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Abstract

Within the geometric formulation of the Hamiltonian formalism
for field theory in terms of Hamiltonian connections and multisym-
plectic forms, we refer to our new geometric description where a com-
posite fibered bundle, involving a line bundle, plays the role of an ex-
tended configuration bundle. The concepts of extended Legendre bun-
dle, Hamiltonian connection, Hamiltonian form and covariant Hamil-
ton equations are exploited to provide a suitable description of the
energy for the gravitational field.
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1 Introduction

A geometric formulation of the Hamiltonian formalism for field theory in
terms of Hamiltonian connections and multisymplectic forms was developed
in [12, 13, 14]. We recall that, in this framework, the covariant Hamilton
equations for Mechanics and field theory are defined in terms of multisym-
plectic (n+2)–forms, where n is the dimension of the basis manifold, together
with connections on the configuration bundle.

We provided in [2] a new geometric Hamiltonian description of field the-
ory, based on the introduction of a suitable composite fibered bundle which
plays the role of an extended configuration bundle. One of the main features
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of this approach is that one can describe the polymomenta and other ob-
jects appearing in the polymomentum formulation of field theory (see e.g.
[1, 4, 5, 8, 9, 10] and references therein) in terms of differential forms with
values in the vertical tangent bundle of an appropriate line bundle Θ. The
introduction of the line bundle Θ can be here understood as a suitable way
of describing the gauge character appearing in the Hamiltonian formalism for
field theory (see e.g. [6]).

Instead of bundles over an n–dimensional base manifold X, we consider
fibrations over a line bundle Θ fibered over X; the concepts of event bun-
dle, configuration bundle and Legendre bundle are then introduced following
the analogous setting introduced in [12, 13, 14] for Mechanics and for the
polymomentum approach to field theory. Moreover, Hamiltonian connec-
tions, Hamiltonian forms and covariant Hamilton equations can be suitably
described in this framework. This new approach takes into account the exis-
tence of more than one independent variable in field theory, but enables us
to keep as far as possible most of the nice features of time–dependent Hamil-
tonian Mechanics. Already in the seventies, in fact, J. Kijowski stressed the
prominent role of the symplectic structures in field theories [5, 6, 8, 9]. Our
approach can provide a suitable geometric interpretation of the canonical
theory of gravity and gravitational energy, as presented in [7], where the lo-
cal line bundle coordinate τ plays the role of a parameter and enables one
to consider the gravitational energy as a ‘gravitational charge’. In fact, pro-
ceeding in analogy with Mechanics we obtain the expression of the ‘abstract’
energy for an extended version of the Hilbert–Einstein Lagrangian and we
show that this quantity is conserved.

2 Jets of fibered manifolds and connections

The general framework is a fibered bundle π : Y → X, with dimX = n and
dimY = n + m and, for r ≥ 0, its jet manifold JrY . We recall the natural
fiber bundles πrs : JrY → JsY , r ≥ s, πr : JrY → X, and, among these, the
affine fiber bundles πrr−1.

Greek indices λ, µ, . . . run from 1 to n and they label base coordinates,
while Latin indices i, j, . . . run from 1 to m and label fibre coordinates, unless
otherwise specified. We denote multi–indices of dimension n by underlined
Greek letters such as α = (α1, . . . , αn), with 0 ≤ αµ, µ = 1, l . . . , n; by an
abuse of notation, we denote with λ the multi–index such that αµ = 0, if
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µ 6= λ, αµ = 1, if µ = λ. We also set |α| .= α1 + . . . + αn. The charts
induced on JrY are denoted by (xλ, yiα), with 0 ≤ |α| ≤ r; in particular, we

set yi0 ≡ yi. The local bases of vector fields and 1–forms on JrY induced by
the coordinates above are denoted by (∂λ, ∂

α
i ) and (dλ, diα), respectively.

The contact maps on jet spaces induce the natural complementary fibered
morphisms over the affine fiber bundle JrY → Jr−1Y

Dr : JrY×XTX → TJr−1Y , ϑr : JrY×Jr−1Y TJr−1Y → V Jr−1Y , r ≥ 1 ,
(1)

with coordinate expressions, for 0 ≤ |α| ≤ r − 1, given by Dr = dλ⊗Dλ =
dλ⊗(∂λ + yjα+λ∂

α
j ), ϑr = ϑjα⊗∂

α
j = (djα− y

j
α+λd

λ)⊗∂αj , and the natural fibered
splitting JrY ×Jr−1Y T

∗Jr−1Y = JrY ×Jr−1Y (T ∗X ⊕ V ∗Jr−1Y ).

Definition 1 A connection on the fiber bundle Y → X is defined by the dual
linear bundle morphisms over Y Y ×X TX → TY , V ∗Y → T ∗Y which split
the exact sequences

0→ V Y ↪→ TY → Y×XTX → 0 , 0→ Y×XT ∗X ↪→ T ∗Y → V ∗Y → 0 .
(2)

We recall that there is a one–to–one correspondence between the connec-
tions Γ on a fiber bundle Y → X and the global sections Γ : Y → J1Y of
the affine jet bundle J1Y → Y (see e.g. [12]).

In the following a relevant role is played by the composition of fiber
bundles

Y → Θ→ X , (3)

where πY X : Y → X, πYΘ : Y → Θ and πΘX : Θ → X are fiber bundles.
The above composition was introduced under the name of composite fiber
bundle in [11, 13] and shown to be useful for physical applications, e.g. for
the description of mechanical systems with time–dependent parameters.

2.1 Connections on composite bundles

We shall be concerned here with the description of connections on composite
fiber bundles. We will follow the notation and main results stated in [12].

We shall denote by J1Θ, JΘ
1 Y and J1Y , the jet manifolds of the fiber

bundles Θ→ X, Y → Θ and Y → X respectively.
Let γ be a connection on the composite bundle πY X projectable over a

connection Γ on πΘX , i.e. such J1πYΘ ◦ γ = Γ ◦πYΘ. Let γΘ be a connection
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on the fiber bundle πYΘ. Given a connection Γ on πΘX , there exists [12] a
canonical morphism over Y , ρ : J1Θ ×X JΘ

1 Y → J1Y , which sends (Γ, γΘ),
into the composite connection γ

.
= γΘ◦Γ on πY X , projectable over Γ. Recall

that given a composite fiber bundle 3 and a global section h of the fiber bundle
πΘX , then the restriction Yh

.
= h∗Y of the fiber bundle πYΘ to h(X) ⊂ Θ is

a subbundle ih : Yh ↪→ Y of the fiber bundle Y → X [12]. Let then h be a
section of πΘX . Every connection γΘ induces the pull–back connection γh on
the subbundle Yh → X. The composite connection γ = γΘ ◦ Γ is reducible
to γh if and only if h is an integral section of Γ.
We have the following exact sequences of vector bundles over a composite
bundle Y :

0→ VΘY ↪→ V Y → Y×ΘVΘ→ 0 , 0→ Y×ΘV
∗Θ ↪→ V ∗Y → V ∗

ΘY → 0 ,
(4)

where VΘY and V ∗
ΘY are the vertical tangent and cotangent bundles to the

bundle πYΘ.

Remark 1 Every connection γΘ on πYΘ provides the dual splittings

V Y = VΘY ⊕Y γΘ(Y ×Θ VΘ) , V ∗Y = Y ×Θ V
∗Θ⊕Y γΘ(V ∗

ΘY ) , (5)

of the above exact sequences. By means of these splittings one can easily
construct the vertical covariant differential on the composite bundle πY X , i.e.
a first order differential operator

∆γΘ
: J1Y → T ∗X ⊕Y V ∗

ΘY . (6)

3 Hamiltonian formalism for field theory

We recall now that the covariant Hamiltonian field theory can be conveniently
formulated in terms of Hamiltonian connections and Hamiltonian forms [13].
Here we shall construct a Hamiltonian formalism for field theory as a theory
on the composite bundle Y → Θ → X, with πΘX : Θ → X a line bundle
having local fibered coordinates (xλ, τ) [2].

Let us now consider the extended Legendre bundle ΠΘ
.
= V ∗Y ∧(ΛnT ∗Θ)→

X. There exists a canonical isomorphism

ΠΘ ' Λn+1T ∗Θ⊗Y V
∗Y ⊗Y TΘ . (7)
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Definition 2 We call the fiber bundle πYΘ : Y → Θ the abstract event space
of the field theory. The configuration space of the field theory is then the first
order jet manifold JΘ

1 Y . The abstract Legendre bundle of the field theory is
the fiber bundle ΠΘ → Θ.

Let now γΘ be a connection on πYΘ and ΓΘ be a connection on πΘX . We
have the following non–canonical isomorphism

ΠΘ '(γΘ,ΓΘ) Λn+1T ∗Θ⊗Y [(Y ⊕Θ V
∗Θ)⊕Y γΘ(V ∗

ΘY )]⊗Y (VΘ⊕Θ HΘ) . (8)

In this perspective, we consider the canonical bundle monomorphism over
Y providing the tangent–valued Liouville form on ΠΘ, i.e.

ϑY : ΠΘ ↪→ Λn+2T ∗Y ⊗Y (VΘ⊕Θ HΘ) , (9)

the coordinate expression of which is

ϑY = p̂λi d
i ∧ ω⊗∂λ⊗∂̂ ' p̂λi ϑ

i ∧ ωλ⊗∂̂ , (10)

where ϑi are generators of vertical 1–forms (i.e. contact forms) on Y , “'” is
the isomorphism defined by 8, ∂̂

.
= ∂τ , ω is the volume form and ωλ

.
= ∂λcω.

Following [9] we set p̂i
.
= p̂λi ωλ and obtain

ϑY = p̂iϑ
i⊗∂̂ . (11)

The polysymplectic form ΩY on ΠΘ is then intrinsically defined by ΩY cψ =
d(ϑY cψ), where ψ is an arbitrary 1–form on Θ; its coordinate expression is
given by

ΩY = dp̂i ∧ di ∧ ω⊗∂̂ ' dp̂i ∧ ϑi⊗∂̂ . (12)

Let J1ΠΘ be the first order jet manifold of the extended Legendre bundle
ΠΘ → X. A connection γ on the extended Legendre bundle is then in one–
to–one correspondence with a global section of the affine bundle J1ΠΘ → ΠΘ.
Such a connection is said to be a Hamiltonian connection iff the exterior form
γcΩY is closed.

Let γ be a Hamiltonian connection on ΠΘ and U be an open subset of
ΠΘ. Locally, we have γcΩY = d(p̂i⊗ ∂̂) ∧ ϑi⊗ ∂̂ − dH ∧ ω .

= dH, where
H : U ⊂ ΠΘ → VΘ and d = ∂id

i + ∂̂idp̂i + ∂τdτ is the total differential on
V ΘΠΘ and, of course, d∂̂ = ∂̂d.

The local mapping H : U ⊂ ΠΘ → VΘ is called a Hamiltonian. The
form H on the extended Legendre bundle ΠΘ is called a Hamiltonian form.
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Every Hamiltonian form H admits a Hamiltonian connection γH such that
the following holds: γHcΩY = dH.

We define the abstract covariant Hamilton equations [2] to be the kernel
of the first order differential operator ∆γ̃Θ

defined as the vertical covariant
differential (see Eq. 6) relative to the connection γ̃Θ on the abstract Legendre
bundle ΠΘ → Θ.

In this case the Hamiltonian form H is the Poincaré–Cartan form of the
Lagrangian LH = (p̂iẏ

i−H)ω on V ΘΠΘ, with values in VΘ; furthermore, the
Hamilton operator for H is defined as the Euler–Lagrange operator associated
with LH , namely EH : V ΘΠΘ → T ∗ΠΘ ∧ Λn+1T ∗X.

The kernel of the Hamilton operator, i.e. the Euler–Lagrange equations
for LH , is an affine closed embedded subbundle of V ΘΠΘ → ΠΘ, locally
given by the covariant Hamilton equations on the extended Legendre bundle
ΠΘ → X

ẏi⊗∂̂ = ∂̂iH , (13)

˙̂pi⊗∂̂ = −∂iH , (14)

Ḣ = −∂̂H . (15)

In [2] we stated the relation with the standard polysymplectic approach
(for a review of the topic see e.g. [1, 4, 5, 9, 10] and references quoted therein).
The basic idea is that the present geometric formulation can be interpreted as
a suitable generalization to field theory of the so–called homogeneous formal-
ism for Mechanics. Our result can be summarized by the following Lemma
and Theorem.

Lemma 1 Let γH be a Hamiltonian connection on ΠΘ → X. Let γ̃Θ and Γ
be connections on ΠΘ → Y and Θ→ X, respectively. Let σ and h be sections
of the bundles πYΘ and πΘX , respectively.

Then the standard Hamiltonian connection on ΠΘ → X turns out to be
the pull–back connection γ̃φ induced on the subbundle ΠΘφ ↪→ ΠΘ → X by
the section φ = h◦σ of Y → X.

Theorem 1 Let ∆γ̃ ,φ be the covariant differential on the subbundle ΠΘφ ↪→
ΠΘ → X relative to the pull–back connection γ̃φ. The kernel of ∆γ̃ ,φ coin-
cides with the Hamilton–De Donder equations of the standard polysymplectic
approach to field theories.
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3.1 The energy of the gravitational field

Let us now specify the above formalism for an extended version of the
Hilbert–Einstein Lagrangian, i.e. essentially the Hilbert–Einstein Lagrangian
for a metric g parametrized by the line coordinate τ . This enables one to
deal with ambiguities in the definition of gravitational energy. The result is
in fact that the energy turns out to be a ‘vertical’ i.e. , in a convenient sense,
gauge conserved quantity in accordance with the more recent approach of
[7], where the energy is derived as a quasi–local quantity, via a boundary
integral.

In the following a ‘dot’ stands for d
dτ

. Let then dimX = 4 and X be
orientable. Let Lor(X)Θ be the bundle of Lorentzian metrics on X (provided
that they exist), parametrized by Θ.

The extended Hilbert–Einstein Lagrangian is the form λHE = LHE ω⊗ ∂̂,
were LHE = r

√
g. Here r : JΘ

2 (Lor(X)Θ)→ IR is the function such that, for

any parametrized Lorentz metric g, we have r ◦ jΘ
2 g = s, being s the scalar

curvature associated with g, and g is the determinant of g.
If we set Gαβεγ .

= gαεgβγ + gαγgβε − 2gαβgεγ (the De Witt metric), then
we can write

r =
1

2
Gαβεγ(gεγ,αβ + gµνΓ

µ
αβΓνεγ) ; (16)

furthermore, we set πµν =
√
ggµν and φ̃µν

.
= φ̂µν⊗∂̂, where

φ̂µν
.
= ∂LHE/∂π̇

µν − d

dτ
(∂LHE/∂π̈

µν) . (17)

In analogy with Mechanics we obtain now

L̃HE
.
= LHE⊗ ∂̂ = πµνRµγ⊗ ∂̂ = φ̃µν π̇

µν −H , (18)

where Rµγ denotes the components of the Ricci tensor of the metric. Hence
the ‘abstract’ energy turns out to be

H = (−πµγRµγ + φ̂µν π̇
µν)⊗ ∂̂ . (19)

Notice that, like in Mechanics, since the Hamiltonian does not depend
explicitly on τ , it is, in fact, a conserved quantity, i.e. from the covariant
Hamilton equations, see Eq. 15, we have Ḣ = 0.
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