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Abstract. Some results on specific types of branching
processes are presented. Firstly, linear pure birth and
birth-death processes governed by partial differential
equations with time-varying coefficients are analysed.
Such processes are constructed by inserting the
fractional time derivative into the p.d.e. governing the
law of fractional Brownian motion. We consider also
pure birth processes stopped at first-passage time of
Brownian motion and present the related distributions
and the governing equations. Some explicit results on
the mean values and low-order probabilities are obtained
in terms of generalised Mittag-Leffler functions.
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1 Introduction

In this paper we consider compositions of different
types of processes whose distribution is related either
to fractional equations or to higher-order partial
differential equations. In a previous paper of ours [4]
we considered the fractional pure birth process Nν(t),
t > 0 whose state probabilities

p̂ν
k(t) = Pr {Nν(t) = k} , (1)

where k ≥ 1 (with one initial progenitor), t > 0, and ν ∈
(0, 1], satisfy the time-fractional difference-differential
equations

dν

dtν
pk(t) = −λkpk(t) + λk−1pk−1(t), (2)

subject to the initial conditions

pk(0) =

{

1, k > 1
0, k = 1

. (3)

For λk = λk, k ≥ 1 we have the linear pure birth
process. We have obtained the explicit distribution
in the linear and non-linear cases with many related
properties of the fractional birth process. We have also
shown that Nν(t), t > 0 can be represented as

Nν(t) = N (T2ν(t)) (4)

where N(t), t > 0, is the classical birth process and
T2ν(t) is a stochastic process independent from N(t)
and possessing distribution related to the solution of
the Cauchy problem











∂2ν

∂t2ν
f(x, t) =

∂2

∂x2
f(x, t), ν ∈ (0, 1]

f(x, 0) = δ(x)

. (5)

The fractional derivative appearing in (2) and (5) must
be understood as follows























dνh (t)

dtν
=

∫ t

0

d
ds

h (s)

(t − s)
ν ds

Γ (1 − ν)
, ν ∈ (0, 1)

h′ (t) , ν = 1

. (6)

We consider here the equation

dν

dtν
pk(t) = λt2H−1 {(k − 1)pk−1(t) − kpk(t)} (7)

which generalises (2) and produces for the probability
generating function G(u, t) = EuNν(t) the p.d.e.

∂ν

∂tν
G(u, t) = λt2H−1u(u − 1)

∂

∂u
G(u, t) (8)

subject to the initial condition G(u, 0) = u. The
time-dependent coefficient in (8) is inspired by the
structure of the partial differential equation governing
the distribution g(t, x) of the fractional Brownian
motion which reads

∂

∂t
g(t, x) = Ht2H−1 ∂2

∂x2
g(t, x) (9)

with the initial condition g(0, x) = δ(x), and coincides
with the classical heat equation for H = 1/2. From
(4) the process N 1

2

(t), t > 0, has the following
representation

N 1

2

(t) = N (|B(t)|) (10)
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where B(t), t > 0 is a standard Brownian motion
independent from N(t). The process related to (7) and
(8) has the representation

N 1

2

(t) = N (|BH(t)|) (11)

where BH(t), t > 0 is a fractional Brownian motion
independent from N(t), t > 0. We also study in detail
other properties and this involves a delicate analysis
based on the generalised Mittag-Leffler functions of the
form

Eα,m,l(z) = 1+

∞
∑

k=1

zk

k−1
∏

j=0

Γ (α (jm + l) + 1)

Γ (α (jm + l + 1) + 1)
. (12)

2 Partial differential equations with

time-varying coefficients and

branching processes

It is well-known that the partial differential equation
satisfied by the transition law of the fractional Brownian
motion is a simple time-modification of the heat
equation (see appendix 6). We are interested in
analysing similar differential equations. An example of
such equations is the analogue of that governing a
classical linear birth process (see for example [2], page
87) but with time-varying coefficients i.e.











∂

∂t
G(u, t) = λt2H−1u(u − 1)

∂

∂u
G(u, t)

G(u, 0) = u

, (13)

where t > 0, H ∈ (0, 1] and λ is the birth rate. By
G = G(u, t), 0 < u ≤ 1, t > 0, we denote the probability
generating function of the pure birth process related to
(7) for ν = 1. From (13) we infer that for the mean value
EN(t) = Gu(u, t)|u=1 we arrive at the Cauchy problem











d

dt
EN(t) = λt2H−1

EN(t)

EN(0) = 1

, (14)

where t > 0, H ∈ (0, 1] and λ is the rate of birth.
Equation (14) is readily solved by standard methods

and yields EN(t) = e
λ

2H
t2H

.

With similar arguments it is possible to solve also the
following difference-differential equation











d

dt
p1(t) = −λt2H−1p1(t)

p1(0) = 1

, (15)

with t > 0, H ∈ (0, 1] and where p1(t) is the probability
of having exactly one individual at time t given that at

time t = 0 we start with one individual, i.e. p1(t) =
Pr {N(t) = 1 |N(0) = 1}. The solution to (15) reads

p1(t) = e−
λ

2H
t2H

.

It can be checked by direct calculations that probability
generating function has the form

G(u, t) =
ue−

λ
2H

t2H

1 − u
(

1 − e−
λ

2H
t2H

) , t > 0. (16)

This implies that the distribution of N(t), t > 0 is

pk(t) = e−λt2H
(

1 − e−λt2H
)k−1

, k ≥ 1. (17)

Remark 2.1 As in the case of (44) (see appendix 6)
when H = 1/2 we obtain, as a particular case, the
classical linear pure birth process.

A second example worth of being analysed is that
of a linear birth-death process governed by partial
differential equations with time-varying coefficients. For
details about the classical case see [2], page 93. Here we
modify the p.d.e. involving the probability generating
function exactly in the same manner as in (13), thus
obtaining











∂

∂t
G(u, t) = t2H−1(λu − µ)(u − 1)

∂

∂u
G(u, t)

G(u, 0) = u

,

(18)
where t > 0, H ∈ (0, 1] and where λ and µ are
respectively the birth rate and the death rate. Again,
by means of standard methods it can be shown that the
function

G(u, t) =
(u − 1) µe

λ−µ
2H

t2H − λu + µ

(u − 1)λe
λ−µ
2H

t2H − λu + µ
(19)

is the solution to (18).

Remark 2.2 The probability generating function
reduces to that of the classical case when H = 1/2.
From the probability generating function it is simple to
extract the extinction probability p0(t) which reads

p0(t) = G(0, t) =
µ − µe

λ−µ
2H

t2H

µ − λe
λ−µ
2H

t2H
. (20)

We also note that the behaviour of p0(t), when t tends
to infinity, is the same as in the classical case and does
not depend on the value of H.

3 Bifractional pure growth process

In order to furnish the system with a further type of
fractionality, we substitute the integer time-derivative
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in (13) with a fractional derivative defined in (6).
This kind of fractional derivative (usually called
Caputo or Dzhrbashyan-Caputo fractional derivative) is
closely related to the usual Riemann-Liouville fractional
derivative (for details see [1], page 90). We therefore
obtain the following fractional p.d.e.











∂ν

∂tν
G(u, t) = λt2H−1u(u − 1)

∂

∂u
G(u, t)

G(u, 0) = u

, (21)

where ν ∈ (0, 1], t > 0, H ∈ (0, 1], G(u, t) = EuN(t),
0 < u ≤ 1 and the fractional derivative is defined in
(6). From (21) we can extract some information on
the expectation of the process N(t), t > 0 which has
probability generating function G(u, t). By considering
that

∂G

∂u

∣

∣

∣

∣

u=1

= EN(t), t > 0, ν ∈ (0, 1], (22)

we obtain










dν

dtν
EN(t) = λt2H−1

EN(t)

EN(0) = 1

, (23)

where t > 0, ν ∈ (0, 1] and H ∈ (0, 1]. The solution to
(23) is directly obtained from [1], page 233 as

N(t) = Eν,1+ 2H−1

ν
, 2H−1

ν

(

λtν+2H−1
)

, t > 0, (24)

where Eα,m,l(z) is the generalised Mittag-Leffler
function defined as

Eα,m,l(z) = 1+

∞
∑

k=1

zk

k−1
∏

j=0

Γ (α (jm + l) + 1)

Γ (α (jm + l + 1) + 1)
, (25)

and with (1−ν)/2 < H ≤ 1. The solution is then proved
to be unique when 1/2 ≤ H ≤ 1. For details see theorem
6.2.

We now address the problem of determining the
probability law of the process N(t), t > 0 i.e. pν

k(t) =
Pr {N(t) = k |N(0) = 1} for k = 1. We must solve the
fractional difference-differential equation











dν

dtν
p1(t) = −λt2H−1p1(t),

p1(0) = 1

, (26)

where t > 0, ν ∈ (0, 1] and H ∈ (0, 1]. Similarly to the
solution to (23), the solution to (26) is

pν
k(t) = Eν,1+ 2H−1

ν
, 2H−1

ν

(

−λtν+2H−1
)

, (27)

with again, t > 0, (1 − ν)/2 < H ≤ 1 and where the
solution is proved to be unique for 1/2 ≤ H ≤ 1.

Remark 3.1 From respectively (27) and (24), when
ν = 1, we retrieve the results in section 2. When
H = 1/2, they reduce to the corresponding expressions
for the fractional linear pure birth process (see [4]).

4 Bifractional diffusion

We consider here a generalised version of the so-called
time-fractional diffusion equation (see e.g. [3]) as follows











∂ν

∂tν
u (x, t) = Ht2H−1 ∂2

∂x2
u (x, t)

u (x, 0) = δ (x)

, (28)

with ν ∈ (0, 2], x ∈ R, t ∈ R
+, together with the further

condition ut(x, t)|t=0 = 0 when ν ∈ (1, 2] The fractional
derivative appearing in (28) is the Dzhrbashyan-Caputo
fractional derivative (6) but with ν ∈ (0, 2] and the
parameter H ∈ (0, 1].

Theorem 4.1 Let u(x, t), x ∈ R, t ∈ R
+ be the

solution to the generalised time-fractional diffusion
equation (28). The function q(x, t) can be written as

q(x, t) = (29)

=
1

2π

∫ +∞

−∞
e−iβxEν,1+ 2H−1

ν
, 2H−1

ν

(

−Hβ2tν+2H−1
)

,

where t > 0, x ∈ R, H ∈ (0, 1] and ν ∈ (0, 2].

Proof. By resorting to the Fourier transform of (28) we
obtain the following differential equation











∂ν

∂tν
U (β, t) = −Ht2H−1β2U (β, t)

U(β, 0) = 1

, (30)

where t > 0, H ∈ (0, 1], ν ∈ (0, 2] and with the
additional condition Ut(β, t)|t=0 = 0 when ν ∈ (1, 2].
Equation (30) is solved by (see [1], page 233, examples
4.11 and 4.12)

U(β, t) = Eν,1+ 2H−1

ν
, 2H−1

ν

(

−Hβ2tν+2H−1
)

, (31)

with (1 − ν)/2 < H ≤ 1. The solution is proved to
be unique for 1/2 ≤ H ≤ 1. Note that the function
Eα,m,l(z) is the generalised Mittag-Leffler (25). From
(31) it is straightforward to obtain (29).

5 Birth processes with

randomly-varying time

Let q(t, s) be the transition density of the first-passage
time Tt at time t of a Brownian motion i.e.

q(t, s) =
te−

t2

2s√
2πs3

ds, (t, s) ∈ R
+× R

+. (32)



26 XIII International EM’2009 Conference

It is well-known that q = q(t, s) is a solution to the
partial differential equation

∂2

∂t2
q(t, s) = 2

∂

∂s
q(t, s), (t, s) ∈ R +×R

+. (33)

We are interested in composing a classical pure birth
process N(t), t > 0, with the first-passage time Tt, t > 0.
We have that

p̆k(t) = Pr {N (Tt) = k|N(0) = 1} (34)

=

∫ ∞

0

pk(t)q(t, s)ds.

Theorem 5.1 Let N(t), t > 0 be a classical pure birth
process and Tt, t > 0 be the first-passage time at t
of a standard Brownian motion. The state probabilities
p̆k(t) = Pr {N(Tt) = k|N(0) = 1} satisfy the following
difference-differential equation

d2

dt2
p̆k(t) = 2λkp̆k(t) − 2λk−1p̆k−1(t), (35)

where t > 0 and k ≥ 1.

Proof. Result (35) is directly obtained by evaluating the
second order derivative as follows

d2

dt2
p̆k(t) =

∫ ∞

0

pk(s)
∂2

∂t2
q(t, s)ds (36)

= 2

∫ ∞

0

pk(s)
∂

∂s
q(t, s)ds

= 2q(t, s)pk(s)|∞s=0 − 2

∫ ∞

0

d

ds
pk(s)q(t, s)ds

= −2

∫ ∞

0

q(t, s) {−λkpk(s) + λk−1pk−1(s)} ds

= 2λkp̆k(t) − 2λk−1p̆k−1(t)

where pk(t), t > 0, k ≥ 1, are the state probabilities
of a classical pure birth process. Note that we applied
equation (33) in the second step of the proof.

The state probabilities p̆k(t), t > 0, can also be written
explicitly. This is shown for the linear case in the next
theorem (λ is the birth rate).

Theorem 5.2 The distribution of the linear pure birth
process stopped at a random first-passage time Tt of
a standard Brownian motion with a simple initial
progenitor reads

p̆k(t) =

k
∑

m=1

(

k − 1

m − 1

)

(−1)m−1e−t
√

2λm, (37)

with k ≥ 1 and t > 0.

Proof.

p̆k(t) = Pr {N(Tt)|N(0) = 1} (38)

=

∫ ∞

0

e−λs
(

1 − e−λs
)k−1 te−

t2

2s√
2πs3

ds

=

k−1
∑

m=0

(

k − 1

m

)
∫ ∞

0

(

−e−λs
)m

e−λs te−
t2

2s√
2πs3

ds

=

k−1
∑

m=0

(

k − 1

m

)

(−1)m

∫ ∞

0

e−λs(1+m) te−
t2

2s√
2πs3

ds

=

k−1
∑

m=0

(

k − 1

m

)

(−1)me−t
√

2λ(1+m)

=

k
∑

m=1

(

k − 1

m − 1

)

(−1)m−1e−t
√

2λm.

This concludes the proof.

In the next theorem we prove that the distribution (37)
is actually a solution of the p.d.e. (35).

Theorem 5.3 Let N(t), t > 0 be a linear pure birth
process and Tt, t > 0 the first-passage time process of
standard Brownian motion. The state probabilities of
the composed process N(Tt), t > 0, i.e.

p̆k(t) =

k
∑

m=1

(

k − 1

m − 1

)

(−1)m−1e−t
√

2λm, (39)

where k ≥ 1, t > 0, satisfy the following difference-
differential equations

d2

dt2
p̆k(t) = 2λkp̆k(t) − 2λk−1p̆k−1(t), (40)

where k ≥ 1, t > 0.

Proof. It is sufficient to calculate the left hand side and
right hand side of (40) and show that they coincide. For
the left hand side we have

d2

dt2

k
∑

m=1

(

k − 1

m − 1

)

(−1)m−1e−t
√

2λm = (41)

=

k
∑

m=1

(

k − 1

m − 1

)

(−1)m−1(2λm)e−t
√

2λm.
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For the right hand side we have

kp̆k(t) − (k − 1)p̆k−1(t) = (42)

= k

k
∑

m=1

(

k − 1

m − 1

)

(−1)m−1e−t
√

2λm+

− (k − 1)

k−1
∑

m=1

(

k − 2

m − 1

)

(−1)m−1e−t
√

2λm

=

k−1
∑

m=1

(−1)m−1e−t
√

2λm

[

(k − 1)!

(m − 1)! (k − m − 1)!
×

×
(

k

k − m
− 1

)]

+ k(−1)k−1e−t
√

2λk

=

k−1
∑

m=1

(−1)m−1e−t
√

2λm

(

m (k − 1)!

(m − 1)! (k − m)!

)

+

+ k(−1)k−1e−t
√

2λk

=

k
∑

m=1

(

k − 1

m − 1

)

(−1)m−1e−t
√

2λmm,

and this concludes the proof.

6 Appendix

It is possible to obtain the p.d.e. satisfied by the
probability density function of the fractional Brownian
motion BH(t), z ∈ R

+ by a simple time-scaling
procedure as follows

Theorem 6.1 Let u(z, x) be the transition density of a
standard Brownian motion satisfying the heat equation

∂

∂z
u(z, x) =

1

2

∂2

∂x2
u(z, x) (43)

together with the usual initial condition u(0, x) = δ(x).
After the substitution z = t2H , H ∈ (0, 1], u(z, x) =
g(t, x) satisfies the following partial differential equation
with time-varying coefficients

∂

∂t
g(t, x) = Ht2H−1 ∂2

∂x2
g(t, x) (44)

with the initial condition g(0, x) = δ(x).

Proof. By evaluating the partial derivative of g(t, x)
with respect to time t we have

∂

∂t
g(t, x) =

∂

∂t
u(z, x) =

∂

∂z
u(z, x)2Ht2H−1 (45)

= Ht2H−1 ∂2

∂x2
u(z, x)

= Ht2H−1 ∂2

∂x2
g(t, x)

thus obtaining (44).

In the following theorem we prove that the generalised
Mittag-Leffler function (25) is the solution to the
differential equation considered in section 3.

Theorem 6.2 The generalised Mittag-Leffler function

E
α,1+ β

α
,

β
α

(

λtα+β
)

= 1 +

∞
∑

k=1

λktk(α+β)× (46)

×
k−1
∏

j=0

Γ
(

α
(

j + j β
α

+ β
α

)

+ 1
)

Γ
(

α
(

j + j β
α

+ β
α

+ 1
)

+ 1
)

solves the ordinary differential equation with variable
coefficients











dα

dtα
y (t) = λtβy (t)

y (0) = 1

, (47)

where t ∈ R
+, α ∈ (0, 1], β > 0 and where dα/dtα is

the Dzhrbashyan-Caputo fractional derivative (6).

Proof. The theorem is simply proved by evaluating the
fractional derivative in the left hand side of (47) as
follows

dα

dtα
y(t) = (48)

=

∞
∑

k=1

λk

k−1
∏

j=0

Γ (αj + βj + β + 1)

Γ (αj + βj + β + α + 1)

dα

dtα

[

tk(α+β)
]

=

∞
∑

k=1

λk Γ (kα + kβ + 1)

Γ (kα + kβ + 1 − α)
tk(α+β)−α×

×
k−1
∏

j=0

Γ (αj + jβ + β + 1)

Γ (αj + βj + β + α + 1)

= λtβ
∞
∑

r=0

λrtr(α+β) Γ (r (α + β) + α + β + 1)

Γ (r (α + β) + β + 1)
×

×
r

∏

j=0r

Γ (αj + jβ + β + 1)

Γ (αj + βj + β + α + 1)

= λtβ



1 +

∞
∑

r=1

λrtr(α+β)
r−1
∏

j=0

Γ (αj + βj + β + 1)

Γ (αj + βj + β + α + 1)



 .
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