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Abstract: We propose a new quadrature rule for Cauchy principal value integrals based

on quadratic spline quasi-interpolants which have an optimal approximation order and

satisfy boundary interpolation conditions. In virtue of these spline properties, we can

prove uniform convergence for sequences of such quadratures and provide uniform error

bounds. A computational scheme for the quadrature weights is given. Some numerical

results and comparisons with other spline methods are presented.
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1 Introduction

In this paper we study a spline method for the numerical evaluation of Cauchy principal value
integrals of the form

I(wα,βf ;λ) =

∫ 1

−1

− wα,β (x)
f (x)

x− λ
dx, λ ∈ (−1, 1) =

◦

J, (1)

where
∫ 1

−1

− = lim
ǫ→0

{

∫ λ−ǫ

−1

+

∫ 1

λ+ǫ

}

,

wα,β is the Jacobi weight function

wα,β (x) = (1− x)
α
(1 + x)

β
, α, β > −1, (2)

1E-mail: catterina.dagnino@unito.it
2Corresponding author. E-mail: vittoria.demichelis@unito.it
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and f is assumed to be Hölder continuous in J = [−1, 1], that is:

f (x) ∈ Hρ (J) = {g : ω(g; t; J) ≤ Btρ, 0 < ρ ≤ 1, B > 0} ,

where, for any g ∈ C (J), ω(g; t; J) denotes the modulus of continuity of g on the interval J [1]

ω (g; t; J) = max
x,x+h∈J

0≤h≤t

|g (x+ h)− g (x)| .

Denoting by {fn} a sequence of approximations to f , the following conditions [13]:

‖en‖∞ = o(1), where en = f − fn and ‖g‖∞ = max
x∈J

|g(x)| , (3)

en(1) = 0 if α ≤ 0, en(−1) = 0 if β ≤ 0, (4)

en ∈ Hσ(J), 0 < σ ≤ ρ, uniformly in n, (5)

ensure that

I (wα,βen;λ) → 0 as n → ∞, uniformly in λ ∈
◦

J, (6)

if
σ +min(α, β) > 0. (7)

The uniform convergence of quadratures for (1) is an important property in several applications,
for instance, in Nyström methods for Cauchy singular integral equations [14].

In [3] quadrature formulas for (1) are obtained by using the spline approximation operator
introduced in [11]. These splines approximate f with an order of accuracy comparable to the best
one and the approximation error bounds can be made independent of any mesh ratio. However, in
general, they do not satisfy the condition (4). In order to overcome this drawback, a modified spline
operator is proposed in [6], but the error bounds are worse compared with the corresponding ones
in [11]. A different approach is based on the technique of subtracting out the singularity [15, 17].

Quadrature rules based on optimal nodal splines are proposed in [4]. Such splines have the three
properties of locality, interpolation at a subset of the knots and optimal polynomials reproduction
[8] and satisfy conditions (3) - (5) [5]. However, they must have simple interior knots, so that they
could not accommodate functions with discontinuities in low-order derivatives at given interior
points. Moreover, their definition requires a certain computational complexity.

In this paper, we propose quadrature rules for (1) based on the approximation to f by the
quadratic quasi-interpolant (QI) spline operator introduced in [16]. As all QI operators, it has a
simple form and the advantage of being generated without solving any linear system of equations
[1], unlike interpolants. Our QI splines approximate f with the best approximation order, error
bounds are independent of any mesh ratio and multiple interior knots can be used.

We show that conditions (3) - (5) are true for any sequence of such splines based on locally
uniform meshes and, consequently, (6) holds. Moreover, we provide a bound for |I (wα,βen;λ) |

uniformly with respect to λ ∈
◦

J .
Finally, we give a computational scheme for the weights of the proposed quadrature and we

present some numerical results and comparisons with spline quadratures studied in [3, 17, 12].

2 Quadratic spline quasi-interpolants

In this section, we give the necessary background material on quadratic spline QIs based on the
work in [16]. We denote by S2 (Xn) the space of polynomial splines of degree 2 defined on the set of
knots Xn = {−1 = x−2 = x−1 = x0 < x1 ≤ . . . ≤ xn−1 < xn = xn+1 = xn+2 = 1} derived from a
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partition ΠN = {−1 = t0 < t1 < . . . < tN = 1} and a set of positive integers di < 3, 1 ≤ i ≤ N−1,

where n = 1+
∑N−1

i=1 di and di denotes the multiplicity of ti. The condition di < 3, 1 ≤ i ≤ N−1,
ensures that the splines in S2 (Xn) are continuous on J . We define

rN = max
1≤i,j≤N

|i−j|=1

ti − ti−1

tj − tj−1

and we say that the sequence of partitions {ΠN} is locally uniform if the ratio between the length
of two adjacent subintervals of ΠN is uniformly bounded, i.e. if there exists a constant A ≥ 1 such
that rN ≤ A for all N . We shall say that the sequence of spline spaces {S2 (Xn)} is locally uniform
if the sequence of underlying partitions {ΠN} is locally uniform.

Let Γn = {0, 1, . . . , n+ 1}. A basis for S2 (Xn) is formed by the family of quadratic B-splines
B = {Bi, i ∈ Γn}, where B is defined on Xn and each Bi ∈ B has support [xi−2, xi+1] [1]. We
consider the set of evaluation points

Θn =

{

θi =
1

2
(xi−1 + xi), i ∈ Γn

}

and the following discrete QI operator Sn introduced in [16]

Snf = f(x0)B0 +
n
∑

i=1

µi(f)Bi + f(xn+1)Bn+1, (8)

whose coefficient functionals are of the form

µi(f) = aif(θi−1) + bif(θi) + cif(θi+1), 1 ≤ i ≤ n.

Setting hi = xi − xi−1, 1 ≤ i ≤ n and using the following notations:

σi =
hi

hi−1 + hi

, σ′
i =

hi−1

hi−1 + hi

,

with h0 = hn+1 = 0, by imposing Snf = f for all f ∈ P2, where P2 is the space of quadratic
polynomials, we can obtain the following expression for the coefficients ai, bi, ci, 1 ≤ i ≤ n, [16]

ai = −
σ2
i σ

′
i+1

σi + σ′
i+1

, bi = 1 + σiσ
′
i+1, ci = −

σi

(

σ′
i+1

)2

σi + σ′
i+1

.

Therefore, the operator Sn acts as the identity on the space P2.
Moreover, Snf satisfies the interpolation conditions:

Snf (−1) = f (−1) , Snf (1) = f (1) , (9)

the first one follows from (8), since B0(−1) = 1 and Bi (−1) = 0, 1 ≤ i ≤ n + 1. Similarly, the
interpolation condition at x = 1 is true.

Defining the fundamental functions of S2 (Xn) by

B̃i (x) = ci−1Bi−1 (x) + biBi (x) + ai+1Bi+1 (x) , i ∈ Γn, (10)

with the convention:
c−1 = c0 = an+1 = an+2 = 0, b0 = bn+1 = 1, (11)

we can express Snf in the form

Snf =
∑

i∈Γn

f (θi) B̃i. (12)
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The following uniform bounds hold for f bounded on J [16]:

‖Sn‖∞ ≤







2.5, for any partition ΠN of J,

1.66, for uniform partition ΠN of J,
(13)

where ‖Sn‖∞ is the infinity norm of Sn

‖Sn‖∞ = max
x∈J

∑

i∈Γn

∣

∣

∣
B̃i(x)

∣

∣

∣
.

3 Approximation error bounds

Approximation error bounds, for f ∈ W
3,∞(J) =

{

g : g(3) ∈ L∞(J)
}

, are provided in [16]. In
order to prove conditions (3) and (5), we study here approximation error bounds for f ∈ C(J).

We define the two integer functions:

pi = max {0, i− 2} , qi = min {n+ 1, i+ 2} , i ∈ Γn.

From the definition (10) of B̃i and taking in account that each Bi has support [xi−2, xi+1], we
have

B̃i(x) = 0, x /∈ J̃i = [xpi−1, xqi ].

Hence, for x ∈ [xi−1, xi], we can express Snf(x) in the form

Snf(x) =

qi
∑

j=pi

f (θj) B̃j(x). (14)

We define:
Hi,n = max

pi≤j≤qi
hj , δi,n = min

pi≤j≤qi
xj−1 6=xj

hj , H̃n = max
1≤j≤n

hj

and we shall assume that
H̃n → 0 as n → ∞. (15)

We state the following lemma proved in [11]

Lemma 1 Suppose x ∈ [xj−1, xj), with i − 1 ≤ j ≤ i + 1. If x = xj−1 suppose also that
xj−1 is of multiplicity at most 1. Then, B′

i(x) exists and

|B′
i(x)| ≤

2

δ̂i,2
,

where δ̂i,2 is the minimum of xν+2 − xν over ν such that xi−2 ≤ xν ≤ x < xν+2 ≤ xi+1.

The following lemma provides local error estimates.

Lemma 2 If f ∈ C(J̃i) then

max
xi−1≤x≤xi

|f(x)− Snf(x)| ≤ k1ω(f ;Hi,n; J̃i), (16)

where:

k1 =

{

7.5, for any partition ΠN of J,
4.98, for uniform partition ΠN of J.

(17)
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Moreover, if {ΠN} is locally uniform with constant A then

max
xi−1≤x<xi

|D(Snf)(x)| ≤ k2H
−1
i,nω(f ;Hi,n; J̃i), (18)

where D denotes the derivative operator and 0 < k2 < ∞.

Proof. The operator Sn is exact on P0, so it holds
∑qi

j=pi
B̃j(x) = 1. By using the inequality

|x− θj | ≤ 3Hi,n (19)

and the subadditivity of modulus of continuity, we write

|f(x)− Snf(x)| ≤

qi
∑

j=pi

∣

∣

∣
(f(x)− f (θj))B̃j(x)

∣

∣

∣
≤ 3ω(f ;Hi,n; J̃i)

qi
∑

j=pi

∣

∣

∣
B̃j(x)

∣

∣

∣
.

The thesis (16) follows from (13).
To prove (18), we set R(x) = f(x)− p0(x), where p0(x) ∈ P0 is any polynomial of degree 0,

then
D(SnR) = D(Snf)−Dp0 = D(Snf).

By setting p0(x) = f(t), t ∈ [xi−1, xi), using (14), (19) and (10), we write

|D(Snf)(x)| ≤

qi
∑

j=pi

∣

∣

∣
(f (θj)− f(t))B̃′

j(x)
∣

∣

∣
≤ 3ω(f ;Hi,n; J̃i)

qi
∑

j=pi

∣

∣

∣
B̃′

j(x)
∣

∣

∣

≤ 3ω(f ;Hi,n; J̃i)

i+1
∑

j=i−1

(|aj |+ |bj |+ |cj |)
∣

∣B′
j(x)

∣

∣ ≤ 27ω(f ;Hi,n; J̃i)
2

δi,n
,

where the last inequality follows from Lemma 1, taking in account that δi,n ≤ δ̂j,2, j = i−1, i, i+1,
and from [16]

|aj | ≤
1

2
, |bj | ≤ 2, |cj | ≤

1

2
, j ∈ Γn.

Since, for i ∈ Γn, qi − (pi − 1) ≤ 5 and, from the local uniformity of ΠN , δi,n ≥ A−4Hi,n, the
thesis (18) is true.

The local error estimate (16) leads immediately to the following global result

Corollary 1 Let f ∈ C(J) then

‖f − Snf‖∞ ≤ k1ω(f ; H̃n; J), (20)

where k1 is given by (17).

Proof. The assertion (20) follows immediately from (16).
Moreover, for f ∈ Hρ(J) the associated error sequence is O(H̃ρ

n).
For the considered spline space S2 (Xn), we can state the following theorem, proved in [14]:

Theorem 1 Let f ∈ C(J) and consider any sequence of locally uniform spline spaces {S2 (Xn)}.
If any spline S ∈ S2 (Xn) satisfies:

1. S ∈ C(J)

2. |f(x)− S(x)| ≤ k1ω(f ;Hi,n; J̃i), xi−1 ≤ x ≤ xi

3. |DS(x)| ≤ k2H
−1
i,nω(f ;Hi,n; J̃i), xi−1 < x < xi.

Then
ω(S;H; J) ≤ k3ω(f ;H; J).
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4 The quadrature rule

We replace f by Snf , defined by (12), in (1) and approximate I(wα,βf ;λ) by the quadrature sum

I(wα,βSnf ;λ) =
∑

i∈Γn

f(θi)I(wα,βB̃i;λ). (21)

Setting wi = I(wα,βB̃i;λ), using (10) and (11), we can write:

wi =























I(wα,βB0;λ) + a1I(wα,βB1;λ), i = 0

ci−1I(wα,βBi−1;λ) + biI(wα,βBi;λ) + ai+1I(wα,βBi+1;λ), 1 ≤ i ≤ n

cnI(wα,βBn;λ) + I(wα,βBn+1;λ), i = n+ 1.

In order to compute I(wα,βBi;λ), i ∈ Γn, we can consider all quadratic polynomials pi,j(x), j =
i− 1, i, i+ 1, such that

pi,j(x) = Bi(x), x ∈ [xj−1, xj ].

Setting pi,j(x) = ā1x
2 + ā2x+ ā3, we evaluate pi,j(x)/(x− λ) using

pi,j(x) = [ā1x+ (ā2 + ā1λ)](x− λ) + ā3 + ā2λ+ ā1λ
2.

The evaluation of I(wα,βBi;λ), i ∈ Γn, is reduced to the computation of the following integrals,
for j = i− 1, i, i+ 1,

∫ xj

xj−1

− wα,β (x)
pi,j(x)

x− λ
dx = b̄1

∫ xj

xj−1

wα,β(x)xdx+ b̄2

∫ xj

xj−1

wα,β(x)dx+ b̄3Ĩj(wα,β ;λ), (22)

where, assuming that λ 6= xj−1, xj ,

Ĩj(wα,β ;λ) =











∫ xj

xj−1
−

wα,β(x)
x−λ

dx, λ ∈ (xj−1, xj)

∫ xj

xj−1

wα,β(x)
x−λ

dx, λ 6∈ [xj−1, xj ]

and:

b̄1 = ā1,

b̄2 = ā2 + b̄1, λ

b̄3 = ā3 + b̄2λ.

For certain values of α, β, for example α = β = −1/2, α = β = 1/2 and α = β = 0, the integrals
in (22) can be evaluated exactly, otherwise a numerical method has to be used [10].

Now, we consider the quadrature error

E(S)
n (ωα,βf ;λ) = I(ωα,βen;λ), en = f − Snf. (23)

Finally, we prove the following uniform convergence theorem which also gives a bound for the
quadrature error.
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Theorem 2 Assume that (15) holds and f ∈ Hρ(J) for a given order ρ ∈ (0, 1]. Suppose
that {Snf} is based on a sequence of locally uniform partitions {ΠN} and ρ + γ > 0, where
γ = min(α, β). Then

I(wα,βen;λ) → 0 as n → ∞, uniformly in λ ∈
◦

J . (24)

Moreover,

|I(wα,βen;λ)| =

{

O(H̃ρ
n| log H̃n|) , γ ≥ 0

O(H̃ρ+γ
n ), γ < 0 ,

(25)

where the O−term holds uniformly with respect to λ ∈
◦

J .

Proof. To prove (24), we verify that conditions (3) - (5) are true. The condition (3) follows from
(20) since f ∈ Hρ(J) and (15) holds. The condition (4) follows from (9). Finally, the condition
(5), with σ = ρ, follows from (16), (18) and Theorem 1 since, for any u, v ∈ J ,

|en(u)− en(v)| ≤ |f(u)− f(v)|+ |Snf(u)− Snf(v)| .

The three sufficient conditions, ensuring that (25) holds, are provided in [7]. Two of them are
(4) and (5) with σ = ρ, respectively. The third one is

‖en‖∞ ≤ cH̃ρ
n, 0 < c < ∞. (26)

The assertion (26) follows from (20), since f ∈ Hρ(J).

5 Comparison of methods and numerical applications

Numerical evaluation of (1) has several practical applications, for instance in the solution of singular
integral equations arising in aerodynamics or fluid mechanics [9, 10]. For the numerical solution
of these equations it is very important to have a sequence of quadratures satisfying (6).

The majority of numerical methods proposed for (1) are global methods based on orthogonal
polynomials. Even if such methods converge very fast for differentiable functions, in some prac-
tical applications one cannot always place the nodes of quadrature at the zeros of the orthogonal
polynomials [10].

Recently, local methods for (1) have been introduced, mainly based on spline interpolation,
see for instance [2, 9] or on spline quasi-interpolation [3, 12, 17], with simple knots inside the
integration interval.

In [3, 12] the authors have proposed local methods based on quasi-interpolating splines that
place no restriction on the order of the spline and a few restriction on the spacing of the knots.
The sequence of rules proposed in [12] satisfies (6) for f ∈ Hρ(J) but is exact only for f ∈ P1.
Whereas, the sequence of rules proposed in [3] is exact for f ∈ Pm, m ≥ 2, but (6) holds only for
f ∈ C1(J).

In [17] the author has proposed rules for (1) obtained by subtracting out the singularity and then
applying quadrature formulas based on quasi-interpolating splines [11]. For such rules, uniform
convergence properties have been proved for f ∈ C1(J).

Tables 1, 2 and 3 present some numerical results obtained when our rule and other known ones
[3, 12, 17], based on quadratic approximating splines with the same set of knots {Xn}, are applied
to the integral (1) for several functions f and different values of α, β, λ and n.

In Tables 4 and 5 we test our rule (21) in case of integrands f with a singularity in the first
derivative at x = 0. We use both a sequence of knots {Xn} with simple interior knots and the
sequence obtained from Xn by inserting a double knot at x = 0.
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We choose two different partitions ΠN with the norm H̃n of the corresponding Xn satisfying
(15), i. e.:

U : ΠN = {ti = −1 +
2i

N
, i = 0, 1, . . . , N},

P : ΠN = {ti = cos

(

N − i

N
π

)

, i = 0, 1, . . . , N}.

We recall that, given any initial partition ΠN , there exists an associated 4-quasi uniform par-
tition [18].

We denote by:

E
(S)
(n) the truncation error (23) of our rule (21), based on Xn with simple interior knots,

E
(D)
(n+r) the truncation error (23) of the rule (21) based on the knot sequence obtained by

inserting r interior double knots in Xn as the case may be,

E
(R)
(n) the truncation error of the rule proposed in [12],

E
(QI)
(n) the truncation error of the rule proposed in [3],

E
(SS)
(n) the truncation error of the rule proposed in [17].

In case of smooth integrands f , for which the spline space is defined by using simple interior
knots, we can present some comparisons with other known spline quadratures. The quadrature
errors in Tables 1, 2 and 3, with smooth integrands f , show that our quadrature (21) performs
better than the quadrature defined in [12], is comparable and sometimes better than that one
introduced in [3]. Whereas, the rule [17], obtained by subtracting out the singularity and then
applying spline quasi-interpolants, seems to perform better.

In Tables 4 and 5 we apply the rule (21) to integrands f having a singularity in the first
derivative. The quadrature errors show that the rule with a double knot at the singular point of
f ′(x) performs better than that one with simple interior knots.

Table 1: f(x) = (x2 + y2)−1, y = 5, α = β = − 1
2 , ΠN = P

λ I(ωα,βf ;λ) n |E
(R)
n | |E

(QI)
n | |E

(SS)
n | |E

(S)
n |

8 3.1(-5) 1.9(-6) 1.7(-8) 1.5(-6)
0.25 -0.0012291611 16 8.1(-6) 2.0(-7) 1.3(-9) 1.4(-7)

32 1.6(-6) 1.3(-8) 5.1(-10) 1.3(-8)
64 4.6(-7) 3.8(-9) 2.4(-11) 5.9(-11)
8 1.3(-4) 8.4(-6) 6.6(-8) 1.5(-6)

0.99 -0.0046955619 16 4.2(-5) 8.8(-7) 5.0(-9) 1.4(-7)
32 1.7(-5) 1.8(-7) 7.8(-10) 9.4(-9)
64 3.4(-6) 3.3(-9) 3.9(-11) 6.8(-10)

6 Final remarks

A new quadrature rule for the CPV integral (1) is defined by integrating a quadratic spline quasi-
interpolant presented in [16]. We prove uniform convergence and provide uniform error bounds for
sequences of such quadratures for integrands f ∈ Hρ (J) , 0 < ρ ≤ 1. The proposed quadrature rule
includes the possibility of inserting multiple spline knots at singular points of f ′(x). Comparisons
with other spline methods using simple interior knots are given.

Applications to numerical solution of singular integral equations are in progress.
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Table 2: f(x) = (x2 + y2)−1, y = 0.1, α = β = − 1
2 , ΠN = P

λ I(ωα,βf ;λ) n |E
(R)
n | |E

(QI)
n | |E

(SS)
n | |E

(S)
n |

8 5.6(1) 2.0(1) 3.0(1) 7.0(1)
0.25 -107.79315611 32 8.5(-1) 3.9(-1) 5.3(-2) 6.8(-1)

64 2.4(-1) 2.7(-2) 2.6(-4) 6.8(-4)
128 5.8(-2) 5.8(-4) 1.5(-5) 2.0(-3)
8 6.9(0) 1.0(1) 8.9(0) 1.0(1)

0.99 -31.256858013 32 3.8(-2) 2.2(-2) 1.5(-2) 1.0(-1)
64 1.1(-2) 1.8(-4) 7.7(-5) 2.1(-4)
128 2.5(-3) 1.0(-4) 4.5(-6) 1.9(-6)

Table 3: f(x) = ex, α = β = 0, ΠN = P

λ I(ωα,βf ;λ) n |E
(R)
n | |E

(QI)
n | |E

(SS)
n | |E

(S)
n |

8 1.2(-2) 5.7(-3) 1.6(-4) 2.7(-3)
0.1 1.99903605021 16 3.3(-3) 5.1(-4) 1.1(-5) 3.4(-4)

32 8.3(-4) 1.5(-5) 3.1(-7) 2.1(-5)
8 1.2(-2) 2.6(-3) 1.7(-4) 2.7(-3)

0.5 0.91378643172 16 3.3(-3) 3.0(-4) 1.2(-5) 2.6(-4)
32 6.0(-4) 4.7(-6) 1.1(-6) 2.3(-5)
8 4.5(-2) 5.5(-3) 1.8(-4) 1.8(-3)

0.9 -3.85323498264 16 8.1(-3) 6.7(-5) 1.3(-5) 1.0(-4)
32 7.1(-4) 1.3(-4) 3.6(-7) 4.7(-6)

Table 4: f(x) = x4 + |x|, α = β = − 1
2 , ΠN = U

n = 16 n = 32 n = 64
λ I(ωα,βf ;λ) |E

(S)
n | |E

(D)
n+1| |E

(S)
n | |E

(D)
n+1| |E

(S)
n | |E

(D)
n+1|

0.01 0.12168225086258 4.7(-2) 3.1(-4) 3.3(-2) 8.3(-6) 2.0(-2) 5.3(-7)
0.1 0.76188165530404 3.7(-2) 1.3(-4) 4.7(-5) 1.4(-5) 7.1(-4) 3.4(-7)
0.2 1.27517331669127 2.6(-4) 2.9(-4) 1.4(-3) 9.3(-6) 3.9(-4) 4.0(-6)
0.4 2.19699495620963 2.5(-3) 3.0(-4) 7.1(-4) 7.8(-5) 2.0(-4) 3.0(-7)
0.6 3.26898024225450 1.6(-3) 4.4(-4) 4.0(-4) 1.3(-4) 1.3(-4) 1.9(-6)
0.8 4.71352498156708 2.2(-3) 3.7(-3) 3.1(-4) 9.3(-5) 7.2(-5) 2.9(-5)
0.9 5.63300644487096 1.1(-3) 2.5(-3) 3.2(-4) 6.8(-4) 7.3(-5) 1.7(-5)
0.99 6.59666565782882 8.0(-3) 6.7(-3) 9.4(-4) 6.1(-4) 3.8(-5) 4.4(-5)
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