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Abstract. Blood vessel networks form by spontaneous aggregation of
individual cells migrating toward vascularization sites (vasculogenesis).
A successful theoretical model of two dimensional experimental vasculo-
genesis has been recently proposed, showing the relevance of percolation
concepts and of cell cross-talk (chemotactic autocrine loop) to the under-
standing of this self-aggregation process. Here we study the natural 3D
extension of the earlier proposed computational model, which is relevant
to for the investigation of the genuinely threedimensional process of vas-
culogenesis in vertebrate embryos. The computational model is based on
a multidimensional Burgers equation coupled with a reaction di�usion
equation for a chemotactic factor and a mass conservation law. The nu-
merical approximation of the computational model is obtained by high
order relaxed schemes. Space and time discretization are preformed by
using ENO or TVD schemes and, respectively, IMEX schemes. Due to
the computational costs of realistic simulations, we have implemented
the numerical algorithm on a cluster for parallel computation. Starting
from initial conditions mimicking the experimentally observed ones, nu-
merical simulations produce network-like structures qualitatively similar
to those observed in the early stages of in vivo vasculogenesis. We de-
velop the computation of critical percolative indices as a robust measure
of the network geometry as a �rst step towards the comparison of com-
putational and experimental data.

1 Introduction

In recent years, biologists have collected many qualitative and quantitative data
on the behavior of microscopic components of living beings. We are, however,
still far from understanding in detail how these microscopic components interact
to build functions which are essential for life. A problem of particular interest
which has been extensively investigated is the formation of patterns in biological
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tissues [2]. Such patterns often show self-similarity and scaling laws [17] similar
to those emerging in the physics of phase transitions [25].

The vascular network [27,28] is a typical example of natural structure charac-
terized by non trivial scaling laws. In recent years many experimental investiga-
tions have been performed on the mechanism of blood vessel formation [6] both
in living beings and in in vitro experiments. Vascular networks form by spon-
taneous aggregation of individual cells travelling toward vascularization sites
(vasculogenesis).A successful theoretical model of two dimensional experimental
vasculogenesis has been recently proposed, showing the relevance of percolation
concepts and of cell cross-talk (chemotactic autocrine loop) to the understanding
of this self-aggregation process.

Theoretical and computational modelling is useful in testing biological hy-
potheses in order to explain which kind of coordinated dynamics gives origin to
the observed highly structured tissue patterns. One can develop computational
models based on simple dynamical principles and test whether they are able to
reproduce the experimentally observed features. If the basic dynamical principles
are correctly chosen, computational experiments allow to observe the emergence
of complex structures from a multiplicity of interactions following simple rules.

Apart from the purely theoretical interest, reproducing biological dynamics
by computational models allows to identify those biochemical and biophysical
parameters which are the most important in driving the process. This way, com-
putational models can produce a deeper understanding of biological mechanisms,
which in principle may end up having relevant practical consequences. It is worth
noticing here that a complete understanding of the vascularization process is
possible only if it is considered in its natural threedimensional setting ([1,7]).

In this paper we illustrate computational results regarding the simulation of
vascular network formation in a threedimensional environment. We consider the
threedimensional version of the model proposed in [10,22]. The model is based
on a Burgers-like equation, a well studied paradigm in the theory of pattern
formation, integrated with a feedback term describing the chemotactic autocrine
loop. The numerical evolution of the computational model starting from initial
conditions mimicking the experimentally observed ones produces network-like
structures qualitatively similar to those observed in the early stages of in vivo
vasculogenesis.

Since in the long run we are interested in developing quantitative comparison
between experimental data and theoretical model, we start by selecting a set of
observable quantities providing robust quantitative information on the network
geometry. The lesson learned from the study of twodimensional vasculogenesis is
that percolative exponents [26] are an interesting set of such observables, so we
test the computation of percolative exponents on simulated network structures.

A quantitative comparison of the geometrical properties of experimental and
computational network structure will become possible as soon as an adequate
amount of experimental data, allowing proper statistical computation, will be-
come available.
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The paper is organized as follows. Section 2 summarizes some background
knowledge on the biological problem of vascular network formation. Section 3 is a
short review of the properties of the model introduced in [10,22]. In Section 4 the
numerical approximation technique for the model is described. In Section 5 we
describe the qualitative properties of simulated network structures and present
the results of the computation of the exponents of the percolative transition.
Finally, in the Conclusions, we point out at predictable developments of our
research.

2 Biological background

To supply tissues with nutrients in an optimal way, vertebrates have developed
a hierarchical vascular system which terminates in a network of size-invariant
units, i.e. capillaries. Capillary networks characterized by intercapillary distances
ranging from 50 to 300 µm are essential for optimal metabolic exchange [11].

Capillaries are made of endothelial cells. Their growth is essentially driven
by two processes: vasculogenesis and angiogenesis [6]. Vasculogenesis consists of
local di�erentiation of precursor cells to endothelial ones, that assemble into a
vascular network by directed migration and cohesion. Angiogenesis is essentially
characterized by sprouting of novel structures and their remodelling.

In twodimensional assays, the process of formation of a vascular network
starting from randomly seeded cells can be accurately tracked by videomicroscopy
[10] and it is observed to proceed along three main stages: i) migration and early
network formation, ii) network remodelling and iii) di�erentiation in tubular
structures. During the �rst phase, which is the most important for determining
the �nal geometrical properties of the structures, cells migrate over distances
which are an order of magnitude larger than their radius and aggregate when
they adhere with one of their neighbours. An accurate statistics of individual
cells trajectories has been presented in [10], showing that, in the �rst stage
of the dynamics, cell motion has marked directional persistence, pointing to-
ward zones of higher cell concentration. This indicates that cells communicate
through the emission of soluble chemical factors that di�use (and degrade) in the
surrounding medium, moving toward the gradients of this chemical �eld. Cells
behave like not-directly interacting particles, the interaction being mediated by
the release of soluble chemotactic factors. Their dynamics is well reproduced by
the theoretical model proposed in [10].

The lessons learned from the study of in vitro vasculogenesis is thus that
the formation of experimentally observed structures can be explained as the
consequence of cell motility and of cell cross-talk mediated by the exchange
of soluble chemical factors (chemotactic autocrine loop). The theoretical model
also shows that the main factors determining the qualitative properties of the
observed vascular structures are the available cell density and the di�usivity and
half-life of the soluble chemical exchanged. It seems that only the dynamical rules
followed by the individual cell are actually encoded in the genes. The interplay
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of these simple dynamical rules with the geometrical and physical properties of
the environment produces the highly structured �nal result.

At the moment, no direct observation of the chemotactic autocrine loop reg-
ulating vascular network formation is available, although several indirect bio-
chemical observations point to it, so, the main evidence in this sense still comes
from the theoretical analysis of computational models.

Several major developments in threedimensional cell culture and in cell and
tissue imaging allow today to observe in real time the mechanisms of cell migra-
tion and aggregation in threedimensional settings [9,20].

In the embryo, endothelial cells are produced and migrate in a threedimen-
sional sca�old, the extracellular matrix. Migration is actually performed through
a series of biochemical processes, such as sensing of chemotactic gradients, and
of mechanical operations, such as extensions, contractions, and degrading of the
extracellular matrix along the way.

The evidence provided by twodimensional experimental vasculogenesis sug-
gests that cell motion can be directed by an autocrine loop of soluble chemoat-
tractant factors also in the real threedimensional environment.

As a sample of typical vascular structures that are observe in a threedimen-
sional setting in the early stages of development of a living being, we include
here (750 µm)2 images of chick embryo brain at di�erent development stages
(Fig. 1). At an early stage (about 52-64 hours) one observes a typical immature
vascular network formed by vasculogenesis and characterized by a high density
of similar blood vessels (Fig. 1A). At the next stage (70-72 hours) we observe
initial remodelling of the vascular network (Figs. 1B,C). Remodeling becomes
more evident when the embryo is 5 days old, when blood vessels are organized
in a mature, hierarchically organized vascular tree (Fig. 1D).

A B

C D

Fig. 1. Vascular networks formed by vasculogenesis in chick embryo brain, at various
stages of development, classi�ed according to Hamilton and Hamburger (HH). A: HH
stage 17, corresponding to 52-64 hours; B: HH stage 20 (70-72 hours); C,D: HH stage
26 (5 days). fig:vascular

3 Mathematical model of blood vessel growth

The multidimensional Burgers' equation is a well-known paradigm in the study
of pattern formation. It gives a coarse grained hydrodynamic description of the
motion of independent agents performing rectilinear motion and interacting only
at very short ranges. These equations have been utilized to describe the emer-
gence of structured patterns in many di�erent physical settings (see e.g. [23,14]).
In the early stages of dynamics, each particle moves with a constant velocity,
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given by a random statistical distribution. This motion gives rise to intersection
of trajectories and formation of shock waves. After the birth of these local singu-
larities regions of high density grow and form a peculiar network-like structure.
The main feature of this structure is the existence of comparatively thin layers
and �laments of high density that separate large low-density regions.

In order to study and identify the factors in�uencing blood vessel forma-
tion one has to take into account evidence suggesting that cells do not behave
as independent agents, but rather exchange information in the form of soluble
chemical factors. This leads to the model proposed by Gamba et al. in [10] and
Serini et al. in [22]. The model describes the motion of a �uid of randomly seeded
independent particles which communicate through emission and absorption of a
soluble factor and move toward its concentration gradients.

3.1 Model equations

The cell population is described by a continuous density n(x, t), where x ∈ Rd

(d = 2, 3) is the space variable, and t ≥ 0 is the time variable. The population
density moves with velocities v(x, t), that are triggered by chemical gradients
of a soluble factor. The chemoattractant soluble factor is described by a scalar
chemical concentration �eld c(x, t). It is supposed to be released by the cells,
di�use, and degrade in a �nite time, in agreement with experimental observa-
tions.

The dynamics of the cell density can be described by coupling three equa-
tions. The �rst one is the mass conservation law for cell matter, which expresses
the conservation of the number of cells. The second one is a momentum bal-
ance law that takes into account the phenomenological chemotactic force, the
dissipation by interaction with the substrate, the phenomenon of cell directional
persistency along their trajectories and a term implementing an excluded volume
constraint [10,3]. Finally there is a reaction-di�usion equation for the produc-
tion, degradation and di�usion of the concentration of the chemotactic factor.
One then has the following system:Naldi:modello

∂n

∂t
+∇ · (nv) = 0 (1a)

∂v
∂t

+ v · ∇v = µ(c)∇c−∇φ(n)− β(c)v (1b)

∂c

∂t
= D∆c + α(c)n− c

τ
(1c)

where µ measures the cell response to the chemotactic factor, and D and τ are
respectively the di�usion coe�cient and the characteristic degradation time of
the soluble chemoattractant. The function α determines the rate of release of
the chemical factor. The friction term −βv mimics the dissipative interaction of
the cells with the extracellular matrix.

A simple model can be obtained by assuming that the cell sensitivity µ, the
rate of release of the chemoattractant α and the friction coe�cient β are con-
stant. A more realistic description may be obtained including saturation e�ects
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as functional dependencies of the aforementioned coe�cients on the concentra-
tion c.

The term ∇φ(n) is a density dependent pressure term, where φ(n) is zero for
low densities, and increases for densities above a suitable threshold. This pressure
is a phenomenological term which models short range interaction between cells
and the fact that cells do not interpenetrate.

We observe that, at low density n and for small chemoattractive gradients,
(1b) is an inviscid Burgers' equation for the velocity �eld v [5], coupled to the
standard reaction-di�usion equation (1c) and the mass conservaton law (1a).

Since in the early stages of development almost all intraembryonic mesoder-
mal tissues contain migrating endothelial precursors, which appear to be ran-
domly scattered, we use initial conditions representing a randomly scattered dis-
tribution of cells, i.e., we throw an assigned number of cells in random positions
inside the cubic box, with zero initial velocities and zero initial concentration of
the soluble factor, with a single cell given initially by a Gaussian bump of width
σ of the order of the average cell radius (' 15µm) and unitary weight in the
integrated cell density �eld n.

In order to model the fact that closely packed cells resist to compression,
a phenomenological, density dependent, pressure ∇φ(n) acting only when cells
become close enough to each other is introduced. The potential φ has to be
monotonically increasing and constant for n < n0 where n0 is the close-packing
density. Our simulations suggest that the exact functional form of φ(n) is not
relevant. For simplicity we choose

φ(n) =

{
Bp(n− n0)Cp n > n0

0 n ≤ n0

(2) eq:pressione

3.2 Parameter values

Fourier analysis of Eq. (1) with constant parameters and in the fast di�usion
approximation ∂c/∂t = 0 suggests that starting from the aformentioned initial
conditions, equation (1) should develop network patterns characterized by a
typical length scale r0 =

√
Dτ , which is the e�ective range of the interaction

mediated by soluble factors. As a matter of fact, Fourier components ĉk of the
chemical �eld are related to the Fourier components of the density �eld n̂k by
the relation

ĉk =
ατn̂k

Dτk2 + 1
.

This means that in equation (1) wavelengths of the �eld n of order r0 are am-
pli�ed, while wavelengths λ � r0 or λ � r0 are suppressed.

Initial conditions introduce in the problem a typical length scale given by
the average cell-cell distance L/

√
N , where L is the system size and N the

particle number. The dynamics, �ltering wavelengths [8], rearranges the matter
and forms a network characterized by the typical length scale r0.

It is interesting to check the compatibility of the theoretical prediction with
physical data. From available experimental results [21] it is known that the order
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of magnitude of the di�usion coe�cient for major angiogenic growth factors is
D = 10−7 cm2 s−1. In the experimental conditions that were considered in [10]
the half life of soluble factors is 64 ± 7 min. This gives r0 ∼ 200 µm, a value in
good agreement with experimental observations.

3.3 Lower dimensional models

In order to get some intuition about the typical system dynamics, we exploit the
1D version of model (1) to simulate the �collision� of two cells. For small values
of Bp and su�ciently high Cp in (2), the two bumps merge into a single one (see
Fig. 2 left) which appears to be stationary, as suggested also by the graphs of
the kinetic energy and of the momentum of inertia (Fig. 3). On the other hand
a less smooth onset of pressure obtained with larger Bp or smaller Cp leads to
forces overcoming the chemical attractive ones, making the two bumps bounce
back (Fig. 2). We observe that the better dynamics from the biological point of
view is the �rst behavior with two bump coalescing.

Fig. 2. Bump coalescence driven by chemotactic force and pressure. In the �rst three
rows the density and velocity �elds at subsequent instant of time are shown. In the last
row we show the time evolution of the kinetic energy and of the momentum of inertia.
Left column: Cp = 3 and Bp = 10−3, leading to bump coalescence. Right column:
Cp = 2 and Bp = 10−1, leading to undesired rebound of the two bumps. fig:press

Fig. 3. Time evolution of the kinetic energy and of the momentum of inertia. Top:
Cp = 3 and Bp = 10−3, leading to bump coalescence. Bottom: Cp = 2 and Bp = 10−1,
leading to undesired rebound of the two bumps. fig:press2

Biological observations suggest that the dynamics of cell changes when they
establish cell-cell contacts. It is reasonable to suppose that a di�erent genetic
program is activated at this moment, disabling cell motility. We therefore switch
o� cell motility as soon as the cell concentration, signalled by chemoattractant
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emission, reaches a given threshold. In this way the computational system is
guaranteed to reach a stationary state.

These e�ects can be taken into account using a non-constant sensitivity µ(c),
a non-linear emission rate α(c), or a variable friction coe�cient β(c). We choose
a threshold c0 and functions of the formNaldi:mube

µ(c) = µ0[1− tanh(c− c0)] (3a)

α(c) = α0[1− tanh(c− c0)] (3b)

β(c) = β0[1 + tanh(c− c0)] (3c)

The e�ect of the �rst two terms is that the sensitivity of the cells and their
chemoattractant production is strongly damped when the concentration c reaches
the threshold c0. We did not observe a signi�cant dependence on the exact form
of the damping function, provided that it approximates a step function that is
nonzero only when c < c0.

β(c), on the other hand has the e�ect of turning on a strong friction term
at locations of high chemoattractant concentration. We performed several tests
and observed that the di�erent choices are approximately equivalent in freezing
the system into a network-like stationary state.

4 Numerical methods

Our scheme is based on a suitable relaxation approximation [13] of the mass
conservation law (1) and the multidimensional Burgers equation (1) coupled
with a second order �nite-di�erences method for the reaction-di�usion equation
(1) of the chemotactic factor. We point out that also for the last equation (1)
we could consider a relaxation approximation [12,18] in order to deal with the
system (1) in an uniform way, but we prefer to adopt here a simpler approach.

We �rst brie�y review an extension of the approach proposed by Jin and Xin
in [13] for a scalar conservation law to the case when a source term is present

∂u

∂t
+

∂

∂x
f(u) = g(u). (4) Naldi:conslaw

Introducing an auxiliary variable j that plays the role of a physical �ux we
consider the following relaxation system:Naldi:relaxation

∂u

∂t
+

∂j

∂x
= g(u) (5a)

∂j

∂t
+ a

∂u

∂x
= −1

ε
(j − f(u)), (5b)

where ε is a small positive parameter, called relaxation time, and a is a suitable
positive constant. Formally, Chapman-Enskog expansion justi�es the agreement
of the solutions of the relaxation system with the solutions of the equation

∂u

∂t
+

∂

∂x
f(u) = g(u) + ε

∂

∂x

(
(a− f ′(u)2)

∂u

∂x

)
, (6)
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which is a �rst order approximation of the original balance law (4).
It is also clear that (6) is dissipative, provided that the subcharacteristic

condition a > f ′(u)2 is satis�ed. We would expect that appropriate numerical
discretization of the relaxation system (5) yields accurate approximation to the
original equation (4) when the relaxation parameter ε is su�ciently small.

In view of its numerical approximation, the main advantage of the relaxation
system (5) over the original equation (4) lies in the linear structure of the char-
acteristic �elds and in the localized low order term and this avoids the use of
time consuming Riemann solvers. Moreover, proper implicit time discretizations
can be exploited to overcomethe stability constraints due to the sti�ness and to
avoid the use of non-linear solvers.

We observe that system (5) is in the form

∂z

∂t
+ divf(z) = g(z) +

1
ε
h(z) (7) eq:z

where z = (u, j)T , f(z) = (j, au)T , g(z) = (g(u), 0)T and h(z) = (0, j − f(u))T .
When ε is small, the presence of both non-sti� and sti� terms, suggests the use
of IMEX schemes [4,15,19].

Assume for simplicity to adopt a uniform time step ∆t and denote with zn

the numerical approximation at time tn = n∆t, for n = 0, 1, . . . In our case a
ν-stages IMEX scheme reads

zn+1 = zn −∆t

ν∑
i=1

b̃i

[
∂f

∂x
(z(i)) + g(z(i))

]
+

∆t

ε

ν∑
i=1

bih(z(i))

where the stage values are computed as

z(i) = zn −∆t

i−1∑
k=1

ãi,k

[
∂f

∂x
(z(k)) + g(z(k))

]
+

∆t

ε

i∑
k=1

ai,kh(z(k))

Here (aik, bi) and (ãik, b̃i) are a pair of Butcher's tableaux of, respectively, a
diagonally implicit and an explicit Runge-Kutta schemes.

In this work we use the so-called relaxed schemes, that are obtained letting
ε → 0 in the numerical scheme for (7). For these the �rst stage[

u(1)

j(1)

]
=
[

un

jn

]
+

∆t

ε
a1,1h

([
u(1)

j(1)

])
becomes

u(1) = un j(1) = f(u(1)).

For the second stage, i = 2,

z(2) = zn −∆tã2,1

[
∂f

∂x
(z(1)) + g(z(1))

]
+

∆t

ε
a2,1 h(z(1))︸ ︷︷ ︸

≡0

+
∆t

ε
a2,2h(z(2))
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We observe that the previous step of the relaxed scheme (i.e. ε = 0) reduces to
h(z(1)) = 0, simplifying the third term in the expression above.

Summarizing, the relaxed scheme yields an alternation of relaxation steps

h(z(i)) = 0 i.e. j(i) = f(u(i))

and transport steps where we advance for time ãi,k∆t

∂z

∂t
+ divf(z) = g(z)

with initial data z = z(i) retain only the �rst component and assign it to u(i+1).
Finally the value of un+1 is computed as un +

∑
b̃iu

(i).
In order to obtain a relaxation approximation of the �rst and second equation

of (1) we rewrite them in conservative form, introducing the moment p(x, t) =
n(x, t)v(x, t):modello:cons

∂n

∂t
+∇ · p = 0 (8a)

∂p
∂t

+∇ · (nv ⊗ v) = nµ∇c− n∇φ(n)− βp (8b)

Introducing the variable u = (n,p)T and the auxiliary �ux w, the relaxation
system readsrelax:cons

∂u
∂t

+∇ ·w = G(u,w, c) (9a)

∂w
∂t

+ A∇ · u = −1
ε

(w − F (u)) (9b)

where G(u,w, c) = (0, nµ∇c− n∇φ(n)− βp)T , F (u) = (p,nv ⊗ v) and A is a
suitable diagonal matrix whose positive diagonal elements verify a subcharacter-
istic condition. As we previously remarked, our relaxed scheme takes an implicit
step and an explicit one alternatively: the explicit step involves the computation
of the �ux ∇ ·w and the evaluation of the non sti� source term G. In particular
we compute ∇c and ∇φ(n) using a second order di�erence scheme.

In the following we describe for simplicity the fully discrete scheme in one
dimensional case. We introduce the spatial grid points xj+1/2 with uniform mesh
width h = xj+1/2 − xj−1/2. As usual, we denote by un

j the approximate cell
average of a quantity u in the cell [xj−1/2, xj+1/2] at time tn and by un

j+1/2 the
approximate point value of u at x = xj+1/2 and t = tn. A spatial discretization
to (9) in conservation form can be written asrelax:consnum

∂uj

∂t
+

1
h

(
wj+1/2 −wj−1/2

)
= G(uj ,wj , cj) (10a)

∂wj

∂t
+

1
h

A
(
uj+1/2 − uj−1/2

)
= −1

ε
(wj − F (uj)) . (10b)

In order to compute the numerical �uxes wj±1/2, we consider the character-

istic variables w ± A1/2u that travel with constant velocities ±A1/2, and so
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the semidiscrete system becomes in a diagonal form. Now we have to apply
a numerical approximation to w ± A1/2u. A �rst idea is to apply a ENO or
WENO approach (see e.g. [24]), to build an high order reconstruction, coupled
with a suitable IMEX scheme. The drawback is the high computational costs,
expecially in a multidimensional framework. Therefore we chose a suitable com-
promise between the computational cost and the accuracy, using a second order
TVD scheme. The numerical �ux that we use is obtained coupling an upwind
scheme and the Lax-Wendro� method by a non linear �ux limiter [16]. Namely
the high order �ux F (U) for a generic variable U consists of the low order term
FL(U) plus a second order correction FH(U):

F (U) = FL(U) + Ψ(U)(FH(U)− FL(U))

where Ψ is the �ux limiter. When the data U is smooth, then Ψ(U) should be
near 1, while near a discontinuity we want Ψ(U) close to 0. The idea consists in
the selection of a high order �ux FH that works well in smooth regions and of a
low order �ux FL which behaves well near discontinuities.

In our schemes we considered the upwind scheme as a low order �ux for the
characteristic variables

FL((w+A1/2u)j+1/2) = (w+A1/2u)j , FL((w−A1/2u)j+1/2) = (w−A1/2u)j+1

and the Lax-Wendro� scheme as a high order �ux for the same variables

FH((w ±A1/2u)j+1/2) = A1/2

2 ((w ±A1/2u)j+1 + (w ±A1/2u)j)
−λA1/2

2 ((w ±A1/2u)j+1 − (w ±A1/2u)j)

where λ = ∆t/h (we advance of one time step).

Let

Θ±
j =

(
(w ±A1/2u)n

j − (w ±A1/2u)n
j−1

(w ±A1/2u)n
j+1 − (w ±A1/2u)n

j

)±1

the fully discrete scheme for the variable u using Euler method to advance in
time is the following

un+1
j = un

j + λA1/2

2 (un
j+1 − 2un

j + un
j−1)− λ

2 (wn
j+1 −wn

j−1)
∆t I−λA1/2

4 (−s+
j + s+

j−1 + s−j+1 − s−j ),

with

s±j =
1
h

(±A1/2un
j±1 + wn

j±1 ∓A1/2un
j −wn

j )Ψ(Θ±
j ). (11) eq:s

After the substitution of the relaxing step we get

un+1
j = un

j + λA1/2

2 (un
j+1 − 2un

j + un
j−1)− λ

2 (F (un
j+1)− F (un

j+1))
∆t I−λA1/2

4 (−s+
j + s+

j−1 + s−j+1 − s−j ),
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where s± is obtained from (11) letting w = F (u). The scheme can be put
in a conservative form and it is possible to prove its consistency by standard
technique [16]. In order to prove a TVD property, we write

un+1
j+1 − un+1

j = (1−Cn
j −Dn

j )(un
j+1 − un

j ) + Cn
j−1(u

n
j − un

j−1)
+Dn

j+1(u
n
j+2 − un

j+1) + Ej+1/2,
(12) eq:harten

where

Cn
j = λ

2

(
A1/2 + F (un

j+1)−F (un
j )

un
j+1−un

j
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where we notice that C and D are non negative.

The coe�cient E can be written in terms of C and D, in fact
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We can rewrite (12) in the form
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(13) eq:tvd

It's easy to see that under the CFL condition ‖λ
√

max{ai}‖ ≤ 1, where ai are
the positive diagonal elements of A, and using the fact that the �ux limiter
veri�es

0 ≤ Ψ(Θ)
Θ

≤ 2, 0 ≤ Ψ(Θ) ≤ 2,

we have
(1−Cn

j −Dn
j ) + (1− λA1/2)(Dn

j Ψ−j+1 + Cn
j Ψ+

j ) ≥ 0
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2 (Dn
j−1Ψ

−
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+
j−1) ≥ 0

Dn
j+1 − 1−λA1/2

2 (Dn
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−
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j+1Ψ
+
j+1) ≥ 0

and so we can conclude that our scheme is TVD stable.
In the case of multidimensions, a similar discretization can be applied to each

space dimension [13,12,18]. Then, since the structure of the multidimensional
relaxation system is similar to the 1D system, the numerical implementation
for higher dimensional problems, based on additive dimensional splitting, is not
much harder than for 1D problems.

For our threedimensional problem the computational cost is quite high and
can be reduced using parallel computing: the semilinearity of relaxation systems,
together with our suitably chosen discretizations, provides parallel algorithm
with almost optimal scaling properties. In particular the domain is divided in
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Fig. 4. Scaling of the 3D algorithm on the ULISSE cluster. Dots represent execution
time (s) and asterisks the number of M�ops/s for our numerical algorithm. Dashed and
dash-dot lines are linear interpolations fig:scaling

smaller subdomains and each subdomain is assigned to a processor. The com-
putations of all non linear terms involve only pointwise evaluations and it is
easy to perform these tasks in a local way. Only point near the interfaces be-
tween di�erent subdomain need to be communicated in the transport step. We
implemented these algorithm on a high performance cluster for parallel compu-
tation installed at the Department of Mathematics of the University of Milano
(http://cluster.mat.unimi.it/). The scaling properties of the algorithm are shown
in Fig. 4 and are essentially due to the exclusive use of matrix-vectors operations
and to the avoidance of solvers for linear or non-linear systems.

5 Numerical results

We perform threedimensional numerical simulations of model (1) on a cubic box
with side of length L = 1mm, with periodic boundary conditions. The initial
condition is assigned in the form of a set of gaussian bumps with σ = 15µm
scattered in the cube with uniform probability and having zero initial velocity.

Biochemical data [22] suggest the values D = 10−3mm2/s and τ = 4000 s
for the di�usion constant and the chemoattractant decay rate. We �x the other
constant parameters by dimensional analysis and �tting to the characteristic
scales of the biological system. In particular, we choose: µ0 = 10−11mm4/s3,
α = 1s−1, β = 10−3s−1. For the coe�cients in the expression (2) of the pressure
function φ we take n0 = 1.0,Cp = 3 and Bp = 10−3.

Very �ne grids have to be used in order to resolve the details of the n(x, t)
�eld, which may contain hundreds of small bumps, each representing a single
cell. Since each cell has radius σ = 15µm, one needs a grid spacing such that
∆x < 10µm and therefore grids of at least 1003 cells for a cubic domain of 1mm
side.

Fig. 5. Initial state of a numerical simulation with 2500cells/mm3. The colorbar on
the right is referred to the coloring of the cross sections. The red three-dimensional
isosurface corresponds to the black contour lines in the cross sections fig:3d:in

We performed numerical simulations with varying initial average cell density
n̄. We observed that the initially randomly distributed cells coalesce forming
elongated structures and evolve towards a stationary state mimicking the geom-
etry of a blood vessel network in the early stages of formation.
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Fig. 6. Transient state of the evolution of the initial state depicted in Fig. 5 according
to model (1). The initial formation of network-like structures is observed fig:3d:med

Fig. 7. Stationary state of the evolution of the states depicted in Figs. 5 and 6 according
to model (1). Well developed threedimensional network-like structures are observed fig:3d:finale

We assigned n̄ in the range 2100−3500 cells/mm3 and performed 10 to 15 runs
for each density value. The characteristic lengths and geometric properties of
the stationary state depend on n̄ and we observed a percolative phase transition
similar to the one described in [10] for the twodimensional case.

5.1 Analysis of the percolative phase transition

In experimental blood vessel formation it has been shown that a percolative
transition is observed, by varying the initial cell density. For low cell densities
only isolated clusters of endothelial cells are observed, while for very high densi-
ties cells �ll the whole available space. In between these two extreme behaviours,
close to a critical cell density nc, one observes the formation of critical perco-
lating clusters connecting opposite sides of the domain, characterized by well
de�ned scaling laws and exponents. These exponents are known not to depend
on the microscopic details of the process while their values characterize di�erent
classes of aggregation dynamics.

The purely geometric problem of percolation is actually one of the simplest
phase transitions occurring in nature. Many percolative models show a second
order phase transition in correspondence to a critical value nc, i.e. the probability
Π of observing an in�nite, percolating cluster is 0 for n̄ < nc and 1 for n̄ >
nc [26]. The phase transition can be studied by focusing on the values of an
order parameter, i.e. an observable quantity that is zero before the transition
and takes on values of order 1 after it. In a percolation problem the natural
order parameter is the probability P that a randomly chosen site belongs to the
in�nite cluster (on �nite grids, the in�nite cluster is substituted by the largest
one).

In the vicinity of the critical density nc the geometric properties of clusters
show a peculiar scaling behavior. For instance, in a system of linear �nite size
L, the probability of percolation Π(n, L), de�ned empirically as the fraction
of computational experiments that produce a percolating cluster, is actually a
function of the combination (n− nc) L1/ν , where ν is a universal exponent.

In a neighborhood of the critical point and on a system of �nite size L, the
following �nite size scaling relations are also observed:

Π(n̄, L) ∼ Π̂[(n̄− nc)L1/ν ] (14)

There are two main reasons to study percolation in relation to vascular net-
work formation: (i) percolation is a fundamental property for vascular networks:
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blood should have the possibility to travel through the whole vascular network
to carry nutrients to tissues; (ii) critical exponents are robust observables char-
acterizing the aggregation dynamics.

A rather complete characterization of percolative exponents in the two-dimensional
case has been provided in [10].

As a �rst step in the study of the more realistic threedimensional case, we
compute the exponent ν characterizing the structures produced by the model
dynamics (1) with varying initial cell density.

To this aim, extensive numerical simulation of system (1) were performed
using lattice sizes L = 1, 0.78, 0.62, 0.5 mm, with di�erent values of the initial
density n̄. For each point 10 to 15 realizations of the system of size 1mm were
computed, depending on the proximity to the critical point.

The continuous density at �nal time n(x) was then mapped to a set of occu-
pied and empty sites by choosing a threshold n0. Each region of adjacent occu-
pied sites (cluster) was marked with a di�erent index. The percolation probabil-
ity Π for each set of realizations was then measured. In Fig. 8 we show clusters
obtained in a box with L = 0.5 mm with n̄ = 3100. The largest percolating clus-
ter is shown in red, together with some other smaller clusters shown in di�erent
colors.

Using relation (14), we estimate the position of the critical point nc and
the value of the critical exponent ν. The data for di�erent box side length and
initial density should lie on a single curve after rescaling the densities as n̂ =
(n̄−nc)L1/ν . For �xed nc and ν we rescale n̄ and �t the data with a logistic curve,
then compute the distance of the data from the curve. The squared distance is
minimized to obtain estimates for nc and ν.

Using n0 = 0.35 we obtain nc = 2658 and ν = 0.84. This latter value is
compatible with the known value 0.88 for random percolation in three dimensions
[26].

Fig. 8. Cluster percolation with cell density n = 2500cells/mm3. A: connected clusters
in a realization of model (1). B: the largest cluster depicted in A percolates. fig:clusters

Fig. 9. Percolation probability at varying densities A: B: the curves in A are collapsed
according to formula (14) fig:perc:collapse
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6 Conclusions

We have exposed results on the numerical simulation of vascular network forma-
tion in a threedimensional setting.

We have used the threedimensional version of the equations proposed in
[10,22] as a computational model. Evolution starting from initial conditions mim-
icking the experimentally observed ones produce network-like structures quali-
tatively similar to those observed in the early stages of in vivo vasculogenesis.

As a starting point towards a quantitative comparison between experimental
data and the theoretical model we nedd to select a set of observable quanti-
taties which provide robust quantitative information on the network geometry.
The lesson learned from the study of twodimensional vasculogenesis is that per-
colative exponents are an interesting set of such observables, so we tested the
computation of percolative exponents on simulated network structures.

A quantitative comparison of the geometrical properties of experimental and
computational network structures will become possible as soon as an adequate
amount of experimental data, allowing proper statistical computation, will be-
come available.

In order to compute the robust statistical observables described in the paper
one has to perform many runs of the simulation code using di�erent random
initial data. This, toghether with the intensive use of computational resources
required by a three-dimensional hydrodynamic simulation on �ne grids, calls for
an e�cient implementation of the computational model on parallel computers,
as the one we presented in this paper.

Simulations of blood vessel structures can in principle present practical impli-
cations. Normal tissue function depends on adequate supply of oxygen through
blood vessels. Understanding the mechanisms of formation of blood vessels has
become a principal objective of medical research, because it would o�er the possi-
bility of testing medical treatments in silicio. One can think that the dynamical
model (1) can be also exploited in the future to design properly vascularized
arti�cial tissues by controlling the vascularization process through appropriate
signaling patterns.
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