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SMALL BIALGEBRAS WITH A PROJECTION

A. ARDIZZONI, C. MENINI, AND F. STUMBO

Abstract. Let A be a bialgebra with an H-bilinear coalgebra projection over an arbitrary
subbialgebra H with antipode. In characteristic zero, we completely describe the bialgebra

structure of A whenever H is either f.d. or cosemisimple and the H-coinvariant part R of A is
connected with one dimensional space of primitive elements.
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Introduction

Let A be a bialgebra and assume that the coradical H of A is a subbialgebra of A with antipode
i.e. that A has the so-called dual Chevalley property.
The lifting method by N. Andruskiewitsch and H.-J. Schneider for the Hopf algebra A consists in
analyzing the H-coinvariant part of the graded bialgebra gr (A), in transferring the information to
gr (A) by usual bosonization, and finally in lifting it from gr (A) to A via the coradical filtration
(see [AS]). In fact in [Rad] (and in [Maj] with categorical terms) it was proved that any Hopf
algebra B having a projection, which is a bialgebra homomorphism, onto a Hopf algebra H can be
reconstructed as a biproduct (called bosonization by Majid) of the H-coinvariant part of B and
H itself. This applies in the above contest to B = gr (A) and to the usual projection of B onto
B0 = H.

Now, by using the Hochschild cohomology in monoidal categories, it was proved in [AMS,
Theorem 2.35] that the canonical injection of H in A has a retraction π : A → H which is an
H-bilinear coalgebra map. This led to the investigation of the structures of bialgebras A with
an H-bilinear coalgebra projection onto an arbitrary subbialgebra H with antipode. There is
a full description of these structures in terms of pre-bialgebras in H

HYD with a cocycle (called
dual Yetter-Drinfeld quadruples in [AMS, Definition 3.59]) and a bosonization type procedure.
Namely (see [AMS, Theorem 3.64]) to such an A one associates a 5-tuple (R,m, u, δ, ε) (called pre-
bialgebra), where (R, δ, ε) is a coalgebra in the category (HHYD,⊗,K), u : K → R, m : R⊗R→ R
are K-linear maps satisfying five equalities (see Definition 2.3) which make R a sort of unital
bialgebra in H

HYD with the following differences: the multiplication is non-associative and it is
not a morphism of H-comodules. This particular pre-bialgebra is also endowed with a K-linear
map ξ : R ⊗ R → H (called associated cocycle) which fulfills six equalities (see Definition 3.1).
Then A can be reconstructed by these data. In fact the bialgebra A is isomorphic to R#ξH

1991 Mathematics Subject Classification. Primary 16W30; Secondary 16S40.

Key words and phrases. Hopf algebras, bialgebras, bosonizations.
This paper was written while A. Ardizzoni and C. Menini were members of G.N.S.A.G.A. and with partial

financial support from M.I.U.R..

2



Small Bialgebras with a Projection 3

which is R⊗H endowed with a suitable bialgebra structure that depends on pre-bialgebra and its
associated cocycle: this structure on R⊗H can be somehow regarded as a deformation of the usual
bosonization structure recalled above via ξ. Our main goal is to describe the (co)algebra structure
of R#ξH. In this paper we do a first step: we consider the case when the coalgebra R is thin i.e.
it is connected and the space of its primitive elements is one dimensional. We read the properties
of R inside its associated graded ring and use these properties to show that this graded ring is in
fact always a quantum line. Then we lift these type of information directly back to R (and not
to gr (A) as in [AS]). It turns out that R, which usually carries a non-associative multiplication,
is in fact an associative K-algebra but not a braided bialgebra in H

HYD. By means of this
achievement, we can prove our main results. Explicitly in Theorem 3.30, we completely describe
the bialgebra structure of A whenever H is either f.d. or cosemisimple. This new description allows
us to construct in Theorem 4.2 another projection of A onto H which is normalized in the sense
that it gives rise to a new pre-bialgebra (R,m, u, δ, ε) which is now a braided bialgebra in the
category (HHYD,⊗,K) and in fact a quantum line.
In Theorem 4.5, we show how the obtained results apply to the special case when H is finite
dimensional and it is the coradical of A. In this case the projection π is already normalized.
In a subsequent paper [AMSt] we will investigate the properties of ξ for a generic projection. We
will construct for a given compatible datum (see Definition 3.27) a Hopf algebra with the required
properties. This will enable us to construct some meaningful examples. In particular an example
of a Hopf algebra of dimension 72 with a non normalized projection will be given.
The paper is organized as follows. Section 1 deals with general facts on thin coalgebras and
divided power sequences of elements therein that will be used in the sequel. In Section 2 thin pre-
bialgebras in H

HYD are introduced and characterized by means of the associated graded coalgebra
(see Theorem 2.14). Section 3 is devoted to the proof of the main results that is Theorem 3.29 and
Theorem 3.30. Section 4 contains Theorem 4.2 and Theorem 4.5 that concern the normalization
of the projection.

For the reader’s sake we include here the following result that will be used in the sequel. In the
finite dimensional case, a different proof can be found in [Ge, Lemma 0.2].

Theorem 0.1. Let K be any field. Let A be a Hopf algebra over K. Let z ∈ A such that

∆A (z) = g ⊗ z + z ⊗ 1A, and gz = zg,

for some g ∈ G (A) . Suppose there exists a cosemisimple Hopf subalgebra B of A such that z, g ∈ B.
Then there exists λ (z) ∈ K such that

z = λ (z) (1A − g) .

Furthermore λ (z) = 0 whenever g = 1A.
This holds whenever A is cosemisimple or A is f.d. and char (K) - dim(A).

Proof. Since B is cosemisimple, then B has a total integral λ : B → K. By applying B ⊗ λ to
both sides of ∆A (z) = g ⊗ z + z ⊗ 1A, we get

1Aλ (z) =
∑

z(1)λ
[
z(2)

]
= gλ (z) + zλ (1A) = gλ (z) + z

so that z = λ (z) (1A − g).
If A is cosemisimple, then B = A fulfills the initial assumption.

In the case when A is f.d., let B be the Hopf subalgebra of A generated by g and z.
Then B is a commutative Hopf subalgebra of A. In particular the antipode of B is involutive

so that, since char (K) - dim(B), we obtain that B is cosemisimple. �

We assume for simplicity of the exposition that our ground field K has characteristic 0.
Anyway we point out that many results below are valid under weaker hypotheses.
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1. Thin Coalgebras

Recall that a unital coalgebra ((C,∆, ε) , 1C) consists of a K-coalgebra (C,∆, ε) and of a group
like element, say 1C ∈ C. This means that there is a coalgebra homomorphism u : K → C, 1C =
u (1K) . Then, one can consider the set of primitive elements of the unital coalgebra (C, 1C) defined
by

P (C) = {c ∈ C | ∆(c) = c⊗ 1C + 1C ⊗ c} .
For any coalgebra C we denote by

C0 ≤ C1 ≤ · · · ≤ Cn ≤ · · ·

the coradical filtration of C. Set C−1 = 0. Let

gr (C) =
⊕
n∈N

Cn

Cn−1

be the graded coalgebra associated to the coradical filtration of C. Recall that the coalgebra
structure of gr (C) is defined as follows. For any a, b ∈ N such that a+ b ≥ 1, we define

ϕa,b : Ca+b →
Ca

Ca−1
⊗ Cb

Cb−1

by setting ϕa,b (c) =
∑

(c1 + Ca−1)⊗ (c2 + Cb−1) . Note that this makes sense since

∆ (c) ∈
∑

0≤i≤a+b
Ci ⊗ Ca+b−i ⊆ Ca−1 ⊗ Ca+b + Ca+b ⊗ Cb−1 + Ca ⊗ Cb,

for every c ∈ Ca+b. Moreover ker (ϕa,b) = Ca+b−1. Thus ϕa,b factorizes through an injective
morphism of K-vector spaces

∆a,b :
Ca+b

Ca+b−1
→ Ca

Ca−1
⊗ Cb

Cb−1
.

For every n ∈ N, let us define

∆n : gr (C)n =
Cn

Cn−1
→ (gr (C)⊗ gr (C))n =

⊕
a+b=n

gr (C)a ⊗ gr (C)b

to be the diagonal morphism of the family (∆a,b)a+b=n. In this way one gets a graded K-linear

map ∆ : gr (C) → gr (C)⊗ gr (C). Define εn : gr (C)n → K by setting

εn = εC|C0
δ0,n.

In this way one obtains a graded K-linear map ε : gr (C) → K. Moreover

(gr (C) ,∆, ε)

is a graded coalgebra. Recall that the coradical filtration of the associated graded coalgebra
gr (C) = ⊕n≥0

Cn

Cn−1
is given by

(gr (C))n = ⊕0≤i≤n
Ci

Ci−1
.

Let C be a K-coalgebra, let s ∈ N and let d0, d1, . . . , ds ∈ C. Recall that (di)0≤i≤s is called a
divided power sequence of elements in C whenever

∆ (dn) =
∑n

t=0
dt ⊗ dn−t

for any 0 ≤ n ≤ s.

Definition 1.1. We will say that a K-coalgebra C is a thin coalgebra whenever

dimK C0 = 1 and dimK P (C) = 1.

For every thin coalgebra C there is a unique coalgebra homomorphism u : K → C and C0 =
Ku (1K) . In particular (C, u (1K)) is a unital coalgebra.
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Proposition 1.2. Let C be a unital K-coalgebra. Then C is connected (i.e. C0 = K1C) if and
only if gr (C) is connected. In this case

P (gr (C)) =
C1

C0
and dim [P (gr (C))] = dim [P (C)] .

In particular, if gr (C) is a thin coalgebra, then C is thin too.

Proof. The coradical of gr (C) coincides with the coradical of C. Hence the first assertion is trivial.
If gr (C) is connected, then P (gr (C)) = C1

C0
. If C is connected then C1 = C0 ⊕ P (C) and hence

dim [P (gr (C))] = dim [P (C)] . �

Lemma 1.3. Let C be an N -dimensional thin K-coalgebra. Then dimK

(
Cn

Cn−1

)
= 1 for any

0 ≤ n ≤ N − 1 and Cn = C for any n ≥ N − 1.

Proof. For any n ≥ 1 consider the injective morphism of K-vector spaces

∆n,1 :
Cn+1

Cn
→ Cn

Cn−1
⊗ C1

C0
.

Since C1 = K1C + P (R) , then dimK (C1/C0) = 1 so that

dimK
Cn+1

Cn
≤ dimK

Cn

Cn−1
for any n ≥ 1.

Let t = min {n ∈ N | Cn = Cn+1} . Since

dimK
Ct

Ct−1
≤ dimK

Ct−1

Ct−2
≤ · · · ≤ dimK

C1

C0
= 1

and since, for 1 ≤ n < t one has Cn 6= Cn+1, we deduce that

dimK
Ct

Ct−1
= dimK

Ct−1

Ct−2
= · · · = dimK

C1

C0
= 1

Therefore C = Ct has dimension t+ 1, so that t = N − 1. �

Lemma 1.4. Let C be an N -dimensional thin K-coalgebra. Let t ∈ N, 1 ≤ t ≤ N and let

d0, d1, . . . , dt−1

be a divided power sequence of non-zero elements in C (e.g. t = 1).
Then (di)0≤i≤t−1 are linearly independent and can be completed to a basis

d0, d1, . . . , dt−1, dt, . . . , dN−1

for C which is a divided power sequence of non-zero elements in C.
Moreover we have d0 = 1C , P (C) = Kd1,

Cn = Kdn + Cn−1

for any 0 ≤ n ≤ N − 1 and CN−1 = C.

Proof. The main idea comes from the proof of [AS, Theorem 3.2]. Let A = C∗ and let J be the
Jacobson radical of A. Then, for any n ∈ N, we have

Jn ' HomK

(
C

Cn−1
,K

)
and

Jn

Jn+1
' HomK

(
Cn

Cn−1
,K

)
,

where C−1 = 0 by definition.

By Lemma 1.3, we know that dimK

(
Cn

Cn−1

)
= 1 for any 0 ≤ n ≤ N − 1 and Cn = C for any

n ≥ N − 1.
Therefore dimK

(
Jn

Jn+1

)
= 1 for any 0 ≤ n ≤ N − 1 and Jn = 0 for any n ≥ N.

Let α ∈ J\J2. Then it is easy to show that Jn = Kαn + Jn+1. In particular we have KαN =
JN = 0. Therefore we get that 1A = εC , α, α

2, . . . , αN−1 is a system of generators of A (regarded
as a vector space over K) and hence a basis since dim (A) = N . We have also αN = 0.



6 A. ARDIZZONI, C. MENINI AND F. STUMBO

Note that d0 ∈ G (C) = {1C} so that d0 = 1C . Moreover

∆ (d1) = d0 ⊗ d1 + d1 ⊗ d0 = 1C ⊗ d1 + d1 ⊗ 1C

so that d1 ∈ P (C) . Since d1 6= 0, we deduce that P (C) = Kd1.
Let 0 ≤ s ≤ t− 1 be defined by

s = max {n ∈ N | d0, d1, · · · , dn are linearly independent} .
Note that s ≥ 1. Furthermore d0, d1, · · · , ds are linearly independent and can so be completed to
a basis of C.
Let (e∗i )0≤i≤N−1 be the associated dual basis and set α = e∗1.

Note that α ∈ J\J2. In fact α ∈ HomK

(
C
C0
,K

)
= J and α /∈ HomK

(
C
C1
,K

)
= J2.

Thus we get that 1A = εC , α, α
2, . . . , αN−1 is a basis of A regarded as a vector space over K and

αN = 0. Let (ui)0≤i≤N−1 be the dual basis associated to
(
αi
)
0≤i≤N−1

in C. The uj ’s are uniquely

determined by the relations αi (uj) = δi,j . Then(
αi ⊗ αj

)
∆(un) = αi+j (un) = δi+j,n =

(∑n

t=0
δi,tδj,n−t

)
=

(
αi ⊗ αj

) (∑n

t=0
ut ⊗ un−t

)
and hence

∆ (un) =
∑n

t=0
ut ⊗ un−t.

Thus the ui’s are a linearly independent divided power sequence of non-zero elements in C. Note
that by duality it is clear that Cn = Kun + Cn−1 for any 0 ≤ n ≤ N − 1 and Cn = C for any
n ≥ N.
Let us prove that dj = uj for any 0 ≤ j ≤ t− 1. It is enough to check that αi (dj) = δi,j for every
0 ≤ i ≤ N − 1 and 0 ≤ j ≤ t− 1.
First of all, let us prove that dj = uj for any 0 ≤ j ≤ s. Since d0, d1, · · · , ds are linearly independent
and by definition of α, we have that α (dj) = δ1,j for every 0 ≤ j ≤ s. Let 2 ≤ n ≤ N − 1 and
assume αi (dj) = δi,j for any 0 ≤ i ≤ n− 1 and for every 0 ≤ j ≤ s. We have

αn (dj) =
(
αn−1 ⊗ α

)
∆(dj) =

∑j

a=0
αn−1 (da)α (dj−a) =

∑j

a=0
δn−1,aδ1,j−a = δn,j .

Therefore dj = uj for any 0 ≤ j ≤ s.
Assume s ≤ t− 2 and compute

∆ (ds+1 − us+1) =
∑s+1

a=0
da ⊗ ds+1−a −

∑s+1

a=0
ua ⊗ us+1−a

= 1C ⊗ (ds+1 − us+1) + (ds+1 − us+1)⊗ 1C +
∑s

a=1
da ⊗ ds+1−a −

∑s

a=1
ua ⊗ us+1−a

= 1C ⊗ (ds+1 − us+1) + (ds+1 − us+1)⊗ 1C .

Then ds+1 − us+1 ∈ P (R) = Kd1 so that there exists k ∈ K such that us+1 = ds+1 + kd1. Since
d0, d1, · · · , ds+1 are linearly dependent and d0, d1, · · · , ds are linearly independent, it follows that
ds+1 ∈

∑s
i=0Kdi =

∑s
i=0Kui and hence us+1 = ds+1 + kd1 ∈

∑s
i=0Kui. This contradicts the

linear independence of uj ’s. Thus s = t− 1. �

Lemma 1.5. Let C be an N -dimensional thin K-coalgebra. Let d0, d1, . . . , dN−1 be a divided power
sequence of non-zero elements in C. Then

ε (dn) = δ0,n

for every 0 ≤ n ≤ N − 1.

Proof. By Lemma 1.4, d0 = 1C .
If n = 0 then ε (dn) = ε (d0) = ε (1C) = 1K.

Let 1 ≤ n ≤ N − 1 and assume ε (di) = δ0,i for any 0 ≤ i ≤ n− 1. We have

ε (dn) = (ε⊗ ε)∆ (dn) =
∑n

t=0
ε (dt) ε (dn−t) = ε (d0) ε (dn) + ε (dn) ε (d0) = 2ε (dn)

so that ε (dn) = 0 = δ0,n. �
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Lemma 1.6. Let C be a unital K-coalgebra of finite dimension N over K. Let t ∈ N, 0 ≤ t ≤ N
and let

d0 = 1C , d1, . . . , dt−2, dt−1

be a divided power sequences of non-zero elements in C.
The following assertions are equivalent for an element et−1 ∈ C :

(a) d0, d1, . . . , dt−2, et−1 is a divided power sequences of non-zero elements in C;
(b) et−1 − dt−1 ∈ P (C).

Proof. First note that d0, d1, . . . , dt−2, et−1 is a divided power sequences of non-zero elements in C
if and only if

∆ (et−1) = d0 ⊗ et−1 + et−1 ⊗ d0 +
∑t−2

i=1
di ⊗ dt−1−i.

(a) ⇒ (b) . By the above observation, we have

∆ (et−1 − dt−1) = d0 ⊗ et−1 + et−1 ⊗ d0 +
∑t−2

i=1
di ⊗ dt−1−i −

∑t−1

i=0
di ⊗ dt−1−i

= 1C ⊗ (et−1 − dt−1) + (et−1 − dt−1)⊗ 1C .

Thus et−1 − dt−1 ∈ P (C) .
(b) ⇒ (a) . Let u := et−1 − dt−1. Then, by hypothesis u ∈ P (C) and hence

∆ (et−1) = ∆ (dt−1 + u)

=
∑t−1

i=0
di ⊗ dt−1−i + d0 ⊗ u+ u⊗ d0 =

∑t−2

i=1
di ⊗ dt−1−i + d0 ⊗ et−1 + et−1 ⊗ d0

so that d0, d1, . . . , dt−2, et−1is a divided power sequences of non-zero elements in C. �

2. Pre-bialgebras

Let H be a Hopf algebra over the field K. Recall that an object V in H
HYD is a left H-module

and a left H-comodule satisfying, for any h ∈ H, v ∈ V , the compatibility condition:∑
(h(1)v)<−1>h(2) ⊗ (h(1)v)<0> =

∑
h(1)v<−1> ⊗ h(2)v<0>

or, equivalently,

ρ(hv) =
∑

h(1)v<−1>S(h(3))⊗ h(2)v<0>,

where ρ : V → H⊗V is the coaction of H on V and for the action of H on V we used the notation
hv, for every h ∈ H, v ∈ V. If there is danger of confusion we write hv instead of hv.
The tensor product V ⊗W of two Yetter-Drinfeld modules is an object in H

HYD via the diagonal
action and the codiagonal coaction; the unit in H

HYD is K regarded as a left H-comodule via the
map x 7→ 1H ⊗ x and as a left H-module via εH . Recall that, for every V,W ∈ H

HYD the braiding
is given by:

(1) cV,W : V ⊗W →W ⊗ V, cV,W (v ⊗ w) =
∑

v〈−1〉w ⊗ v〈0〉.

If H has bijective antipode, then
(
H
HYD, c

)
is a braided category.

2.1. Let R and S be two algebras in the braided category H
HYD. We can define a new algebra

structure on R⊗S, by using the braiding (1), and not the usual flip morphism. The multiplication
in this case is defined by the formula:

(2) (r ⊗ s) (t⊗ v) =
∑

r(s〈−1〉t)⊗ s〈0〉v.

Let us remark that, for any algebra R inHHYD, the smash product R#H is a particular case of
this construction. Just take S = H with the left adjoint action (i.e. hx =

∑
h(1)xSh(2), for every

h, x ∈ H) and usual left H-comodule structure.
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2.2. Let R and S be two coalgebras in the braided category H
HYD. We can define a new coalgebra

structure on R⊗S, by using the braiding (1), and not the usual flip morphism. The comultiplication
in this case is defined by the formula:

δR⊗S (r ⊗ s) =
∑

r(1) ⊗ r
(2)
〈−1〉s

(1) ⊗ r
(2)
〈0〉 ⊗ s(2).

Let us remark that, for any coalgebra R in H
HYD, the smash coproduct R#H is a particular case of

this construction. Just take S = H with the left adjoint coaction (i.e. ρ (h) =
∑
h(1)Sh(3) ⊗ h(2),

for every h ∈ H) and usual left H-module structure.

Definition 2.3. Let H be a Hopf algebra. A pre-bialgebra (R,m, u, δ, ε) in H
HYD consists of

• a coalgebra (R, δ, ε) in the category (HHYD,⊗,K).
• two K-linear maps

m : R⊗R→ R and u : K → R

such that, for all r, s, t ∈ R and h ∈ H, the following relations are satisfied:

h · u(1) = εH(h)u(1) and ρRu(1) = 1H ⊗ u(1)(3)

δu(1) = u(1)⊗ u(1) and εu(1) = 1K ;(4)

hmR(r ⊗ s) =
∑

mR(h(1)r ⊗ h(2)s);(5)

δmR = (mR ⊗mR)δR⊗R and εmR = mK(ε⊗ ε);(6)

mR(R⊗ u) = R = mR(u⊗R);(7)

Note that (3) and (4) mean that u is a coalgebra homomorphism in H
HYD, (5) and (6)

mean that mR is left H-linear coalgebra homomorphism while (7) means that u is a unit
for mR. We fix the following notation

δ(r) =
∑

r(1) ⊗ r(2), for every r ∈ R.

Remark 2.4. To explain the meaning of the concept of pre-bialgebra in H
HYD, it is useful to

compare it with the concept of a bialgebra in H
HYD. A pre-bialgebra is just a unital bialgebra in

H
HYD with the following differences:

a) the multiplication is non-associative;
b) the multiplication is not a morphism of H-comodules.

Let H be a Hopf algebra, let (R, δ, ε) be a coalgebra in the category (HHYD,⊗,K)
Let us consider the graded coalgebra

gr (R) = ⊕n≥0
Rn

Rn−1

where, by definition, we set R−1 = 0 and (Ri)i∈N are the components of the coradical filtration of

R. Now gr (R) is an ordinary coalgebra which becomes a coalgebra in the monoidal category H
HYD

whenever R0 is a subcoalgebra of R in H
HYD. In fact, in this case, since, for any n ≥ 1, we have

Rn = Rn−1 ∧R R0 then inductively one has that Rn is a subcoalgebra of R in H
HYD.

Let (R,m, u, δ, ε) be a pre-bialgebra in H
HYD. In this case we also have a non necessarily associative

multiplication on R. The following result explains how gr (R) inherits the multiplication of R.

Proposition 2.5. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a pre-bialgebra in H
HYD.

Assume that R0 is a subcoalgebra of R in H
HYD such that R0 ·R0 ⊆ R0.

Then gr (R) inherits the pre-bialgebra structure in H
HYD of R.

Proof. The coalgebra structure of R induces a coalgebra structure on gr (R). Let us prove that
gr (R) inherits also the (eventually non associative) algebra structure of R. Let us check that
Ra ·Rb ⊆ Ra+b for any a, b ∈ N.

We prove this by induction on n = a+ b.
If n = 0 there is nothing to prove. Let n ≥ 1 and assume that Ri · Rj ⊆ Ri+j for any i, j ∈ N
such that 0 ≤ i + j ≤ n − 1. Let a, b ∈ N. such that n = a + b. and let r ∈ Ra and s ∈ Rb. Since
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δ (Ra) ⊆
∑a

i=0Ri ⊗Ra−i and c (r ⊗ s) = r〈−1〉s⊗ r〈0〉 ∈ Rb ⊗Ra, for every r ∈ Ra, s ∈ Rb, by (6),
we have

δ (Ra ·Rb) = δ (Ra) δ (Rb) ⊆
(∑a

i=0
Ri ⊗Ra−i

)(∑b

j=0
Rj ⊗Rb−j

)
⊆

∑a

i=0

∑b

j=0
RiRj ⊗Ra−iRb−j ⊆ Ra+b−1 ⊗R+R⊗R0.

Therefore Ra · Rb ⊆ Ra+b. In this way gr (R) inherits the algebra structure of R; see the proof of
[Mo, Lemma 5.2.8]. The last assertion is straightforward. �

Definitions 2.6. Let q be a primitive N -th root of unity. Let H be a Hopf algebra, g ∈ H and
χ ∈ H∗.
Following [CDMM, Definition 2.1], we say that (H, g, χ) is a Yetter-Drinfeld datum for q whenever

• g ∈ G (H) ,
• χ ∈ H∗ is a character of H,
• χ (g) = q,
• the following relation holds true

(8) g
∑

χ(h(1))h(2) =
∑

h(1)χ(h(2))g

If (H, g, χ) is a Yetter-Drinfeld datum for q, we denote byRq the graded algebraK[X]/
(
XN

)
.

Let y = X +
(
XN

)
. Then Rq can be endowed with a unique braided bialgebra structure

in (HHYD,⊗,K), where the Yetter-Drinfeld module structure is given by

hy = χ (h) y and ρ (y) = g ⊗ y

and the coalgebra structure is defined by setting

δ (y) = y ⊗ 1 + 1⊗ y.

In this way Rq becomes a braided Hopf algebra that will be denoted by Rq (H, g, χ) and
called a quantum line (see [AS]).

The very technical part of the following lemma is devoted to show that the order θ of the
involved root of unity fulfills 2 ≤ θ ≤ dimK (R). This relation will play a fundamental role in
proving that θ is in fact equal to dimK (R) (see Theorem 2.13).

Lemma 2.7. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a finite dimensional pre-bialgebra in
H
HYD. Assume that R is a thin coalgebra where P (R) = Ky. Then there is a primitive θ-th root
of unity q ∈ K, where 2 ≤ θ ≤ dimK (R), and g ∈ H,χ ∈ H∗ such that

1) (H, g, χ) is a Yetter-Drinfeld datum for q,
2) HρR(y) = g ⊗ y,
3) hy = χ(h)y for every h ∈ H.

Proof. Note that by (4) u : K → R is a coalgebra morphism, so that (R, 1R = u (1K)) is a unital
coalgebra. Since R is thin, C0 = K1R. By (3), u : K → R is a morphism in H

HYD. Hence

P (R) = {x ∈ R | δ(x) = 1R ⊗ x+ x⊗ 1R} = Ker [δ − (u⊗R+R⊗ u)]

is a Yetter-Drinfeld submodule of R so that HρR(y) ∈ H ⊗ P (R) and hy ∈ P (R) = Ky for every
h ∈ H. Then there exists a g ∈ G(H) such that HρR(y) = g⊗y and there exists a character χ ∈ H∗

such that hy = χ(h)y, for every h ∈ H.
Then, the Yetter-Drinfeld compatibility for P (R) ∈ H

HYD writes as follows∑
χ(h(1))gh(2) ⊗ y =

∑
h(1)gχ(h(2))⊗ y

so that (H, g, χ) is a Yetter-Drinfeld datum for q := χ(g) ∈ K. Let us prove that q has finite order.
Set

w0 = 1R and wn = m (y ⊗ wn−1) , for every n ≥ 1.
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Since 1R ∈ G (R), inductively one can prove, by means of (6), that

(9) δ(wn) =
∑

0≤i≤n

(
n

i

)
q

(wi ⊗ wn−i).

Since R is finite dimensional over K, there exists

N = min {n ∈ N | w0, . . . , wn are linearly dependent} .

From y ∈ P (R) , we deduce that {1R, y}
(7)
= {w0, w1} is linearly independent and hence N > 1.

Let us prove that o (q) ≤ N. By definition of N, there is a k := (k0, k1, ...kN ) ∈ KN+1\{0}
such that k0w0 + k1w1 + ...+ kN−1wN−1 + kNwN = 0. Moreover, since w0, . . . , wN−1 are linearly
independent over K and k 6= 0, the case kN = 0 can not occur. Therefore, we can assume
kN = −1K : wN = k0w0 + k1w1 + ... + kN−1wN−1. If ki = 0, for all 0 ≤ i ≤ N − 1, then wN = 0
so that

0 = δ(wN ) =
∑

0≤i≤N

(
N

i

)
q

(wi ⊗ wN−i) =
∑

1≤i≤N−1

(
N

i

)
q

(wi ⊗ wN−i).

Since w0, . . . , wN−1 are linearly independent, so are wi ⊗ wN−i, with 1 ≤ i ≤ N − 1.

Hence q is a solution of the system of equations
(
N
i

)
X

= 0 for every i, 1 ≤ i ≤ N − 1. Therefore,

since char (K) = 0, we get qN = 1 and o(q) = N > 1.
Assume now ki 6= 0, for some 0 ≤ i ≤ N − 1. Clearly, by (5), one has that gwn = qnwn, for every
n ∈ N. We get

gwN = qNwN = qNk0 + qNk1w1 + ...+ qNkN−1wN−1 and

gwN = k0gw0 + k1gw1 + ...+ kN−1gwN−1 = k0 + k1qw1 + ...+ kN−1q
N−1wN−1.

Since w0, . . . , wN−1 are linearly independent over K, we have that qNki = kiq
i. From ki 6= 0 one

has qN = qi so that qN−i = 1K and hence o (q) ≤ N .
It remains to prove that o (q) ≥ 2. Suppose q = 1. In this case

(
n
i

)
q
=

(
n
i

)
that is the usual binomial

coefficient. Thus, by (9), we have

δ
(∑

0≤n≤N−1
knwn

)
=

∑
0≤n≤N−1

kn
∑

1≤i≤N−1

(
n

i

)
(wi ⊗ wn−i) + w0 ⊗ wN + wN ⊗ w0

and

δ(wN ) =
∑

0≤i≤N

(
N

i

)
(wi ⊗ wN−i) =

∑
1≤i≤N−1

(
N

i

)
(wi ⊗ wN−i) + w0 ⊗ wN + wN ⊗ w0.

Since wN = k0w0 + k1w1 + ...+ kN−1wN−1, we obtain∑
0≤n≤N−1

kn
∑

1≤i≤N−1

(
n

i

)
(wi ⊗ wn−i) =

∑
1≤i≤N−1

(
N

i

)
(wi ⊗ wN−i).

As w0, . . . , wN−1 are linearly independent, we get
(
N
j

)
1K = 0 for every 1 ≤ j ≤ N−1. In particular,

since char (K) = 0, we obtain 0 =
(
N
1

)
= N ≥ 2. Contradiction. We conclude that q 6= 1. �

Definition 2.8. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a finite dimensional pre-
bialgebra in H

HYD. Assume that R is a thin coalgebra and let P (R) = Ky. Consider q and the
Yetter-Drinfeld datum (H, g, χ) for q as in Lemma 2.7. Then (H, g, χ) will be called the Yetter-
Drinfeld datum associated to the pre-bialgebra (R,m, u, δ, ε) in H

HYD relative to y or simply the
Yetter-Drinfeld datum associated to y whenever there is no risk of confusion.

Lemma 2.9. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a N -dimensional pre-bialgebra in
H
HYD. Assume that R is a thin coalgebra where P (R) = Ky. Let g ∈ H and χ ∈ H∗ be such that
(H, g, χ) is the Yetter-Drinfeld datum associated to y and let q = χ(g).
Then there exists a divided power sequence of non-zero elements in R

d0 = 1R, d1 = y, . . . , dN−1

such that
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1) gdn = qndn, for any 0 ≤ n ≤ N − 1 and also
2) d1dn−1 = (n)q dn, for any 1 ≤ n ≤ N − 1.

Proof. By Lemma 1.4, there exists a divided power sequence of non-zero elements in R d0 =
1R, d1 = y, . . . , dN−1 that completes {d0, y} to a basis of R. We have

gd0
(3)
= 1R and gy = qy.

Assume that 2 ≤ n ≤ N − 2 and that d0 = 1R, d1 = y, . . . , dn−1 is a divided power sequence

satisfying 1) and 2). Let en = gdn

qn . Then d0 = 1C , d1, . . . , dn−1, en is a divided power sequences of

non-zero elements in R, as, by left H-linearity of δ, we have

δ (en) =
1

qn

∑n

j=0
gdj ⊗ gdn−j =

∑n

j=0

gdj
qj

⊗ gdn−j

qn−j
= d0 ⊗ en + en ⊗ d0 +

∑n−1

i=1
di ⊗ dt−1−i.

Then, by Lemma 1.6, en − dn ∈ P (R) = Kd1.
Thus there is a k ∈ K such that gdn = qndn + kd1.
Now, if k = 0 then dn satisfies 1).
Assume k 6= 0. We seek for an element b ∈ K such that g (dn + bd1) = qn (dn + bd1) that is

gdn + bgd1 = qndn + bqnd1, i.e. q
ndn + kd1 + bqd1 = qndn + bqnd1, i.e. k + bq = bqn.

Since k 6= 0 we get qn 6= q, so that b = k
qn−q . Now, let d

′
n = dn + bd1. Since d

′
n − dn ∈ P (R) , by

Lemma 1.6, we have that d0, d1, . . . , dn−1, d
′
n is still a divided power sequences of non-zero elements

in R so that we can substitute dn with d′n which satisfies 1).
Therefore we can assume that we have found dn which satisfies 1) such that d1, . . . , dn−1, dn is

a divided power sequence of non-zero elements in R.
By (6), we have

δ (ydn−1)

= (y ⊗ 1R + 1R ⊗ y)

(∑n−1

t=0
dt ⊗ dn−1−t

)
=

∑n−1

t=0
ydt ⊗ dn−1−t +

∑n−1

t=0
gdt ⊗ ydn−1−t

= ydn−1 ⊗ 1R + 1R ⊗ ydn−1 +
∑n−2

t=0
(t+ 1)q dt+1 ⊗ dn−1−t +

∑n−1

t=1
qtdt ⊗ (n− t)q dn−t

= ydn−1 ⊗ 1R + 1R ⊗ ydn−1 +
∑n−1

t=1

[
(t)q + qt (n− t)q

]
dt ⊗ dn−t

Since (t)q + qt (n− t)q = (n)q , summing up, we get

(10) δ (ydn−1) = ydn−1 ⊗ 1R + 1R ⊗ ydn−1 +
∑n−1

t=1
(n)q dt ⊗ dn−t.

Assume that o (q) | n. Since, by Lemma 2.7, we have that q 6= 1, then (n)q = 0 and hence

δ (ydn−1)
(10)
= ydn−1 ⊗ 1R + 1R ⊗ ydn−1

so that ydn−1 ∈ P (R) = Kd1. Thus there is k ∈ K such that ydn−1 = kd1. Hence, since o (q) | n,
from

g (ydn−1)
(5)
= (gy) (gdn−1) = qnydn−1 = ydn−1 = kd1 and g (kd1) = kgd1 = qkd1

we deduce kd1 = g (ydn−1) = g (kd1) = qkd1 and so k = 0 (in fact q 6= 1). Therefore in this case
ydn−1 = 0 and hence ydn−1 = (n)q dn.

Assume now o (q) - n. Then

δ
[
ydn−1 − (n)q dn

]
(10)
= ydn−1 ⊗ 1R + 1R ⊗ ydn−1 +

∑n−1

t=1
(n)q dt ⊗ dn−t − (n)q

∑n

t=0
dt ⊗ dn−t

=
[
ydn−1 − (n)q dn

]
⊗ 1R + 1R ⊗

[
ydn−1 − (n)q dn

]
.
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Thus ydn−1 − (n)q dn ∈ P (R) so that, by Lemma 1.6, we have that d0, d1, . . . , dn−1,
ydn−1

(n)q
is still

a divided power sequence of non-zero elements in R (we are in the case (n)q 6= 0). This tells we

can assume dn = ydn−1/ (n)q. Note that gdn = g ydn−1

(n)q
= (gy)(gdn−1)

(n)q
= qn ydn−1

(n)q
= qndn. �

2.10. Let r ∈ R = ∪n∈NRn and let νr = min {n ∈ N | r ∈ Rn} . From now on, we will denote by

r = r+Rνr−1 the element of
Rνr

Rνr−1
corresponding to r. We point out that r · s = rs+Rνr+νs−1 6=

rs+Rνr+s−1 = rs a priori.

Theorem 2.11. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a pre-bialgebra in H
HYD. Assume

that R is an N -dimensional thin coalgebra where P (R) = Ky. Let g ∈ H and χ ∈ H∗ be such that
(H, g, χ) is the Yetter-Drinfeld datum associated to y and let q = χ(g). Consider a divided power
sequence

d0 = 1R, d1 = y, . . . , dN−1

of non-zero elements in R such that gdn = qndn, for any 0 ≤ n ≤ N − 1 as in Lemma 2.9. Then(
dn

)
0≤n≤N−1

forms a divided power sequence of non-zero elements in gr (R) such that

1) ρ
(
dn

)
= gn ⊗ dn, for any 0 ≤ n ≤ N − 1.

2) h · dn = χn (h) dn, for any 0 ≤ n ≤ N − 1.

3) da · db =
(
a+b
a

)
q
da+b, for 0 ≤ a+ b ≤ N − 1, and da · db = 0, for a+ b ≥ N.

Moreover the pre-bialgebra gr (R) is indeed a braided bialgebra in the monoidal category
(HHYD,⊗,K) which is commutative as an algebra in the category of vector spaces.

Proof. 1) For any 0 ≤ n ≤ N − 1, ρ
(
dn

)
∈ H ⊗ Rn

Rn−1
so that, since, by Lemma 1.4, Rn

Rn−1
= Kdn,

there is a unique hn ∈ H such that ρ
(
dn

)
= hn ⊗ dn. Since the comultiplication on gr (R) is left

H-colinear, we have
∑n

i=0 hihn−i⊗di⊗dn−i = hn⊗δ
(
dn

)
=

∑n
i=0 hn⊗di⊗dn−i. Thus we deduce

that hn = hihn−i for any 0 ≤ i ≤ n. Since h0 = 1H and h1 = g, by applying the above formula to
the case i = 1, by induction on n ≥ 1, it is easy to prove that hn = gn.
2) If n = 0, 1 there is nothing to prove.
Let 2 ≤ n ≤ N − 1 and assume hdi = χi (h) di for any 0 ≤ i ≤ n− 1. We have

δ
(
hdn

)
=

∑n

i=0

(
h1di ⊗ h2dn−i

)
=

(
εH (h1) d0 ⊗ h2dn

)
+
(
h1dn ⊗ εH (h2) d0

)
+
∑n−1

i=1

(
χi (h1) di ⊗ χn−i (h2) dn−i

)
=

(
1R ⊗ hdn

)
+

(
hdn ⊗ 1R

)
+ χn (h)

∑n−1

i=1
di ⊗ dn−i.

From this, since δ
[
χn (h) dn

]
= χn (h) δ

[
dn

]
= χn (h)

∑n
i=0 di ⊗ dn−i, and by Proposition 1.2, we

infer that hdn − χn (h) dn ∈ P (gr (R)) = R1

R0
. Since a priori hdn − χn (h) dn ∈ Rn

Rn−1
and n ≥ 2, we

conclude that hdn = χn (h) dn.
3) Observe that

δ
(
da · db

)
= δ

(
da

)
δ
(
db
)
=

∑a

i=0

(
di ⊗ da−i

)∑b

j=0

(
dj ⊗ db−j

)
=

∑a

i=0

∑b

j=0

[
di ·

(
da−i

)
〈−1〉 dj

]
⊗
[(
da−i

)
〈0〉 · db−j

]
=

∑a

i=0

∑b

j=0
di · ga−idj ⊗ da−i · db−j

=
∑a

i=0

∑b

j=0
di · χj

(
ga−i

)
dj ⊗ da−i · db−j =

∑a

i=0

∑b

j=0
q(a−i)jdi · dj ⊗ da−i · db−j

so that

(11) δ
(
da · db

)
= 1R ⊗ da · db + da · db ⊗ 1R +

∑
0≤i≤a,0≤j≤b
1≤i+j≤a+b−1

q(a−i)jdi · dj ⊗ da−i · db−j .

Let us prove that da · db =
(
a+b
a

)
q
da+b for any a, b ∈ N such that 1 ≤ a+ b ≤ N − 1, by induction

on n = a+ b.
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If n = 1, then da · db = d1 =
(
a+b
a

)
q
da+b. Let 2 ≤ n ≤ N − 1 and assume di · dj =

(
i+j
i

)
q
di+j for

any i, j ∈ N such that 0 ≤ i+ j ≤ n− 1. By (11), we have

δ
(
da · db

)
−
[
1R ⊗ da · db + da · db ⊗ 1R

]
=

∑
0≤i≤a,0≤j≤b
1≤i+j≤a+b−1

q(a−i)j

(
i+ j

i

)
q

di+j ⊗
(
a+ b− (i+ j)

a− i

)
q

da+b−(i+j)

=
∑a+b−1

t=1

[∑
0≤i≤a,0≤j≤b

i+j=t

q(a−i)j

(
t

i

)
q

(
a+ b− t

a− i

)
q

]
dt ⊗ da+b−t.

From the X-analogue of Chu-Vandermonde formula [Ka, Proposition IV 2.3, page 75], we have(
m+ n

i

)
X

=
∑

0≤j≤m,0≤u≤n
j+u=i

X(m−j)u

(
m

j

)
X

(
n

u

)
X

,

for any 1 ≤ t ≤ a+ b− 1 so that(
t+ a+ b− t

a

)
q

=
∑

0≤i≤t,0≤(a−i)≤a+b−t
i+(a−i)=a

q(t−i)(a−i)

(
t

i

)
q

(
a+ b− t

a− i

)
q

, i.e.(
a+ b

a

)
q

=
∑

0≤i≤a
0≤t−i≤b

q(t−i)(a−i)

(
t

i

)
q

(
a+ b− t

a− i

)
q

=
∑

0≤i≤a
0≤j≤b
i+j=t

q(a−i)j

(
t

i

)
q

(
a+ b− t

a− i

)
q

Finally, we get

(12) δ
(
da · db

)
= 1R ⊗ da · db + da · db ⊗ 1R +

(
a+ b

a

)
q

∑a+b−1

t=1
dt ⊗ da+b−t.

From this, the fact that

δ

[(
a+ b

a

)
q

da+b

]
=

(
a+ b

a

)
q

δ
[
da+b

]
=

(
a+ b

a

)
q

∑a+b

t=0
dt ⊗ da+b−t

and by Proposition 1.2, we infer that da·db−
(
a+b
a

)
q
da+b ∈ P (gr (R)) = R1

R0
. But da·db−

(
a+b
a

)
q
da+b ∈

Ra+b

Ra+b−1
and a + b ≥ 2 so that da · db =

(
a+b
a

)
q
da+b. Observe that, for any 0 ≤ a, b ≤ N such that

a + b ≥ N we have Ra+b = Ra+b−1 and hence da · db ∈ Ra+b

Ra+b−1
= 0. If 0 ≤ a, b, c ≤ N and

a+ b+ c ≤ N − 1, we obtain(
da · db

)
· dc =

(a+ b+ c)q!

(a)q! (b)q! (c)q!
· da+b+c = da ·

(
db · dc

)
If 0 ≤ a, b, c ≤ N and a + b + c ≥ N, we get

(
da · db

)
· dc ∈ Ra+b+c

Ra+b+c−1
= 0 and da ·

(
db · dc

)
∈

Ra+b+c

Ra+b+c−1
= 0 so that

(
da · db

)
· dc = da ·

(
db · dc

)
.

Hence we have proved that gr (R) is an associative algebra. Note also that, if 0 ≤ a, b ≤ N

and a+ b ≤ N − 1, da · db =
(
a+b
a

)
q
da+b = db · da and that, for a+ b ≥ N, da · db = 0 = db · da so

that gr (R) is also commutative.
To see that gr (R) is a braided bialgebra in H

HYD it remains to prove that the multiplication in
gr (R) is left H-colinear. If 0 ≤ a, b ≤ N and a+ b ≤ N − 1, we have

ρ
(
da · db

)
= ρ

[(
a+ b

a

)
q

da+b

]
= ga+b ⊗

(
a+ b

a

)
q

da+b = gagb ⊗ da · db.

If a+ b ≥ N we have ρ
(
da · db

)
= 0 = gagb ⊗ da · db. �

Theorem 2.12. Take the hypothesis and notations of Theorem 2.11. Then I = d1 · gr (R) is a two
sided ideal and also a coideal of gr (R) regarded as a braided bialgebra in H

HYD.
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Proof. By Theorem 2.11, gr (R) is a commutative algebra. Then I is a two-sided ideal of gr (R) .
Moreover, for any h ∈ H and for any b ∈ N, we have

h
(
d1 · db

)
=

∑
h(1)d1 · h(2)db =

∑
χ
(
h(1)

)
d1 · χ

(
h(2)

)
db ∈ I.

and ρ
(
d1 · db

)
= g1+b ⊗ d1 · db for left H-colinearity of the multiplication. Hence I is an ideal of

gr (R) regarded as an algebra in H
HYD. Furthermore, by (11), we have

δ
(
d1 · db

)
= 1R ⊗ d1 · db + d1 · db ⊗ 1R +

∑
0≤i≤1,0≤j≤b
1≤i+j≤1+b−1

q(1−i)jdi · dj ⊗ d1−i · db−j ∈ R⊗ I + I ⊗R.

Finally ε
(
d1 · db

)
= ε

(
d1
)
ε
(
db
)
= 0 so that ε (I) = 0 and hence I is also a coideal of gr (R) . �

The following result is known (see [AS, Theorem 3.2] and [CDMM, Proposition 3.4]) when R is
a braided Hopf algebra in H

HYD.

Theorem 2.13. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a pre-bialgebra in H
HYD. Assume

that R is an N -dimensional thin coalgebra where P (R) = Ky. Let g ∈ H and χ ∈ H∗ be such that
(H, g, χ) is the Yetter-Drinfeld datum associated to y and let q = χ(g). Consider a divided power
sequence

d0 = 1R, d1 = y, . . . , dN−1

of non-zero elements in R such that gdn = qndn, for any 0 ≤ n ≤ N − 1 as in Lemma 2.9.
Then N = o (q) and

dn =

(
d1
)n

(n)q!

for any 0 ≤ n ≤ N − 1.
In particular, gr (R) = Rq (H, g, χ) is a quantum line generated as an algebra by d1.

Proof. Let θ = o (q) . By Lemma 2.7, we have that 2 ≤ θ ≤ N .

Since, by Theorem 2.11, gr (R) is an associative algebra, it makes sense to consider
(
d1
)N

. Note

that
(
d1
)N ∈ RN

RN−1
= 0. Set z = d1 and let

t = min {n ∈ N\{0} | zn = 0} .

Then, we have zn ∈ Rn

Rn−1
\ {0} for any 0 ≤ n ≤ t − 1 and hence dn exists and is not zero for

any 0 ≤ n ≤ t − 1. In particular we obtain that t − 1 ≤ N − 1 that is t ≤ N. Let us prove that
zn = (n)q!dn for any 0 ≤ n ≤ t− 1. For n = 0, 1 there is nothing to prove. Let 2 ≤ n ≤ t− 1 and

assume zn−1 = (n− 1)q!dn−1. We have

zn = z · zn−1 = (n− 1)q! z · dn−1 = (n− 1)q! d1 · dn−1 = (n− 1)q!

(
n

1

)
q

dn = (n)q!dn.

Observe that, since zt−1 6= 0, we have (t− 1)q! 6= 0 which means, being q 6= 1, that qn 6= 1 for any
0 ≤ n ≤ t− 1 and hence t ≤ θ. By the quantum binomial formula we have

0 = δ
(
zt
)
=

∑t

i=0

(
t

i

)
q

zi ⊗ zt−i =
∑t−1

i=1

(
t

i

)
q

zi ⊗ zt−i.

Note that, since zn = (n)q!dn, then (zn)0≤n≤t−1 are linearly independent so that
(
t
i

)
q
= 0 for any

1 ≤ i ≤ t− 1. In particular, for i = 1 we get (t)q = 0 and hence qt = 1. We deduce that t = θ.

Recall that θ ≤ N . Assume N ≥ θ + 1. Then we know that dθ exists and it is not zero. Let
I = d1 ·gr (R) be the ideal of Theorem 2.12. Assume that dθ ∈ I. In this case there exists r ∈ gr (R)

such that dθ = d1r. Since r ∈ gr (R) we have r =
∑N−1

i=0 kidi, ki ∈ K. Hence, by Theorem 2.11, we
have

dθ = d1r =
∑N−1

i=0
kid1 · di =

∑N−2

i=0
ki

(
1 + i

1

)
q

d1+i + kN−1d1 · dN−1 =
∑N−2

i=0
ki (1 + i)q d1+i
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Since 0 ≤ θ ≤ N − 1, we get dθ = kθ−1 (1 + θ − 1)q d1+θ−1 = kθ−1 (θ)q dθ = 0, a contradiction.

Hence we always have that dθ /∈ I.

Consider the braided bialgebra Q = gr(R)
I . As observed above, for every 1 ≤ n ≤ θ − 1 we have

that dn = zn

(n)q !
∈ I. Set w = dθ + I. Then

δQ (w) =
∑θ

t=0

(
θ

t

)
q

(
dt + I ⊗ dθ−t + I

)
= w ⊗ 1Q + 1Q ⊗ w

i.e. w ∈ P (Q). Moreover we have h · w = χθ (h)w and ρ (w) = gθ ⊗ w. Then

δQ (w) δQ (w)

= (w ⊗ 1Q + 1Q ⊗ w) (w ⊗ 1Q + 1Q ⊗ w) = w2 ⊗ 1Q + 1Q ⊗ w2 + w ⊗ w + w〈−1〉w ⊗ w〈−1〉

= w2 ⊗ 1Q + 1Q ⊗ w2 + w ⊗ w + gθw ⊗ w = w2 ⊗ 1Q + 1Q ⊗ w2 + w ⊗ w + qθ
2

w ⊗ w,

so that

(13) δQ (w) δQ (w) = w2 ⊗ 1Q + 1Q ⊗ w2 + 2w ⊗ w.

Let us write N − 1 = aθ + r, where a ≥ 1 (θ ≤ N − 1) and 0 ≤ r ≤ θ − 1.
If a = 1 then N − 1 = θ + r ≤ 2θ − 1 so that dθ · dθ = 0 and hence w2 = 0. By (13), we deduce
2w ⊗ w = 0 so that, since char (K) 6= 2, we infer w = 0. This contradicts dθ /∈ I. Hence we have
a ≥ 2, so that d2θ exists. Therefore

ww =
(
dθ + I

) (
dθ + I

)
=

(
dθdθ + I

)
=

(
θ + θ

θ

)
q

(
d2θ + I

)
=

(
θ

0

)
q

(
d2θ + I

)
= d2θ + I.

Thus

δQ (w) δQ (w) = δQ (ww) = δQ
(
d2θ + I

)
=

∑2θ

i=0

(
2θ

i

)
q

(
di + I

)
⊗
(
d2θ−i + I

)
=

(
d0 + I

)
⊗
(
d2θ−0 + I

)
+

(
2θ

θ

)
q

(
dθ + I

)
⊗
(
d2θ−θ + I

)
+
(
d2θ + I

)
⊗
(
d2θ−2θ + I

)
= 1Q ⊗ w2 + w ⊗ w + w2 ⊗ 1Q

Comparing with (13), we get w⊗w = 0 and hence w = 0, a contradiction. In conclusion θ = N. �

Theorem 2.14. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a finite dimensional pre-bialgebra
in H

HYD. Then the following assertions are equivalent:
(1) gr (R) is a thin coalgebra.
(2) R is a thin coalgebra.
(3) R0R0 ⊆ R0 and gr (R) is a quantum line with respect to the structures inherited from R.

Proof. (1) ⇒ (2) It follows by Proposition 1.2.
(2) ⇒ (3) Since R0 = K1R, by 7, we get R0R0 ⊆ R0 so that, by Theorem 2.13, gr (R) is a

quantum line with respect to the structures inherited from R.
(3) ⇒ (1) Quantum lines are thin coalgebras. �

Lemma 2.15. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a pre-bialgebra in H
HYD. Assume

that R is an N -dimensional thin coalgebra where P (R) = Ky. Let g ∈ H and χ ∈ H∗ be such that
(H, g, χ) is the Yetter-Drinfeld datum associated to y and let q = χ(g). Consider a divided power
sequence

d0 = 1R, d1 = y, . . . , dN−1

of non-zero elements in R such that gdn = qndn, for any 0 ≤ n ≤ N − 1 and ydn−1 = (n)q dn, for
any 1 ≤ n ≤ N − 1 as in Lemma 2.9.
Then

hdn = χn (h) dn

for any 0 ≤ n ≤ N − 1.
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Proof. By Theorem 2.13, we have N = o (q) so that (n)q 6= 0 for any 0 ≤ n ≤ N−1. The statement

is clear for n = 0, 1. Let 2 ≤ n ≤ N − 1 and assume hdn−1 = χn−1 (h) dn−1. Then

h (ydn−1) =
∑

h(1)y · h(2)dn−1 =
∑

χ
(
h(1)

)
y · χn−1

(
h(2)

)
dn−1 = χn (h) ydn−1

so that hdn = 1
(n)q

h (ydn−1) =
1

(n)q
χn (h) ydn−1 = χn (h) dn. �

3. Pre-bialgebras with a Cocycle

Definitions 3.1. Let H be a Hopf algebra. A cocycle for a pre-bialgebra (R,m, u, δ, ε) in H
HYD

is a K-linear map

ξ : R⊗R→ H

such that, for all r, s, t ∈ R and h ∈ H, the following relations are satisfied:∑
ξ(h(1)r ⊗ h(2)s) =

∑
h(1)ξ(r ⊗ s)Sh(2);(14)

∆Hξ = (mH ⊗ ξ)(ξ ⊗ ρR⊗R)δR⊗R and εHξ = mK(ε⊗ ε);(15)

cR,H(m⊗ ξ)δR⊗R = (mH ⊗mR)(ξ ⊗ ρR⊗R)δR⊗R;(16)

mR(R⊗mR) = mR(R⊗ µR)[(mR ⊗ ξ)δR⊗R ⊗R];(17)

mH(ξ ⊗H)[R⊗ (mR ⊗ ξ)δR⊗R] = mH(ξ ⊗H)(R⊗ cH,R)[(mR ⊗ ξ)δR⊗R ⊗R];(18)

ξ(R⊗ u) = ξ(u⊗R) = ε1H .(19)

We will also say that (R,m, u, δ, ε) is a pre-bialgebra in H
HYD with cocycle ξ.

For a pre-bialgebra (R,m, u, δ, ε) in H
HYD with cocycle ξ, we have that (R, u,m, ξ) is a dual Yetter-

Drinfeld quadruple in the sense of [AMS, Definition 3.59]
To any pre-bialgebra (R,m, u, δ, ε) in H

HYD with cocycle ξ we associate (see [AMS, Theorem
3.62]) a bialgebra B = R#ξH as follows. As a vector space it is R⊗H.

The coalgebra structures are:

∆B (r#h) =
∑

r(1)#r
(2)
〈−1〉h(1) ⊗ r

(2)
〈0〉#h(2), where δ(r) =

∑
r(1) ⊗ r(2),

εB (r#h) = ε (r) εH (h) .

The algebra structures are:

mB [(r#h)⊗ (s#k)] =
∑

m̃0(r ⊗ h(1)s)⊗ m̃1(r ⊗ h(1)s) h(2)k.

uB(1) = u(1)#1H

where we use the notation

(20) (m⊗ ξ)δR⊗R(r ⊗ s) = m̃ (r ⊗ s) =
∑

m̃0(r ⊗ s)⊗ m̃1(r ⊗ s)

The canonical injection σ : H ↪→ R#ξH is a bialgebra homomorphism. Furthermore the map

π : R#ξH → H : r#h 7−→ ε (r)h

is an H-bilinear coalgebra retraction of σ.

Definitions and Notations 3.2. Let H be a Hopf algebra, let A be a bialgebra and let σ : H → A
be an injective morphism of bialgebras having a retraction π : A → H (i.e. πσ = H) that is an
H-bilinear coalgebra map. Set

R = ACo(H) =
{
a ∈ A |

∑
a(1) ⊗ π

(
a(2)

)
= a⊗ 1H

}
Let τ : A→ R, τ (a) =

∑
a(1)σSπ

(
a(2)

)
(see Proposition 3.4). The map

ω : R⊗H → A, ω(r ⊗ h) = rσ(h)

is an isomorphism of K-vector spaces, the inverse being defined by

ω−1 : A→ R⊗H, ω−1(a) =
∑

a(1)σSHπ
(
a(2)

)
⊗ π

(
a(3)

)
=

∑
τ
(
a(1)

)
⊗ π

(
a(2)

)
.



Small Bialgebras with a Projection 17

Clearly A defines, via ω, a bialgebra structure on R ⊗H that will depend on the chosen σ and π.
To describe this structure, we need the following data. Set

δ(r) =
∑

r(1)σSπ(r(2))⊗ r(3) =
∑

τ
(
r(1)

)
⊗ r(2), ε = εA|R.

By [Scha, 6.1] and [AMS, Theorem 3.64], (R, δ, ε) is a coalgebra in H
HYD where the Yetter-Drinfeld

module structure of R is given by

hr =
∑

σ
(
h(1)

)
rσSH

(
h(1)

)
, ρ (r) =

∑
π
(
r(1)

)
⊗ r(2)

and the maps u : K → R and m : R⊗R→ R, given by

u = u
|R
A , m(r ⊗ s) =

∑
r(1)s(1)σSπ(r(2)s(2)) = τ (r ·A s) .

define on R a unital algebra structure (which might be non associative).
Let ξ : R⊗R→ H be the map defined by setting

ξ(r ⊗ s) = π(r ·A s).

Remark 3.3. As proved in [AMS, Theorem 3.64], the datum (R,m, u, δ, ε) constructed from
(A, π, σ) is a pre-bialgebra in H

HYD with cocycle ξ. This will be called the pre-bialgebra in H
HYD

associated to (A, π, σ). Moreover ξ will be called the cocycle corresponding to (R,m, u, δ, ε). Then
(cf. [Scha, 6.1]) ω : R#ξH → A is a bialgebra isomorphism.

Conversely, note that, starting from a pre-bialgebra (R,m, u, δ, ε) in H
HYD with cocycle ξ, if we

consider the maps

σ : H ↪→ R#ξH and π : R#ξH → H

as in Definitions 3.1, then the pre-bialgebra in H
HYD associated to (R#ξH,π, σ) is exactly (R,m, u, δ, ε)

and the corresponding cocycle is exactly ξ.

Proposition 3.4. Let H be a Hopf algebra with antipode S, let A be a bialgebra and let σ : H → A
be an injective morphism of bialgebras having a retraction π : A → H (i.e. πσ = H) that is an
H-bilinear coalgebra map. Let (R,m, u, δ, ε) be the pre-bialgebra in H

HYD associated to (A, π, σ).
Then the map τ of 3.2 is a surjective coalgebra homomorphism. Moreover

τ [aσ (h)] = τ (a) εH (h) , τ [σ (h) a] = hτ (a) ,

r ·R s = τ (r ·A s) , τ (a) ·R τ (b) = τ [τ (a) ·A b] ,

where a ∈ A, h ∈ H and r, s ∈ R.

Proof. First of all, let us prove that τ (a) ∈ A is in fact an element of R. Note that

(21) πτ (a) =
∑

π
[
a(1)σSπ

(
a(2)

)]
=

∑
π
(
a(1)

)
Sπ

(
a(2)

)
= ε (a) 1H.

Since ∆Aτ (a) = a(1)σSπ
(
a(3)

)
⊗ τ

(
a(2)

)
we get∑

τ (a)(1)⊗π
[
τ (a)(2)

]
=

∑
a(1)σSπ

(
a(3)

)
⊗πτ

(
a(2)

) (21)
=

∑
a(1)σSπ

(
a(3)

)
⊗ 1H = τ (a)⊗ 1H

so that τ (a) ∈ R. We have

(22) τ [aσ (h)] =
∑

a(1)σ
(
h(1)

)
σSH

{
π
[
a(2)

]
h(2)

}
= τ (a) εH (h) .

Since π is left H-linear we have

τ [σ (h) a] =
∑

σ
(
h(1)

)
a(1)σSHπ

[
σ
(
h(2)

)
a(2)

]
=

∑
σ
(
h(1)

)
τ (a)σSH

(
h(2)

)
= hτ (a) .

Let us prove that τ is a coalgebra homomorphism. Since δ (r) =
∑
r(1)σSπ

(
r(2)

)
⊗ r(3) =∑

τ
(
r(1)

)
⊗ r(2) for every r ∈ R, we get

δτ (a) =
∑

τ
(
τ (a)(1)

)
⊗ τ (a)(2) =

∑
τ
[
a(1)σSπ

(
a(3)

)]
⊗ τ

(
a(2)

) (22)
= (τ ⊗ τ)∆Aa,

ετ (a) = εA|R

[∑
a(1)SHπ

(
a(2)

)]
= εA (a) .
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Note that for every r ∈ R we have τ (r) =
∑
r(1)σSHπ

[
r(2)

]
= rσSH (1H) = r so that τ is

surjective. Since r ·R s = m (r ⊗ s) =
∑
r(1)s(1)σSπ

[
r(2) ·A s(2)

]
= τ (r ·A s) , for every r, s ∈ R,

we obtain τ (a) ·R τ (b) = τ [τ (a) ·A τ (b)]
(22)
= τ

[
τ (a) ·A b(1)

]
εHSπ

(
b(2)

)
= τ [τ (a) ·A b] . �

3.5. Let H be a Hopf algebra and let χ ∈ H∗ be a character. Let (M,ρM ) be a leftH-comodule and
(N, ρN ) be a right H-comodule. In the sequel we will use the well known K-linear automorphisms
ϕM :M →M and ψN : N → N defined by

ϕM (m) = (m↼ χ) =
∑

χ
(
m〈−1〉

)
m〈0〉 and ψN (n) = (χ ⇀ n) =

∑
n〈0〉χ

(
n〈1〉

)
Recall that ϕM and ψN are (co)algebra automorphisms whenever M and N are H-comodule
(co)algebras.

Proposition 3.6. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a N -dimensional pre-bialgebra
in H

HYD. Let ξ be a cocycle for the pre-bialgebra (R,m, u, δ, ε). Let χ ∈ H∗ be a character of H
such that

(23) χ [ξ(r ⊗ s)] = ε (r) ε (s) , for every r, s ∈ R.

Then the map

ϕR : R→ R,ϕR (r) =
∑

χ
(
r〈−1〉

)
r〈0〉

defines an isomorphism of coalgebras which is also an algebra homomorphism. Moreover

ϕH [ξ(r ⊗ s)] = ξ [ϕR (r)⊗ ϕR (s)] , ψH [ξ(r ⊗ s)] = ξ (r ⊗ s) .

Proof. Since R is a left H-comodule coalgebra, by 3.5, we have that ϕR is a coalgebra automor-
phism. We outline that, since the multiplication of R is, in general, not colinear, R need not to be
an H-comodule algebra, so that we cannot apply 3.5 to get that ϕR is an algebra homomorphism.
By (16), we get ∑[

r(1)
(
r
(2)
〈−1〉s

(1)
)]

〈−1〉
ξ(r

(2)
〈0〉 ⊗ s(2))⊗

[
r(1)

(
r
(2)
〈−1〉s

(1)
)]

〈0〉

=
∑

ξ
(
r(1) ⊗ r

(2)
〈−2〉s

(1)
)
r
(2)
〈−1〉s

(2)
〈−1〉 ⊗ r

(2)
〈0〉s

(2)
〈0〉.

If we apply lR (χ⊗R) to both sides, we obtain∑
χ
[
ξ(r

(2)
〈0〉 ⊗ s(2))

]
ϕR

[
r(1)

(
r
(2)
〈−1〉s

(1)
)]

=
∑

χ
[
ξ
(
r(1) ⊗ r

(2)
〈−1〉s

(1)
)]
ϕR

(
r
(2)
〈0〉

)
ϕR

(
s(2)

)
.

By (23) we get ϕR (r · s) = ϕR (r) · ϕR (s) . Moreover ϕR (1R) = 1R. We have

∆Hξ(r ⊗ s)
(15)
= (mH ⊗ ξ)(ξ ⊗ ρR⊗R)δR⊗R(r ⊗ s)

=
∑[

ξ
(
r(1) ⊗ r

(2)
〈−2〉s

(1)
)
r
(2)
〈−1〉s

(2)
〈−1〉 ⊗ ξ

(
r
(2)
〈0〉 ⊗ s

(2)
〈0〉

)]
.

so that

ϕH [ξ(r ⊗ s)] =
∑

χ
[
ξ(r ⊗ s)(1)

]
ξ(r ⊗ s)(2) = lH (χ⊗H)∆Hξ(r ⊗ s)

=
∑

lH (χ⊗H)
[
ξ
(
r(1) ⊗ r

(2)
〈−2〉s

(1)
)
r
(2)
〈−1〉s

(2)
〈−1〉 ⊗ ξ

(
r
(2)
〈0〉 ⊗ s

(2)
〈0〉

)]
=

∑
χ
[
ξ
(
r(1) ⊗ r

(2)
〈−2〉s

(1)
)
r
(2)
〈−1〉s

(2)
〈−1〉

]
ξ
(
r
(2)
〈0〉 ⊗ s

(2)
〈0〉

)
=

∑
χ
[
ξ
(
r(1) ⊗ r

(2)
〈−1〉s

(1)
)]
ξ
[
ϕR

(
r
(2)
〈0〉

)
⊗ ϕR

(
s(2)

)]
(23)
= ξ [ϕR (r)⊗ ϕR (s)] .

In a similar way one can prove ψH [ξ(r ⊗ s)] = ξ (r ⊗ s) . �

Definition 3.7. Let H be a Hopf algebra and let R be a braided bialgebra in the category
H
HYD. The tensor product R ⊗ H endowed with the smash product and the smash coproduct is
a bialgebra that will be denoted by R#H and called the Radford-Majid bosonization of R (see
[Rad] and [Maj]).
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Lemma 3.8. let H be a Hopf algebra, let A be a bialgebra and let σ : H → A be an injective
morphism of bialgebras having a retraction π : A→ H (i.e. πσ = H) that is an H-bilinear coalgebra
map. Let (R,m, u, δ, ε) be the pre-bialgebra in H

HYD associated to (A, π, σ) with corresponding
cocycle ξ.
Then for every r ∈ R and h ∈ H we have

π (rσ (h)) = ε (r)h.

Moreover the following assertions are equivalent:
(1) ξ = ε⊗ ε.
(2) π : A→ H is a bialgebra homomorphism.
(3) R is a braided bialgebra in H

HYD and R#ξH = R#H is the Radford-Majid bosonization of
R.

Proof. For every r ∈ R and h ∈ H we have π (rσ (h)) = π (r)h =
∑
ε
(
r(1)

)
π
(
r(2)

)
h = ε (r)h.

(1) ⇒ (2). Clearly {rσ (h) | r ∈ R, h ∈ H} generates A. We have

π [rσ (h) sσ (k)] =
∑

π
[
rσ

(
h(1)

)
sσS

(
h(2)

)
σ
(
h(3)k

)]
=

∑
π
(
r ·A h(1)s

)
h(2)k

=
∑

ξ
(
r ⊗ h(1)s

)
h(2)k =

∑
ε (r) ε

(
h(1)s

)
h(2)k

=
∑

ε (r) εH
(
h(1)

)
ε (s)h(2)k = ε (r)hε (s) k = π (rσ (h)) ·H π (sσ (k)) .

(2) ⇒ (1) follows easily by the definition of ξ : ξ (r ⊗ s) = π (r ·A s) = π (r) ·H π (s) = ε (r) ε (s) 1H .
(1) ⇒ (3) can be easily proved by direct computation.
(3) ⇒ (2) Observe that π = π′ ◦ ω−1 where the map π′ : R#ξH → H : r#h 7−→ ε (r)h. One

easily check that π′ is an algebra homomorphism so that π is an algebra homomorphism too. �

Theorem 3.9. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a pre-bialgebra in H
HYD with

cocycle ξ. The following assertions are equivalent:
(a) Corad (R) = K1R i.e. R is connected.
(b) Corad (R#ξH) ⊆ K ⊗H.
(c) Corad (R#ξH) = K ⊗ Corad (H) .
Moreover, in this case R#ξH is a Hopf algebra.

Proof. Set B := R#ξH. Recall that the coalgebra structures of B are:

∆B (r#h) =
∑

r(1)#r(2)〈−1〉h(1) ⊗ r(2)〈0〉#h(2), εB (r#h) = ε (r) εH (h) ,

(a) ⇒ (b). Assume that R0 = Corad (R) = K1R i.e. R is connected.
Let R0 ≤ R1 ≤ · · · ≤ Rn−1 ≤ Rn ≤ · · · ≤ R be the coradical filtration of R. Let Bi = Ri ⊗H.

Let r ∈ Rn, n ∈ N. Then δ (r) =
n∑

i=0

ri ⊗ sn−i, where ri, si ∈ Ri. Thus

∆R#H (r#h) =
∑

r(1)#r(2)〈−1〉h(1) ⊗ r(2)〈0〉#h(2)

=

n∑
i=0

ri#(sn−i)〈−1〉 h(1) ⊗ (sn−i)〈0〉 #h(2) ∈
n∑

i=0

Bi ⊗Bn−i.

Therefore ∆R#H (Bn) ⊆
n∑

i=0

Bi ⊗Bn−i and hence

H ' K ⊗H = B0 ≤ B1 ≤ · · · ≤ Bn−1 ≤ Bn ≤ · · · ≤ B

defines a coalgebra filtration for B. This entails that Corad (B) ⊆ H (see [Sw, page 226]).
(b) ⇒ (a). Assume that Corad (B) ⊆ K ⊗H. Apply Proposition 3.4 to the case when σ : H → B
is the canonical injection and π : B → H is defined by π (r#h) = ε (r)h (as observed in Definitions
3.1 π is a left H-bilinear coalgebra retraction of σ). Then τ : B → R, r#h 7→ rεH (h) is a surjective
coalgebra homomorphism. By [Mo, Corollary 5.3.5, page 66], we have that

Corad (R) ⊆ τ (Corad (B)) ⊆ τ (K ⊗H) = K.
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(c) ⇒ (b) is trivial.
(b) ⇒ (c). We get Corad (R#ξH) = Corad (K ⊗H) = K⊗Corad (H) as Corad (R#ξH) ⊆ K⊗H.
Let us prove that R#ξH has an antipode, whenever (b) holds. Since H is a Hopf algebra and
Corad (R#ξH) ⊆ K ⊗ H = H, the antipode of H gives an inverse of the canonical inclu-
sion Corad (R#ξH) ⊆ R#ξH in HomK (Corad (R#ξH) , R#ξH) so that, in view of a famous
Takeuchi’s result [Mo, Lemma 5.2.10], R#ξH has an antipode. �

Our aim is to characterize those pre-bialgebras (R,m, u, δ, ε) in H
HYD with cocycle ξ such that

gr (R) is a quantum line. The first step is to lift the properties of gr (R) to R which a priori is a
non-associative algebra.

Let B = R#ξH. We point out that our procedure differs from the classical lifting method by
N. Andruskiewitsch and H.-J. Schneider. Namely, since B0 does not need to be a Hopf subalgebra
of B, its associated graded coalgebra gr (B) is not a (graded) Hopf algebra in general.

Lemma 3.10. Keep the assumptions and notations of Lemma 2.15. Let ξ be a cocycle for the
pre-bialgebra (R,m, u, δ, ε). Let 0 ≤ a, b ≤ N − 1. Then,

(24) χa+b (h) ξ (da ⊗ db) =
∑

h(1)ξ (da ⊗ db)Sh(2), for every h ∈ H.

In particular, for any c ∈ N, we have

(25)
[
χa+b (h)− εH (h)

]
χc [ξ (da ⊗ db)] = 0, for every h ∈ H.

Moreover if a+ b 6= 0 and

(26) χc+1 [ξ (da ⊗ db)] = χc [ξ (da ⊗ db)] + χ [ξ (da ⊗ db)]

for any c ∈ N, then we have χc [ξ (da ⊗ db)] = 0 for every c ∈ N.

Proof. By (14), we have:
∑
ξ(h(1)r⊗h(2)s) =

∑
h(1)ξ(r⊗ s)Sh(2) for any r, s ∈ R and h ∈ H. We

apply this in the case r = da and s = db,where 0 ≤ a, b ≤ N − 1 to obtain
∑
ξ(h(1)da ⊗ h(2)db) =∑

h(1)ξ (da ⊗ db)Sh(2). Now, by Lemma 2.15, we have∑
ξ(h(1)da ⊗ h(2)db) =

∑
ξ(χa

(
h(1)

)
da ⊗ χb

(
h(2)

)
db) = χa+b (h) ξ (da ⊗ db)

and hence we obtain (24). Then, by applying χc, c ≥ 0, to both sides of this formula, we get
χa+b (h)χc [ξ (da ⊗ db)] = εH (h)χc [ξ (da ⊗ db)] , so that we obtain (25).

Assume that a+ b 6= 0 and that (26) holds for any c ∈ N. By induction on c ≥ 0, one can prove
that

(27) χc [ξ (da ⊗ db)] = c · χ [ξ (da ⊗ db)] , for any c ∈ N.

Now, by (15), and since ε (dn) = δn,0 = 0 for any n ≥ 1 (see Lemma 1.5), we obtain εH [ξ (da ⊗ db)] =
ε (da) ε (db) = 0. Thus, by (25), applied to the case c = 1 and h = ξ (da ⊗ db), by (27) and since
a + b 6= 0, we obtain χ [ξ (da ⊗ db)] = 0 so that χc [ξ (da ⊗ db)] = cχ [ξ (da ⊗ db)] = 0, for any
c ≥ 0. �

Theorem 3.11. Keep the assumptions and notations of Lemma 2.15. Let ξ be a cocycle for the
pre-bialgebra (R,m, u, δ, ε).
Let 0 ≤ a, b ≤ N − 1. We have∑

χc
[
(da)〈−1〉

]
(da)〈0〉 = qcada for any c ∈ N,(28)

δR⊗R (da ⊗ db) =
∑

0≤i≤a,0≤j≤b
qj(a−i)di ⊗ dj ⊗ da−i ⊗ db−j .(29)

∆Hξ (da ⊗ db)(30)

=
∑

0≤i≤a,0≤j≤b
qj(a−i)ξ (di ⊗ dj) (da−i)〈−1〉 (db−j)〈−1〉 ⊗ ξ

[
(da−i)〈0〉 ⊗ (db−j)〈0〉

]
.

(31) χc [ξ (d1 ⊗ da)] = 0, for any c ∈ N.
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If b ≤ N − a, we have

ρ (dadb) =
∑

(da)〈−1〉 (db)〈−1〉 ⊗ (da)〈0〉 (db)〈0〉 +(32)

+
∑

0≤i≤a,0≤j≤b
0<i+j<a+b

[
q(b−j)iξ (da−i ⊗ db−j) (di)〈−1〉 (dj)〈−1〉 ⊗ (di)〈0〉 (dj)〈0〉 +

−qj(a−i) (didj)〈−1〉 ξ (da−i ⊗ db−j)⊗ (didj)〈0〉

]

(33)
∑

χc
[
(d1da)〈−1〉

]
(d1da)〈0〉 = qc(1+a)d1da

Proof. Recall that, by Lemma 2.7, there are g ∈ G (H) such that ρ(y) = g ⊗ y and χ ∈ H∗, a
character such that hy = χ(h)y for every h ∈ H.

Let us proceed by induction on 0 ≤ a ≤ N − 1. The case a = 0 is straightforward. Let a ≥ 1
and assume that the statements hold for every 0 ≤ i ≤ a − 1. By assumption, for any c ∈ N, we
have

∑
χc

[
(d1da−1)〈−1〉

]
(d1da−1)〈0〉 = qcad1da−1. By Lemma 2.9 we get d1da−1 = (a)q da so that

(a)q
∑
χc

[
(da)〈−1〉

]
(da)〈0〉 = (a)q q

cada. By Theorem 2.13, we get N = o (q) . Since a ≤ N − 1

then (a)q 6= 0 so that we get (28). By means of Lemma 2.15, we have

δR⊗R (da ⊗ db) = (R⊗ cR,R ⊗R) (δ ⊗ δ) (da ⊗ db)

=
∑

0≤i≤a,0≤j≤b
di ⊗ (da−i)〈−1〉 dj ⊗ (da−i)〈0〉 ⊗ db−j

=
∑

0≤i≤a,0≤j≤b
di ⊗ χj

[
(da−i)〈−1〉

]
dj ⊗ (da−i)〈0〉 ⊗ db−j

(28)
=

∑
0≤i≤a,0≤j≤b

qj(a−i)di ⊗ dj ⊗ da−i ⊗ db−j

so that we get (29) and

(ξ ⊗ ρR⊗R)δR⊗R (da ⊗ db)

(29)
=

∑
0≤i≤a,0≤j≤b

qj(a−i)ξ (di ⊗ dj)⊗ ρR⊗R (da−i ⊗ db−j)

=
∑

0≤i≤a,0≤j≤b
qj(a−i)ξ (di ⊗ dj)⊗ (da−i)〈−1〉 (db−j)〈−1〉 ⊗ (da−i)〈0〉 ⊗ (db−j)〈0〉

that is
(34)

(ξ⊗ρR⊗R)δR⊗R (da ⊗ db) =
∑

0≤i≤a,0≤j≤b
qj(a−i)ξ (di ⊗ dj)⊗(da−i)〈−1〉 (db−j)〈−1〉⊗(da−i)〈0〉⊗(db−j)〈0〉 .

By means of (15), we obtain

∆Hξ (da ⊗ db) = (mH ⊗ ξ)(ξ ⊗ ρR⊗R)δR⊗R (da ⊗ db)

(34)
=

∑
0≤i≤a,0≤j≤b

qj(a−i)ξ (di ⊗ dj) (da−i)〈−1〉 (db−j)〈−1〉 ⊗ ξ
[
(da−i)〈0〉 ⊗ (db−j)〈0〉

]
.

so that we get (30). Let us prove (31).
We have

χc+1 [ξ (d1 ⊗ da)] = mK (χ⊗ χc)∆Hξ (d1 ⊗ da)

(30)
=

∑
0≤i≤1,0≤j≤a

qj(1−i)χ
[
ξ (di ⊗ dj) (d1−i)〈−1〉 (da−j)〈−1〉

]
· χc

{
ξ
[
(d1−i)〈0〉 ⊗ (da−j)〈0〉

]}
=

∑
0≤i≤1,0≤j≤a

qj(1−i)χ [ξ (di ⊗ dj)] · χc
{
ξ
[
χ
[
(d1−i)〈−1〉

]
(d1−i)〈0〉 ⊗ χ

[
(da−j)〈−1〉

]
(da−j)〈0〉

]}
(28)
=

∑
0≤i≤1,0≤j≤a

qj(1−i)q1+a−(i+j)χ [ξ (di ⊗ dj)] · χc [ξ (d1−i ⊗ da−j)]

= q1+aχc [ξ (d1 ⊗ da)] + χ [ξ (d1 ⊗ da)]

as ξ (d0 ⊗ du) = δu,01H , for every 0 ≤ u ≤ N − 1. Therefore we obtain

χc+1 [ξ (d1 ⊗ da)] = q1+aχc [ξ (d1 ⊗ da)] + χ [ξ (d1 ⊗ da)] , for every c ∈ N.
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If q1+a = 1, by Lemma 3.10, we obtain χc [ξ (d1 ⊗ da)] = 0, for every c ∈ N.
If q1+a 6= 1, by (25) applied in the case h = g, for any c ∈ N, we have

0 =
[
χ1+a (h)− εH (h)

]
χc [ξ (d1 ⊗ da)] =

[
χ1+a (g)− εH (g)

]
χc [ξ (d1 ⊗ da)] =

[
q1+a − 1

]
χc [ξ (d1 ⊗ da)]

whence χc [ξ (d1 ⊗ da)] = 0. In both cases we got (31).
Let b ≤ N − a. Let us compute (16):

cR,H(m⊗ ξ)δR⊗R (da ⊗ db) = (mH ⊗mR)(ξ ⊗ ρR⊗R)δR⊗R (da ⊗ db) .

The left side:

cR,H(m⊗ ξ)δR⊗R (da ⊗ db)
(29)
=

∑
0≤i≤a,0≤j≤b

qj(a−i)cR,H(m⊗ ξ) (di ⊗ dj ⊗ da−i ⊗ db−j)

=
∑

0≤i≤a,0≤j≤b
qj(a−i) (didj)〈−1〉 ξ (da−i ⊗ db−j)⊗ (didj)〈0〉

= (dadb)〈−1〉 ⊗ (dadb)〈0〉 +
∑

0≤i≤a,0≤j≤b
i+j<a+b

qj(a−i) (didj)〈−1〉 ξ (da−i ⊗ db−j)⊗ (didj)〈0〉

The right side

(mH ⊗mR)(ξ ⊗ ρR⊗R)δR⊗R (da ⊗ db)

(34)
=

∑
0≤i≤a,0≤j≤b

qj(a−i)ξ (di ⊗ dj) (da−i)〈−1〉 (db−j)〈−1〉 ⊗ (da−i)〈0〉 (db−j)〈0〉

=
∑

(da)〈−1〉 (db)〈−1〉 ⊗ (da)〈0〉 (db)〈0〉 +

+
∑

0≤i≤a,0≤j≤b
i+j>0

qj(a−i)ξ (di ⊗ dj) (da−i)〈−1〉 (db−j)〈−1〉 ⊗ (da−i)〈0〉 (db−j)〈0〉

=
∑

(da)〈−1〉 (db)〈−1〉 ⊗ (da)〈0〉 (db)〈0〉 +

+
∑

0≤i≤a,0≤j≤b
i+j<a+b

q(b−j)iξ (da−i ⊗ db−j) (di)〈−1〉 (dj)〈−1〉 ⊗ (di)〈0〉 (dj)〈0〉

Therefore, we get

ρ (dadb) =
∑

(da)〈−1〉 (db)〈−1〉 ⊗ (da)〈0〉 (db)〈0〉 +

+
∑

0≤i≤a,0≤j≤b
i+j<a+b

[
q(b−j)iξ (da−i ⊗ db−j) (di)〈−1〉 (dj)〈−1〉 ⊗ (di)〈0〉 (dj)〈0〉 +

−qj(a−i) (didj)〈−1〉 ξ (da−i ⊗ db−j)⊗ (didj)〈0〉

]
=

∑
(da)〈−1〉 (db)〈−1〉 ⊗ (da)〈0〉 (db)〈0〉 +

+
∑

0≤i≤a,0≤j≤b
0<i+j<a+b

[
q(b−j)iξ (da−i ⊗ db−j) (di)〈−1〉 (dj)〈−1〉 ⊗ (di)〈0〉 (dj)〈0〉 +

−qj(a−i) (didj)〈−1〉 ξ (da−i ⊗ db−j)⊗ (didj)〈0〉

]
so that we got (32). Let us apply this formula in the case (a, b) = (1, a) .∑

χc
[
(d1da)〈−1〉

]
(d1da)〈0〉

(32)
=

∑
χc

[
(d1)〈−1〉 (da)〈−1〉

]
(d1)〈0〉 (da)〈0〉 +

+
∑

0≤i≤1,0≤j≤a
0<i+j<1+a

 q(a−j)iχc
[
ξ (d1−i ⊗ da−j) (di)〈−1〉 (dj)〈−1〉

]
(di)〈0〉 (dj)〈0〉 +

−qj(1−i)χc
[
(didj)〈−1〉 ξ (d1−i ⊗ da−j)

]
(didj)〈0〉


(28)
= qc(1+a)d1da

where, the last equality follows as χc [ξ (d1−i ⊗ da−j)] = 0 for 0 ≤ i ≤ 1, 0 ≤ j ≤ a and
0 < i+ j < 1+ a: in fact, by (31) and (19), χc [ξ (d1−i ⊗ da−j)] = 0 unless i = 1 and j = a. Hence
we get (33). �
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Theorem 3.12. Keep the assumptions and notations of Lemma 2.15. Let ξ be a cocycle for the
pre-bialgebra (R,m, u, δ, ε). Then

(35) χc [ξ (da ⊗ db)] = 0 unless a = 0 and b = 0,

for any a, b such that 0 ≤ a, b ≤ N − 1 and for any c ∈ N.

Proof. Let us prove, by induction on t ≥ 1, that χc [ξ (da ⊗ db)] = 0,for any c ∈ N and for any
0 ≤ a, b ≤ N − 1 such that t = a + b. If t = 1, then ξ (da ⊗ db) = 0 so that there is nothing to
prove. Let t ≥ 2 be such that χc [ξ (di ⊗ dj)] = 0 for any 1 ≤ i + j ≤ t − 1 and for any c ∈ N.
Now, for any c ∈ N, by means of (30), (28) and the inductive hypothesis, in the style of the proof
of (31), one gets χc [ξ (da ⊗ db)] = 0. �

Notation 3.13. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a N -dimensional pre-bialgebra
in H

HYD. Assume that R is a thin coalgebra where P (R) = Ky. Let g ∈ H and χ ∈ H∗ be such
that (H, g, χ) is the Yetter-Drinfeld datum associated to y and let q = χ(g).
From now on, we fix a basis of R consisting of a divided power sequence of non-zero elements in R

d0 = 1R, d1 = y, . . . , dN−1

such that

gdn = qndn, for any 0 ≤ n ≤ N − 1,

ydn−1 = (n)q dn, for any 1 ≤ n ≤ N − 1,

hdn = χn (h) dn, for any 0 ≤ n ≤ N − 1.

Such a basis exists in view of Lemma 2.9 and of Lemma 2.15.

Theorem 3.14. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a N -dimensional pre-bialgebra
in H

HYD. Assume that R is a thin coalgebra where P (R) = Ky. Let g ∈ H and χ ∈ H∗ be such
that (H, g, χ) is the Yetter-Drinfeld datum associated to y and let q = χ(g). Let ξ be a cocycle for
the pre-bialgebra (R,m, u, δ, ε).
Then:

1) R is an associative algebra over K spanned by y.
2) o (q) = N .
3) yn = (n)q!dn, for every 0 ≤ n ≤ N − 1 and yN = 0.

4)
(
yi
)
0≤i≤N−1

is a basis for R .

5) R = Rq (H, g, χ) is a quantum line, whenever m is left H-colinear.

Proof. Recall that, by Lemma 2.7, there are g ∈ G (H) such that ρ(y) = g ⊗ y and χ ∈ H∗, a
character such that hy = χ(h)y for every h ∈ H.

For any a, b integers such that 0 ≤ a, b ≤ N − 1, we have:

(36) (mR ⊗ ξ)δR⊗R (da ⊗ db)
(29)
=

∑
0≤i≤a,0≤j≤b

qj(a−i) (didj)⊗ ξ (da−i ⊗ db−j) .

We obtain,

da (dbdc) = mR(R⊗mR) (da ⊗ db ⊗ dc)

(17)
= mR(R⊗ µR)[(mR ⊗ ξ)δR⊗R ⊗R] (da ⊗ db ⊗ dc)

(36)
=

∑
0≤i≤a,0≤j≤b

qj(a−i) (didj) · [ξ (da−i ⊗ db−j) dc]

=
∑

0≤i≤a,0≤j≤b
qj(a−i) (didj) · [χc [ξ (da−i ⊗ db−j)] dc]

(35)
= qb(a−a) (dadb) · χc [ξ(da−a ⊗ db−b)] dc = (dadb) dc.

Therefore R is an associative algebra.
By Theorem 2.13, N = o (q) so that (n)q 6= 0, for any 1 ≤ n ≤ N − 1. Since ydn−1 = (n)q dn,

for any 1 ≤ n ≤ N − 1, we infer that dn = yn

(n)q !
which means that R, as an associative algebra,
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is spanned by y and that
(
yi
)
0≤i≤N−1

is a basis for R. Assume yN 6= 0. Since yN ∈ R we have

yN = k01R+k1y+ ...+kN−1y
N−1 for suitable ki ∈ K and there is a t with 0 ≤ t ≤ N−1 such that

kt 6= 0. Note that 0 = ε (y)
N

= ε
(
yN

)
= k0 so that yN = k1y+ ...+kN−1y

N−1 and 1 ≤ t ≤ N −1.
We get

gyN = (gy)
N

= qNyN = yN = k1y + ...+ kN−1y
N−1 and

gyN = k1gy + ...+ kN−1gy
N−1 = k1qy + ...+ kN−1q

N−1yN−1.

Since {1R, y, ...yN−1} is a linearly independent set over K, we infer that kt = ktq
t. Since kt 6= 0,

one gets 1 = qt. Since 1 ≤ t ≤ N − 1 and o (q) = N we have a contradiction. Assume that m,
which is associative, is also left H-colinear. Then R is a braided bialgebra in (HHYD,⊗,K) and, in
this case, R = Rq (H, g, χ) is a quantum line. �

Proposition 3.15. Take the hypothesis and notations of 3.13. Let ξ be a cocycle for the pre-
bialgebra (R,m, u, δ, ε). We have

χc [ξ(r ⊗ s)] = ε (r) ε (s) , for every r, s ∈ R, c ∈ N,

and the map ϕR : R→ R,ϕR (r) =
∑
χ
(
r〈−1〉

)
r〈0〉 defines an isomorphism of coalgebras which is

also an algebra homomorphism. Moreover

ϕH [ξ(r ⊗ s)] = ξ [ϕR (r)⊗ ϕR (s)] ,(37)

ψH [ξ(r ⊗ s)] = ξ (r ⊗ s) ,(38)

ϕn
R (da) = qnada, for every a, n ∈ N.(39)

Furthermore, for every 0 ≤ a, b ≤ N − 1, c ≥ 0, we have:

ϕc
H [ξ(da ⊗ db)] =

∑
χc(ξ(da ⊗ db)(1))ξ(da ⊗ db)(2) = qc(a+b)ξ(da ⊗ db)(40)

ψc
H [ξ(da ⊗ db)] =

∑
ξ(da ⊗ db)(1)χ

c(ξ(da ⊗ db)(2)) = ξ(da ⊗ db).(41)

Proof. By (35) we have

χc [ξ(da ⊗ db)] = 0 = ε (da) ε (db) unless a = 0 and b = 0,

for every 0 ≤ a, b ≤ N − 1 and for every c ∈ N. Since

χc [ξ(d0 ⊗ d0)] = χc (1H) = 1K = ε (d0) ε (d0)

and (di)0≤i≤N−1 is a basis for R as a vector space, we infer that χc [ξ(r ⊗ s)] = ε (r) ε (s) , for

every r, s ∈ R. Therefore we can apply Proposition 3.6 to obtain (37), (38) and the first statement
involving ϕR. Moreover we get:

ϕn
R (da) =

∑
χn

[
(da)〈−1〉

]
(da)〈0〉

(28)
= qnadn,

ϕc
H [ξ(da ⊗ db)]

(37)
= ξ [ϕc

R (da)⊗ ϕc
R (db)]

(39)
= qc(a+b)ξ(da ⊗ db),

ψc
H [ξ(da ⊗ db)]

(38)
= ξ(da ⊗ db).

�

Lemma 3.16. Take the hypothesis and notations of 3.13. Let ξ be a cocycle for the pre-bialgebra
(R,m, u, δ, ε). The following relations hold true

qa+bξ (da ⊗ db) g = gξ (da ⊗ db) .(42)

qa+bgξ (da ⊗ db) = ξ (da ⊗ db) g.(43)

for any a, b ∈ N such that 0 ≤ a, b ≤ N − 1. We have that

(44) ξ (da ⊗ db) = 0 unless a+ b = 0,
N

2
, N,

3N

2

whenever they make sense.
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Proof. By applying (24) to the case h = g, we obtain qa+bξ (da ⊗ db) = gξ (da ⊗ db) g
−1 for any

a, b ∈ N such that 0 ≤ a, b ≤ N − 1, and hence we get (42). Moreover, by applying (8) to the case
h = ξ (da ⊗ db) we obtain

g
∑

χ(ξ (da ⊗ db)(1))ξ (da ⊗ db) (2) =
∑

ξ (da ⊗ db)(1) χ(ξ (da ⊗ db)(2))g.

By (40) and (41), we infer gqa+bξ (da ⊗ db) = ξ (da ⊗ db) g and hence we get (43). We have

gξ (da ⊗ db)
(42)
= qa+b [ξ (da ⊗ db) g]

(43)
= qa+b

[
qa+bgξ (da ⊗ db)

]
= gq2(a+b)ξ (da ⊗ db)

so that
[
q2(a+b) − 1K

]
ξ (da ⊗ db) = 0. Therefore we obtain ξ (da ⊗ db) = 0 unless 2 (a+ b) = tN,

for some t ∈ N. Since 0 ≤ a, b ≤ N − 1, we have a+ b ≤ (N − 1) + (N − 1) = 2N − 2 and hence

tN = 2 (a+ b) ≤ 4N − 4 < 4N =⇒ t < 4.

Thus we have only the cases t = 0, 1, 2, 3 that is a+b = 0, N2 , N,
3N
2 , whenever they make sense. �

Lemma 3.17. Take the hypothesis and notations of 3.13. Let ξ be a cocycle for the pre-bialgebra
(R,m, u, δ, ε) and let B = R#ξH as in Definitions 3.1. We have that

m̃ (1R ⊗ s) = s#1H and m̃ (r ⊗ 1R) = r#1H ,

(r#h) ·B (1R#k) = r#hk and (1R#h) ·B (s#k) =
∑

h(1)s#h(2)k,

(r#1H) ·B (s#1H) = m̃ (r ⊗ s)

for any r, s ∈ R and for any h, k ∈ H, where m̃ is the map defined in (20).
In particular, for any 0 ≤ a ≤ N − 1 and any h ∈ H we have

(45) (ya#1H) (1R#h) = ya#h, (1R#h) (y
a#1H) = ya#ϕa

H (h)

Proof. Using (3), (7), (19), we get m̃ (1R ⊗ s) = s#1H and m̃ (r ⊗ 1R) = r#1H . Using these
equalities one proves that (r#h) ·B (1R#k) = r#hk and (1R#h) ·B (s#k) =

∑
h(1)s#h(2)k. In

particular, for any 0 ≤ a ≤ N − 1 and any h ∈ H we have (ya#1H) (1R#h) = ya#h and

(1R#h) (y
a#1H) =

∑
h(1)y

a#h(2) =
∑

χa
(
h(1)

)
ya#h(2) = ya#ϕa

H (h) .

The equality (r#1H) ·B (s#1H) = m̃ (r ⊗ s) is trivial. �

Proposition 3.18. Take the hypothesis and notations of 3.13. Let ξ be a cocycle for the pre-
bialgebra (R,m, u, δ, ε). Let

B = R#ξH,Y = y#1H , Γ = σ (g) .

Then, we have

σ (h)Y a = Y aσ [ϕa
H (h)] for any a ∈ N,

σ (h)σ (k) = σ (hk) ,

ΓY = qY Γ.

and

∆B (Y n) =
∑n

i=0

(
n

i

)
q

Y n−iΓi ⊗ Y i for any n ∈ N.

∆B (σ (h)) =
∑

σ
(
h(1)

)
⊗ σ

(
h(2)

)
,

for any h, k ∈ H.

Proof. We have

∆B (Y ) = ∆R#H (y ⊗ 1H) =
∑

y(1) ⊗ y(2)〈−1〉 ⊗ y(2)〈0〉 ⊗ 1H

=
∑

y ⊗ (1R)〈−1〉 ⊗ (1R)〈0〉 ⊗ 1H +
∑

1R ⊗ y〈−1〉 ⊗ y〈0〉 ⊗ 1H

= y ⊗ 1H ⊗ 1R ⊗ 1H + 1R ⊗ g ⊗ y ⊗ 1H = Y ⊗ 1B + Γ⊗ Y.
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Let us prove that σ (h)Y a = Y aσ [ϕa
H (h)] , for every a ∈ N, where Y a denotes the a-th iterated

power of Y in B. If a = 0, then ϕa
H = H and there is nothing to prove. If a = 1, we have

Y σ (h) = (y ⊗ 1H) (1R ⊗ h) = y ⊗ h so that we get

σ (h)Y = (1R ⊗ h) (y ⊗ 1H)
(45)
= y ⊗ ϕH (h) = Y σ [ϕH (h)] .

Let 2 ≤ a and assume σ (h)Y a−1 = Y a−1σ
[
ϕa−1
H (h)

]
. Then we obtain

σ (h)Y a = σ (h)Y a−1Y = Y a−1σ
[
ϕa−1
H (h)

]
Y = Y a−1Y σ

[
ϕH

(
ϕa−1
H (h)

)]
= Y aσ [ϕa

H (h)] .

From this we deduce that ΓY = σ (g)Y = Y σ [ϕH (g)] = Y σ (qg) = qY Γ and hence that

∆B (Y n) = [Y ⊗ 1B + Γ⊗ Y ]
n
=

∑n

i=0

(
n

i

)
q

(Y ⊗ 1B)
n−i

(Γ⊗ Y )
i
=

∑n

i=0

(
n

i

)
q

Y n−iΓi ⊗ Y i.

The remaining statements follows as, by 3.1, σ is a morphism of bialgebras. �
Proposition 3.19. Take the hypothesis and notations of 3.13. Let ξ be a cocycle for the pre-
bialgebra (R,m, u, δ, ε).
If N is odd we have

m̃ (d1 ⊗ db) =

{
d1db ⊗ 1H for any 0 ≤ b ≤ N − 2.
1R ⊗ ξ (d1 ⊗ dN−1) for b = N − 1

If N is even, we have

m̃ (d1 ⊗ db) =


d1db ⊗ 1H for any 0 ≤ b ≤ N/2− 2.
q1+b−N/2d1+b−N/2 ⊗ x+ d1db ⊗ 1H for any N/2− 1 ≤ b ≤ N − 2.
1R ⊗ ξ (d1 ⊗ dN−1)− dN/2 ⊗ x for b = N − 1

where x = ξ
(
d1 ⊗ dN/2−1

)
.

Proof. We compute m̃ (d1 ⊗ db) for any 0 ≤ b ≤ N − 1.
We have

m̃ (d1 ⊗ db) = (m⊗ ξ)δR⊗R (d1 ⊗ db)

(29)
= (m⊗ ξ)

[∑
0≤j≤b

qj1R ⊗ dj ⊗ d1 ⊗ db−j +
∑

0≤j≤b
d1 ⊗ dj ⊗ 1R ⊗ db−j

]
=

∑
0≤j≤b

qjdj ⊗ ξ (d1 ⊗ db−j) +
∑

0≤j≤b
d1dj ⊗ ξ (1R ⊗ db−j)

(19)
=

∑
0≤j≤b

qjdj ⊗ ξ (d1 ⊗ db−j) + d1db ⊗ 1H

so that

(46) m̃ (d1 ⊗ db) =
∑

0≤j≤b
qjdj ⊗ ξ (d1 ⊗ db−j) + d1db ⊗ 1H for any 0 ≤ b ≤ N − 1.

Now, if 0 ≤ j ≤ b ≤ N − 1, then 1 ≤ 1 + (b− j) ≤ 1 + b ≤ N so that, by (44) , ξ (d1 ⊗ db−j) = 0

unless 1 + (b− j) = N
2 , N. If N is odd, then ξ (d1 ⊗ db−j) = 0 unless 1 + (b− j) = N. Thus

m̃ (d1 ⊗ db) = d1db ⊗ 1H for any 0 ≤ b ≤ N − 2 and for b = N − 1 we have ξ (d1 ⊗ db−j) = 0 unless

j = 0 so that m̃ (d1 ⊗ dN−1)
(46)
= 1R ⊗ ξ (d1 ⊗ dN−1) . In fact d1dN−1 = 0 by Theorem 3.14.

Assume now that N is even. Thus we have the following cases.
0 ≤ b ≤ N/2−2) In this case 1+(b− j) ≤ 1+(N/2− 2− j) ≤ N/2−1 so that ξ (d1 ⊗ db−j) = 0

always and hence m̃ (d1 ⊗ db) = d1db ⊗ 1H for any 0 ≤ b ≤ N/2− 2.
N/2−1 ≤ b ≤ N−2) In this case 1+(b− j) ≤ 1+(N − 2− j) ≤ N−1 so that ξ (d1 ⊗ db−j) = 0

unless 1 + (b− j) = N/2 and hence

m̃ (d1 ⊗ db)
(46)
= q1+b−N/2d1+b−N/2 ⊗ x+ d1db ⊗ 1H .

b = N − 1) In this case 1 + (b− j) = 1 + (N − 1− j) = N − j so that ξ
(
y ⊗ yb−j

)
= 0 unless

N − j = N/2, N which means j = 0, N/2 and hence

m̃ (d1 ⊗ dN−1)
(46)
= 1R ⊗ ξ (d1 ⊗ dN−1)− dN/2 ⊗ x.
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�

Notation 3.20. Take the hypothesis and notations of 3.13. Let ξ be a cocycle for the pre-bialgebra
(R,m, u, δ, ε). From now on, we will use the following notation

Y := y ⊗ 1H ,Γ = σ (g) .

Let B (H) be a basis for H. Next aim is to prove, under suitable hypothesis, that{
Y iσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
,

defines a basis for B = R#ξH and that there exists λ(N) ∈ K such that:

Y N = λ (N)
(
1A − ΓN

)
where λ (N) = 0 whenever gN = 1H . This will lead a complete description of the Hopf algebra
structure of B.

Proposition 3.21. Take the hypothesis and notations of 3.20. If N is odd we have

Y a =

{
ya ⊗ 1H for 0 ≤ a ≤ N − 1
σ
[
ξ
(
y ⊗ yN−1

)]
for a = N.

If N is even, we have

Y a =


ya ⊗ 1H for 0 ≤ a ≤ N/2− 1(

a
N/2

)
q
Y a−N/2 ·A X + ya ⊗ 1H for N/2 ≤ a ≤ N − 1

σ
[
ξ
(
y ⊗ yN−1

)]
+
(
N−1
N/2

)
q
X2 for a = N

where

X = 1R ⊗ (N/2− 1)q!ξ
(
d1 ⊗ dN/2−1

)
= 1R ⊗ (N/2− 1)q!x = (N/2− 1)q!σ (x) .

Proof. Recall that, by Theorem 3.14, we have yn = (n)q!dn for every 0 ≤ n ≤ N − 1 so that

m̃ (y ⊗ yn) = (n)q!m̃ (d1 ⊗ dn). Assume now that N is odd and let us prove, by induction on
0 ≤ a ≤ N − 1, that Y a = ya ⊗ 1H

For a = 0 there is nothing to prove. Let 1 ≤ a ≤ N − 1 and assume Y a−1 = ya−1 ⊗ 1H . Since
a− 1 ≤ N − 2, by Proposition 3.19 we have

m̃
(
y ⊗ ya−1

)
= (a− 1)q!m̃ (d1 ⊗ da−1) = (a− 1)q!d1da−1 ⊗ 1H = ya ⊗ 1H

so that

Y a = Y ·B Y a−1 = mR#H [(y#1H)⊗H (ya−1#1H)] = m̃
(
y ⊗ ya−1

)
= ya ⊗ 1H .

Moreover we have

m̃
(
y ⊗ yN−1

)
= (N − 1)q!m̃ (d1 ⊗ dN−1)

= 1R ⊗ ξ
[
d1 ⊗ (N − 1)q!dN−1

]
= 1R ⊗ ξ

(
y ⊗ yN−1

)
= σ

[
ξ
(
y ⊗ yN−1

)]
so that

Y N = Y ·B Y N−1 = mR#H [(y#1H)⊗H (yN−1#1H)] = m̃
(
y ⊗ yN−1

)
= σ

[
ξ
(
y ⊗ yN−1

)]
.

Assume N even. Since (y ⊗ 1H) ·B (yn ⊗ 1H) = m̃ (y ⊗ yn) = (n)q!m̃ (d1 ⊗ dn) for every 0 ≤ n ≤
N − 1, in view of Proposition 3.19 and as dn = yn

(n)q !
, we obtain

(y ⊗ 1H) ·B (yn ⊗ 1H)

=


yn+1 ⊗ 1H if 0 ≤ n ≤ N/2− 2
X + yN/2 ⊗ 1H if n = N/2− 1(

n
n+1−N/2

)
q
qn+1−N/2Y n+1−N/2 ·B X + yn+1 ⊗ 1H if N/2 ≤ n ≤ N − 2

σ
[
ξ
(
y ⊗ yN−1

)]
−
(
N−1
N/2

)
q
yN/2 ·B X +

(
N−1
N/2

)
q
X2 if n = N − 1.

Let us prove by induction on 0 ≤ a ≤ N/2− 1 that Y a = ya ⊗ 1H .
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For a = 0 there is nothing to prove. Let 1 ≤ a ≤ N/2 − 1 and assume Y a−1 = ya−1 ⊗ 1H .
We deduce, as above, that Y a = Y ·B Y a−1 = ya ⊗ 1H . Since, for any 0 ≤ a ≤ N/2 − 1, we
have Y aσ (h) = (ya ⊗ 1H)(1H ⊗ h) = ya ⊗ h, if we choose h = x = ξ

(
d1 ⊗ dN/2−1

)
, we get

Y aσ (x) = ya ⊗ x for any 0 ≤ a ≤ N/2− 1. Let us compute Y a for N/2 ≤ a ≤ N − 1.

Let us prove that, for any 0 ≤ t ≤ N/2− 1, we have Y N/2+t =
(
N/2+t
N/2

)
q
Y t ·A X + yt+N/2 ⊗ 1H .

We prove it by induction on t.
If t = 0 we have Y N/2 = Y ·B Y N/2−1 = (y ⊗ 1H) ·B (yN/2−1 ⊗ 1H) = X + yN/2 ⊗ 1H .Let
1 ≤ t ≤ N/2− 1 and assume that the formula holds for t− 1. We have

Y N/2+t = Y ·B Y N/2+t−1 = Y ·B

{(
N/2 + t− 1

N/2

)
q

Y t−1 ·B X + yt−1+N/2 ⊗ 1H

}

=

(
N/2 + t− 1

N/2

)
q

Y ·B Y t−1 ·B X + Y ·B
(
yt−1+N/2 ⊗ 1H

)
=

[(
N/2 + t− 1

N/2

)
q

+

(
t− 1 +N/2

t

)
q

qt

]
Y t ·B X + yt+N/2 ⊗ 1H

=

(
N/2 + t

N/2

)
q

Y t ·B X + yt+N/2 ⊗ 1H .

In fact, by [Ka, Poposition IV.2.1, page 74], we have
(
N/2+t
N/2

)
q
= qt

(
N/2+t−1
N/2−1

)
q
+
(
N/2+t−1

N/2

)
q
.

In particular, for t = N/2− 1 we get

Y N−1 =

(
N − 1

N/2

)
q

Y N−1−N/2 ·B X + yN−1 ⊗ 1H =

(
N − 1

N/2

)
q

Y N/2−1 ·B X + yN−1 ⊗ 1H .

Moreover, we have

Y N/2 ·B X =
(
X + yN/2 ⊗ 1H

)
·B X = X2 +

(
yN/2 ⊗ 1H

)
·B X = X2 + yN/2 ⊗ (N/2− 1)q!x.

We have

Y N = Y ·B Y N−1 = Y ·B

[(
N − 1

N/2

)
q

Y N/2−1 ·B X + yN−1 ⊗ 1H

]

=

(
N − 1

N/2

)
q

Y N/2 ·B X + Y ·
(
yN−1 ⊗ 1H

)
=

(
N − 1

N/2

)
q

Y N/2 ·B X + σ
[
ξ
(
y ⊗ yN−1

)]
−

(
N − 1

N/2

)
q

yN/2 ·B X +

(
N − 1

N/2

)
q

X2

= σ
[
ξ
(
y ⊗ yN−1

)]
+

(
N − 1

N/2

)
q

X2.

�

Corollary 3.22. Take the hypothesis and notations of 3.20. If H is f.d. or cosemisimple, then
there exists λ (N) ∈ K such that

Y N = λ (N)
(
1B − ΓN

)
.

Furthermore λ (N) = 0 whenever gN = 1H .

Proof. By Proposition 3.21 we have that Y N ∈ K ⊗H ∼= H. Since N = o (q),
(
N
i

)
q
= 0, for every

1 ≤ i ≤ N − 1, so that, by Proposition 3.18, we have that

∆B

(
Y N

)
=

∑N

i=0

(
N

i

)
q

Y N−iΓi ⊗ Y i = Y N ⊗ 1B + ΓN ⊗ Y N

and that ΓY N = qNY NΓ = Y NΓ, we can apply Theorem 0.1. �
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Lemma 3.23. Take the hypothesis and notations of 3.20. Let n ∈ N, 0 ≤ n ≤ N − 1. Assume that

ρ (d1dt) =
∑

(d1)〈−1〉 (dt)〈−1〉 ⊗ (d1)〈0〉 (dt)〈0〉 ,

for any 0 ≤ t ≤ n− 1. Then ρ (da) = ga ⊗ da, for any 0 ≤ a ≤ n.

Proof. If a = 0 there is nothing to prove.
If 1 ≤ a ≤ n and ρ (da−1) = ga−1 ⊗ da−1, since da = 1

(a)q
d1da−1, we have

ρ (da) =
1

(a)q
ρ (d1da−1) =

1

(a)q

∑
(d1)〈−1〉 (da−1)〈−1〉 ⊗ (d1)〈0〉 (da−1)〈0〉 =

=
1

(a)q
gga−1 ⊗ d1da−1 = ga ⊗ da.

�

Lemma 3.24. Take the hypothesis and notations of 3.20. If N is odd then ρ (da) = ga ⊗ da, for
any 0 ≤ a ≤ N − 1.
If N is even then ρ (da) = ga ⊗ da, for any 0 ≤ a ≤ N/2.

Proof. By Lemma 3.23. it is enough to prove that

(47) ρ (d1dt) =
∑

(d1)〈−1〉 (dt)〈−1〉 ⊗ (d1)〈0〉 (dt)〈0〉

for any 0 ≤ t ≤ n− 1 where n = N − 1 if N is odd and n = N/2 otherwise.
Assume N odd. Let 0 ≤ t ≤ N−2. Then, for any 0 ≤ i ≤ 1, 0 ≤ j ≤ t such that 0 < i+j < 1+t,

we have (1− i) + (t− j) = (1 + t)− (i+ j) and 1 ≤ (1 + t)− (i+ j) ≤ 1 + t− 1 ≤ N − 2 so that,
by (44), we get ξ (d1−i ⊗ dt−j) = 0.

Hence, by (32), for a = 1, b = t, we obtain (47).
Assume N even. Let 0 ≤ t ≤ N/2− 1. Then, for any 0 ≤ i ≤ 1, 0 ≤ j ≤ t such that 0 < i+ j <

1 + t, we have (1− i) + (t− j) = (1 + t)− (i+ j) and 1 ≤ (1 + t)− (i+ j) ≤ 1 + t− 1 ≤ N/2− 1
so that ξ (d1−i ⊗ dt−j) = 0.

Hence, by (32), for a = 1, b = t, as above we obtain (47). �

Lemma 3.25. Take the hypothesis and notations of 3.20. If N is odd and 1 ≤ b ≤ N − 1 or if N
is even and 1 ≤ b ≤ N/2, we have

∆Hξ(d1 ⊗ db) = g1+b ⊗ ξ (d1 ⊗ db) + ξ (d1 ⊗ db)⊗ 1H .

Proof. Let 1 ≤ b. Using (3) and (19) we get

∆Hξ (d1 ⊗ db)

(30)
=

∑
0≤i≤1,0≤j≤b

qj(1−i)ξ (di ⊗ dj) (d1−i)〈−1〉 (db−j)〈−1〉 ⊗ ξ
[
(d1−i)〈0〉 ⊗ (db−j)〈0〉

]
= (d1)〈−1〉 (db)〈−1〉 ⊗ ξ

[
(d1)〈0〉 ⊗ (db)〈0〉

]
+ ξ (d1 ⊗ db)⊗ 1H

= g (db)〈−1〉 ⊗ ξ
[
d1 ⊗ (db)〈0〉

]
+ ξ (d1 ⊗ db)⊗ 1H .

If N is odd and 1 ≤ b ≤ N − 1 or if N is even and 1 ≤ b ≤ N/2, by Lemma 3.24, we have
ρ (db) = gb ⊗ db and hence ∆Hξ(d1 ⊗ db) = g1+b ⊗ ξ (d1 ⊗ db) + ξ (d1 ⊗ db)⊗ 1H . �

Lemma 3.26. Take the hypothesis and notations of 3.20. Assume that N is even and let x =
ξ
(
d1 ⊗ dN/2−1

)
. Then x = 0 whenever H is cosemisimple.

Proof. By Lemma 3.25, for any 1 ≤ b ≤ N/2, we have

∆Hξ(d1 ⊗ db) = g1+b ⊗ ξ (d1 ⊗ db) + ξ (d1 ⊗ db)⊗ 1H .
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In particular, if N ≥ 4, then 1 ≤ N/2−1 ≤ N/2 so that we can apply this formula for b = N/2−1
and obtain ∆H (x) = gN/2 ⊗ x+ x⊗ 1H . This equality still holds whenever N = 2 as in this case
x = ξ

(
d1 ⊗ dN/2−1

)
= ξ (d1 ⊗ d0) = 0. By applying (24), to the case (a, b) = (1, N/2− 1) , we get

χN/2 (h)x =
∑

h(1)xSh(2), for any h ∈ H.

If h = g, we have qN/2x = gxg−1 that is xg + gx = 0. Assume now that H is cosemisimple and
let λ ∈ H∗ be a total integral. Then by applying H ⊗ λ to ∆H (x) = gN/2 ⊗ x + x ⊗ 1H we get
x = λ (x)

(
1H − gN/2

)
so that xg = gx. From xg + gx = 0 we obtain xg = 0 and hence x = 0. �

Definition 3.27. Let q be a primitive N -th root of unity. A compatible datum for q is a quadruple
(H, g, χ, λ (N)) , where

• (H, g, χ) is a Yetter-Drinfeld datum for q,
• λ (N) ∈ K and λ (N) = 0 if

gN = 1H , or χN (h)
(
1H − gN

)
6=

∑
h(1)

(
1H − gN

)
Sh(2), for some h ∈ H,

while λ (N) is an arbitrary otherwise.
A compatible datum is called trivial whenever λ (N) = 0 and it is called non-trivial oth-
erwise.

Remark 3.28. A compatible datum (H, g, χ, λ (N)) is trivial if and only if λ(N)(1H − gN ) = 0.

Theorem 3.29. Let H be a Hopf algebra and let (R,m, u, δ, ε) be a N -dimensional pre-bialgebra
in H

HYD. Assume that R is a thin coalgebra where P (R) = Ky. Let g ∈ H and χ ∈ H∗ be such
that (H, g, χ) is the Yetter-Drinfeld datum associated to y and let q = χ(g). Let ξ be a cocycle for
the pre-bialgebra (R,m, u, δ, ε).

Assume that H is either f.d. or cosemisimple. Then
1) q is a primitive N -th root of unity.
2) R is an associative algebra over K spanned by y and the N -th power of y in R is zero.
3) The map ϕH : H → H,ϕH (h) =

∑
χ
(
h(1)

)
h(2) is an algebra automorphism of H.

4) The map σ : H → R#H,σ (h) = 1R ⊗ h is a morphism of bialgebras.
5) There exists λ (N) ∈ K such that a (H, g, χ, λ (N)) is a compatible datum for q.
Let Y := y ⊗ 1H ,Γ = σ (g) and let B(H) be a basis for H.

Then B = R#ξH is the Hopf algebra with basis{
Y iσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
,

where Y i denotes the i-th iterated power of Y in B, for every i ∈ N, with algebra structure given
by

Y N = λ (N)
(
1B − ΓN

)
σ (h)Y a = Y aσ [ϕa

H (h)] for any a ∈ N,
σ (h)σ (k) = σ (hk) ,

and coalgebra structure given by

∆B (Y ) = Y ⊗ 1B + Γ⊗ Y

∆B (σ (h)) =
∑

σ
(
h(1)

)
⊗ σ

(
h(2)

)
,

for any h, k ∈ H. Furthermore Y n = yn ⊗ 1H for every 0 ≤ n ≤ N/2− 1 whenever N is even and
Y n = yn ⊗ 1H for every 0 ≤ n ≤ N − 1 whenever N is odd or x = 0.

Proof. 1) and 2) follow by Theorem 3.14. In view of 3.5, we get 3). Statement 4) follows by 3.1.
By Corollary 3.22, we have Y N = λ (N)

(
1B − ΓN

)
so that, by Proposition 3.18, we get all the

displayed equalities.
5) Set z = λ(N)(1H − gN ) so that Y N = σ (z) . We have

σ (hz) = σ (h)σ (z) = σ (h)Y N = Y Nσ
[
ϕN
H (h)

]
= σ (z)σ

[
ϕN
H (h)

]
= σ

[
zϕN

H (h)
]
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so that hz = zϕN
H (h) . From this equality we get∑
h(1)zSh(2) = zϕN

H

(
h(1)

)
Sh(2) = z

∑
χN

(
h(1)

)
h(2)Sh(3) = χN (h) z

and hence

(48) χN (h)λ (N)
(
1H − gN

)
=

∑
h(1)λ (N)

(
1H − gN

)
Sh(2).

Now, by Corollary 3.22, if gN = 1H , then λ (N) = 0.
If there exists an element h ∈ H such that

χN (h)
(
1H − gN

)
6=

∑
h(1)

(
1H − gN

)
Sh(2),

still, by (48), we get λ (N) = 0. Thus we have proved that (H, g, χ, λ (N)) is a compatible datum
for q = χ (g) .

It remains to prove the statement concerning the basis of B.

If H is cosemisimple, by Lemma 3.26 one has x = 0 whenever N is even. By Proposition 3.21
we deduce that

Y a = ya ⊗ 1H for 0 ≤ a ≤ N − 1

regardless the parity of N. Since B (B) =
{
yi ⊗ h | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
is a basis for B, we

conclude by observing that, in view of Lemma 3.17, one has yi ⊗ h = Y iσ (h) for any 0 ≤ i ≤
N − 1, h ∈ H.
Assume now that H is finite dimensional.

If N is odd we have Y a = ya ⊗ 1H for 0 ≤ a ≤ N − 1 and we conclude as in the cosemisimple
case.

If N is even, by Proposition 3.21, we have

Y a =

{
ya ⊗ 1H for 0 ≤ a ≤ N/2− 1(

a
N/2

)
q
Y a−N/2 ·A X + ya ⊗ 1H for N/2 ≤ a ≤ N − 1.

Then, from
(
yi ⊗ 1H

)
σ (h) = yi ⊗ h and by definition of X, for any h ∈ H, we get

Y aσ (h) =

{
ya ⊗ h for 0 ≤ a ≤ N/2− 1(

a
N/2

)
q
Y a−N/2σ

[
(N/2− 1)q!xh

]
+ ya ⊗ h for N/2 ≤ a ≤ N − 1.

Therefore we obtain

ya ⊗ h =

{
Y aσ (h) for 0 ≤ a ≤ N/2− 1
Y aσ (h)−

(
a

N/2

)
q
(N/2− 1)q!Y

a−N/2σ (xh) for N/2 ≤ a ≤ N − 1.

Since B (B) =
{
yi ⊗ h | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
is a basis for B, then

W =
{
Y iσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
generates B as a K-vector space. Since |W | ≤ N · |B (H)| = |B (B)| , we deduce that W is a basis
for B. Finally we point out that, since R0 = K1R, by Theorem 3.9, B is in fact a Hopf algebra. �

Theorem 3.30. Let H be a Hopf algebra over a field K. Let A be a bialgebra and let σ : H → A
be an injective morphism of bialgebras having a retraction π : A → H (i.e. πσ = H) that is an
H-bilinear coalgebra map. Let (R,m, u, δ, ε) be the pre-bialgebra in H

HYD associated to (A, π, σ)
with corresponding cocycle ξ.
Assume that

• H is either f.d. or cosemisimple;
• R is an N -dimensional thin coalgebra where P (R) = Ky.



32 A. ARDIZZONI, C. MENINI AND F. STUMBO

Let g ∈ H and χ ∈ H∗ be such that (H, g, χ) is the Yetter-Drinfeld datum associated to y and
let q = χ(g). Then

1) There exists λ (N) ∈ K such that a (H, g, χ, λ (N)) is a compatible datum for q.
2) (R,m, u) is an associative algebra over K spanned by y (a priori not in H

HYD) and the N -th
power of y in R is zero.

3) A is a Hopf algebra with basis{
yiσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
,

where yi denotes the i-th iterated power of y in A, for every i ∈ N, algebra structure given by

yN = λ (N)
(
1A − ΓN

)
,

σ (h) ya = yaσ [ϕa
H (h)] for any a ∈ N, and h ∈ H

and coalgebra structure given by

∆A (y) = y ⊗ 1A + Γ⊗ y.

Here ϕH : H → H denotes the algebra automorphism of H defined by ϕH (h) =
∑
χ
(
h(1)

)
h(2)

and Γ = σ (g) .
4) The n-th iterated power of y in R and the n-th iterated power of y in A coincides for every

0 ≤ n ≤ N/2− 1 whenever N is even.
5) The n-th iterated power of y in R and the n-th iterated power of y in A coincides for every

0 ≤ n ≤ N − 1, whenever N is odd or ξ
(
y ⊗ yN/2−1

)
= 0.

Proof. By Theorem 3.29,

• q is a primitive N -th root of unity
• R is an associative algebra over K spanned by y and the N -th power of y in R is zero.
• The map ϕH : H → H,ϕH (h) =

∑
χ
(
h(1)

)
h(2) is an algebra automorphism of H.

• The map γ : H → R#H, γ (h) = 1R ⊗ h is a bialgebra homomorphism.
• There exists λ (N) ∈ K such that a (H, g, χ, λ (N)) is a compatible datum for q.

Let Y := y⊗1H ,Θ = γ (g) and let B(H) be a basis for H. Then B = R#ξH is the Hopf algebra
with basis

{
Y iγ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
, with algebra structure given by

Y N = λ (N)
(
1B −ΘN

)
,

γ (h)Y a = Y aγ [ϕa
H (h)] for any a ∈ N,

γ (h) γ (k) = γ (hk) ,

and coalgebra structure given by

∆B (Y ) = Y ⊗ 1B +Θ⊗ Y, ∆B (γ (h)) =
∑

γ
(
h(1)

)
⊗ γ

(
h(2)

)
,

for any h, k ∈ H. As explained in Remark 3.3, the map ω : R#ξH → A, ω(r#h) = rσ(h), is a
bialgebra isomorphism. Let yn denote the n-th iterated power of y in R. We have that

(1) ω(Y ) = ω(y#1H) = y,
(2) ω(γ(h)) = ω (1R#h) = σ(h), so that
(3) ω(Θ) = ω(γ (g)) = σ (g) = Γ.
(4) Y n = yn ⊗ 1H for every 0 ≤ n ≤ N/2− 1.
(5) If N is odd or x = 0, then Y n = yn ⊗ 1H for every 0 ≤ n ≤ N − 1

If N is even, as (N/2− 1)q!x = ξ(y ⊗ yN/2−1), we have that x = 0 if and only if

ξ(y ⊗ yN/2−1) = 0. Let 0 ≤ n ≤ N − 1 be such that Y n = yn ⊗ 1H . Then

ω(Y n) = ω(yn#1H) = yn = n-th iterated power of y in R.

On the other hand since ω is an algebra homomorphism, then

ω(Y n) = ω(Y )n = n-th iterated power of y in A.

�



Small Bialgebras with a Projection 33

Remark 3.31. Note that in the statement of Theorem 3.30, the basis of A is{
yiσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
,

where yi is the i-th iterated power of y in A. In fact, since R is not a subalgebra of A, one should
not mix up the powers of y in A with the powers of y in R. In [AMSt] we will provide an example
showing that these may be different.

4. Normalization of the Projection

Theorem 4.1. Let N ∈ N\ {0} . Let H be a Hopf algebra, let A be a bialgebra, let σ : H → A be
an injective bialgebra map and let y ∈ A be an element such that

B (A) =
{
yiσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
is a basis for A, where yi denotes the i-th iterated power of y in A, for every i ∈ N. Assume that
the algebra structure of A is defined by

yN = λ (N)
(
1A − ΓN

)
, λ (N) ∈ K,Γ = σ (g)

σ (h) ya = yaσ [ϕa (h)] for any a ∈ N, and h ∈ H,

where g ∈ G (H) , ϕ : H → H is an isomorphism of algebras, ϕ (g) = qg where q is a primitive
N -th root of unity. Assume also that the coalgebra structure is given by

∆A (y) = y ⊗ 1A + Γ⊗ y.

Let
p : A→ H, p [ynσ (h)] = δn,0h, for every 0 ≤ n ≤ N − 1, h ∈ B (H) .

Then p is an H-bilinear coalgebra (not necessarily algebra) retraction (pσ = H) of σ.
Moreover (H, g, εHϕ) is a Yetter-Drinfeld datum for q and the pre-bialgebra in H

HYD associated to
(A, p, σ) is (R,m, u, δ, ε) with corresponding cocycle ξ where

1) R = Rq (H, g, εHϕ) is a braided bialgebra in H
HYD, in fact a quantum line spanned by y of

dimension N and the N -th power of y in R is zero.
2) for any 0 ≤ n ≤ N − 1, the n-th power of y in R coincides with the n-th power of y in A,

namely yn.
3) for any 0 ≤ a, b ≤ N − 1, we have

ξ(ya ⊗ yb) =

 1 for a+ b = 0
λ(N)(1H − gN ) for a+ b = N
0 otherwise.

4) ϕ (h) =
∑
εHϕ

(
h(1)

)
h(2), for every h ∈ H.

Furthermore A is a Hopf algebra.

Proof. Clearly we have pσ = H. Since σ (h) ya = yaσ [ϕa (h)] and by definition of p, it is straight-
forward to check that p is H-bilinear. Let us prove that p is a coalgebra homomorphism. Since p is
H-bilinear, it is enough to check it on the powers of y. Since (Γ⊗ y) (y ⊗ 1A) = q (y ⊗ 1A) Γ⊗y, by
the quantum binomial formula, for any 0 ≤ n ≤ N−1, we deduce ∆A (yn) =

∑n
i=0

(
n
i

)
q
yn−iΓi⊗yiso

that (p⊗ p)∆A (yn) = ∆Hp (y
n) and εHp (y

n) = εA (yn) . Thus p is an H-bilinear coalgebra re-
traction of σ.

Therefore we can consider the pre-bialgebra (R,m, u, δ, ε) in H
HYD associated to (A, p, σ) with

corresponding cocycle ξ. We want to compute

R = Aco(H) =
{
a ∈ A |

∑
a(1) ⊗ p

(
a(2)

)
= a⊗ 1H

}
.

It is easy to check that yn ∈ R, for any 0 ≤ n ≤ N − 1. Let us prove that (yn)0≤n≤N−1 defines

a basis for R. Clearly, since B (A) is a basis of A, they are linearly independent over K. Let us
check that they also generate R as a vector space over K. Recall from Proposition 3.4 that the
map τ : A→ R, τ (a) =

∑
a(1)σSHp

[
a(2)

]
defines a surjective coalgebra homomorphism such that

τ (aσ (h)) = τ (a) εH (h) . Moreover, since yn ∈ R, then τ (yn) = yn, for every 0 ≤ n ≤ N−1, while

τ (yn) = τ
(
yn−NyN

)
= λ (N) τ

[
yn−N

(
1A − ΓN

)]
= λ (N) τ

(
yn−N

)
εH

(
1H − gN

)
= 0.
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for every n ≥ N.
Now since τ is surjective, R is generated by

τ [B (A)] =
{
εH (h) yi | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
so that (yn)0≤n≤N−1 generates R as a vector space over K and hence it is a basis.

Let us deal with the multiplication m of R. Since, by Proposition 3.4, we have r ·R s = τ (r ·A s) ,
we get that

ya ·R yb = τ
(
ya ·A yb

)
= τ

(
ya+b

)
, for any 0 ≤ a, b ≤ N − 1.

If 0 ≤ a+ b ≤ N − 1, then ya ·R yb = ya+b while, if a+ b ≥ N, then ya ·R yb = τ
(
ya+b

)
= 0.This

entails

y·Rn =

{
yn for 0 ≤ n ≤ N − 1,
0 for n ≥ N,

and that R is an associative algebra.
Let us deal with the comultiplication δ of R. For every 0 ≤ n ≤ N − 1, we get

δ (yn) = δτ (yn) = (τ ⊗ τ)∆A (yn) =
∑n

i=0

(
n

i

)
q

yn−i ⊗ yi.

This tells us that R is a graded coalgebra and its homogeneous part of degree 0 is K1A. Note that
both the algebra and the coalgebra structures of R agree with the ones of a quantum line generated
by y. In particular R0 = K1A and P (R) = Ky.
Let us deal with the cocycle ξ of R. Let 0 ≤ a, b ≤ N − 1. Then, by 3.2, we have

ξ(ya ⊗ yb) = p(ya ·A yb) = p
(
ya+b

)
.

If 0 ≤ a+ b ≤ N − 1, we have ξ(ya⊗ yb) = p
(
ya+b

)
= δa+b,0 while, if N ≤ a+ b ≤ 2N − 2, we have

ξ(ya ⊗ yb) = p
(
ya+b

)
= p

(
ya+b−NyN

)
= λ (N) p

[
ya+b−N

(
1A − ΓN

)]
= λ (N) δa+b,N

(
1H − gN

)
.

Therefore, for any 0 ≤ a, b ≤ N−1, we get 3). Now, from 3.2, the Yetter-Drinfeld module structure
of R is given by

hr =
∑

σ
(
h(1)

)
rσSH

(
h(1)

)
, ρ (r) =

∑
p
(
r(1)

)
⊗ r(2).

From these equalities we get

ρ (yn) =
∑

p
[
(yn)(1)

]
⊗ (yn)(2) = gn ⊗ yn,

for every 0 ≤ n ≤ N − 1, and

hy =
∑

σ
(
h(1)

)
yσSH

(
h(2)

)
=

∑
yσ

[
ϕ
(
h(1)

)]
σSH

(
h(2)

)
= yσ

[∑
ϕ
(
h(1)

)
SH

(
h(2)

)]
.

In particular we have gy = qy. Let us prove now that (H, g, εHϕ) is a Yetter-Drinfeld datum for
q and that the pre-bialgebra in H

HYD associated to (A, p, σ) is (R,m, u, δ, ε) with corresponding
cocycle ξ.

By Lemma 2.7, there is a primitive θ-th root of unity q′ 6= 1, where 2 ≤ θ ≤ dimK (R) = N,
and and g′ ∈ H,χ ∈ H∗ such that

1) (H, g′, χ) is a Yetter-Drinfeld datum for q′,
2) ρ(y) = g′ ⊗ y and
3) hy = χ(h)y for every h ∈ H.
Let us prove that g′ = g, q′ = q and χ = εHϕ.
Since g′ ⊗ y = ρ(y) = g ⊗ y, we deduce g = g′. For every h ∈ H we have

χ(h)y = hy = yσ
[∑

ϕ
(
h(1)

)
SH

(
h(2)

)]
so that χ(h)1H =

∑
ϕ
(
h(1)

)
SH

(
h(2)

)
and hence

ϕ (h) =
∑

ϕ
(
h(1)

)
SH

(
h(2)

)
h(3) =

∑
χ
(
h(1)

)
h(2).

In particular, for h = g we get qg = ϕ (g) = χ (g) g = χ(g′)g = q′g so that q′ = q and θ = N. Note
that εHϕ (h) = χ (h) , for every h ∈ H.
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Thus we deduce that R = Rq (H, g, χ) is a quantum line spanned by y of dimension N. Now, as a
bialgebra, A is isomorphic to B = R#ξH (see Remark 3.3). By Theorem 3.9, since R0 = K1R, we
get that A is a Hopf algebra. �

Theorem 4.2. Let H be a Hopf algebra over a field K. Let A be a bialgebra and let σ : H → A
be an injective morphism of bialgebras having a retraction π : A → H (i.e. πσ = H) that is an
H-bilinear coalgebra map. Assume that either H is f.d. or cosemisimple and that the coalgebra in
the pre-bialgebra in H

HYD associated to (A, π, σ) is thin.
Then there exist

• a retraction p : A→ H (i.e. pσ = H) that is an H-bilinear coalgebra map,
• a primitive N -th root of unit q,
• g ∈ H,χ ∈ H∗, λ (N) ∈ K so that (H, g, χ, λ (N)) is a compatible datum for q

such that the pre-bialgebra in H
HYD associated to (A, p, σ) is (R,m, u, δ, ε) with corresponding

cocycle ξ where
1) R = Rq (H, g, χ) is a braided bialgebra in H

HYD, in fact a quantum line spanned by y of
dimension N and the N -th power of y in R is zero.

2) For any 0 ≤ n ≤ N − 1, the n-th iterated power of y in R coincides with the n-th iterated
power of y in A and will both be denoted by yn.

3) For any 0 ≤ a, b ≤ N − 1, we have

ξ(ya ⊗ yb) =

 1 for a+ b = 0
λ(N)(1H − gN ) for a+ b = N
0 otherwise.

Moreover A is a Hopf algebra with basis{
yiσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
,

algebra structure given by

yN = λ (N)
(
1A − ΓN

)
,

σ (h) ya = yaσ [ϕa
H (h)] for any a ∈ N, and h ∈ H

and coalgebra structure given by

∆A (y) = y ⊗ 1A + Γ⊗ y.

Here ϕH : H → H denotes the algebra automorphism of H defined by ϕH (h) =
∑
χ
(
h(1)

)
h(2)

and Γ = σ (g) .
Furthermore, π = p whenever π is a homomorphism of bialgebras.

Proof. By Theorem 3.30 we can apply Theorem 4.1.
Let us prove the last assertion. Denote by (R′,m′, u′, δ′, ε′) the pre-bialgebra in H

HYD associated
to (A, π, σ) with corresponding cocycle ξ′. For every r ∈ R′ we have π (r) =

∑
εA

(
r(1)

)
π
(
r(2)

)
=

ε (r) 1H . Since P (R′) = Ky, denote by yn the n-th iterated power of y in A. Therefore, if π is an
algebra homomorphism, we have

π (yn) = π (y)
n
= ε (y)

n
1H = δn,01H .

Since A is a Hopf algebra with basis
{
yiσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
, and π is right H-linear,

we get π [ynσ (h)] = π (yn)h = δn,0h = p [ynσ (h)] and hence π = p. �

Corollary 4.3. Under the hypothesis and assumptions of Theorem 4.2, the following conditions
are equivalent:

(a) ξ = ε⊗ ε.
(b) The compatible datum (H, g, χ, λ (N)) is trivial.
(c) A ' R#ξH is the Radford-Majid bosonization of R.
(d) p is a bialgebra homomorphism.
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Proof. (a) ⇔ (c) ⇔ (d) follow by Lemma 3.8 as R is a braided bialgebra in H
HYD.

(a) ⇔ (b) . Since

ξ(ya ⊗ yb) =

 1 for a+ b = 0
λ(N)(1H − gN ) for a+ b = N
0 otherwise.

we have that ξ = ε⊗ ε iff λ(N)(1H − gN ) = 0. By Remark 3.28 we conclude. �

Definition 4.4. Recall from [AMS, Definition 2.7] that an ad-invariant integral for a Hopf algebra
H is a linear map λ : H → K such that∑

h(1)λ
(
h(2)

)
= 1Hλ (h) , λ (1H) = 1K ,

∑
λ
[
h(1)xSH

(
h(2)

)]
= εH (h)λ (x) ,

for any h, x ∈ H. From [AMS, Theorem 2.27] any semisimple and cosemisimple Hopf algebra (e.g.
f.d. cosemisimple) has such an integral. Note that the group algebra, which is in general not
semisimple, always admits an ad-invariant integral.

Theorem 4.5. Let A be a bialgebra over a field K. Suppose that the coradical H of A is a f.d.
subbialgebra of A with antipode. Then A is a Hopf algebra and there is a retraction π : A → H
(i.e. πσ = H) that is an H-bilinear coalgebra map. Let (R,m, u, δ, ε) be the pre-bialgebra in H

HYD
associated to (A, π, σ) with corresponding cocycle ξ.
Assume that R is an N -dimensional thin coalgebra where P (R) = Ky.
Then there exist

• a primitive N -th root of unit q,
• g ∈ H,χ ∈ H∗, λ (N) ∈ K so that (H, g, χ, λ (N)) is a compatible datum for q

such that
1) R = Rq (H, g, χ) is a quantum line spanned by y.
2) The n-th iterated power of y in R and the n-th iterated power of y in A coincide for every

0 ≤ n ≤ N − 1.
3)

ξ(ya ⊗ yb) =

 1 for a+ b = 0
λ(N)(1H − gN ) for a+ b = N, a 6= 0, b 6= 0
0 otherwise.

Moreover A is a Hopf algebra with basis{
yiσ (h) | 0 ≤ i ≤ N − 1, h ∈ B (H)

}
,

algebra structure given by

yN = λ (N)
(
1A − ΓN

)
,

σ (h) ya = yaσ [ϕa
H (h)] for any a ∈ N, and h ∈ H

and coalgebra structure given by

∆A (y) = y ⊗ 1A + Γ⊗ y.

Here ϕH : H → H denotes the algebra automorphism of H defined by ϕH (h) =
∑
χ
(
h(1)

)
h(2)

and Γ = σ (g) .
Furthermore, if yN = λ (N)

(
1A − ΓN

)
6= 0, then

χN = εH and gN ∈ Z (H) .

Proof. By [AMS, Theorem 2.35], the canonical injection of H in A has a retraction π : A → H
which is an H-bilinear coalgebra map. By Theorem 3.30 we can apply Theorem 4.1. In order to
conclude it is enough to prove that π = p. By the quantum binomial formula, we have ∆A (yn) =∑n

i=0

(
n
i

)
q
yn−iΓi ⊗ yi, for any n ∈ N. Since π is a right H-linear coalgebra homomorphism, by

applying π ⊗ π to both sides, we get

∆A (π (yn)) =
∑n

i=0

(
n

i

)
q

π
(
yn−i

)
gi ⊗ π

(
yi
)
.
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Let λ : H → K be an ad-invariant integral and apply H ⊗λ to both sides of the displayed equality
to obtain

(49) λπ (yn) =
∑n

i=0

(
n

i

)
q

π
(
yn−i

)
giλπ

(
yi
)
.

Let us prove for induction on 0 ≤ n ≤ N − 1 that λπ (yn) = δ0,n. If n = 0 there is nothing to
prove. Let n ≥ 1 and assume λπ (yt) = δ0,t, for every 0 ≤ t ≤ n− 1. Let us prove that yt ∈ R, for
every 0 ≤ t ≤ n− 1 :(

yt
)
(1)

⊗ π
[(
yt
)
(2)

]
=

∑t

i=0

(
t

i

)
q

yt−iΓi ⊗ π
(
yi
)
= yt ⊗ 1H .

In particular yn−1 ∈ R and since y ∈ R, by definition of ξ we have

π (yn) = π
(
y ·A yn−1

)
= ξ

(
y ⊗ yn−1

)
.

Since λ is ad-invariant, we have∑
λξ(h(1)r ⊗ h(2)s)

(14)
=

∑
λ
[
h(1)ξ(r ⊗ s)Sh(2)

]
= εH (h)λξ(r ⊗ s)

Apply this equality to the case h = g, r = y and s = yn−1 :

λξ(gy ⊗ gyn−1) = λξ(y ⊗ yn−1).

Since g (yt) = ΓytS (Γ) = [ΓyS (Γ)]
t
= qtyt, we get

qnλξ(y ⊗ yn−1) = λξ(y ⊗ yn−1).

Since 1 ≤ n ≤ N − 1, we have qn 6= 1 and hence λπ (yn) = λξ(y ⊗ yn−1) = 0. Therefore we have
proved that λπ (yn) = δ0,n, for every 0 ≤ n ≤ N − 1. By (49), we have

δn,0 =
∑n

i=0

(
n

i

)
q

π
(
yn−i

)
giδi,0 = π (yn) .

Since π is right H-linear, it is clear that π = p. �

Acknowledgements. We would like to thank the referee for many useful suggestions that im-
proved an earlier version of this paper.

References

[AS] N. Andruskiewitsch, H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order p3,

J. Algebra 209 (1998), 658–691.
[AMS] A. Ardizzoni, C. Menini and D. Stefan A Monoidal Approach to Splitting Morphisms of Bialgebras, Trans.

Amer. Math. Soc., 359 (2007), 991–1044.
[AMSt] A. Ardizzoni, C. Menini and F. Stumbo Small Bialgebras with Projection: Applications, preprint.
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