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SMALL BIALGEBRAS WITH A PROJECTION

A. ARDIZZONI, C. MENINI, AND F. STUMBO

ABSTRACT. Let A be a bialgebra with an H-bilinear coalgebra projection over an arbitrary
subbialgebra H with antipode. In characteristic zero, we completely describe the bialgebra
structure of A whenever H is either f.d. or cosemisimple and the H-coinvariant part R of A is
connected with one dimensional space of primitive elements.
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INTRODUCTION

Let A be a bialgebra and assume that the coradical H of A is a subbialgebra of A with antipode

i.e. that A has the so-called dual Chevalley property.
The lifting method by N. Andruskiewitsch and H.-J. Schneider for the Hopf algebra A consists in
analyzing the H-coinvariant part of the graded bialgebra gr (A), in transferring the information to
gr (A) by usual bosonization, and finally in lifting it from gr (A) to A via the coradical filtration
(see [AS]). In fact in [Rad] (and in [Maj] with categorical terms) it was proved that any Hopf
algebra B having a projection, which is a bialgebra homomorphism, onto a Hopf algebra H can be
reconstructed as a biproduct (called bosonization by Majid) of the H-coinvariant part of B and
H itself. This applies in the above contest to B = gr (A) and to the usual projection of B onto
By =H.

Now, by using the Hochschild cohomology in monoidal categories, it was proved in [AMS,
Theorem 2.35] that the canonical injection of H in A has a retraction 7 : A — H which is an
H-bilinear coalgebra map. This led to the investigation of the structures of bialgebras A with
an H-bilinear coalgebra projection onto an arbitrary subbialgebra H with antipode. There is
a full description of these structures in terms of pre-bialgebras in £YD with a cocycle (called
dual Yetter-Drinfeld quadruples in [AMS, Definition 3.59]) and a bosonization type procedure.
Namely (see [AMS, Theorem 3.64]) to such an A one associates a 5-tuple (R, m,u,d,¢) (called pre-
bialgebra), where (R, d,¢) is a coalgebra in the category (EVD,®,K),u: K - R,m: R® R — R
are K-linear maps satisfying five equalities (see Definition 2.3) which make R a sort of unital
bialgebra in £YD with the following differences: the multiplication is non-associative and it is
not a morphism of H-comodules. This particular pre-bialgebra is also endowed with a K-linear
map £ : R® R — H (called associated cocycle) which fulfills six equalities (see Definition 3.1).
Then A can be reconstructed by these data. In fact the bialgebra A is isomorphic to R#¢H
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which is R ® H endowed with a suitable bialgebra structure that depends on pre-bialgebra and its
associated cocycle: this structure on R® H can be somehow regarded as a deformation of the usual
bosonization structure recalled above via £. Our main goal is to describe the (co)algebra structure
of R#¢H. In this paper we do a first step: we consider the case when the coalgebra R is thin i.e.
it is connected and the space of its primitive elements is one dimensional. We read the properties
of R inside its associated graded ring and use these properties to show that this graded ring is in
fact always a quantum line. Then we lift these type of information directly back to R (and not
to gr(A) as in [AS]). It turns out that R, which usually carries a non-associative multiplication,
is in fact an associative K-algebra but not a braided bialgebra in £YD. By means of this
achievement, we can prove our main results. Explicitly in Theorem 3.30, we completely describe
the bialgebra structure of A whenever H is either f.d. or cosemisimple. This new description allows
us to construct in Theorem 4.2 another projection of A onto H which is normalized in the sense
that it gives rise to a new pre-bialgebra (R, m,u,d,¢) which is now a braided bialgebra in the
category (YD, ®, K) and in fact a quantum line.

In Theorem 4.5, we show how the obtained results apply to the special case when H is finite
dimensional and it is the coradical of A. In this case the projection 7 is already normalized.

In a subsequent paper [AMSt] we will investigate the properties of £ for a generic projection. We
will construct for a given compatible datum (see Definition 3.27) a Hopf algebra with the required
properties. This will enable us to construct some meaningful examples. In particular an example
of a Hopf algebra of dimension 72 with a non normalized projection will be given.

The paper is organized as follows. Section 1 deals with general facts on thin coalgebras and
divided power sequences of elements therein that will be used in the sequel. In Section 2 thin pre-
bialgebras in £YD are introduced and characterized by means of the associated graded coalgebra
(see Theorem 2.14). Section 3 is devoted to the proof of the main results that is Theorem 3.29 and
Theorem 3.30. Section 4 contains Theorem 4.2 and Theorem 4.5 that concern the normalization
of the projection.

For the reader’s sake we include here the following result that will be used in the sequel. In the
finite dimensional case, a different proof can be found in [Ge, Lemma 0.2].

THEOREM 0.1. Let K be any field. Let A be a Hopf algebra over K. Let z € A such that
As(2)=9g®2+2® 14, and gz = 2g,

for some g € G (A). Suppose there exists a cosemisimple Hopf subalgebra B of A such that z,g € B.
Then there exists A (z) € K such that

c=A(2)(1a—g).

Furthermore A (z) = 0 whenever g =14.
This holds whenever A is cosemisimple or A is f.d. and char (K) { dim(A).

Proof. Since B is cosemisimple, then B has a total integral A : B — K. By applying B ® A to
both sides of Ay (2) =g® 2+ 2® 14, we get

1ax(z) = 22(1))\ [2(2)] =g (2)+22(1a) =gr(2)+ =

so that z =X (2) (14 — g).

If A is cosemisimple, then B = A fulfills the initial assumption.
In the case when A is f.d., let B be the Hopf subalgebra of A generated by g and z.

Then B is a commutative Hopf subalgebra of A. In particular the antipode of B is involutive
so that, since char (K) t dim(B), we obtain that B is cosemisimple. O

We assume for simplicity of the exposition that our ground field K has characteristic 0.
Anyway we point out that many results below are valid under weaker hypotheses.
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1. THIN COALGEBRAS

Recall that a unital coalgebra ((C,A,€),1¢) consists of a K-coalgebra (C, A, ¢) and of a group
like element, say 1¢ € C. This means that there is a coalgebra homomorphism u : K — C,1¢ =
u (1g) . Then, one can consider the set of primitive elements of the unital coalgebra (C, 1¢) defined
by

P(C)={ceC|A(c)=c®1lc+1c®c}.
For any coalgebra C' we denote by
Co<Cr <---<Cp <o

the coradical filtration of C. Set C_; = 0. Let

w0 =D o

n
neN ~n1

be the graded coalgebra associated to the coradical filtration of C. Recall that the coalgebra

structure of gr (C) is defined as follows. For any a,b € N such that a + b > 1, we define
C, Cy

&

Cafl bel

by setting @qp () =D (1 + Co—1) ® (c2 + Cp—1) . Note that this makes sense since

Pa,b - Ca+b —

Ac) € Zogigﬁb C; @ Caipi C Coe1 @ Caipp + Caspy @ Chy + Co @ Chy,

for every ¢ € Cgtp. Moreover ker (pgp) = Coyp—1. Thus ¢, factorizes through an injective
morphism of K-vector spaces
Ca+b Ca Cb

Agyp: — ® .
b Cogyv—1  Co1  Cpq

For every n € N, let us define

A (C), = 2" S (@ (@ oa (@), = @ &), (@),

Ch—
n-1 at+b=n

to be the diagonal morphism of the family (Aavb)a+b:n' In this way one gets a graded K-linear
map A : gr(C) — gr (C) ® gr (C). Define €, : gr (C), — K by setting
En = Ec|co6o’n.
In this way one obtains a graded K-linear map ¢ : gr (C') — K. Moreover
(gr (C),A,¢)

is a graded coalgebra. Recall that the coradical filtration of the associated graded coalgebra
gr (C) = ®n>0 C(i’zl is given by

Ci
(gr(C)), = ®O§i§n07'
i—1
Let C be a K-coalgebra, let s € N and let do,d,...,ds € C. Recall that (d;),«;, is called a
divided power sequence of elements in C' whenever o

A (dn) = Zt:O di @ dp—y
for any 0 <n < s.
DEFINITION 1.1. We will say that a K-coalgebra C is a thin coalgebra whenever
dimg Cyp =1 and dimg P (C) = 1.

For every thin coalgebra C' there is a unique coalgebra homomorphism v : K — C and Cy =
Ku(1g). In particular (C,u (1)) is a unital coalgebra.
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PROPOSITION 1.2. Let C be a unital K-coalgebra. Then C is connected (i.e. Co = Kl¢) if and
only if gr (C) is connected. In this case

P (©) = ¢

In particular, if gr (C) is a thin coalgebra, then C' is thin too.

and dim [P (gr (C))] = dim [P (C)].

Proof. The coradical of gr (C') coincides with the coradical of C'. Hence the first assertion is trivial.
If gr (C) is connected, then P (gr (C)) = g—; If C is connected then C7 = Cy @ P (C') and hence
dim [P (gr (C))] = dim [P (C)] . O

LEMMA 1.3. Let C be an N-dimensional thin K-coalgebra. Then dimg (CSL) = 1 for any
0<n<N-1and C, =C foranyn> N — 1.

Proof. For any n > 1 consider the injective morphism of K-vector spaces
C(n+1 N On ® ﬁ
Cn Cnfl CO

Since C; = K1¢ + P (R), then dimg (C1/Cp) =1 so that

An,l .

Cn—i—l n

< dimg for any n > 1.

n n—1

Let t =min{n € N|C,, = C,41} . Since

. Cy N & . G
d <d <...<d — =1
1M g Ct_l S dim g Ct_g < S dim CO
and since, for 1 < n < t one has C,, # C, 11, we deduce that
C, Cy_ C
dimg —— = dimg —— = -+ = dimg — =1
i1 2 Co
Therefore C' = C} has dimension ¢t + 1, so that t = N — 1. O

LEMMA 1.4. Let C be an N-dimensional thin K-coalgebra. Lett € N, 1 <t < N and let
dOvdla .. 'adtfl

be a divided power sequence of non-zero elements in C (e.g. t =1).
Then (di)g<;<;_q are linearly independent and can be completed to a basis

dOydla .- 'adt—ladtv' .- 7dN—1
for C which is a divided power sequence of non-zero elements in C.
Moreover we have dy = 1¢, P (C) = Kd;,
Cn = Kdn + Cn—l
forany0<n<N-1and Cy_1=C.
Proof. The main idea comes from the proof of [AS, Theorem 3.2]. Let A = C* and let J be the
Jacobson radical of A. Then, for any n € N, we have
C Jn Cn
J" ~ Homg (Cn—17K> and WzHomK <Cn—17K)’
where C_; = 0 by definition.
By Lemma 1.3, we know that dimg (Cf’il) =1lforany 0 <n < N —1and C, = C for any
n>N-—1.
Therefore dim g (J‘i—:l) =1lforany0<n <N —1and J” =0 for any n > N.
Let o € J\J?. Then it is easy to show that J?» = Ka" + J"*!. In particular we have Ka® =

JN = 0. Therefore we get that 14 = ec,a,a?,...,a¥ "1 is a system of generators of A (regarded
as a vector space over K) and hence a basis since dim (A) = N. We have also o¥ = 0.
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Note that dy € G (C) = {1¢} so that dy = 1¢. Moreover
Ald)=do@di+d1 ®@do=1c®d1 +d1 ® 1

so that dy € P (C). Since d; # 0, we deduce that P (C) = Kd;.
Let 0 < s <t —1 be defined by

s =max{n € N|dy,dy, - ,d, are linearly independent} .

Note that s > 1. Furthermore dy,d;, - ,ds are linearly independent and can so be completed to
a basis of C.
Let (€])y<;<n_; be the associated dual basis and set a = ej.

Note that a € J\J?. In fact « € Homy (C%,K) =Jand a ¢ Homg (C%,K) =J2

Thus we get that 14 = ¢, a,a?,...,a¥ "1 is a basis of A regarded as a vector space over K and
aN =0. Let (ui)ogigN—1 be the dual basis associated to (ai)ogigN—l in C. The u;’s are uniquely
determined by the relations o' (uj) = §; ;. Then

(ai ® aj) A(u,) = ot (up) = 6i+j,n = (Z::O 5i,t5j,n—t) = (ai ® aj) (Zj_o U ® un,t>

and hence .

A (Un) = tho Ut @ Up—t-
Thus the u;’s are a linearly independent divided power sequence of non-zero elements in C. Note
that by duality it is clear that C,, = Ku, + Cp_1 forany 0 <n < N —1 and C,, = C for any
n > N.
Let us prove that d; = u; for any 0 < j <t — 1. It is enough to check that o’ (d;) = d; ; for every
0<i<N-land0<j<t—1.
First of all, let us prove that d; = u; for any 0 < j < s. Since dp, dy, - - - , ds are linearly independent
and by definition of «, we have that o (d;) = d1; for every 0 < j < s. Let 2 <n < N —1 and
assume ' (dj) = 6; ; for any 0 <i <n —1 and for every 0 < j < s. We have

a"(dj) = ("' @a)A(dy) =Y a" M (da)aldj—a) =)

Therefore d; = u; for any 0 < j <'s.
Assume s < ¢t — 2 and compute

s+1 s+1
A (ds+1 - us—l—l) = Za:O da ® ds—&-l—a - Za:O Ug @ Us+1—a

= le® (ds-‘rl - u8+1) + (ds+1 - u8+1) ®lc+ Za:l da & ds+1—a - Za:l Ug @ Ust1—¢q
- 1C’ X (ds—&-l - us—i—l) + (ds+1 - us-&-l) & ]-C~
Then ds11 — usr1 € P (R) = Kd; so that there exists k € K such that usy1 = dsy1 + kd;. Since

J J
5n—1,a61,j—a = 5n,j~

a=0 a=0

do,dy,- - ,ds+1 are linearly dependent and dy,ds,- -+ ,ds are linearly independent, it follows that
dey1 € >0 o Kd; = Y] o Ku; and hence ugy1 = dsj1 + kdy € Y., o Ku,;. This contradicts the
linear independence of u;’s. Thus s =¢ — 1. O

LEMMA 1.5. Let C' be an N-dimensional thin K-coalgebra. Let dy,dy,...,dy_1 be a divided power
sequence of non-zero elements in C. Then

13 (dn) = 60,n
for every0 <n < N — 1.

Proof. By Lemma 1.4, dy = 1¢.
If n =0 then e (d,) = ¢ (dp) = ¢ (1l¢) = 1k.
Let 1 <n < N —1 and assume ¢ (d;) = dp; for any 0 <7 <n — 1. We have

e(dn) = (@) Ady) =Y =(di)e(dnr) = (do) e (dn) + & (dn) & (do) = 22 (d)
so that e (d,,) = 0 = do,p. O
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LEMMA 1.6. Let C be a unital K-coalgebra of finite dimension N over K. Lett € NJO <t < N
and let

dO = 1C7d17 s 7dt727dt71

be a divided power sequences of non-zero elements in C.
The following assertions are equivalent for an element e;_1 € C':

(a) do,dy,...,di—2,e:—1 is a divided power sequences of non-zero elements in C|
(b) er_1—dy_1 € P(O)

Proof. First note that dg,dq,...,d;_2,e;_1 is a divided power sequences of non-zero elements in C'
if and only if

-2
Afe—1) =do®es—1+e—1 @do + Zi:l di @ dy—1—4.

(a) = (b) . By the above observation, we have

t—2 t—1

Afer—1—di—1) = do®er—1+e1®do+ Zi:l di @ dp—1-; — Z‘—o di @di—1-;
= le®(ep—1 —di—1) + (€4—1 — dp—1) ® 1.

Thus e;—1 —di—1 € P(C).

(b) = (a). Let uw:=e;—1 — di—1. Then, by hypothesis u € P (C) and hence

A (et—l) = A (dt—l + U)
t—1 t—2
= Zi:o d;i@dy_1_;i+doQu+u®dy = Zi:l di@di—1—i +dy®@es—1 + €1 Rdy

so that dg,dq,...,d;_2,e;_1is a divided power sequences of non-zero elements in C. O

2. PRE-BIALGEBRAS

Let H be a Hopf algebra over the field K. Recall that an object V in £YD is a left H-module
and a left H-comodule satisfying, for any h € H,v € V, the compatibility condition:

Z(h(l)v)<—1>h(2) ® (h1yv)<o> = Z hyv<—1> ® h(2)v<o>
or, equivalently,
p(hv) =Y haywe-1>8(he) @ hzyv<os,

where p: V — H®YV is the coaction of H on V' and for the action of H on V we used the notation
hv, for every h € H,v € V. If there is danger of confusion we write "v instead of hv.

The tensor product V ® W of two Yetter-Drinfeld modules is an object in ZYD via the diagonal
action and the codiagonal coaction; the unit in gyD is K regarded as a left H-comodule via the
map = — 1y ® z and as a left H-module via . Recall that, for every V,W € #YD the braiding
is given by:

(1) cvw VAW sWeV, cv_rw(v®w):Zv<_1>w®v<o>.
If H has bijective antipode, then (¥YD, ¢) is a braided category.

2.1. Let R and S be two algebras in the braided category 2YD. We can define a new algebra
structure on R® S, by using the braiding (1), and not the usual flip morphism. The multiplication
in this case is defined by the formula:

(2) (T@S) (t®U) = Zr(s<_1)t)®s<0>’u.

Let us remark that, for any algebra R in YD, the smash product R#H is a particular case of
this construction. Just take S = H with the left adjoint action (i.e. "z =Y hyzSh(g), for every
h,xz € H) and usual left H-comodule structure.
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2.2. Let R and S be two coalgebras in the braided category £ YD. We can define a new coalgebra
structure on R® S, by using the braiding (1), and not the usual flip morphism. The comultiplication
in this case is defined by the formula:

Ores (r®s) = ZT(I) ® 7‘22,)”8(1) ® 7”2(2); ®s@.

Let us remark that, for any coalgebra R in YD, the smash coproduct R#H is a particular case of
this construction. Just take S = H with the left adjoint coaction (i.e. p(h) = > h1)Sh) ® h(z),
for every h € H) and usual left H-module structure.

DEFINITION 2.3. Let H be a Hopf algebra. A pre-bialgebra (R, m,u,6,¢) in £YD consists of

e a coalgebra (R, d,¢) in the category (YD, ®, K).

e two K-linear maps

m:RR— R and u: K — R
such that, for all r,s,t € R and h € H, the following relations are satisfied:

3) h-u(l) =ep(h)u(l)  and  pru(l) =1g ®u(l)
(4) ou(l) = u(l) ® u(l) and eu(l) = 1g;
(5) hmp(r @ s) =) mr(hayr @ hes);
(6) dmpr = (mr @ MR)OreR and emp =mi(e®e);
(7) mr(R®u) =R =mg(u® R);
Note that (3) and (4) mean that u is a coalgebra homomorphism in ZYD, (5) and (6)

mean that mp is left H-linear coalgebra homomorphism while (7) means that « is a unit
for mgr. We fix the following notation

5(r) = Zr(l) ® r(2), for every r € R.

REMARK 2.4. To explain the meaning of the concept of pre-bialgebra in gyD, it is useful to
compare it with the concept of a bialgebra in Z£YD. A pre-bialgebra is just a unital bialgebra in
HYD with the following differences:

a) the multiplication is non-associative;

b) the multiplication is not a morphism of H-comodules.

Let H be a Hopf algebra, let (R, d,€) be a coalgebra in the category (YD, ®, K)

Let us consider the graded coalgebra
R,

Rnfl
where, by definition, we set R_; = 0 and (R;),y are the components of the coradical filtration of
R. Now gr (R) is an ordinary coalgebra which becomes a coalgebra in the monoidal category #YD
whenever Ry is a subcoalgebra of R in £YD. In fact, in this case, since, for any n > 1, we have
R, = R,_1 Ar Ry then inductively one has that R, is a subcoalgebra of R in gyD.
Let (R,m,u,d,¢) be a pre-bialgebra in £2YD. In this case we also have a non necessarily associative
multiplication on R. The following result explains how gr (R) inherits the multiplication of R.

gr(R) = ®n>o0

PROPOSITION 2.5. Let H be a Hopf algebra and let (R, m,u,d,e) be a pre-bialgebra in ZJJD.
Assume that Ry is a subcoalgebra of R in gyD such that Ro - Ry C Rp.
Then gr (R) inherits the pre-bialgebra structure in gyD of R.

Proof. The coalgebra structure of R induces a coalgebra structure on gr (R). Let us prove that
gr (R) inherits also the (eventually non associative) algebra structure of R. Let us check that
Ry - Ry € Ry for any a,b € N.

We prove this by induction on n = a + b.
If n = 0 there is nothing to prove. Let n > 1 and assume that R; - R; C R;4; for any i,j € N
such that 0 < i+ j <n —1. Let a,b € N. such that n = a +b. and let r € R, and s € Ry,. Since
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§(Ro) C Y yRi®Ry—;and c(r®s) = T(—1)8 @70y € Ry ® Ry, for every r € Ry, s € Ry, by (6),
we have

§(Ry-Ry) = 6(Ra)0(Ry) C (Z‘;O Rz‘@Ra—i) (Zi_o Rj®Rb_j)

a b
Zi:o Zj:o RiR; ® Ra—iRy—j € Rayp—1 @ R+ R® Ry.

N

Therefore R, - Ry € Rqyp- In this way gr (R) inherits the algebra structure of R; see the proof of
[Mo, Lemma 5.2.8]. The last assertion is straightforward. O

DEFINITIONS 2.6. Let g be a primitive N-th root of unity. Let H be a Hopf algebra, g € H and
X € H*.

Following [CDMM, Definition 2.1], we say that (H, g, x) is a Yetter-Drinfeld datum for g whenever
geG(H),

X € H* is a character of H,

x(9) =q,
the following relation holds true

(8) 9 Y x(hayhe = hayx(he)g

If (H, g, x) is a Yetter-Drinfeld datum for ¢, we denote by R, the graded algebra K[X]/ (X*).
Let y = X + (X N ) . Then R, can be endowed with a unique braided bialgebra structure
in (gyD, ®, K), where the Yetter-Drinfeld module structure is given by

hy=x(h)y and  p(y)=g®y
and the coalgebra structure is defined by setting
Sy)=ye1l+1ey.

In this way R, becomes a braided Hopf algebra that will be denoted by R, (H,g,x) and
called a quantum line (see [AS]).

The very technical part of the following lemma is devoted to show that the order 6 of the
involved root of unity fulfills 2 < 6 < dimg (R). This relation will play a fundamental role in
proving that 6 is in fact equal to dimg (R) (see Theorem 2.13).

LEMMA 2.7. Let H be a Hopf algebra and let (R, m,u,d,€) be a finite dimensional pre-bialgebra in
HYD. Assume that R is a thin coalgebra where P(R) = Ky. Then there is a primitive 0-th root
of unity q € K, where 2 < 0 < dimg (R), and g € H,x € H* such that

1) (H,g,x) is a Yetter-Drinfeld datum for g,

2) "pr(y) =g ®v,

3) hy = x(h)y for every h € H.

Proof. Note that by (4) u: K — R is a coalgebra morphism, so that (R, 1z = u(1k)) is a unital
coalgebra. Since R is thin, Cy = K1g. By (3), u: K — R is a morphism in £YD. Hence
PR)={zeR|éxzx)=1g@z+21g}=Ker [0 — (u® R+ R® u)]

is a Yetter-Drinfeld submodule of R so that Zpr(y) € H® P(R) and hy € P(R) = Ky for every
h € H. Then there exists a g € G(H) such that 7 pr(y) = g®y and there exists a character y € H*
such that hy = x(h)y, for every h € H.

Then, the Yetter-Drinfeld compatibility for P(R) € ZYD writes as follows

> x(ha))ghe @y =>_ haygx(he) @y

so that (H, g, x) is a Yetter-Drinfeld datum for ¢ := x(g) € K. Let us prove that ¢ has finite order.
Set

wo = 1p and wy, =m(y @ wp_1), for every n > 1.
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Since 1z € G (R), inductively one can prove, by means of (6), that

Q =35, () (e )

Since R is finite dimensional over K, there exists

N =min{n € N | wy, ..., w, are linearly dependent} .

From y € P (R), we deduce that {1g,y} @ {wo, w1} is linearly independent and hence N > 1.

Let us prove that o(q) < N. By definition of N, there is a k := (ko, ki,...kn) € KVNT1\{0}
such that kogwg + k1wy + ... + ky_1wy_1 + kywy = 0. Moreover, since wy, ..., wy_1 are linearly
independent over K and k # 0, the case ky = 0 can not occur. Therefore, we can assume
kny = —1g: wy = kowg + kiwy + ... + ky_qwn_1. If k;, =0, for all 0 <i < N — 1, then wy =0

so that
N N
0=d(wn) = ZO<1‘<N < i ) (wi ® wy—i) = Z1<i<N—1 ( i ) (i @ wy—).
== q == q

Since wy, ..., wy_1 are linearly independent, so are w; ® wy_;, with 1 <7 < N — 1.

Hence ¢ is a solution of the system of equations (Zj)X =0 for every i,1 < i < N — 1. Therefore,
since char (K) = 0, we get ¢~ =1 and o(q) = N > 1.

Assume now k; # 0, for some 0 < ¢ < N — 1. Clearly, by (5), one has that gw, = ¢"w,, for every
n € N. We get

guy = ¢"wy =q"ko+ ¢ kwi + ...+ ¢"ky_1wy_1 and
guy = kogwo + kigwi + ... + ky_1gwy_1 = ko + kiqwi + ... + kn_1¢" Twy_1.
Since wo, ..., wxn_1 are linearly independent over K, we have that ¢V k; = k;q*. From k; # 0 one

has ¢V = ¢' so that ¢V =% = 1 and hence o (q) < N.
It remains to prove that o (q) > 2. Suppose ¢ = 1. In this case (Z_‘)q = () that is the usual binomial
coefficient. Thus, by (9), we have

n
5y o) =S () (w5 ® wn—s) +wo ® wy + wy ® wp

and

N N
d(wn) = Zogigjv ( ; >(’lUi ®WN—;) = Z1gi§N—1 ( ; )('lUi @ wN—-i) +wo ®WN + WN & wp.

Since wy = kowg + kiwy + ... + ky_1wy_1, we obtain

n N
ZogngN—l Fn Z1§i§1\i—1 (z) (wi ® wn—;) = Z1§igz\i—1 ( 7 ) (wi ® wy—i).

Aswy, ..., wy_1 are linearly independent, we get (]]V) 1x = 0forevery 1 < j < N—1. In particular,
since char (K) = 0, we obtain 0 = (If) = N > 2. Contradiction. We conclude that g # 1. |

DEFINITION 2.8. Let H be a Hopf algebra and let (R, m,u,d,e) be a finite dimensional pre-
bialgebra in £YD. Assume that R is a thin coalgebra and let P(R) = Ky. Consider ¢ and the
Yetter-Drinfeld datum (H, g, x) for ¢ as in Lemma 2.7. Then (H,g,x) will be called the Yetter-
Drinfeld datum associated to the pre-bialgebra (R, m,u,d,¢) in LYD relative to y or simply the
Yetter-Drinfeld datum associated to y whenever there is no risk of confusion.

LEMMA 2.9. Let H be a Hopf algebra and let (R,m,u,0,£) be a N-dimensional pre-bialgebra in
HYD. Assume that R is a thin coalgebra where P(R) = Ky. Let g € H and x € H* be such that
(H,g,x) is the Yetter-Drinfeld datum associated to y and let ¢ = x(g).
Then there exists a divided power sequence of non-zero elements in R

do = 1R7d1 :ya"'adel

such that
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1) gdn, = q"dy, for any 0 <n < N —1 and also
2) didp—1 = (n)q dy, for any1 <n < N —1.

Proof. By Lemma 1.4, there exists a divided power sequence of non-zero elements in R dy =
1g,d1 =y,...,dn_1 that completes {dy,y} to a basis of R. We have

3
gdo © 1r and gy = qy-

Assume that 2 < n < N — 2 and that dy = 1g,dy = y,...,d,_1 is a divided power sequence
satisfying 1) and 2). Let e,, = qu" Then dy = 1¢,d1,...,dn_1, €, is a divided power sequences of
non-zero elements in R, as, by left H-linearity of §, we have

1 n no ogd; _ gdn—j
§(en) = qfnzjzogdj ® gdn_; :Zj:[)?@qn—ﬂ —d0®en+6n®d0+z Y@ d
Then, by Lemma 1.6, e,, — d,, € P (R) = Kd;.

Thus there is a k € K such that gd,, = ¢""d,, + kd;.

Now, if k = 0 then d,, satisfies 1).

Assume k # 0. We seek for an element b € K such that g (d,, + bd1) = ¢" (d,, + bd;) that is

gd, + bgdy = q"d,, + bq"dy, ie. ¢"d, + kdy + bgdy = ¢"d,, + bq"dy, i.e. k+ bg = bq".
' =d, + bdy. Since d), — d,, € P(R), by

Since k # 0 we get ¢" # ¢, so that b = an,

Lemma 1.6, we have that do,dy, . ..,d,_1,d., is still a divided power sequences of non-zero elements
in R so that we can substitute d,, with d], which satisfies 1).
Therefore we can assume that we have found d,, which satisfies 1) such that dy,...,d,_1,d, is

a divided power sequence of non-zero elements in R.
By (6), we have

5(ydn71)
n—1 n—1
= (Yy®1lr+1p®y) (Zt—o dt®dn1t> :Zt ydy @ dp—1- t+z gdt®ydn 1—t

n—2 n—1
= Y1 @lp+lr@ydna+ ) (1) det @dnore+ Y q'd® (= 1), dney
n— 1
= ydn—1 ®1gp+1gp @ yd,— 1+Z [ +q(7l—t)q}dt®dn7t
Since (t), +¢' (n — ), = (n), , summing up, we get
(10) 6 (ydn-1) = ydn—1 @ 1gp + 1r @ ydp— 1+Z )q At @ dp—t.
Assume that o (q) | n. Since, by Lemma 2.7, we have that g # 1, then (n), = 0 and hence

10
0 (ydp—1) (0 Ydn—1 @ 1p+1p @ yd,—1

so that yd,,_; € P(R) = Kd;. Thus there is k € K such that yd,_; = kd;. Hence, since o (q) | n,
from

5
9 (vdn_1) 2 (gy) (gdn_s ooy = ydny = kdy and g (kdy) = kgdy = qkd,

)=4q"y

we deduce kd; = g (yd,—1) =g (kdl) = gkd; and so k = 0 (in fact ¢ # 1). Therefore in this case
ydp—1 = 0 and hence yd,,_1 = (n),_ d,.

Assume now o (q) t n. Then

6 [ydn-1 — (), d]
= ydp 1 @ 1g+1g @ yd, 1+Z )y e @ dny —(n)y ) de @ dny

= [ydnfl - (n), dn} ®1lp+1p® [ydnfl —(n), dn} :

q
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Thus yd,_1 — (n)q d, € P(R) so that, by Lemma 1.6, we have that dy,dq,...,d,_1, y(dr’;)’l is still
a divided power sequence of non-zero elements in R (we are in the case (n), # 0). This tells we
can assume d,, = yd,—1/(n),. Note that gd, = gy(d;’)’l = (gy)(g?”“) =q" yz’l’)*l = q"d,. O

(),

2.10. Let r € R = UpenRy, and let v, = min{n € N|r € R, }. From now on, we will denote by
T =r+ R, _ the element of RL":‘I corresponding to r. We point out that 7-5 =rs+ Ry, 4,.-1 #
rs+ R, 1 =Ts a priori.

THEOREM 2.11. Let H be a Hopf algebra and let (R, m,u,§,€) be a pre-bialgebra in BYD. Assume
that R is an N-dimensional thin coalgebra where P(R) = Ky. Let g € H and x € H* be such that
(H,g,x) is the Yetter-Drinfeld datum associated to y and let ¢ = x(g). Consider o divided power
sequence

do=1g,d1 =y,...,dN_1

of non-zero elements in R such that gd, = q"dy, for any 0 <n < N —1 as in Lemma 2.9. Then

(d")0<n<N—1 forms a divided power sequence of non-zero elements in gr (R) such that

1) p(dn) = g" ®dy, for any 0 <n < N —1.

2) h-d, =x" (h)dy, for any 0 <n < N — 1.
3)d7a~d7b:(a+b)qda+b,for0§a+b§]\771, and dg - dp =0, for a+b> N.

a
Moreover the pre-bialgebra gr (R) is indeed a braided bialgebra in the monoidal category

(YD, ®, K) which is commutative as an algebra in the category of vector spaces.

Proof. 1) Forany 0 <n <N —1,p(d,) € H® R so that, since, by s = Kd,,
there is a unique h,, € H such that p (dn) =h,® dn. Since the comultlphcatlon on gr (R) is left
H-colinear, we have Y7 hihn—; @d; @dp—; = hp, @6 (dn) = Y1 hn ®d; ® dy,—;. Thus we deduce
that h,, = h;h,—; for any 0 < ¢ < n. Since hg = 1y and h; = g, by applying the above formula to
the case ¢ = 1, by induction on n > 1, it is easy to prove that h,, =

2) If n =0, 1 there is nothing to prove.

Let 2<n < N — 1 and assume hd; = x* (h) d; for any 0 < i <n — 1. We have

O(hdy) = > (mdi@hady )
= (em (h1)do ® hady,) + (hidn ® epr (h2) do) +Z X (h) d; @ X" (ha) dy—s)
= (r@hd) + (hly ©1p) + X" (W)Y & d,

From this, since § [ “(h)dn] = x™(h)é [T =x"(h) Yy di @ dn_i, and by Proposition 1.2, we
infer that hd,, — x" (h)d, € P (gr (R)) = #. Since a priori hd,, — X" (h) d, € 7

conclude that hdn =x"(h)d,.
3) Observe that

5@-7)=6(%)6(%)=Z:=O(I®E)Z; (& @)
- Z‘ZOZ”O[ )8 (@ B = S T e
S '

a i) d; @da_i-dp; = Zi:o ijo ¢ A @ dy; - dp;

i=0 ]0

so that

(11) 1) (?ajb) =1pQd, -dp+dg -dp ® 1p + Zo<i<a,0<_j<b q(a_i)jdii'dij® do—i - dp—j.
1<i+j<a+b—1

Let us prove that dg - dp = (aIb)qda+b for any a,b € N such that 1 <a+ b < N — 1, by induction
onn=a-+b.
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Ifn=1,thend, -dp =dq = (a:b)qda+b. Let 2 <n < N — 1 and assume d:@ = (th)qdiﬂ- for
any ¢,j € N such that 0 <i+ j <n — 1. By (11), we have
5 (da - dy) — [1r @ dq - dy + dg - dyp @ 15]

a—iyj (0] a+b—(i+7)\ -
= ZO<%<a 0<5<b gl*= ( ) divj ® ( . datb—(itj)
1<iFj<atb—1 i/ a—1 q

a+b—1 e a+b—t
= Z ZO<1<¢1 o<3<bq e .
i)\ a—i J,

Zj_

dr @ dgtp—t-

From the X-analogue of Chu-Vandermonde formula [Ka, Proposition IV 2.3, page 75], we have

m—+n — m n
( ; > =D o<i<mogugn XY < ) (> ;
Jtu=1 -7 X u X

forany 1 <t <a+0b—1 so that

t+a+b—t e [ a+b—t .
( ) E 0<i<t,0<(a—1)<a+b—t q(t J(a=i) () ( . ) , Le.
a q i+(a—i)=a g\ a—1 J,

a+b t a+b—t _aift a+b—t
( > - Z 95i=e t ’L a ’L) <> ( ) ) - ZO<Z<a q(a Z)J <> ( ) )
a /g 0<t— ?<b g\ a1/, 0<5<b iJ,\ a—ti /,

i+j=t

Finally, we get

- . - a-+b a+b—1___
(12) 5(da -db) =1rQdy-dpy+dy-dy @15 + ( a ) Zt:l dy ®da+b t-
q

From this, the fact that

a+b a+b a+b atb__
( a )qda+b] —< a >q5 da+b —< a )q Zt: di @ datp—t

and by Proposition 1.2, we infer that d,-dy— (a:b)qda+b € P(gr(R)) = %. But d,-dp— (a:b)qda+b €

% and a +b > 2 so that d, - dj, = (a:b)qdaer. Observe that, for any 0 < a,b < N such that

a+b> N we have Ryyp = Rayp—1 and hence d, - dp € % =0.If 0 <a,bc < N and
a+b+c< N —1, we obtain

0

— — —  (at+b+o)! _
N GRICRICK

If0o<a,bc< Nand a+b+c > N, we get (?a.jb).jce % = Oanddim(dib'di
Ratbie _ — T 5
ﬁj:_l—Osothat (da-db)-dc_d -(db-d)

Hence we have proved that gr (R) is an associative algebra. Note also that, if 0 < a,b < N

and a+b< N —1,d,-dy = (*}") daty = dy - do and that, for a+b> N, dy-dy =0 =dy - d,

a

da+b+c =dg - (db . dc)

~—
m

that gr (R) is also commutative.
To see that gr (R) is a braided bialgebra in ZYD it remains to prove that the multiplication in
gr (R) is left H-colinear. If 0 < a,b < N and a +b < N — 1, we have

a+by —— a+b
( " > da+b] =9a+b®( a ) davy = 99" @ do - dy.
q q

Ifa—i—szwehavep(dia-dib):0:gagb®d7a-d7b. O

p(da-dy) =p

THEOREM 2.12. Take the hypothesis and notations of Theorem 2.11. Then I = dy - gr (R) is a two
sided ideal and also a coideal of gr (R) regarded as a braided bialgebra in LYD.
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Proof. By Theorem 2.11, gr (R) is a commutative algebra. Then I is a two-sided ideal of gr (R) .
Moreover, for any h € H and for any b € N, we have

h(dy-dy) =) haydi - heyds = X (hy) di - x (b)) dy € 1.
and p (dil . d:) = ¢t ® d; - d; for left H-colinearity of the multiplication. Hence I is an ideal of
gr (R) regarded as an algebra in #YD. Furthermore, by (11), we have

§(di-dp) =1p®@dy-dp+d1-dy @1+ Y g<icro<jcp @ Vdi-dj@dii-dy; € ROI+IQR.
1<i4j<14+b—1

Finally € (dil . cﬁ) =€ (dT) € (d:) = 0 so that € (I) = 0 and hence I is also a coideal of gr (R). O

The following result is known (see [AS, Theorem 3.2] and [CDMM, Proposition 3.4]) when R is
a braided Hopf algebra in ZYD.

THEOREM 2.13. Let H be a Hopf algebra and let (R, m,u,d, ) be a pre-bialgebra in g)}D. Assume
that R is an N-dimensional thin coalgebra where P(R) = Ky. Let g € H and x € H* be such that
(H,g,x) is the Yetter-Drinfeld datum associated to y and let ¢ = x(g). Consider a divided power
sequence

do = lR,dl :y,...,dN_l
of non-zero elements in R such that gd,, = ¢"d,, for any 0 <n < N —1 as in Lemma 2.9.
Then N = 0(q) and

forany0 <n <N —1. o
In particular, gr (R) = Ry (H, g,x) s a quantum line generated as an algebra by d; .

Proof. Let 8 = 0(q) . By Lemma 2.7, we have that 2 <9 < N.
Since, by Theorem 2.11, gr (R) is an associative algebra, it makes sense to consider (dT)N Note
that (dT)N € LNy —(, Set z =d; and let

Ry—_1
t =min{n € N\{0} | 2" =0} .

Then, we have 2" € %\ {0} for any 0 < n < ¢t — 1 and hence d,, exists and is not zero for
any 0 < n <t — 1. In particular we obtain that ¢t — 1 < N — 1 that is ¢ < N. Let us prove that
2" = (n)q!a for any 0 < n <t —1. For n = 0,1 there is nothing to prove. Let 2 <n <t —1 and
assume 2" = (n — 1)q!m We have

n n— g g0 ny — 7
2=zt =Mn-1),2-di1=(n-1)di-dp-1=(n—1),! (1) dn = (n),dn.
q

Observe that, since 2!=! # 0, we have (t — l)q! # 0 which means, being ¢ # 1, that ¢" # 1 for any
0 <n <t—1 and hence t < 6. By the quantum binomial formula we have

0=46(2") = ZZ:O <:> A= Zj: <Z> 2@
q q

Note that, since 2" = (n)q!%, then (2")g<, <, ; are linearly independent so that (E)q = 0 for any
1 <i<t—1.In particular, for i = 1 we get (t)q = 0 and hence ¢ = 1. We deduce that t = 6.

Rﬁ&ll that 6 < N. Assume N > 6 4 1. Then we knolv that dy exists and it is not zero. Let
I = d; -gr (R) be the ideal of Theorem 2.12. Assume that dy € I. In this case there exists r € gr (R)
such that dg = dir. Since r € gr (R) we have r = ZZN:_()I kid;, k; € K. Hence, by Theorem 2.11, we
have

_ N-1 . _ N-2 144\ — I N—2 e
G-dr=Y" wa g3 k( 1 ) T+ by B = 30k (), A
q
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Since 0 < 0 < N — 1, we get dg = kg_1 (146 — 1)qm = ko_1 (H)qdig = 0, a contradiction.
Hence we always have that dp ¢ I.

Consider the braided bialgebra @ = @. As observed above, for every 1 < n < 6 — 1 we have
that d,, = (S—;q, € I.Set w=dg+I. Then

[4 0 _ _
6Q(w):Zt_o<t) (dt+l®d9—t+1):w®1Q+1Q®w
q

i.e. w € P(Q). Moreover we have h-w = x? (h)w and p (w) = g’ ® w. Then
b (1) dg (w)
= (wWelpg+loeuw)(welg+lgew)=w’Rlg+1lg@w’ +w®w+ w_w w_r
= w2®1Q+1Q®w2+w®w+ggw®w:w2®1Q+1Q®w2+w®w+q92w®w,
so that
(13) g (w) dg (w) = w? @ 1g + 1g ® w? + 2w ® w.
LetuswriteN—lzaQ—i—r,Whereaz1(Ggﬁ—i) and 0 <r<6-1.
Ifa=1then N—1=6+7r <20 —1so that dg - dg = 0 and hence w? = 0. By (13), we deduce

2w @ w = 0 so that, since char (K) # 2, we infer w = 0. This contradicts dy ¢ 1. Hence we have
a > 2, so that dog exists. Therefore

ww = (@ + 1) (do + 1) = (dods + 1) — (9;9) (dos + 1) = (g) (dog+ 1) = Gy + 1.

Thus

8o (w) 6o (w) = 0g (ww) = g (dag + 1) = Zio (ia) (d;i +1) @ (dog—; + 1)

_ - 2\ - - -

(do+I)®(dzeo+I)+(9> (do+1) ® (dzo—g + 1) + (dzo + 1) ® (dag—20 + 1)
q

= lgRuw'twew+uw?®lg

Comparing with (13), we get w®w = 0 and hence w = 0, a contradiction. In conclusion § = N. O

THEOREM 2.14. Let H be a Hopf algebra and let (R, m,u,d,€) be a finite dimensional pre-bialgebra
in EYD. Then the following assertions are equivalent:

(1) gr(R) is a thin coalgebra.

(2) R is a thin coalgebra.

(3) RoRo C R and gr (R) is a quantum line with respect to the structures inherited from R.

Proof. (1) = (2) It follows by Proposition 1.2.

(2) = (3) Since Ry = Klg, by 7, we get RgRy C Ry so that, by Theorem 2.13, gr (R) is a
quantum line with respect to the structures inherited from R.

(3) = (1) Quantum lines are thin coalgebras. O

LEMMA 2.15. Let H be a Hopf algebra and let (R,m,u,d,e) be a pre-bialgebra in gy’D. Assume
that R is an N-dimensional thin coalgebra where P(R) = Ky. Let g € H and x € H* be such that
(H,g,x) is the Yetter-Drinfeld datum associated to y and let ¢ = x(g). Consider a divided power
sequence

do = 1R,d1 :y,...,dN_l
of non-zero elements in R such that gd,, = q"d,,, for any 0 <n < N —1 and yd,—1 = (n)q dy, for
any 1 <n < N —1 as in Lemma 2.9.
Then

hd, = x" (h)d,
forany 0 <n <N —1.
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Proof. By Theorem 2.13, we have N = 0(q) so that (n), # 0 for any 0 < n < N —1. The statement
is clear for n = 0,1. Let 2 <n < N — 1 and assume hd,,_1 = X"~ ! (h) d,_1. Then

h(ydn—1) = Z hayy - heydn—1 = ZX (hy)) ¥ - X" (h2)) dn—1 = X" (h) ydp—1

so that hd,, = (nl) h(yd,—1) = ﬁx" (h)ydn—1 = x" (h)dy. O

3. PRE-BIALGEBRAS WITH A COCYCLE

DEFINITIONS 3.1. Let H be a Hopf algebra. A cocycle for a pre-bialgebra (R, m,u,d,¢) in YD
is a K-linear map

E:R®R—H
such that, for all r,s,t € R and h € H, the following relations are satisfied:

(14) D &(hayr @ hys) = > ha)é(r @ 5)Shey;

(15) Apg=(mu ®@&)(§®pror)dreor and epé=mg(c®e);

(16) cru(M®&)orer = (M ® mp)(€ ® proR)ORSR;

(17) mp(R®mg) =mgr(R® ugr)[(mr ®§)drer @ RJ;

(18) mu(§® H)[R® (mr ®&)dregr] =mu(§® H)(R® cu,r)[(mr ®§)drer @ R];
(19) E(RRu)=¢u®R)=cly.

We will also say that (R,m,u,d,¢) is a pre-bialgebra in £YD with cocycle &.
For a pre-bialgebra (R, m,u, §,¢) in EYD with cocycle £, we have that (R, u,m,§) is a dual Yetter-
Drinfeld quadruple in the sense of [AMS, Definition 3.59]
To any pre-bialgebra (R, m,u,d,¢) in YD with cocycle ¢ we associate (see [AMS, Theorem
3.62]) a bialgebra B = R#¢H as follows. As a vector space it is R ® H.
The coalgebra structures are:
Ap (r#h) = Zr(l)#rgz_)wh(l) ® ng;#h@), where 0(r) = Zr(l) @r®,
e (r#h) = e(r)em (h).

The algebra structures are:
mpl(r#h) ® (s#k)] Zﬁlo(r by h(l)S) @ mt (r® h(l)s) hk.
up(l) = u()#lg

where we use the notation

(20) (m®£)5R®R(T®S):ﬁl(T®S>:ZﬁlO(T®S)®ﬁ11(T®S)

The canonical injection o : H — R#¢H is a bialgebra homomorphism. Furthermore the map
m:R#H — H:r#h—e(r)h

is an H-bilinear coalgebra retraction of o.

DEFINITIONS AND NOTATIONS 3.2. Let H be a Hopf algebra, let A be a bialgebra andleto : H — A
be an injective morphism of bialgebras having a retraction @ : A — H (i.e. wo = H) that is an
H -bilinear coalgebra map. Set

R= A% —{ac A|Y aqy @7 (0p) =a®ln}
Let7: A— R,7(a) =Y aoSm (a@)) (see Proposition 3.4). The map
w:R®H — A, wir®@h)=ro(h)
18 an isomorphism of K -vector spaces, the inverse being defined by

wl''ASR®H, w(a)= Za(l)O'SHW (a(2)) QT (a(g)) = ZT (a(l)) QT (a(g)) )
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Clearly A defines, via w, a bialgebra structure on R ® H that will depend on the chosen o and .
To describe this structure, we need the following data. Set

(5(7”) = ZT(UJSW(T(Q)) (024 r(3) = ZT (7’(1)) &® T(2), € = €AIR-

By [Scha, 6.1] and [AMS, Theorem 3.64], (R, d,¢) is a coalgebra in BYD where the Yetter-Drinfeld
module structure of R is given by

"r=3 0 (hw)roSu (h),  p(r) = 7 (ra) @re
and the maps u: K — R and m: R® R — R, given by
U= u[f, m(r® s) = Z’I"(US(UO’S?T(T(Q)S(Q)) =7(r-as).

define on R a unital algebra structure (which might be non associative).
Let £ : R® R — H be the map defined by setting

Eres)=m(r-as).

REMARK 3.3. As proved in [AMS, Theorem 3.64], the datum (R,m,u,d,e) constructed from
(A, 7, 0) is a pre-bialgebra in YD with cocycle ¢. This will be called the pre-bialgebra in LYD
associated to (A, m,0). Moreover £ will be called the cocycle corresponding to (R, m,u,d,¢). Then
(cf. [Scha, 6.1]) w : R#¢H — A is a bialgebra isomorphism.
Conversely, note that, starting from a pre-bialgebra (R, m,u,d, &) in gyD with cocycle &, if we
consider the maps
o:H— R#:H and m: R#cH — H

as in Definitions 3.1, then the pre-bialgebra in # VD associated to (R#¢H, , o) is exactly (R, m,u, 6, €)
and the corresponding cocycle is exactly &.

PRrROPOSITION 3.4. Let H be a Hopf algebra with antipode S, let A be a bialgebra and leto : H — A

be an injective morphism of bialgebras having a retraction m : A — H (i.e. wo = H) that is an

H-bilinear coalgebra map. Let (R,m,u,d,¢) be the pre-bialgebra in HYD associated to (A, w,0).
Then the map T of 3.2 is a surjective coalgebra homomorphism. Moreover

Tlac (h)] = 7(a)em(h),  7lo(h)al= "7(a),
rrs = T(r-as), 7(a) g7 (b)) =7[1(a) 4],
where a € A,h € H and r,s € R.
Proof. First of all, let us prove that 7 (a) € A is in fact an element of R. Note that

(21) 7T (a) = z T [a@yo ST (ag))] = Z 7 (a@)) S7 (a@)) =€ (a) 1.
Since Au7 (a) = a(1yo ST (a@s)) ® 7 (ag)) we get

S @@ |7 (@)y] = oSt (a@) 277 (ae) ) S a8 (ag) @1 = (@) @ 1
so that 7 (a) € R. We have
(22) = a0 (hq)) oSu {7 [a@)] hey} =7 (a)en (h).
Since 7 is left H-linear we have
7lo(ha] =)o (hw) a@oSum [0 (he) a@] =)o (hw) 7(a) oSk (he) = "7 (a).

Let us prove that 7 is a coalgebra homomorphism. Since § (r) = Zr(l O'S’IT( ) ® 1 =
S 7 (ra)) ®r() for every r € R, we get

0t (a) = ZT (7‘ (a)(l)) @7 (a)q = ZT laqyoST (ag))] ® 7 (ae)) @ (T ®7)Axa,
et(a) = ear [Z a)ySum (a(g))} =c4(a).
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Note that for every r € R we have 7(r) = Y ryoSum [r2)] = roSy (1g) = r so that 7 is

surjective. Since r-ps =m(r®s) = > rq)sq)oST [7‘ (2) "A 8(2)] =7(r-as), for every r,s € R,
. 22

we obtain 7 (a) g 7 (b) = 7 [7 (a) -4 T (b)] s [7(a)-aba)]enSm (be)) =77 (a)-ab]. O

3.5. Let H be a Hopf algebra and let y € H* be a character. Let (M, pys) be a left H-comodule and
(N, pn) be a right H-comodule. In the sequel we will use the well known K-linear automorphisms
wrv 2 M — M and ¥ : N — N defined by

o (m) = (m—x) = ZX (m—1y) my and ¢y (n) = (x = n) Zmo)X n1y)

Recall that ¢ and ¢n are (co)algebra automorphisms whenever M and N are H-comodule
(co)algebras.

PROPOSITION 3.6. Let H be a Hopf algebra and let (R, m,u,d,) be a N-dimensional pre-bialgebra
in LYD. Let € be a cocycle for the pre-bialgebra (R, m,u,6,¢). Let x € H* be a character of H
such that

(23) X[E(r®s) =e(r)e(s), for everyr,s € R.
Then the map
¢r:R— R,pr(r ZX (1)) (o)
defines an isomorphism of coalgebras which is also an algebra homomorphism. Moreover
nE(r@s) =¢ler(r)@er(s)],  Yull(r@s)]=£(rs).

Proof. Since R is a left H-comodule coalgebra, by 3.5, we have that ¢g is a coalgebra automor-
phism. We outline that, since the multiplication of R is, in general, not colinear, R need not to be
an H-comodule algebra, so that we cannot apply 3.5 to get that ¢ is an algebra homomorphism.

By (16), we get
> (T@ns“))] Ly S e [ (2 W)]
ST R
If we apply (g (x ® R) to both sides, we obtain
™o P (42,8)] - T e 0200 o (1) o ().
By (23) we get pr (r-s) = vr (1) - pr (s). Moreover pr (1g) = 1R. We have

Ant(r®s) D (my o 6)(Es pR®R>6R®R(r ®5)

_ Z [5( ) ®r£2) (1)> ng) s (2) ®§( gm

so that
eulEr@s)] =Y x[6res) ] 0@ s) e =l (x®H) Apé(r®s)
= iy (X®H)[ ( <1>®T§2>> <1>) r®,s (2)>®5(T§§§®5533)}
= Doxfe (0 @ry s )22y | (g @ 5)
= Sx[e(rW @ r®s M) € [on (1) @ or (52)] B €lon () @ on (5).
In a similar way one can prove ¥y [£(r ® s)] =& (r ® s). O

DEFINITION 3.7. Let H be a Hopf algebra and let R be a braided bialgebra in the category
gyD. The tensor product R ® H endowed with the smash product and the smash coproduct is
a bialgebra that will be denoted by R#H and called the Radford-Majid bosonization of R (see
[Rad] and [Maj]).
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LEMMA 3.8. let H be a Hopf algebra, let A be a bialgebra and let o : H — A be an injective
morphism of bialgebras having a retractionw : A — H (i.e. mo = H ) that is an H-bilinear coalgebra
map. Let (R,m,u,d,¢) be the pre-bialgebra in YD associated to (A, m,0) with corresponding
cocycle €.

Then for every r € R and h € H we have

7w (ro (h)) =¢e(r)h.

Moreover the following assertions are equivalent:

() ¢=ewe.

(2) 7 : A — H is a bialgebra homomorphism.

(3) R is a braided bialgebra in 2YD and R#¢H = R#H is the Radford-Majid bosonization of
R.
Proof. For every r € R and h € H we have 7 (ro (h)) =7 (r)h =3¢ (rq)) 7 (r@)) h =€ (r) h.

(1) = (2). Clearly {ro (h) | r € R,h € H} generates A. We have

w[ro (h)so (k)] = Zﬂ' [ro (hay) saS (he)) o (h 3)k)] = ZTF (r-a "ms) h(g)k
D E(re "s)hgk=> e(r)e ("Ms) hek
)k

= Y een (hay)e(s) bk = (r)he () k =7 (ro (h)) - 7 (so (k).

(2) = (1) follows easily by the definition of £ : E(r @ s) =7w (r-as) =7 (r)-gr(s) =ec(r)e(s)1x.
(1) = (3) can be easily proved by direct computation.
(3) = (2) Observe that m = 7’ o w™! where the map 7’ : R#¢H — H : r#h — e (r) h. One
easily check that 7’ is an algebra homomorphism so that 7 is an algebra homomorphism too. [0

THEOREM 3.9. Let H be a Hopf algebra and let (R,m,u,d,¢) be a pre-bialgebra in gyD with
cocycle &. The following assertions are equivalent:

(a) Corad(R) = K1pg i.e. R is connected.

(b) Corad (R#¢H) C K ® H.

(¢) Corad (R#¢H) = K ® Corad (H) .

Moreover, in this case R#¢H is a Hopf algebra.

Proof. Set B := R#H. Recall that the coalgebra structures of B are:
Ap (r#th) = rWr® by @ r® g #h),  ep (r#h) = (r)en (h),

(a) = (b). Assume that Ry = Corad (R ) = K1p i.e. R is connected.
Let Ry <R <---<R, 1 < R < --- < R be the coradical filtration of R. Let B; = R; ® H.

Let r € R, n € N. Then § (r) = Z r; ® Sp—i, where 7;,s; € R;. Thus

Apgn (r#h) = D rWr® Chay @ r® g #he,

Zn (Sn—i)(_1y (1) @ (Sn—i) gy #h(2) € D Bi ® B
i=0

Therefore Agpuy (By) C Y. B; ® B,_; and hence
i=0

defines a coalgebra filtration for B. This entails that Corad (B) C H (see [Sw, page 226]).

(b) = (a). Assume that Corad (B) C K ® H. Apply Proposition 3.4 to the case when o : H — B
is the canonical injection and 7 : B — H is defined by 7 (r#h) = e (r) h (as observed in Definitions
3.1 7 is a left H-bilinear coalgebra retraction of o). Then 7 : B — R,r#h +— reg (h) is a surjective
coalgebra homomorphism. By [Mo, Corollary 5.3.5, page 66], we have that

Corad(R) C 7 (Corad(B)) CT7(K® H)=K.
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(¢) = (b) is trivial.

(b) = (¢). We get Corad (R#¢H) = Corad (K @ H) = K®Corad (H) as Corad (R#:H) C KQH.
Let us prove that R#¢H has an antipode, whenever (b) holds. Since H is a Hopf algebra and
Corad (R#:H) € K ® H = H, the antipode of H gives an inverse of the canonical inclu-
sion Corad (R#¢H) C R#¢H in Homg (Corad (R#¢H) , R#¢H) so that, in view of a famous
Takeuchi’s result [Mo, Lemma 5.2.10], R#¢H has an antipode. O

Our aim is to characterize those pre-bialgebras (R, m,u,d,¢) in g)}D with cocycle £ such that
gr (R) is a quantum line. The first step is to lift the properties of gr (R) to R which a priori is a
non-associative algebra.

Let B = R#¢H. We point out that our procedure differs from the classical lifting method by
N. Andruskiewitsch and H.-J. Schneider. Namely, since By does not need to be a Hopf subalgebra
of B, its associated graded coalgebra gr (B) is not a (graded) Hopf algebra in general.

LEMMA 3.10. Keep the assumptions and notations of Lemma 2.15. Let £ be a cocycle for the
pre-bialgebra (R, m,u,d,¢). Let 0 < a,b < N — 1. Then,

(24) X (h) € (da @ dy) = h1)é (da @ dy) Shyay, for every h € H.
In particular, for any ¢ € N, we have

(25) [X*T (h) —em (R)] X° [ (do ® db)] = 0, for every h € H.
Moreover if a + b # 0 and

(26) X (da @ dy)] = X°[€ (da @ db)] + X [€ (da ® )]
for any ¢ € N, then we have ¢ [£ (d, ® dp)] =0 for every ¢ € N.

Proof. By (14), we have: ) &{(hayr @ hys) = > h)§(r®@s)Sh(o) for any r,s € Rand h € H. We
apply this in the case r = d, and s = dy,where 0 < a,b < N — 1 to obtain ) &(h(1)dq ® h2ydy) =
> h@)€ (dy @ dy) Sh(zy. Now, by Lemma 2.15, we have

> &(hayda @ hzydy) =Y E(X* (b)) da @ X" (h2)) db) = x**° (h) € (da @ di)

and hence we obtain (24). Then, by applying x¢, ¢ > 0, to both sides of this formula, we get
Xt (h) x¢ [€ (dy @ dy)] = e (R) X© [€ (do @ d)], sO that we obtain (25).

Assume that a + b # 0 and that (26) holds for any ¢ € N. By induction on ¢ > 0, one can prove
that

(27) X [€(da @ dp)] = c- x [§ (da ® dp)], for any c € N.

Now, by (15), and since € (d,,) = dp 0 = 0 for any n > 1 (see Lemma 1.5), we obtain e [€ (d, ® dp)] =
e (dy) e (dp) = 0. Thus, by (25), applied to the case ¢ = 1 and h = £ (d, ® dp), by (27) and since
a+ b # 0, we obtain x[£(d, ® dp)] = 0 so that x°[{(d, ® dp)] = ex[€(de @ dp)] = 0, for any
c>0. O

THEOREM 3.11. Keep the assumptions and notations of Lemma 2.15. Let € be a cocycle for the
pre-bialgebra (R, m,u,d,€).
Let 0 < a,b< N —1. We have

(28) ZXC (da)i_1y| (da)igy = q““dq for any c €N,

(=1 (0)
(29) Oror(da®dy) = D @@ @ da Dy,
(30) Ap§(d, ®dyp)

= Zogigapgjgb ¢V (ds © dy) (dai)_y) (dy—j) 1y ®E |:(dafi)<0) ® (do—;5) gy | -

(31) X € (d1 ®d,)] =0, for any c € N.
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If b < N — a, we have

(32)

(33)

p(dadb) = Z (da)<71> (db)<71> ® (da)(0> (db>(0) +

[ q(bfj)if (da—i ® db—j) (di)(_1> (dj)<71> ® (di)<0> (dj)<o> +

+ i<a j j(a—1
Zog <a,0<5<b —gila=i) (didj)<_1> E(doi @ dy—j) @ (dz’dj)<0>

0<i+j<a+b

Sox [ (dida) gy | (drda) ) = ¢ dnd

Proof. Recall that, by Lemma 2.7, there are g € G (H) such that p(y) = g®y and x € H*, a
character such that hy = x(h)y for every h € H.

Let us proceed by induction on 0 < a < N — 1. The case a = 0 is straightforward. Let a > 1
and assume that the statements hold for every 0 < i < a — 1. By assumption, for any ¢ € N, we

have Y x°© [(dlda,1)<71>} (dlda,l)<O> = ¢““d1d,_1. By Lemma 2.9 we get did,_1 = (a)q d,, so that
(a), 2-x° {(da)<71>} (da) gy = (a),q"*da. By Theorem 2.13, we get N = o(q). Since a < N —1

then (a), #

0 so that we get (28). By means of Lemma 2.15, we have

dpgr (doe @dy) = (R®crRr®R)(6®9)(dy @ dyp)

- ZOSiSa,OSiSb di ® (da—i) (1) dj @ (da—i) ) @ di—j

_ . J ) . ) )
- ZOSiﬁa,ijSb dl & X |:(dafz)<,1>i| d] ® (da72)<0> ® db*j

(2_8) jla—1) 3. ) _ _
B Zogiga,ogg‘gb a d; ® d] ®da—i ® dbfj

so that we get (29) and

(29)

that is
(34)

(£ ® preR)OReR (do ® dp)
Zogigayogjgb ¢leD¢ (di ® dj) ® pror (da—i @ dp—;)

ZO<z<a o<j<b ¢ (s @ dy) @ (da—i) 1y (db—5)(_qy ® (da—i) gy ® (db—j) )

21XA,UXT>

(§®pR®R)6R®R (da oy db) = ZO<Z<G 0<i<b qj(aii)f (di ® dj)@(da_i)<_1> (db—j><,1>®(da—i)<0>®(db—j)<0> .

2TXA,UXT>

By means of (15), we obtain

34

Ap§(de @ dp) = (mu ®@§)(€ @ pror)OrReR (do © db)
D i oy @VE (s © ) (dam) ) (o) 1y D€ [(dam)0) @ (A=) ]

so that we get (30). Let us prove (31).

We have

X (dy ® da)] = mi (x @ X) Agé (di ® dy)

= Zo%wgéa PO (ds @ d)] X € [x [y | () @ x [(dams) L] (dami) )] }

28) j(1-1) 1+a—(i+)
N Zo<i<1 0<j<a ¢ g€ (d @ dy)] - xO [ (dimi @ da—j)]
= ¢"XCLE (@ da)] + X [€ (dh @ )]
as £ (do ® dy) = du,0lm, for every 0 <u < N — 1. Therefore we obtain

Y€ (dy @ dg)] = ¢"PXC € (dy @ do)] + x [€ (dy @ dy)], for every ¢ € N.
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If ¢'*@ = 1, by Lemma 3.10, we obtain x¢[¢ (d1 ® d,)] = 0, for every ¢ € N.
If ¢'T2 # 1, by (25) applied in the case h = g, for any ¢ € N, we have

0=['""(h) —en (W] X°[E (1 @ da)] = [X'T* (9) —em (9] X“[€ (d1 ® da)] = [¢"F* = 1] x°[€ (d1 @ du)]
whence x¢[¢ (d1 ® dg)] = 0. In both cases we got (31).
Let b < N — a. Let us compute (16):
cr,(M ®&)drer (do ® dy) = (mur @ mp)(§ ® pror)IReR (do @ db) -
The left side:

29 j(a—1
cra(m®iran (o @dy) = 3 @ enn(m©€) (@ d; @ domy @ diy)

- ZOSiSa,OSij ¢ (didy) ) € (dami @ dp—y) © (didy)

= (dadp)(_1y ® (dady) gy + Zoglzf,a,osz)gb ¢ (didy) ) € (dai @ dyj) @ (did;)
i+j<at

The right side
(mug ® mgr)(§ @ prer)droR (do @ db)
e j(a—1) . . ) ) ) )
- ZOSiSa,OSij ¢ ¢ (di ® dj) (da—i) (1) (dp—5) (1) ® (da—i) o) (db—j) )
= > (o) 1y () _yy ® (da) gy (db) 0y +
+ Zogiga,0<j<b qj(a_i)ﬁ (di @ d;) (dafi)<—1> (dbfj)<_1> ® (dafi)(m (dbfj)m)

435>0
= Z (da) (1) (db) (_1y @ (da) (g (db) () +

+ Zogiga,ogjgb g (dgs ® dy—;) (di)(_1> (dj)<71> ® (di)<o> (dj)<o>
i+j<a+b

Therefore, we get

p(dady) = (da) (1) (db) (_1y ® (da) gy (db) 10y +

[ q(bfj)if (da—i ® db—j) (di)<—1> (dj)<71> ® (di)(o) (dj)<0> + ]

+ i j j(a—1i
Zoffffé(ﬁjbgb i —¢@= (d;d;) (1) § (da—i @ dy—5) ® (did;)

= Z (da)(_1y (db)(_1y ® (da) gy (db) () +
[ D (g @ dyj) (di) (_qy (dj) (_qy ® (di) (g (dj) 0y + ]

+ i<a j j(a—1i
Zooéigﬁggajfbb L —* (didj)<71> §(da—i @ dp—j) ® (didj)w)

so that we got (32). Let us apply this formula in the case (a,b) = (1,a).
ZXC [(dlda)<_1>_ (dida) o)
(32 c
SN W) Ly (o) ] (@) ) (o) ) +

. Z q(afj)ixc [f (di—i ® da—j) (di)<—1> (dj)<71)} (di)(o) (dj)(0> +
(e —g/ e {(didj)km §(dii @ da,j)] (didj) o

D gy,

where, the last equality follows as x°[§(di—i ®da—;)] = 0 for 0 < ¢ < 1,0 < j < a and
0<i+j<1l+a: infact, by (31) and (19), x°[£ (d1—; ® de—;)] = 0 unless ¢ = 1 and j = a. Hence
we get (33). O
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THEOREM 3.12. Keep the assumptions and notations of Lemma 2.15. Let £ be a cocycle for the
pre-bialgebra (R, m,u,d, ). Then

(35) X¢[€(dy ® dp)] = 0 unless a =0 and b =0,
for any a,b such that 0 < a,b < N —1 and for any ¢ € N.

Proof. Let us prove, by induction on ¢ > 1, that x°[¢ (d, ® dp)] = O,for any ¢ € N and for any
0<a,b< N —1suchthatt =a+b. Ift =1, then £(d, ®dp) = 0 so that there is nothing to
prove. Let ¢ > 2 be such that x°[¢(d; ®d;)] = 0 for any 1 < i+ j <¢—1 and for any ¢ € N.
Now, for any ¢ € N, by means of (30), (28) and the inductive hypothesis, in the style of the proof
of (31), one gets x°[€ (d, ® dp)] = 0. O

NOTATION 3.13. Let H be a Hopf algebra and let (R, m,u,d,e) be a N-dimensional pre-bialgebra
in LYD. Assume that R is a thin coalgebra where P(R) = Ky. Let g € H and x € H* be such
that (H,g,x) is the Yetter-Drinfeld datum associated to y and let ¢ = x(g).

From now on, we fix a basis of R consisting of a divided power sequence of non-zero elements in R

d0:1R7d1 :ya"'adN—l

such that
gdn = q"d,, forany0<n <N -1,
ydn—1 = (n),dn, for anyl <n <N -1,
hd, = X" (h)d,, forany0<n <N —1.

Such a basis exists in view of Lemma 2.9 and of Lemma 2.15.

THEOREM 3.14. Let H be a Hopf algebra and let (R, m,u,d,¢) be a N-dimensional pre-bialgebra
in LYD. Assume that R is a thin coalgebra where P(R) = Ky. Let g € H and x € H* be such
that (H, g, x) is the Yetter-Drinfeld datum associated to y and let ¢ = x(g). Let € be a cocycle for
the pre-bialgebra (R, m,u,d,¢).

Then:
1) R is an associative algebra over K spanned by y.
2) o(q) =N.

3) y" = (n),dn, for every 0 <n < N —1 and yV =0.
4) (¥") geicn_y s @ basis for R .
5) R= R, (H,g,x) is a quantum line, whenever m is left H-colinear.

Proof. Recall that, by Lemma 2.7, there are ¢ € G (H) such that p(y) = g®y and x € H*, a
character such that hy = x(h)y for every h € H.
For any a, b integers such that 0 < a,b < N — 1, we have:

(29) .
(86)  (mrR@rer(da®@ds) = Y, . T (didy) O (dami @ domy).
We obtain,
da (dpde) = mp(R @ mpg) (do @ dy @ d,.)
17
D mr(R® pr)(me ® O)dran ® R (da ® dy © d.)
(36) (ami)
B Zoﬁifu,oﬁjﬁb q] o (dldj) ’ [E (dafi & db—j) dc]
- Zoéiéa,oéjgb ¢ (didy) - [X° [ (dai ® dyj)] de]
(35)

= "D (dydy) - XC [E(da—q @ dp—p)] de = (dody) de..

Therefore R is an associative algebra.
By Theorem 2.13, N = 0(q) so that (n)q # 0, for any 1 < n < N — 1. Since yd,,—1 = (n)q dp,

for any 1 < n < N — 1, we infer that d, = (g—;, which means that R, as an associative algebra,
!
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is spanned by y and that ( is a basis for R. Assume 3 # 0. Since y"V € R we have

=kolg+kiy+...+kn_1y sultable k; € K and thereis at with 0 <t < N —1 such that
kt # 0. Note that 0 = ¢ (y )N :5( ) = ko so that yN = kiy+...+knv_1yV Tand 1 <t < N-1.
We get

)ss
N=1 for

N N-1

N
gy = (99" ="V =yV =ky+ . +Evoay" ! and
gyN = k‘lgy + ...+ ]<JN_1gyN_1 = quy + ...+ kN_qu_lyN_l.
Since {1g,y, ...y "1} is a linearly independent set over K, we infer that k; = k;q*. Since k; # 0,

one gets 1 = ¢*. Since 1 <t < N —1 and o(q) = N we have a contradiction. Assume that m,
which is associative, is also left H-colinear. Then R is a braided bialgebra in (£YD, ®, K) and, in
this case, R = R, (H, g, x) is a quantum line. a

PRrOPOSITION 3.15. Take the hypothesis and motations of 3.13. Let £ be a cocycle for the pre-
bialgebra (R, m,u,d,¢). We have

X [E(r@s)] =e(r)e(s), for everyr,s € R,ceN,

and the map o : R — R,or(r) => % (r<,1>) 0y defines an isomorphism of coalgebras which is
also an algebra homomorphism. Moreover

(37) n[§r@s)] = &lor(r) @ er(s)],

(38) H[r®s)] = £(res),

(39) VR (da) = q"%dg, for every a,n € N.
Furthermore, for every 0 < a,b < N —1,¢ > 0, we have:

(40) o [€(da @ dy)] Z X°(E(de ® dy)(1))€(da @ dp) (2) = ¢““ TV E(dy @ dy)
(41) Ui [€(da @ dp)] =Y E(da @ dy) (1) X (€(da @ db) (2)) = &(da @ dy).

Proof. By (35) we have
X [€(de ® dp)] =0 =¢(dg) e (dp) unless a =0 and b =0,
for every 0 < a,b < N — 1 and for every ¢ € N. Since
X“[§(do ® do)] = Xx° (1) = 1k = € (do) € (do)
and (di)ogiqu is a basis for R as a vector space, we infer that x°[(r ® s)] = e(r)e(s), for

every 1, s € R. Therefore we can apply Proposition 3.6 to obtain (37), (38) and the first statement
involving ¢r. Moreover we get:

(da) = an |:(da)<71>} (da)<0> (2_8) q"dy,

o5 le(da @ d)) X €05 () @ 0 (d)) 2 e (d, @ ),

(38)
Vi [€(da @ dp)] =" &(da © db).

]

LEMMA 3.16. Take the hypothesis and notations of 8.13. Let & be a cocycle for the pre-bialgebra
(R, m,u,d,¢). The following relations hold true

(42) ¢ (do @ dy) g = g€(da®dy).
(43) qa+bg§ (da oY db) = ¢ (da by db) g-
for any a,b € N such that 0 < a,b < N — 1. We have that
N N
(44) f(da@)db):()unlessaer:O,?,N,%

whenever they make sense.
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Proof. By applying (24) to the case h = g, we obtain ¢**°¢ (d, ® dy) = g€ (dy ® dp) g~* for any
a,b € N such that 0 < a,b < N — 1, and hence we get (42). Moreover, by applying (8) to the case
h =¢&(d, ® dp) we obtain

9 X(E(da @ dy) (1))6 (da @ db) 2 = > € (da @ dy) (1) X(& (da @ db) 3))g-

By (40) and (41), we infer g¢**t¢ (d, ® d) = £ (dy @ dp) g and hence we get (43). We have

42) (43)
9 (do @ ) = M (do @ ) 9] = 4" [g" g€ (da @ )] = 94> ¢ (du @ dy)
so that [¢*(¢TY) — 1] € (d, ® dy) = 0. Therefore we obtain & (d, ® dy) = 0 unless 2 (a + b) = tN,
for some t € N. Since 0 < a,b< N —1, wehavea+b< (N —1)+ (N —1) = 2N — 2 and hence
tN:2(a+b)§4N—4<4N=>t<4.

Thus we have only the cases t = 0,1,2,3 that is a+b = 0, &, N, 3¥ whenever they make sense. [J

’ 92

LEMMA 3.17. Take the hypothesis and notations of 8.13. Let & be a cocycle for the pre-bialgebra
(R,m,u,0,¢) and let B = R#¢H as in Definitions 3.1. We have that

m(lp®s) = s#ly and m(r®1g) =r#ly,
(r#h) -5 (Lr#k) = r#hk  and  (Lp#h) -p (s#k) =Y ha)s#hak,
(r#ly) g (s#lg) = m(res)

for any r,s € R and for any h,k € H, where m is the map defined in (20).
In particular, for any 0 < a < N —1 and any h € H we have

(45) (y*#1u) (Ar#h) = y*#h,  (Lr#h) (" #1u) =y #¢k (h)

Proof. Using (3), (7), (19), we get m (1 ® s) = s#ly and m (r®1g) = r#1ly. Using these
equalities one proves that (r#h) -p (1r#k) = r#hk and (1r#h) - (s#k) = > hays#h)k. In
particular, for any 0 < a < N — 1 and any h € H we have (y*#1y) (1g#h) = y*#h and

(Lr#h) (y*#1u) =Y hayy #he = Y _x* (ha)) v #he) = v #o% (h) .
The equality (r#ly) g (s#1lg) = m(r ® s) is trivial. O

PropPOSITION 3.18. Take the hypothesis and motations of 3.13. Let £ be a cocycle for the pre-
bialgebra (R, m,u,d,¢). Let

Then, we have

o(h)Y* = Yoy (h)] foranya €N,
o(h)o(k) = o(hk),
'y = gqYT.
and
Ap(Y™) = Y"'rreY* .
B(Y") Zi:o (i>q ® for anyn € N

Ap(a(n) = > o(hw)@0o(he),
for any h,k € H.
Proof. We have
Ap(Y)=Apyn (y®1g) = Zy 2y® 5y @y el

= > y® 1)1y ® (1r) ®1H+21R®y<71> DY) @ 1u
= YQ1lypR1IrR@1Ig+1rR®9RyYR1lp =Y R1p+I'QY.
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Let us prove that o (h)Y* = Y0 [¢% (h)], for every a € N, where Y* denotes the a-th iterated
power of Y in B. If a = 0, then ¢% = H and there is nothing to prove. If a = 1, we have
Yo(h)=(y®1lg)(lg ®h) =y ® h so that we get
45
o (W)Y = (1r@h) (y© L) = y© o () = Yo lou (b)].
Let 2 < a and assume o (h) Y21 = Y% 1o [0% " (k)] . Then we obtain
oMY =0ch)Y" 'Y =Yooy (W)]Y =Y""Yo [pu (¢4 (h)] =Y o} (h)].
From this we deduce that TY =0 (9)Y = Yo [pn (9)] = Yo (¢9) = ¢YT and hence that

ny n_ n n n—i i n n n—iyi i
Ap(Y") =Y ®1p+T®Y] _Zizo <i)q(Y®13) TeY) _Zizo <i>qy eyt
The remaining statements follows as, by 3.1, ¢ is a morphism of bialgebras. O
PrOPOSITION 3.19. Take the hypothesis and notations of 3.13. Let £ be a cocycle for the pre-
bialgebra (R, m,u,d,€).

If N is odd we have

- | didy® 1y for any 0 <b< N — 2.
m<d1®db>‘{ 1R @€ (d ®dy 1) forb=N—_1
If N is even, we have
didy ® 1g for any 0 < b < N/2 —2.
T?L(d1®db)= q1+b_N/2d1+b,N/2®.1‘+d1db®lH for anyN/Q—legN—Z
Ir®@E(d1®dy—1) —dnj2 @ Jforb=N —1

where x = £ (d1 ® dN/g_l) .
Proof. We compute m (dy ® dp) for any 0 <b < N — 1.

We have
m (di ® dy) = (m @ )Rar (di © dy)
29) .
= (m® f) [ZOSjgbqle & dj & d1 X dbfj + Zogjﬁbdl ® dj ® 1R ® dbfj
- Zoﬁjéb ¢'d; @& @ dyj) + Zogjgb did; © & (1r © dp—j)
(19) )
- Zogjgbq]d.]@g(dl ®dbfj)+d]_db®1H
so that

(46) ﬁl(dl X db) = Zo<j<b qjdj X f (d1 ® db_j) + didp ® 1 for any 0 < b< N —1.

Now, if 0 <j <b< N —1,then1 <1+ (b—j)<1+b<N sothat, by (44), {(d1 ®dp—;) =0
unless 1+ (b—j) = &, N. If N is odd, then & (d; ®dp—;) = 0 unless 1 + (b—j) = N. Thus
m(di @ dp) = didpy ® 1 for any 0 < b < N —2 and for b= N — 1 we have & (di ® dp—;) = 0 unless

=050 that 7 (dy @ dy—1) ‘2 1 @ ¢ (di @ dy_1) . In fact dydy_1 = 0 by Theorem 3.14.

Assume now that NV is even. Thus we have the following cases.

0<b< N/2—2)Inthiscase 1+(b—j) <1+ (N/2—-2—j) < N/2—1sothat {(di ® dp—;) =0
always and hence m (dy ® dp) = d1dp @ 1 for any 0 < b < N/2 — 2.

N/2—1<b< N-2)Inthiscase 1+(b—j) <1+(N —2—j) < N—1sothat&(dy ®dp—;) =0
unless 1 + (b — j) = N/2 and hence

~ 46 _
m (dy @ dy) =1 " N2dy N @+ didy @ 1.

b= N —1)In this case 1 + (b—j) = 14 (N —1—j) = N — j so that { (y®y"~7) = 0 unless
N — j = N/2, N which means j = 0, N/2 and hence

. 46
m(di ® dn_1) @ Ip®@&(d ®dy_1) —dnj2 @ .
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O

NOTATION 3.20. Take the hypothesis and notations of 3.13. Let £ be a cocycle for the pre-bialgebra
(R,m,u,d,¢). From now on, we will use the following notation

Yi=y1lyg,'=0(g).
Let B(H) be a basis for H. Next aim is to prove, under suitable hypothesis, that
{Y'o(h)|0<i<N-1heB(H)},
defines a basis for B = R#¢H and that there exists A\(N) € K such that:
YN =A(N) (14 —1V)

where X\ (N) = 0 whenever g% = 1g. This will lead a complete description of the Hopf algebra
structure of B.

PROPOSITION 3.21. Take the hypothesis and notations of 3.20. If N is odd we have

yo — Y1y for0<a<N-1
Tl ol¢weoy¥Y)] fora=N.

If N is even, we have

Yy @1y for0<a<N/2-1
yo—J (W) YN 4 X +y*@ly for N/2<a<N-1

q
olé(yoyV )]+ (%721)(1)(2 fora=N
where

X=1p®(N/2-1)1 (dy ®dnja—1) =1 ® (N/2 — Dtz=(N/2-1)/o(2).
Proof. Recall that, by Theorem 3.14, we have y" = (n)q!dn for every 0 < n < N — 1 so that
m(y®y") = (n),!m(d ®d,). Assume now that N is odd and let us prove, by induction on
0<a<N-1,that Y*=y*®1gy

For a = 0 there is nothing to prove. Let 1 < a < N — 1 and assume Y% ! = 4?1 ® 1. Since
a—1< N — 2, by Proposition 3.19 we have

my®y* ') =(a— Dtm(d ®@de—1)=(a—1) dide—1 @1y =y* @1y
so that
Y=Y p Y =mpgnl(y#ln) Ou (" #la) = m (y @y ) =" @ Ly,

Moreover we have

myoy" ™) = (N—1),)m(d @dy 1)

= 1lg®@&|d® (N — 1)q!dN—1} =1p@¢(yoy" ) =c [t (ya@y" )]

so that

YN =Y p YN = mpgnl(#ln) ©n (VN #n) = m(yoy ) = [E(yoyV )]
Assume N even. Since (y ®@ 1y) g (y" ® lg) =m(y®@y") = (n),!m (d1 ®@dy) for every 0 <n <

N — 1, in view of Proposition 3.19 and as d,, = y)n 7, we obtain
!

(n

(y@1y) B (W @1m)

Yl @ 1y if0<n<N/2—2
X+yN2 @1y ifn=N/2-1
= (n+1iN/2) qn+1—N/2yn+1—N/2 -B X + yn+1 ® 1H if N/2 S n S N —2

o[e oy ] - (N) v 5 X+ (%) X° ifn=N-1

Let us prove by induction on 0 < a < N/2 — 1 that Y% =¢y* ® 1g.
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For a = 0 there is nothing to prove. Let 1 < a < N/2 — 1 and assume Y% ! = 3¢~ @ 15.
We deduce, as above, that Y* = Y -p Y%7 1 = 3y @ 1p. Since, for any 0 < a < N/2 — 1, we
have Y% (h) = (y* @ 1g)(1g @ h) = y* ® h, if we choose h = © = £ (d1 @ dnja—1), we get
Yoo (r) =y* @ for any 0 < a < N/2 — 1. Let us compute Y for N/2 <a <N —1.

Let us prove that, for any 0 < ¢t < N/2 — 1, we have YV/2+t = (N@;f) YA X +yt N2 @1y,
We prove it by induction on ¢. !

Ift =0 we have Y2 = YV g YNV2! = (y@1y) 5 WV* 1@ 1) = X + y™/? ® 1y.Let
1<t < N/2-1 and assume that the formula holds for ¢ — 1. We have

YN/2+t — Y'ByN/2+t71:Y.B N/2+t7]‘ thl .BX+yt71+N/2®1H
N2 o),
N/2+t—1
— < /Z\—]’_2 > Y -5 Yt—l s X+Y 5 (yt—1+N/2®1H)
2/,
N/2+t—-1 t—1+N/2
) K /J\;Lz > +( . /)qt Yip X +y @1y
/ q t q
N/2+t> t t+N/2
Vi X +y* V2 @1y,
(s ),

In fact, by [Ka, Poposition IV.2.1, page 74], we have (N]@;t) =4 (N]@;ril) + (N/i,%fl) .
q q q

In particular, for t = N/2 — 1 we get

N-—-1 N -1
YN71 _ ( N/2 ) YN*l*N/Q ‘B X+yN71 ® ]-H _ < N/2 > YN/271 ‘B X+yN71 ® ]-H
q q

Moreover, we have
YN x = (X N2 g 1H) X =X24 (yN/2 ® 1H) B X = X240 (N/2 1) la.
We have

YV = Y py¥l=yvy.
B B N/2

N -1
( > YN g X +yN @1y
q

N -1
= YN2 o X+Y-(yVN 1ol
() e xar (¥ o)

= (W) o axotewor - () e () x

= o[¢(yeyV )]+ (%};)qv.

O

COROLLARY 3.22. Take the hypothesis and notations of 3.20. If H is f.d. or cosemisimple, then
there exists A (N) € K such that

YN =X(N) (15 -1").
Furthermore A (N) = 0 whenever g™ = 1.

Proof. By Proposition 3.21 we have that Y € K ® H = H. Since N = 0(q), (];’)q = 0, for every
1 <1 < N —1, so that, by Proposition 3.18, we have that

Ap (YN) = ZN:O <N> YN Ty =YyNelp+TV YV
q

7

and that TYY = ¢"Y T = YT, we can apply Theorem 0.1. O
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LEMMA 3.23. Take the hypothesis and notations of 3.20. Letn € N, 0 <n < N — 1. Assume that
p(didy) = Z (d1) 1y (de) 1y @ (d1) gy (de) oy »
forany 0 <t <n-—1. Then p(d,) = g* @ dg, for any 0 < a < n.

Proof. If a = 0 there is nothing to prove.
Ifl1<a<nand p(d,_1) =gt ®d,_1, since d, = ﬁdlda_l, we have
q

pd) = i) = oo 3 () [damt) oy © () (dor) 0, =
= (al) gga—l ®d1da71 :ga®da~

]

LEMMA 3.24. Take the hypothesis and notations of 3.20. If N is odd then p(d,) = ¢° ® dg, for
any 0 <a <N —1.
If N is even then p(d,) = g% @ dg, for any 0 < a < N/2.

Proof. By Lemma 3.23. it is enough to prove that

(47) p(didy) = Z (d1)(_qy (de)(_1y @ (d1) gy (de) gy

for any 0 <t <n—1wheren =N —1if N is odd and n = N/2 otherwise.

Assume N odd. Let 0 <t < N—2. Then, forany 0 << 1,0 < j <tsuchthat 0 <i+j < 1+t
we have (1 —4)+ (t—j7)=(1+t)—(t+j)and 1 < (1+¢)—(i+7) <1+t—1< N —2so that,
by (44), we get £ (d1—; @ di—;) = 0.

Hence, by (32), for a = 1,b = ¢, we obtain (47).

Assume N even. Let 0 <t < N/2— 1. Then, for any 0 <i < 1,0 <j <tsuchthat 0 <i+j <
1+t,wehave (1—i)+(t—j)=(14+t)—(G+j)and 1< (1+t)—(i+j)<14+t—-1<N/2-1
so that & (di—; ® dy—;) = 0.

Hence, by (32), for a = 1,b = ¢, as above we obtain (47). O

LEMMA 3.25. Take the hypothesis and notations of 8.20. If N is odd and 1 < b< N —1 or if N
is even and 1 < b < N/2, we have

Apé(dy @dy) =g @€ (dy @ dy) + € (dy @ dy) @ 1.
Proof. Let 1 <b. Using (3) and (19) we get
Ap(di @ dp)
O ity PO D) (1) oy (@) oy € [0 © ()
= () ) (@) gy @€ (1) ) ® (o)) + € (1 @) @ 1w
= g(dp)_q)®¢ [dl ® (db)<0)} +&(di ®@dp) @ 1.

If Nisoddand 1 < b < N—1orif Niseven and 1 < b < N/2, by Lemma 3.24, we have
p(dy) = g° ®dy and hence Apé(dy @ dy) = g' TP @€ (dy @ dp) + € (dy @ dp) @ 1. O

LEMMA 3.26. Take the hypothesis and notations of 3.20. Assume that N is even and let x =
13 (d1 ® dN/2_1). Then x = 0 whenever H is cosemisimple.

Proof. By Lemma 3.25, for any 1 < b < N/2, we have

Apé(di@dy) =g @E(di®dy) +E(d1 @ dy) @ 1g.
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In particular, if N >4, then 1 < N/2—1 < N/2 so that we can apply this formula for b = N/2—-1
and obtain Ay (z) = gN/? @ x4+ x ® 1. This equality still holds whenever N = 2 as in this case
x=E£ (d1 ® dN/g,l) =& (d1 ® dyp) = 0. By applying (24), to the case (a,b) = (1, N/2 — 1), we get

V2 (h)x = Zh(l)mSh(g), for any h € H.

If h = g, we have ¢"/?z = gzg~! that is zg + gz = 0. Assume now that H is cosemisimple and
let A € H* be a total integral. Then by applying H ® A to Ay (z) = gN? @z + 2 ® 1y we get
x=M\(xz) (1H - gN/Q) so that xg = gx. From xg + gz = 0 we obtain g = 0 and hence x = 0. O

DEFINITION 3.27. Let g be a primitive N-th root of unity. A compatible datum for g is a quadruple
(H,g,x,A(N)), where

e (H,g,x) is a Yetter-Drinfeld datum for g,
e A(N)e Kand A(N)=0if
N

g" =1g, or N (h) (1H —gN) #Zh(l) (1H—gN) Shyay, for some h € H,

while A (N) is an arbitrary otherwise.
A compatible datum is called trivial whenever A\ (N) = 0 and it is called non-trivial oth-
erwise.

REMARK 3.28. A compatible datum (H, g, x, A (IV)) is trivial if and only if A(N)(1z — ¢™¥) = 0.

THEOREM 3.29. Let H be a Hopf algebra and let (R, m,u,d,¢) be a N-dimensional pre-bialgebra
m gyD. Assume that R is a thin coalgebra where P(R) = Ky. Let g € H and x € H* be such
that (H,g,x) is the Yetter-Drinfeld datum associated to y and let ¢ = x(g). Let & be a cocycle for
the pre-bialgebra (R, m,u,0,¢).

Assume that H is either f.d. or cosemisimple. Then

1) q is a primitive N-th root of unity.

2) R is an associative algebra over K spanned by y and the N-th power of y in R is zero.

3) The map o : H — H, o (h) =Y x (h1)) h2) is an algebra automorphism of H.

4) The map 0 : H — R#H,o (h) = 1g ® h is a morphism of bialgebras.

5) There exists A\ (N) € K such that a (H, g,x, A (N)) is a compatible datum for q.

Let Y :=y®1y,T =0 (g) and let B(H) be a basis for H.
Then B = R#¢H is the Hopf algebra with basis

{Yio(h)|0<i<N-1heB(H)},
where Y denotes the i-th iterated power of Y in B, for every i € N, with algebra structure given
by
YN = AWV) (1 -1V)
oc(h)Y* = Y% % (h)] for any a € N,
o(h)o(k) = o(hk),
and coalgebra structure given by
Agp(Y) = Y®1g+I'®Y
Ap(a(h) = Y o(hy)®o(he),
for any h,k € H. Furthermore Y™ = y™ ® 1y for every 0 <n < N/2 — 1 whenever N is even and
Y"=y"® 1y for every 0 < n < N — 1 whenever N is odd or x = 0.

Proof. 1) and 2) follow by Theorem 3.14. In view of 3.5, we get 3). Statement 4) follows by 3.1.
By Corollary 3.22, we have Y~ = X (N) (15 —I'’V) so that, by Proposition 3.18, we get all the
displayed equalities.

5) Set 2 = A(N)(1g — ¢g~) so that YV = o (2). We have

o(hz) =0 (h)o(2)=a(h)YN =Yoo (h)] = 0 ()0 [l (W)] = o [0 (1)]
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so that hz = 2% (h). From this equality we get

> hyzShy = 23 (hay) Shy =2 Y XN (hy) hiyShes) = XN (h) 2
and hence
(48) XN (h))\(N) ]-H g Zh(l)A 1H 7gN) Sh(g)

Now, by Corollary 3.22, if gV = 1p, then A (N) = 0.
If there exists an element A € H such that

XN (h) (g —g™) # Y by (1la — V) She),

still, by (48), we get A (N) = 0. Thus we have proved that (H, g, x, A (N)) is a compatible datum
for ¢ = x (9)-

It remains to prove the statement concerning the basis of B.

If H is cosemisimple, by Lemma 3.26 one has x = 0 whenever N is even. By Proposition 3.21
we deduce that

Y“:ya@)lH for0<a<N-1

regardless the parity of N. Since B (B {y R@h|0<i<N-— 1 h e B( )} is a basis for B, we
conclude by observing that, in view of Lemma 3.17, one has y* ® h = Yo (h) for any 0 < i <
N—-1heH.
Assume now that H is finite dimensional.

If NV is odd we have Y* = y* ® 1y for 0 < a < N — 1 and we conclude as in the cosemisimple
case.

If N is even, by Proposition 3.21, we have

Y @1y for0<a<N/2-1
ye =
B (N/2) Yo N2 X +y*®1y for N/2<a<N —1.

Then, from (y* ® 1) o (h) = y* ® h and by definition of X, for any h € H, we get

u y*Qh for0<a<N/2-1
Yoo (h) = (N/Z) ye-N2g [(N/z—l)q!a;h +9y°®@h for NJ2<a<N —1.

Therefore we obtain

. Yo (h) for0<a<N/2—1

®h=1 yag(p) - (j), (N/2 = 1),V *=N/20 (¢h) for N/2<a <N -1

Since B(B) = {y'®h |0<i< N —1,h € B(H)} is a basis for B, then
W={Y'c(h)|0<i<N-1heB(H)}

generates B as a K-vector space. Since |W| < N - |B(H)| = |B(B)|, we deduce that W is a basis
for B. Finally we point out that, since Ry = K1, by Theorem 3.9, B is in fact a Hopf algebra. O

THEOREM 3.30. Let H be a Hopf algebra over a field K. Let A be a bialgebra and let 0 : H — A
be an injective morphism of bialgebras having a retraction m : A — H (i.e. wo = H) that is an
H-bilinear coalgebra map. Let (R,m,u,d,¢) be the pre-bialgebra in YD associated to (A, )
with corresponding cocycle .

Assume that

e H is either f.d. or cosemisimple;
e R is an N-dimensional thin coalgebra where P(R) = Ky.
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Let g € H and x € H* be such that (H,g,x) is the Yetter-Drinfeld datum associated to y and
let g = x(g). Then

1) There exists A\(N) € K such that a (H,g,x,A(N)) is a compatible datum for q.

2) (R,m,u) is an associative algebra over K spanned by y (a priori not in 1YD) and the N-th
power of y in R is zero.

3) A is a Hopf algebra with basis

{y'c(h)|0<i<N-1,heB(H)},
where y* denotes the i-th iterated power of y in A, for every i € N, algebra structure given by
yV o= A(NV)(1a-TV),
oh)y® = yoley (h)] for anya €N, and h € H
and coalgebra structure given by
As(y)=y@1a+T®y.

Here o : H — H denotes the algebra automorphism of H defined by o (h) = > x (h(l)) h(2)
and ' =0 (g).

4) The n-th iterated power of y in R and the n-th iterated power of y in A coincides for every
0 <n < N/2—1 whenever N is even.

5) The n-th iterated power of y in R and the n-th iterated power of y in A coincides for every
0<n<N -1, whenever N 1is odd or & (y®yN/2_1) =0.

Proof. By Theorem 3.29,

q is a primitive N-th root of unity

R is an associative algebra over K spanned by y and the N-th power of y in R is zero.
The map ¢g : H = H, o (h) =Y. x (h(1)) h2) is an algebra automorphism of H.
The map v : H — R#H,v(h) = 1g ® h is a bialgebra homomorphism.

There exists A (N) € K such that a (H,g,x, A (N)) is a compatible datum for g.

Let Y := y®1H, © = v (g) and let B(H) be a basis for H. Then B = R#¢H is the Hopf algebra

with basis {Yiy (h) [0<i< N —1,h € B(H)}, with algebra structure given by
Y¥ = X(N)(1g-0%),
Y)Y = Yy[py (h)] for any a €N,

y(h)y (k) = ~(hk),

and coalgebra structure given by
Ap(Y)=Y®1p+0®Y, Ap (v(h)) 227@(1)) ®7 (ha),

for any h,k € H. As explained in Remark 3.3, the map w : R#:H — A, w(r#h) = ro(h), is a
bialgebra isomorphism. Let y™ denote the n-th iterated power of y in R. We have that
(1) w(YV) =w(y#lu) =y,
(2) w(v(h)) =w (1gr#h) = o(h), so that
(3) w(®) =w(y(9) =0(g) =T.
(4) Y"=y"® 1y for every 0 <n < N/2 — 1.
(5) f Nisodd or x =0, then Y* =y" ®@ 1y for every 0 <n < N — 1
If N is even, as (N/2-1) lz = £y ® y™N/2=1), we have that x = 0 if and only if
E(y@yN/?71) =0. Let 0 <n < N — 1 be such that Y™ = 4™ @ 1. Then
w(¥Y™) =w(y"#1g) = y" = n-th iterated power of y in R.
On the other hand since w is an algebra homomorphism, then

w(Y™) =w(Y)" = n-th iterated power of y in A.
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REMARK 3.31. Note that in the statement of Theorem 3.30, the basis of A is
{y'o(h)|0<i<N-1heB(H)},

where 3 is the i-th iterated power of y in A. In fact, since R is not a subalgebra of A, one should
not mix up the powers of y in A with the powers of y in R. In [AMSt] we will provide an example
showing that these may be different.

4. NORMALIZATION OF THE PROJECTION

THEOREM 4.1. Let N € N\ {0}. Let H be a Hopf algebra, let A be a bialgebra, let o : H — A be
an injective bialgebra map and let y € A be an element such that

B(A)={y'o(h)|0<i<N—-1heB(H)}

is a basis for A, where y° denotes the i-th iterated power of y in A, for every i € N. Assume that
the algebra structure of A is defined by

yV o= AV)(1a-TN) A(N) e K.T =0(g)
oh)y® = yolp®(h)] for anya €N, and h € H,

where g € G(H), ¢ : H — H s an isomorphism of algebras, ¢ (g) = qg where q is a primitive
N-th root of unity. Assume also that the coalgebra structure is given by

As(y)=y@1a+T®y.

Let
p:A— H, ply"o (h)] =dnoh, for every0<n<N-—-1,he B(H).

Then p is an H-bilinear coalgebra (not necessarily algebra) retraction (po = H) of o.
Moreover (H,g,eny) is a Yetter-Drinfeld datum for g and the pre-bialgebra in gyD associated to
(A, p,0) is (R,m,u,0,&) with corresponding cocycle & where

1) R = R,(H,g,en) is a braided bialgebra in LYD, in fact a quantum line spanned by y of
dimension N and the N-th power of y in R is zero.

2) for any 0 < n < N — 1, the n-th power of y in R coincides with the n-th power of y in A,
namely y".

3) for any 0 < a,b < N — 1, we have

1 fora+b=0
Ey*@y") = MN)(1g —gV) fora+b=N
0 otherwise.

4) o (h)=>enp (h(l)) h(2y, for every h € H.
Furthermore A is a Hopf algebra.

Proof. Clearly we have po = H. Since o (h) y* = y®o [¢® (k)] and by definition of p, it is straight-
forward to check that p is H-bilinear. Let us prove that p is a coalgebra homomorphism. Since p is
H-bilinear, it is enough to check it on the powers of y. Since (T ® y) (y ® 14) = ¢ (y ® 14) T ®y, by
the quantum binomial formula, for any 0 < n < N—1, we deduce Ay (y*) = > 1, (?)qy”_iFiQ@yiSO
that (p®@p)Aa(y™) = App(y™) and epgp (y™) = €4 (y™) . Thus p is an H-bilinear coalgebra re-
traction of o.

Therefore we can consider the pre-bialgebra (R, m,u,d, ) in 2D associated to (A, p, o) with
corresponding cocycle £&. We want to compute

R = Aco(H) _ {G,EA | Za(1)®p(a(2)) :a®1H}.

It is easy to check that y™ € R, for any 0 < n < N — 1. Let us prove that (y")y<,<y_; defines
a basis for R. Clearly, since B(A) is a basis of A, they are linearly independent over K. Let us
check that they also generate R as a vector space over K. Recall from Proposition 3.4 that the
map 7: A — R,7(a) = a)0Sup [a2)] defines a surjective coalgebra homomorphism such that
7 (ao (h)) = 7 (a) ey (h) . Moreover, since y™ € R, then 7 (y") = y™, for every 0 < n < N —1, while

7(y") =T(y"7NyN) z)\(N)T[yan (lA—FN)] zA(N)T(y”*N)eH (lH—gN) =0.
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for every n > N.
Now since 7 is surjective, R is generated by
TB(A))={ex(h)y' |0<i<N-1heB(H)}

so that (y")g<,<y_; generates R as a vector space over K and hence it is a basis.
Let us deal with the multiplication m of R. Since, by Proposition 3.4, we have r -z s = 7 (1 -4 s),
we get that
Yy ryb :T(y“ -Ayb) :T(y“+b), for any 0 < a,b < N — 1.
If0<a+b< N —1,then y* g y® = y*® while, if a +b > N, then y* -py°* =7 (ya+b) = 0.This
entails
y'R"—{ y" for 0 <n <N -1,
0 forn>N,

and that R is an associative algebra.
Let us deal with the comultiplication § of R. For every 0 <n < N — 1, we get

s =760 = romaae) = X1 (1) ey

This tells us that R is a graded coalgebra and its homogeneous part of degree 0 is K1 4. Note that
both the algebra and the coalgebra structures of R agree with the ones of a quantum line generated
by y. In particular Ry = K14 and P (R) = Ky.
Let us deal with the cocycle € of R. Let 0 < a,b < N — 1. Then, by 3.2, we have

Ey* ®y") =py*-ay’) =p(y**).
If0<a+b< N-—1,wehave £(y* ®@y°) =p (y‘”b) = 0q+p,0 while, if N <a+b < 2N —2, we have

é—(ya ® yb) =p (ya+b) =p (ya+b N N) A (N) I:yCH*be (1A o ]_'\N)] = (N) 5a+b,N (]-H o gN) )
Therefore, for any 0 < a,b < N—1, we get 3). Now, from 3.2, the Yetter-Drinfeld module structure
of R is given by

"r=3 0 (hw)roSu (hy),  p(r) = p(rw) @re).

From these equalities we get

ZP{ (1)} W) =9"®y",

for every 0 <n < N — 1, and

"y =Y o (ha) yoSu (he) =Y o ¢ (hw)] oSk (b)) = yo [Z@ )) S (h(z))}

In particular we have 9y = qy. Let us prove now that (H,g,ep¢) is a Yetter-Drinfeld datum for
q and that the pre-bialgebra in #YD associated to (A,p,o) is (R, m,u,d,¢) with corresponding
cocycle €.

By Lemma 2.7, there is a primitive 6-th root of unity ¢’ # 1, where 2 < § < dimg (R) = N,
and and ¢’ € H,x € H* such that

1) (H,¢',x) is a Yetter-Drinfeld datum for ¢,

2) ply) =¢' ®y and

3) "y = x(h)y for every h € H.

Let us prove that ¢’ = g, ¢ =q and x = egp.

Since ¢’ @ y = p(y) = g @y, we deduce g = ¢’. For every h € H we have

x(hy = "y=yo [Z # (h1)) Su (’Nm)}
so that x(h)lg = > ¢ (h(l)) St (h(z)) and hence

Zgo 1)) Su (h) by = ZX hay) h

In particular, for h = g we get g9 = ¢ (9) = x(9) 9 = x(¢')g = ¢'g so that ¢’ = ¢ and § = N. Note
that ege (h) = x (h), for every h € H.
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Thus we deduce that R = R, (H, g, x) is a quantum line spanned by y of dimension N. Now, as a
bialgebra, A is isomorphic to B = R#¢H (see Remark 3.3). By Theorem 3.9, since Ry = K1g, we
get that A is a Hopf algebra. O

THEOREM 4.2. Let H be a Hopf algebra over a field K. Let A be a bialgebra and let o : H — A
be an injective morphism of bialgebras having a retraction m : A — H (i.e. mo = H) that is an
H-bilinear coalgebra map. Assume that either H is f.d. or cosemisimple and that the coalgebra in
the pre-bialgebra in BYD associated to (A, w,0) is thin.

Then there exist

e qa retraction p: A — H (i.e. po = H) that is an H-bilinear coalgebra map,
e qa primitive N-th root of unit q,
e gc Hxe H*,\(N) € K so that (H, g, x, A (N)) is a compatible datum for q

such that the pre-bialgebra in HYD associated to (A,p,o) is (R, m,u,d,e) with corresponding
cocycle & where

1) R = R, (H,g,x) is a braided bialgebra in 2YD, in fact a quantum line spanned by y of
dimension N and the N-th power of y in R is zero.

2) For any 0 < n < N — 1, the n-th iterated power of y in R coincides with the n-th iterated
power of y in A and will both be denoted by y".

3) For any 0 < a,b < N — 1, we have

1 fora+b=0
£y @y) =q AMN)(1lg —g") fora+b=N
0 otherwise.

Moreover A is a Hopf algebra with basis
{y'o(h)|0<i<N-1heB(H)},
algebra structure given by
yV o= AW) (14 -TY),
o(h)y* = yoley (h)] foranya €N, and h € H
and coalgebra structure given by
Aa(y) =y®@1a+T Ry

Here oy : H — H denotes the algebra automorphism of H defined by ou (h) = > x (h(l)) h(2)
and T =0 (g).

Furthermore, m = p whenever w is a homomorphism of bialgebras.

Proof. By Theorem 3.30 we can apply Theorem 4.1.

Let us prove the last assertion. Denote by (R',m/,u/,d,¢') the pre-bialgebra in ¥ YD associated
to (A, , o) with corresponding cocycle &’. For every r € R’ we have 7 (r) = > ey (r(l)) 0 (r(g)) =
e(r)1g. Since P (R') = Ky, denote by y™ the n-th iterated power of y in A. Therefore, if 7 is an
algebra homomorphism, we have

(") =7 (y)" =e®)" 1y = dnolu.

Since A is a Hopf algebra with basis {y o(h)|]0<i<N-1,heB( )} , and 7 is right H-linear,
we get w[y"o (h)] =7 (y") h = dpoh =ply"o (h)] and henceﬂ—p O

COROLLARY 4.3. Under the hypothesis and assumptions of Theorem 4.2, the following conditions
are equivalent:

(a) E=e®e.

(b) The compatible datum (H,g,x, A (N)) is trivial.

(¢) A~ R#¢H is the Radford-Majid bosonization of R.

(d) p is a bialgebra homomorphism.
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Proof. (a) < (c) < (d) follow by Lemma 3.8 as R is a braided bialgebra in £YD.
(a) & (b). Since

1 fora+b=0
Ey@y’) =3 AWN)(1g —g") fora+b=N
0 otherwise.
we have that £ = e ® ¢ iff \(N)(1g — ¢V) = 0. By Remark 3.28 we conclude. O

DEFINITION 4.4. Recall from [AMS, Definition 2.7] that an ad-invariant integral for a Hopf algebra
H is a linear map A : H — K such that

S b (he) =1gA(h),  Aw) =1k, > A|haaSa (he)] =cn (h)A(x),

for any h,x € H. From [AMS, Theorem 2.27| any semisimple and cosemisimple Hopf algebra (e.g.
f.d. cosemisimple) has such an integral. Note that the group algebra, which is in general not
semisimple, always admits an ad-invariant integral.

THEOREM 4.5. Let A be a bialgebra over a field K. Suppose that the coradical H of A is a f.d.
subbialgebra of A with antipode. Then A is a Hopf algebra and there is a retraction w: A — H
(i.e. mo = H) that is an H-bilinear coalgebra map. Let (R, m,u,d,¢) be the pre-bialgebra in LYD
associated to (A, m, o) with corresponding cocycle .
Assume that R is an N-dimensional thin coalgebra where P(R) = Ky.
Then there exist
e a primitive N-th root of unit q,
e g Hxe€ H*X(N) € K so that (H,g,x, A (N)) is a compatible datum for q
such that
1) R=R,(H,g,x) is a quantum line spanned by y.
2) The n-th iterated power of y in R and the n-th iterated power of y in A coincide for every
0<n<N-1.
3)

1 fora+b=0
Er@yt)={ AMN)1g—gN) fora+b=N,a#0,b#0
0 otherwise.

Moreover A is a Hopf algebra with basis
{y'c(h)|0<i<N-1heB(H)},
algebra structure given by
yV o= A(N)(1a-TV),
o (h)y® yto [ (h)] for anya €N, and h € H
and coalgebra structure given by
Ay(y)=y®1la+T®y.

Here ¢y : H — H denotes the algebra automorphism of H defined by ¢p (h) = > x (ha)) h2)
and T =0 (g).

Furthermore, if y™ = A(N) (14 —T'N) 0, then

N =eqg and gV e Z(H).

Proof. By [AMS, Theorem 2.35], the canonical injection of H in A has a retraction 7 : A — H
which is an H-bilinear coalgebra map. By Theorem 3.30 we can apply Theorem 4.1. In order to
conclude it is enough to prove that @ = p. By the quantum binomial formula, we have A4 (y") =
St (?)qy”*ifi ® 4, for any n € N. Since 7 is a right H-linear coalgebra homomorphism, by

applying m ® 7 to both sides, we get

Aa(m(y") = ZLO (n) K W g er(y).

7
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Let A : H — K be an ad-invariant integral and apply H ® A to both sides of the displayed equality
to obtain

(49) ) =3, (1) 7 ).

1

Let us prove for induction on 0 < n < N — 1 that Ar (y"™) = do.n. If n = 0 there is nothing to
prove. Let n > 1 and assume A (y*) = &, for every 0 <t < n — 1. Let us prove that y* € R, for
every 0 <t<n-—1:

(yt)u) Qm [(yt)(z)] = Z;o (t> qyt_iri @ (y)=y' ®1ln.

i
In particular y"~! € R and since y € R, by definition of ¢ we have
Ty =m(yay") =E(yeyt).

Since A is ad-invariant, we have

S ag(tor @ hers) 4 SN [h)E(r @ 5)Shee)] = e () A(r @ s)

Apply this equality to the case h =g, r =y and s = y" 1 :

APy 9y ) =Xy @y ).
Since 9 (y') = Ty'S (I') = [[yS ()] = ¢y, we get

Ny Ry"h) =My ey .

Since 1 < n < N — 1, we have ¢" # 1 and hence At (y™) = M(y ® y"~!) = 0. Therefore we have
proved that Am (y™) = do.n, for every 0 < n < N — 1. By (49), we have

n n . .
dno = Zi:o (i>q77 (y" ") g' 00 =7 (y").
Since 7 is right H-linear, it is clear that = = p. O
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