 2])
−→ 1+2.

Instead, the term(λy.y[x 7→ 2])〈 x | 1+x 〉 is well typed, and it reduces as follows in both call-by-value
and call-by-name strategies:

(λy.y[x 7→ 2])〈 x | 1+x 〉 −→ 〈 x | 1+x 〉[x 7→ 2]
−→ 1+2.

It is interesting to note that this phenomenon is due to the possibility for operators (in our case for
+) of acting on arguments which are unbound terms. This design choice is quite natural in view of dis-
cussing open code, as in MetaML [23]. In pureλ -calculus there is no closed term which converges when
evaluated by the lazy call-by-name strategy and is stuck when evaluated by the call-by-value strategy.
Instead there are closed terms, like(λx.λy.y)((λz.zz)(λz.zz)), which converge when evaluated by the
lazy call-by-name strategy and diverge when evaluated by the call-by-value strategy, and open terms,
like (λx.λy.y)z, which converge when evaluated by the lazy call-by-name strategy and are stuck when
evaluated by the call-by-value strategy.3

In summary, the contribution of this paper is the following.We define a type system for the calculus
of Dezani et al. [12, 13], where, differently from those papers, we omit types on the lambda-binders in
order to get the whole expressivity of the intersection typeconstructor [25]. The type system shows, in
our opinion, an interesting and novel application of intersection types. Indeed, they handle in a uniform
way the three following issues.

3Note that following Pierce [18] we consider onlyλ -abstractions as values, while for Plotkin [19] also free variables are
values.
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• Functions may be applied to arguments of (a finite set of) different types.

• A term can be used differently in contexts providing different numbers of unbinds. Indeed, an
intersection type for a term includes a type of formτk if the term needsk rebinds in order to
reduce to a value of typeτ .

• Most notably, the type system guarantees soundness for the call-by-value strategy, by requiring
that top-level terms, that is, terms which do not require unbinds to reduce to values, should have
value types.

Paper Structure. In Section 1 we introduce the syntax and the operational semantics of the language.
In Section 2 we define the type system and state its soundness.In Section 3 we discuss related and further
work. Due to lack of space proofs are omitted and will be part of the final version of the paper.

1 Calculus

The syntax and reduction rules of the calculus are given in Figure 1.

t :: = x | n | t1 + t2 | λx.t | t1 t2 | 〈 Γ | t 〉 | t[r] | error term
Γ :: = x1:T1, . . . ,xm:Tm type context
r :: = x1:T1 7→ t1, . . . ,xm:Tm 7→ tm (typed) substitution

v :: = λx.t | 〈 Γ | t 〉 | n value
rv :: = x1:T1 7→ v1, . . . ,xm:Tm 7→ vm value substitution

E :: = [] | E + t | n + E | E t | v E | t[r,x:T 7→ E ] evaluation context
σ :: = x1 7→ v1, . . . ,xm 7→ vm (untyped) substitution

n1 + n2 −→ n if ñ = ñ1 +Z ñ2 (SUM )

(λx.t)v−→ t{x 7→ v} (APP)

〈 Γ | t 〉[rv] −→ t{subst(rv)|dom(Γ)} if Γ ⊆ tenv(rv) (REBINDUNBINDYES)

〈 Γ | t 〉[rv] −→ error if Γ 6⊆ tenv(rv) (REBINDUNBINDNO)

n[rv] −→ n (REBINDNUM )

(t1 + t2)[rv] −→ t1[rv] + t2[rv] (REBINDSUM )

(λx.t)[rv] −→ λx.t[rv] (REBINDABS)

(t1 t2)[rv] −→ t1[rv] t2[rv] (REBINDAPP)

t[r][rv] −→ t′[rv] if t[r] −→ t′ (REBINDREBIND)

error[rv] −→ error (REBINDERROR)

t −→ t′ E 6= []
(CTX)

E [t] −→ E [t′]

t −→ error E 6= []
(CTXERROR)

E [t] −→ error

Figure 1: Syntax and reduction rules

Terms of the calculus are theλ -calculus terms, the unbind and rebind constructs, and the dynamic
error. Moreover, we include integers with addition to show how unbind and rebind behave on primitive
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data types. Unbinders and rebinders are annotated with typesT, which will be described in the following
section. Here it is enough to assume that they include standard int and functional types. Type contexts
and substitutions are assumed to be maps, that is, order is immaterial and variables cannot appear twice.

Free variables and application of a substitution to a term are defined in Figure 2. Note that an
unbinder behaves like aλ -binder: for instance, in a term of shape〈 x | t 〉, the unbinderx introduces a
local scope, that is, binds free occurrences ofx in t. Hence, a substitution forx is not propagated inside
t. Moreover, a condition, which prevents capture of free variables similar to theλ -abstraction case is
needed, see Figure 2. For instance, the term(λy.〈 x | y 〉)(λz.x) reduces to〈 x | y 〉{y 7→ λz.x} which is
stuck, i.e., it does not reduce to〈 x | λz.x 〉, which would be wrong.

However,λ -binders and unbinders behave differently w.r.t.α-equivalence. Aλ -binder can be re-
named, as usual, together with all its bound variable occurrences, whereas this isnotsafe for an unbinder:
for instance,〈 x | x + 1 〉[x 7→ 2] is not equivalent to〈 y | y + 1 〉[x 7→ 2]. Only aglobal renaming, e.g.,
leading to〈 y | y + 1 〉[y 7→ 2], would be safe.4

FV(x) = {x}
FV(n) = /0
FV(t1 + t2) = FV(t1)∪FV(t2)
FV(λx.t) = FV(t)\{x}
FV(t1 t2) = FV(t1)∪FV(t1)
FV(〈 Γ | t 〉) = FV(t)\dom(Γ)
FV(t[r]) = FV(t)∪FV(subst(r))
FV(x1 7→ t1, . . . ,xm 7→ tm) =

⋃
i∈1..mFV(ti)

x{σ} = v if σ(x) = v
x{σ} = x if x 6∈ dom(σ)
n{σ} = n
(t1 + t2){σ} = t1{σ} + t2{σ}
(λx.t){σ} = λx.t{σ\{x}} if x 6∈ FV(σ)

(t1 t2){σ} = t1{σ} t2{σ}
〈 Γ | t 〉{σ} = 〈 Γ | t{σ\dom(Γ)} 〉 if dom(Γ)∩FV(σ) = /0
t[x1:T1 7→ t1, . . . ,xm:Tm 7→ tm]{σ} = t{σ}[x1:T1 7→ t1{σ}, . . . ,xm:Tm 7→ tm{σ}]

Figure 2: Free variables and application of substitution

The call-by-value operational semantics is described by the reduction rules and the definition of the
evaluation contextsE . We denote by ˜n the integer represented by the constantn, by tenv(r) andsubst(r)
the type context and the untyped substitution extracted from a typed substitutionr, by domthe domain
of a map, byσ|{x1,...,xn} andσ\{x1,...,xn} the substitutions obtained fromσ by restricting to or removing
variables in set{x1, . . . ,xn}, respectively.

Rules for sum and application (of a lambda to a value) are standard. The(REBIND ) rules determine

4A more sophisticated solution [5], allows local renaming ofunbinders by a “precompilation” step annotating variableswith
indexes, which can beα-renamed, but are not taken into account by the rebinding mechanism. Indeed, variable occurrences
which are unbinders, rebinders, or bound to an unbinder, actually play the role ofnamesrather than standard variables. Note
that variables in a rebinder, e.g.,x in [x 7→ 2], are not bindings, andx is neither a free, nor a bound variable. See the Conclusion
for more comments on this difference.
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what happens when a rebind is applied to a term. There are two rules for the rebinding of an unbound
term. Rule(REBINDUNBINDYES) is applied when the unbound variables are all present (and ofthe required
types), in which case the associated values are substituted, otherwise rule(REBINDUNBINDNO) produces a
dynamic error. This is formally expressed by the side condition Γ ⊆ tenv(r). Note that a rebind applied to
a term may be stuck even though the variables are all present and of the right type, when the substitution
is not defined. This may be caused by the fact that when appliedto a unbound term, a substitution
could cause capture of free variables (see the example earlier in this section). On sum, abstraction and
application, the rebind is simply propagated to subterms, and if a rebind is applied to a rebound term,
(REBINDREBIND), the inner rebind is applied first. The evaluation order is specified by rule(CTX) and the
definition of contexts,E , that gives the call-by-value strategy. Finally rule(CTXERROR) propagates errors.
To make rule selection deterministic, rules(CTX) and (CTXERROR) are applicable only whenE 6= []. As
usual−→⋆ is the reflexive and transitive closure of−→.

When a rebind is applied, only variables which were explicitly specified as unbinders are replaced.
For instance, the term〈 x | x + y 〉[x 7→ 1,y 7→ 2] reduces to 1+ y rather than to 1+ 2. In other words, the
unbinding/rebinding mechanism is explicitly controlled by the programmer.

Looking at the rules we can see that rebind remains stuck on a variable. Indeed, it will be resolved
only when the variable will be substituted as effect of a standard application. See the following example:

(λy.y+ 〈 x | x 〉)[x 7→ 1]〈 x | x+2 〉 −→ (λy.(y+ 〈 x | x 〉)[x 7→ 1])〈 x | x+2 〉
−→ (〈 x | x+2 〉+ 〈 x | x 〉)[x 7→ 1]
−→ 〈 x | x+2 〉[x 7→ 1]+ 〈 x | x 〉[x 7→ 1]
−→⋆ 4

Note that in rule(REBINDABS), the binderx of the λ -abstraction does not interfere with the rebind, even
in casex ∈ dom(r). Indeed, rebind has no effect on the free occurrences ofx in the body of theλ -
abstraction. For instance,(λx.x+ 〈 x | x 〉)[x 7→ 1]2, which isα-equivalent to(λy.y+ 〈 x | x 〉)[x 7→ 1]2,
reduces in some steps to 2+ 1. On the other side, bothλ -binders and unbinders prevent a substitution
for the corresponding variable from being propagated in their scope, for instance:

〈 x,y | x+ λx.(x+y)+ 〈 x | x+y 〉 〉[x 7→ 2,y 7→ 3] −→ 2+(λx.x+3)+ 〈 x | x+3 〉

A standard (static) binder can also affect code to be dynamically rebound, when it binds free variables
in a substitutionr, as shown by the following example:

(λx.λy.y[x 7→ x] + x)1〈 x | x + 2 〉 −→ (λy.y[x 7→ 1] + 1)〈 x | x + 2 〉
−→ 〈 x | x + 2 〉[x 7→ 1] + 1−→ 1 + 2 + 1.

Note that in[x 7→ x] the two occurrences ofx refer to different variables. Indeed, the second is bound by
the external lambda whereas the first one is a rebinder.

2 Type system

We have three classes of types:primitive typesτ , value types V, andterm types T; see Figure 3.
Primitive types characterise the shape of values. In our case we have integers (int), functions (T1 →

T2), andcode, which is the type of a term〈 Γ | t 〉, that is, (possibly) open code.
Term types are primitive types decorated with alevel kor intersection of types. If a term has typeτk,

then by applyingk rebind operators to the term we get a value of primitive typeτ . We abbreviate a type
τ0 by τ . Terms have the intersection typeT1∧T2 when they have both typesT1 andT2. On intersection
we have the usual congruence due to idempotence, commutativity, associativity, and distributivity over
arrow type, defined in the first four clauses of Figure 4.
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T :: = τk | T1∧T2 (k∈ N) term type
V :: = τ0 | V∧T | T∧V value type
τ :: = int | code | T → T′ primitive type

Figure 3: Types

Value types characterise terms that reduce to values, so they are intersections in which (at least) one
of the conjuncts must be a primitive type of level 0. For instance, the term〈 x : int | 〈 y : int | x + y 〉 〉
has typecode0∧code

1∧int
2, since it is code that applying one rebinding produces code that, in turn,

applying another rebinding produces an integer. The term〈 x : int | x + 〈 y : int | y + 1 〉 〉 has type
code

0 ∧ int
2 since it is code that applying one rebinding produces the term n + 〈 y : int | y + 1 〉, for

somen. Both code
0 ∧ code

1 ∧ int
2 andcode0 ∧ int

2 are value types, whereasint1, which is the
type of termn + 〈 y : int | y + 1 〉, is not a value type. Indeed, in order to produce an integer value the
term must be rebound (at least) once. The typing rule for application enforces the restriction that a term
may be applied only to terms reducing to values, that is the call-by-value strategy. Similar for the terms
associated with variables in a substitution.

Let I = {1, . . . ,m}. We write
∧

i∈I τki
i and

∧
i∈1..mτki

i to denoteτk1
1 ∧ ·· · ∧ τkm

m . Note that any typeT
is such thatT =

∧
i∈1..mτki

i , for someτi andki (i ∈ 1..m). Given a typeT =
∧

i∈1..mτki
i , with (T)⊕h we

denote the type
∧

i∈1..mτki+h
i .

T ≡ T∧T T1∧T2 ≡ T2∧T1 T1∧ (T2∧T3) ≡ (T1∧T2)∧T3

(T → T1)
k∧ (T → T2)

k ≡ (T → T1∧T2)
k (T′ → (T)⊕h)k+1 ≡ (T′ → (T)⊕(h+1))k

Figure 4: Congruence on types

Figure 4 defines congruence on types. In addition to the standard properties of intersection, the last
congruence says that the level of function types can be switched with the one of their results. That is,
unbinding and lambda-abstraction commute. So rebinding may be applied to lambda-abstractions, since
reduction rule(REBINDABS) pushes rebinding inside. For instance, the terms〈 Γ | λx.t 〉 andλx.〈 Γ | t 〉
may be used interchangeably.

int
k ≤ int

k+1 T1∧T2 ≤ T1

T2 ≤ T1 T′
1 ≤ T′

2

(T1 → T′
1)

k ≤ (T2 → T′
2)

k

T1 ≤ T′
1 T2 ≤ T′

2

T1∧T2 ≤ T′
1∧T′

2

T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

T1 ≡ T2

T1 ≤ T2

Figure 5: Subtyping on types

Subtyping, defined in Figure 5, expresses subsumption, thatis, if a term has typeT1, then it can be
used also in a context requiring a typeT2 with T1 ≤ T2. For integer types it is justified by the reduction
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rule (REBINDNUM ), since once we obtain an integer value any number of rebindings may be applied.5

For intersections, it is intersection elimination. The other rules are the standard extension of subtyping
to function and intersection types, transitivity, and the fact that congruent types are in the subtyping
relation.

(T-INTER)
Γ ⊢ t : T1 Γ ⊢ t : T2

Γ ⊢ t : T1∧T2
(T-SUB)

Γ ⊢ t : T T≤ T′

Γ ⊢ t : T′
(T-VAR)

Γ(x) = T
Γ ⊢ x : T

(T-NUM )
Γ ⊢ n : int0 (T-SUM )

Γ ⊢ t1 : intk Γ ⊢ t2 : intk

Γ ⊢ t1 + t2 : intk (T-ERROR)
Γ ⊢ error : T

(T-ABS)
Γ,x:T ⊢ t : T′

Γ ⊢ λx.t : (T → T′)0 (T-APP)
Γ ⊢ t1 : (V → T)0 Γ ⊢ t2 : V

Γ ⊢ t1 t2 : T

(T-UNBIND-0)
Γ,Γ′ ⊢ t : T

Γ ⊢ 〈 Γ′ | t 〉 : code0 (T-UNBIND)
Γ,Γ′ ⊢ t : T

Γ ⊢ 〈 Γ′ | t 〉 : (T)⊕1

(T-REBIND)
Γ ⊢ t : (T)⊕1 Γ ⊢ r : ok

Γ ⊢ t[r] : T
(T-REBINDING)

Γ ⊢ ti : Vi Vi ≤ Ti (i ∈ 1..m)

Γ ⊢ x1:T1 7→ t1, . . . ,xm:Tm 7→ tm : ok

Figure 6: Typing rules

Typing rules are defined in Figure 6. A number has the value type int0. With rule (T-SUB), however,
it can be given the typeintk for anyk. Rule (T-SUM ) requires that both operands of a sum have the same
type, with rule(T-SUB) the term can be given as level the biggest level of the operands. Rule(T-ERROR)

permits the use oferror in any context. In rule(T-ABS) the initial level of a lambda abstraction is 0 since
the term is a value. With rule(T-SUB) we may decrease the level of the return type by increasing, bythe
same amount, the level of the whole arrow type. This is usefulsince, for example, we can derive

⊢ λx.x + 〈 y:int | y + 〈 z:int | z〉 〉 : (int→ int
1)1

by first deriving the type(int→ int
2)0 for the term, and then applying(T-SUB). Therefore, we can give

type to the rebinding of the term, by applying rule(T-REBINDING) that requires that the term to be rebound
has level bigger than 0, and whose resulting type is decreased by one. For example,

⊢ (λx.x + 〈 y:int | y + 〈 z:int | z〉 〉)[y:int 7→ 5] : (int→ int
1)0

which means that the term reduces to a lambda abstraction, i.e., to a value, which applied to an integer
needs one rebind in order to produce an integer or error. The rule (T-APP) assumes that the type of the
function be a level 0 type. This is not a restriction, since using rule (T-SUB), if the term has any function
type it is possible to assign it a level 0 type. The type of the argument must be a value type. This
condition is justified by the example given in the introduction.

The two rules for unbinds reflect the fact that code is both a value, and as such has typecode0,
and also a term that needs one more rebinding than its body in order to produce a value. Taking the
intersection of the types derived for the same unbind with these two rules we can derive a value type for

5Note that the generalisation ofintk ≤ int
k+1 to Tk ≤ Tk+1 is sound but useless.
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the unbind and use it as argument of an application. For example typing 〈 y : int | y 〉 by code0∧int
1

we can derive typeint0 for the term

(λx.2+x[y: int 7→ 3])〈 y : int | y 〉.

Note that the present type system only takes into account thenumber of rebindings which are applied
to a term, whereas no check is performed on the name and the type of the variables to be rebound. This
check is performed at runtime by rules(REBINDUNBINDYES) and(REBINDUNBINDNO).

A peculiarity of the given type system is that weakening doesnot hold, in spite of the fact that no
notion of linearity is enforced. Weakening simply fails since the rules for typing unbound terms discharge
type assumptions on variables which cannot beα-renamed.

The type system issafesince types are preserved by reduction and a closed term withvalue type is
a value or can be reduced. In other words the system has both the subject reductionand theprogress
properties. Note that a term that may not be assigned a value type is stuck, as for example 1+ 〈 x:int | x 〉,
which has typeint1. These properties can be formalised as follows.

Theorem 2.1 (Subject Reduction) If Γ ⊢ t : T and t−→⋆ t′, thenΓ ⊢ t′ : T.

Theorem 2.2 (Progress) If ⊢ t : V, then either t is a value, or t= error, or t −→ t′ for some t′.

Note that terms which are stuck since application of substitution is undefined, such as the previ-
ous example(λy.〈 x | y 〉)(λz.x), are ill typed since in the typing rules for unbinding the premises on
unbinders are discharged, and there is no weakening rule.

3 Conclusion

We have defined a type system with intersection types for an extension of lambda-calculus with unbind
and rebind operators introduced in previous work [12, 13]. Besides the traditional use of intersection
types for typing (finitely) polymorphic functions, this type system shows two novel applications:

• An intersection type expresses that a term can be used in contexts which provide a different number
of unbinds.

• In particular, an unbound term can be used both as a value of typecode and in a context providing
an unbind.

This type system could be used for call-by-name with minor modifications. However, the call-by-
value case is more significant since the condition that the argument of an application must reduce to a
value can be nicely expressed by the notion of value type. Moreover, only the number of rebindings
which are applied to a term is taken into account, whereas no check is performed on the name and the
type of the variables to be rebound; this check is performed at runtime. This solution is convenient,
e.g., in distributed scenarios where code is not all available at compile time, or in combination with
delegation mechanisms where, in case of dynamic error due toan absent/wrong binding, an alternative
action is taken. In papers introducing the calculus [12, 13]we have also provided an alternative type
system (for the call-by-name calculus) which ensures a stronger form of safety, that is, that rebinding
always succeeds. The key idea is to decorate types with the names of the variables which need to be
rebound, as done also by Nanevski and Pfenning [17]. In this way run-time errors arising from absence
(or mismatch) in rebind are prevented by a purely static typesystem, at the price of quite sophisticated
types. A similar system could be developed for the present calculus, on the other hand, the type system
of Dezani et al. [12, 13] could be enriched with intersectiontypes to get the stronger safety for the
call-by-value calculus.
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Intersection types have been originally introduced [6] as alanguage for describing and capturing
properties ofλ -terms, which had escaped all previous typing disciplines.For instance, they were used
in order to give the first type theoretic characterisation ofstrongly normalisingterms [20], and later in
order to capture(persistently) normalising terms[8].

Very early on it was realised that intersection types had also a distinctive semantical flavour. Namely,
they expressed at a syntactical level the fact that a term belonged to suitable compact open sets in a
Scott domain [4]. Since then, intersection types have been used as a powerful tool both for the analysis
and the synthesis ofλ -models. On the one hand, intersection type disciplines provide finitary inductive
definitions of interpretation ofλ -terms in models [7], and they are suggestive for the shape the domain
model has to have in order to exhibit specific properties [10].

More recently, systems with both intersection and union types have been proposed for various aims
[3, 14], but we do not see any gain in adding union types in the present setting.

Ever since the accidental discovery of dynamic scoping in McCarthy’s Lisp 1.0, there has been
extensive work in explaining and integrating mechanisms for dynamic and static binding. The classical
reference for dynamic scoping is Moreau’s paper [16], whichintroduces aλ -calculus with two distinct
kinds of variables:staticanddynamic. The semantics can be (equivalently) given either by translation
in the standardλ -calculus or directly. In the translation semantics,λ -abstractions have an additional
parameter corresponding to the application-time context.In the direct semantics, roughly, an application
(λx.t)v, wherex is a dynamic variable, reduces to adynamic letdlet x = v in t. In this construct, free
occurrences ofx in t are not immediately replaced byv, as in the standard static let, but rather reduction
of t is started. When, during this reduction, an occurrence ofx is found in redex position, it is replaced
by the value ofx in the innermost enclosingdlet, so that dynamic scoping is obtained.

In our calculus, the behaviour of the dynamic let is obtainedby the unbind and rebind constructs.
However, there are at least two important differences. Firstly, the unbind construct allows the program-
mer to explicitly control the program portions where a variable should be dynamically bound. In particu-
lar, occurrences of the same variable can be bound either statically or dynamically, whereas Moreau [16]
assumes two distinct sets. Secondly, our rebind behaves in ahierarchical way, whereas, taking Moreau’s
approach [16] where the innermost binding is selected, a newrebind for the same variable would rewrite
the previous one, as also in work by Dezani et al. [11]. For instance,〈 x | x 〉[x 7→ 1][x 7→ 2] would reduce
to 2 rather than to 1. The advantage of our semantics, at the price of a more complicated type system, is
again more control. In other words, when the programmers want to use “open code”, they must explic-
itly specify the desired binding, whereas in Moreau’s paper[16] code containing dynamic variables is
automatically rebound with the binding which accidentallyexists when it is used. This semantics, when
desired, can be recovered in our calculi by using rebinds of the shapet[x1 7→ x1, . . . ,xn 7→ xn], where
x1, . . . ,xn are all the dynamic variables which occur int.

Other calculi for dynamic binding and/or rebinding have been proposed [9, 15, 5]. We refer to our
previous papers introducing the calculus [12, 13] for a discussion and comparison.

As already mentioned, an interesting feature of our calculus is that elements of the same set can
play the double role ofstandard variables, which can beα-renamed, andnames, which cannot beα-
renamed (if not globally in a program) [2, 17]. The crucial difference is that in the case of standard
variables the matching betweeen parameter and argument is done on apositionalbasis, as demonstrated
by the de Bruijn notation, whereas in the case of names it is done on anominalbasis. An analogous
difference holds between tuples and records, and between positional and name-based parameter passing
in languages, as recently discussed by Rytz and Odersky [21].

Distributed process calculi provide rebinding of names, see for instance the work of Sewell [22].
Moreover, rebinding for distributed calculi has been studied [1], where, however, the problem of inte-
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grating rebinding with standard computation is not addressed, so there is no interaction between static
and dynamic binding.

Finally, an important source of inspiration has been multi-stage programming as, e.g., in MetaML
[23], notably for the idea of allowing (open) code as a special value, the hierarchical nature of the
unbind/rebind mechanism and, correspondingly, of the typesystem. The type system of Taha and Sheard
[23] is more expressive than the present one, since both the turn-style and the types are decorated with
integers. A deeper comparison will be subject of further work.

In order to model different behaviours according to the presence (and type concordance) of variables
in the rebinding environment, we plan to add a construct for conditional execution of rebind [11]. With
this construct we could model a variety of object models, paradigms and language features.

Future investigation will also deal with the general form ofbinding discussed by Tanter [24], which
subsumes both static and dynamic binding and also allows fine-grained bindings which can depend on
contexts and environments.

Acknowledgments. We warmly thank the anonymous referees for their useful comments. In partic-
ular, one referee warned us about the problem of avoiding variable capture when applying substitution
to an unbound term. We also thank Davide Ancona for pointing out the work by Rytz and Odersky [21]
and the analogy among the pairs variable/name, tuple/record, positional/nominal, any misinterpretation
is, of course, our responsibility.
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