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Abstract

Traits have been designed as units for fine-grained reuse of behavior in the object-oriented paradigm. Records have
been devised to complement traits for fine-grained reuse of state. In this paper, we present the language TRAITRE-
CORDJ, a JAVA dialect with records and traits. Records and traits can be composed by explicit linguistic operations,
allowing code manipulations to achieve fine-grained code reuse. Classes are assembled from (composite) records and
traits and instantiated to generate objects. We introduce the language through examples and illustrate the prototyp-
ical implementation of TRAITRECORDJ using XTEXT, an Eclipse framework for the development of programming
languages as well as other domain-specific languages. Our implementation comprises an Eclipse-based editor for
TRAITRECORDJ with typical IDE functionalities, and a stand-alone compiler, which translates TRAITRECORDJ pro-
grams into standard JAVA programs. As a case study, we present the TRAITRECORDJ implementation of a part of the
software used in a web-based information system previously implemented in JAVA.
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1. Introduction

The term trait was used by Ungar et al. [66] in the dynamically-typed prototype-based language SELF to denote
a parent object to which an object may delegate some of its behavior. Subsequently, traits have been introduced by
Schärli et al. [60, 33] in the dynamically-typed class-based language SQUEAK/SMALLTALK [17, 18] to play the role
of units for fine-grained reuse of behavior, in order to counter the problems of class-based inheritance with respect to
code reuse (see, e.g., [33, 48, 26] for discussions and examples). A trait is a set of methods, completely independent
from any class hierarchy. The common behavior (i.e., the common methods) of a set of classes can be factored into
a trait, and traits can be composed to form other traits or classes. Two distinctive features of traits are that traits can
be composed in arbitrary order and that composed traits or classes must resolve possible name conflicts explicitly.
These features make traits more flexible and simpler than mixins [39, 23, 45, 35, 8]. Various formulations of traits in a
JAVA-like setting can be found in the literature (see, e.g., [61, 49, 20, 58, 21, 46]). The recent programming language
FORTRESS [7] incorporates a form of trait construct, while the “trait” construct incorporated in SCALA [50] is indeed
a form of mixin.

Records have been proposed by Bono et al. [20] as the counterpart of traits, with respect to state, to play the role
of units for fine-grained reuse of state. A record is a set of fields, completely independent from any class hierarchy.
The common state (i.e., the common fields) of a set of classes can be factored into a record.

In this paper, we present the programming language TRAITRECORDJ,1 a JAVA dialect using traits and records as
composable units of behavior and state reuse, respectively, and aiming at interface-based polymorphism. TRAITRE-
CORDJ is based on the calculus presented in [13] whose complete formalization and proof of type safety is available as

IThis work has been partially supported by the Ateneo Italo-Tedesco / Deutsch-Italienisches Hochschulzentrum (Vigoni project “Language
constructs and type systems for object oriented program components”), the Deutsche Forschungsgemeinschaft (DFG), the EU project FP7-231620
HATS: Highly Adaptable and Trustworthy Software using Formal Models (http://www.hats-project.eu), and the MIUR PRIN 2009 project
DISCO: Distribution, Interaction, Specification, Composition for Object Systems.
∗Corresponding Author.
1TRAITRECORDJ was formerly called SUGARED WELTERWEIGHT RECORD-TRAIT JAVA (SWRTJ) [15]. We adopted a new name since the

old one turns out to sound rather odd. The genesis of the old name of the language, which dates back to an early prototype developed as part of
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a technical report in [14]. In TRAITRECORDJ, the declarations of object type, state, behavior and instance generation
are completely separated. TRAITRECORDJ considers:

• Interfaces, as pure types, defining only method signatures;

• Records, as pure units of state reuse, defining only fields;

• Traits, as pure units of behavior reuse, defining only methods; and

• Classes, as pure generators of instances, implementing interfaces by using traits and records, and defining construc-
tors.

In TRAITRECORDJ, a trait consists of provided methods (i.e., methods defined in the trait), of required methods
which parametrize the behavior, and of required fields that can be directly accessed in the body of the methods. Traits
are building blocks to compose classes and other, more complex, traits. A suite of trait composition operations allows
the programmer to build classes and composite traits. The complete syntax and features of TRAITRECORDJ will be
illustrated in Section 2. Here we briefly illustrate some features of TRAITRECORDJ with an example.

Example 1. Consider the task of developing a class Stack that implements the interface:

interface IStack {
boolean isEmpty();
void push(Object o);
Object pop();
}

In JAVA, the corresponding implementation would be a class as follows:

class Stack implements IStack {
List l;
Stack() { l = new ArrayList(); }
boolean isEmpty() { return (l.size() == 0); }
void push(Object o) { l.addFirst(); }
Object pop() { Object o = l.getFirst(); l.removeFirst(); return o; }
}

In a language with traits and records, the fields and the methods of the class can be defined independently from the
class itself. If the class Stack was originally developed in TRAITRECORDJ, it would have been written as follows
(the interface IList and the class CArrayList, not shown here, have all the standard methods of lists and are part
of the library of the language; they correspond to List and ArrayList in JAVA):

record RElements is { IList l; }

trait TStack is {
IList l; /∗ required field ∗/
boolean isEmpty() { return (l.size() == 0); }
void push(Object o) { l.addFirst(o); }
Object pop() { Object o = l.getFirst(); l.removeFirst(); return o; }
}

class Stack implements IStack by RElements and TStack {
Stack() { l = new CArrayList(); }
}

the fourth author’s bachelor thesis [65], is quite involved. WELTERWEIGHT refers to the fact that, in a preliminary design, the “weight” of the
language was meant to lay between the weight of LIGHTWEIGHT JAVA [64] and MIDDLEWEIGHT JAVA [16], while SUGARED expressed the fact
the implemented language contained some syntactic sugar not present in the underlying calculus [13, 14].
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In TRAITRECORDJ, like in FORTRESS, there is no class hierarchy and consequently no class-based inheritance.
Multiple inheritance with respect to methods is obtained via the trait construct, and multiple inheritance with respect
to fields is obtained via the record construct. Thus, multiple inheritance is subsumed by ensuring that, in the spirit
of the original trait proposal in SQUEAK/SMALLTALK, the composite unit has complete control over the composition
and must resolve conflicts explicitly.

Although TRAITRECORDJ rules out class-based inheritance and relies on traits and records as the reuse mecha-
nisms, class-based inheritance could be encoded with the existing concepts of TRAITRECORDJ as a syntactic sugar
construct, as we will explain in Section 4. However, this “shortcut” might undermine the code reuse potential provided
by traits and records leading back to the pitfalls of standard class-based inheritance. Furthermore, the introduction of
class-based inheritance in TRAITRECORDJ is not necessary, since a TRAITRECORDJ program can be used in con-
junction with any standard JAVA program. TRAITRECORDJ is a JAVA dialect, and the TRAITRECORDJ compiler
generates standard JAVA classes that do not depend on a specific library. Thus, a JAVA program can reuse TRAIT-
RECORDJ interfaces and create standard JAVA objects using the code generated by the TRAITRECORDJ compiler.
This technique can be used to combine code written in TRAITRECORDJ with JAVA libraries whose sources cannot be
changed. For instance, TRAITRECORDJ objects can be passed to standard JAVA code provided the respective inter-
faces are compatible. The possibility of combining TRAITRECORDJ generated JAVA code with standard JAVA code
can also be used to incrementally refactor JAVA class hierarchies into trait and record-based code. The refactoring can
be done along the lines of the work by Bettini et al. [12], where an approach for identifying the methods in a JAVA
class hierarchy that can be good candidates to be refactored in traits is presented.

TRAITRECORDJ is equipped with a JAVA-like nominal type system where the only user-defined types are interface
names. This supports type checking traits in isolation from other traits and classes that use them. In SCALA [50] and
FORTRESS [7], each trait, as well as each class, also defines a type. But the role of unit of reuse and the role of type
are competing, as already pointed out by Snyder [62] and Cook et al. [31]. In order be able to define the subtyping
relation on traits such that a trait is always a subtype of the component traits, both SCALA and FORTRESS rule out
the method exclusion operation. (Method exclusion forms a new trait by removing a method from an existing trait.)
However, without method exclusion, the reuse potential of traits is restricted. In TRAITRECORDJ, traits (as well as
records and classes) do not define types. Thus, in TRAITRECORDJ method exclusion is supported and enhances the
reuse potential of traits. This will be illustrated in Example 2 of Section 2.1.

We present the implementation of TRAITRECORDJ using XTEXT [5], a framework for the development of pro-
gramming languages as well as other domain-specific languages (DSLs). The syntax of TRAITRECORDJ is defined
in XTEXT using an EBNF grammar. The XTEXT generator creates a parser, an AST-meta model (implemented in
EMF [63]) as well as a full-featured Eclipse-based editor for TRAITRECORDJ. Using the TRAITRECORDJ compiler,
a TRAITRECORDJ program is translated into a standard JAVA program. The TRAITRECORDJ compiler can also be
used as a command line program, outside of the Eclipse IDE. The implementation of TRAITRECORDJ described in
the paper is available as an open source project at http://traitrecordj.sourceforge.net.

A preliminary version of this paper appeared as [15]. The current version of the paper includes new examples,
presents a case study based on a commercially used application software, and provides a more detailed presentation
of the TRAITRECORDJ implementation.

Organization of the Paper. Section 2 presents the syntax of TRAITRECORDJ and briefly introduces its operational
semantics and type system. Section 3 illustrates the language by means of an example. In Section 4 we discuss the
features of TRAITRECORDJ and their impact on programming. Section 5 presents the case study. Section 6 describes
the implementation of TRAITRECORDJ using the XTEXT framework. Related work is discussed in Section 7. We
conclude by outlining possible directions for future work.

2. The TRAITRECORDJ Programming Language

In this section we describe the syntax of the TRAITRECORDJ programming language and briefly illustrate its
operational semantics and type system (we refer to [14] for the formalization of the FRTJ calculus on which TRAIT-
RECORDJ is based).
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ID ::= interface I extends I { S;} interface definition
S ::= I m(I x) method signature

RD ::= record R is RE record definition
RE ::= { F;} | R | RE+RE | RE[ RO ] record expression
F ::= I f field definition
RO ::= exclude f | f renameTo f record field operation

TD ::= trait T is TE trait definition
TE ::= { F; S; M } | T | TE+TE | TE[ TO ] trait expression
M ::= S {I x = e; se; return e; } method
e ::= null | x | x = e | this | this.f | this.f = e | e.m(e) | new C(e) | (I)e expression
se ::= x = e | this.f = e | e.m(e) | if (e) be else be | while (e) be statement expression
be ::= {I x = e; se;} block expression
TO ::= exclude m | f renameFieldTo f | m renameTo m | m aliasAs m trait elements operation

CD ::= class C implements I by RE and TE { K } class definition
K ::= C(I x) be constructor

Table 1: TRAITRECORDJ syntax

2.1. Syntax
The syntax of TRAITRECORDJ is illustrated in Table 1, without void, primitive types (boolean, byte, char,

short, int, long, float and double) and file imports, which are not relevant for this description. An interface must
extend zero or more interfaces, whereas a class must implement one or more interfaces. In the syntax, the overline
bar indicates a (possibly empty) list, as in FEATHERWEIGHT JAVA [40]. For instance, I = I1, ...,In, n ≥ 0. The
parameter declarations are denoted by I x to indicate I1 x1, ...,In xn. The same notation can be applied to the other
lists. In the syntax, m denotes a method name, f a field name and x a local variable or parameter. Note that the
grammar contains only the field access this.f (even for field assignment) because a field can be used only within a
method (trait method or constructor) due to its private visibility. Variables and methods can only have an interface
type. Trait expressions in trait composition operations do not have to be names of already defined traits: they can also
be “anonymous” traits { F; S; M }. The same holds for record expressions. This is in particular useful for traits, when
a trait expression has to define some “glue” code for other traits used in a trait composition operation. In this way,
there is no need to define a trait with a name only for that. Examples of such usage have been given in Section 1.

In TRAITRECORDJ, a trait consists of provided methods (i.e., methods defined in the trait), of required methods
which parametrize the behavior, and of required fields that can be directly accessed in the body of the methods, along
the lines of the proposal by Bono et al. [20] (see also [13, 21]). Traits are building blocks to compose classes and other,
more complex, traits. A suite of trait composition operations allows the programmer to build classes and composite
traits. A distinguished characteristic of traits is that the composite unit (class or trait) has complete control over
conflicts that may arise during composition and must solve them explicitly. Traits do not specify any state. Therefore
a class composed by using traits has to provide the required fields through records, as explained in the following. The
trait composition operations considered in TRAITRECORDJ are as follows:

• A basic trait defines a set of methods and declares the required fields and the required methods.

• The symmetric sum operation, +, merges two traits to form a new trait. It requires that the summed traits must
be disjoint (that is, they must not provide identically named methods) and have compatible requirements (two
requirements on the same method/field name are compatible if they are identical).

• The operation exclude forms a new trait by removing a method from an existing trait.

• The operation aliasAs forms a new trait by giving a new name to an existing method. When a recursive method
is aliased, its recursive invocation refers to the original method (as proposed by Schärli et al. [60, 33]). The variant
of method aliasing where when a recursive method is aliased its recursive invocation refers to the new method
(proposed by Liquori and Spiwack [46]), can be straightforwardly encoded by exclusion, renaming and symmetric
sum.
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• The operation renameTo creates a new trait by renaming all the occurrences of a required/provided method name
from an existing trait (the return type and the parameters of the method are unchanged).

• The operation renameFieldTo creates a new trait by renaming all the occurrences of a required field name.

Note that, in TRAITRECORDJ, the actual names of the methods defined in a trait and the names of the required
methods and fields are irrelevant, since they can be changed by the renameTo and renameFieldTo operations.
While developing the case study illustrated in Section 5, we found natural to exploit these operations (which are not
supported, e.g., in the languages SMALLTALK/SQUEAK, FORTRESS and SCALA).

Records are building blocks to compose classes and other, more complex, records by means of operations analo-
gous to the ones described above for traits. The record composition operations considered in TRAITRECORDJ are as
follows:

• A basic record defines a set of fields.

• The symmetric sum operation, +, merges two disjoint records to form a new record.

• The operation exclude forms a new record by removing a field from a record.

• The operation renameTo creates a new record by renaming a field in a record.

TRAITRECORDJ fosters the programming methodology based on design by interface, starting from declaring the
services (methods) that our implementation components provide using a separate mechanism (the interface) which has
only that aim; this naturally turns the interface in the only means to declare a type. The state and the implementations
of such services are once again split into two different entities which can be reused separately, i.e., records and traits,
respectively. Note that these blocks, records and traits, are pure units of reuse, and cannot be instantiated directly (this
would undermine their usability). However, they can be used by the classes, which are the only means to assemble
records and traits in order to implement interfaces and to instantiate objects.

The entry point of an TRAITRECORDJ program is specified by

program <name> {
<expression>
}

In the scope of the program, the implicit object args is the list of the program’s command line arguments.
In TRAITRECORDJ, traits, records and classes are not types in order to subdivide the roles of the different con-

structs. Moreover, as illustrated in the following Example 2, traits and records support exclusion operations that
violate subtyping. Therefore, a type can be only an interface or a primitive type (e.g., int, boolean etc.).

Example 2. Consider the JAVA version of the class Stack introduced in Example 1. Suppose that a class implement-
ing the following interface should be developed:

interface ILifo {
boolean isNotEmpty();
void push(Object o);
void pop();
Object top();
}

In JAVA there is no straightforward way to reuse the code in class Stack, as it would not be possible to override the
pop method changing the return type from Object to void.

Consider now the TRAITRECORDJ version of the class Stack (in Example 1). The record RElements and the
trait TStack are completely independent from the code of class Stack. TRAITRECORDJ extends method reusability
of traits to state reusability of records and fosters a programming style relying on small components that are easy to
reuse. Because of the trait and record operations to exclude and rename methods and fields, they can be reused to
develop completely unrelated classes. Based on this, a programmer would be able to write a class Lifo implementing
the interface ILifo by reusing the record RElements and by defining a trait TLifo that reuses the trait TStack by
exploiting the method exclusion operation:
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trait TLifo is (TStack[exclude pop]) + {
IList l; /∗ required field ∗/
boolean isEmpty(); /∗ required method ∗/
boolean isNotEmpty() { return !isEmpty(); }
void pop() { l.removeFirst(); }
Object top() { return l.getFirst(); }
}

class Lifo implements ILifo by RElements and TLifo {
Lifo() { l = new CArrayList(); }
}

The body of trait TLifo satisfies the requirements of the trait sum operation described at the beginning of the section:
the method pop is excluded thus it does not generate a conflict and the field requirement is identical to the one of
TStack.

The example above illustrates a paradigmatic case of trait composition that does not preserve structural subtyping.
If traits were types and composed traits were subtypes of the component traits (as in SCALA and FORTRESS), then the
declaration of the trait TLifo would not type check, since:

• the trait TLifo should provide all the methods provided by TStack, and

• a method with signature Object pop() and a method with signature void pop() could not belong to the same
trait/class.

Alternatively, the trait TLifo could be implemented by exploiting method renaming instead of method exclusion:

trait TLifo is (TStack[pop renameTo old pop]) + {
IList l; /∗ required field ∗/
Object old pop(); /∗ required method ∗/
boolean isEmpty(); /∗ required method ∗/
boolean isNotEmpty() { return !isEmpty(); }
void pop() { old pop(); }
Object top() { return l.getFirst(); }
}

Again, if traits were types and composed traits were subtypes of the component traits, then the declaration of the
trait TLifo would not type check.

For simplicity, method overloading is not supported. Constructor overloading allows only the definition of con-
structors with different numbers of parameters within a class.

Visibility modifiers are ruled out since they are not necessary. The traditional visibility modifiers are implied by
the constructs used in TRAITRECORDJ as follows.

private Every instance variable is private. Since a class is not a type, fields can be accessed only from the this
parameter. Every provided method is private if it does not appear in the interfaces implemented by a class. Interfaces
are the only way to make a method accessible from the outside.

protected This modifier is not necessary since inheritance is ruled out.

public Every method declared in the interface implemented by a class is public. Fields cannot be public in order to
support information hiding.

The system library of TRAITRECORDJ provides interfaces such as IObject (implicitly extended by every inter-
face), IInteger, IString etc. Every interface has a corresponding class implementing it, e.g., CObject, CInteger,
etc. For synchronization mechanisms, we provide the interface ILock (and the corresponding class CLock) with
methods lock and unlock avoiding to introduce specific concurrency features in the language. In order to deal with
collections, IList is an interface with typical list operations. CArrayList is the corresponding implementation class.
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Jclass C implements Ī by RE and TE { K }K = class C implements Ī {JREK K JTEK }

J{ F̄; }K = F̄

JRK = JREK if RT(R) = record R is RE

JRE1 +RE2K = JRE1K · JRE2K
JRE[exclude f]K = exclude(JREK,f)

JRE[f renameTo f′]K = JREK[f′/f]

J{ F̄; S̄; M̄}K = M̄

JTK = JTEK if TT(T) = trait T is TE

JTE1 +TE2K = JTE1K · JTE2K
JTE[exclude m]K = exclude(JTEK,m)

JTE[m aliasAs m′]K = M̄ · (I m′(Ī x̄) MB) if JTEK = M̄ and I m(Ī x̄) MB ∈ M̄
JTE[f renameFieldTo f′]K = JTEK[f′/f]

JTE[m renameTo m′]K = mR(JTEK,m,m′)

mR(I n(Ī x̄) MB,m,m′) = I n[m
′
/m](Ī x̄) MB[this.m

′
/this.m]

mR(M1 · ... ·Mn,m,m
′) = (mR(M1,m,m

′)) · ... · (mR(Mn,m,m
′))

Table 2: Flattening TRAITRECORDJ to JAVA

The interfaces IPrintStream and IScanner, and their implicit “global” instances out and in can be used to per-
form basic operations such as writing to standard output and reading from standard input, respectively. Standard basic
types, such as int, boolean, etc., are also provided. Methods can be declared as void with the usual meaning.

The TRAITRECORDJ compiler, as illustrated in Section 6, produces standard JAVA code, which does not need
any additional libraries to be compiled and executed. Our code generation phase basically implements the flattening
procedure sketched in Section 2.2. The above interfaces and classes of the system library of TRAITRECORDJ are
basically “stubs” for the actual JAVA corresponding library classes. Thus, the programmer can easily mix TRAITRE-
CORDJ code with JAVA code in a program, since the former will be translated into plain JAVA.

2.2. Operational Semantics

The semantics of TRAITRECORDJ conforms to the flattening principle, that has been introduced in the original
formulation of traits in SQUEAK/SMALLTALK [33] (see also [49, 43, 42]) in order to provide a canonical semantics
for traits. According to the flattening principle, the semantics of a method/field introduced in a class by a trait/record
is identical to the semantics of the same method/field defined directly within the class.

The semantics of TRAITRECORDJ is specified through a flattening function J·K, given in Table 2, that translates a
TRAITRECORDJ class declaration into a JAVA class declaration, a record expression into a sequence of fields declara-
tions, and a trait expression into a sequence of method declarations. The clauses in Table 2 are mostly self-explanatory.
The auxiliary function exclude is such that exclude(F̄,f) denotes the sequence of field declarations obtained from F̄

by removing the declaration of the field f, and exclude(M̄,m) denotes the sequence of method declarations obtained
from M̄ by removing the declaration of the method m. Note that, in the translation of trait expressions, the clause for
field renaming is simpler than the clause for method renaming (which uses the auxiliary function mR); this is due to
the fact that fields can be accessed only on this.

Example 3. The flattening of the versions of the class Lifo given in Example 2 produces the class

class Lifo implements ILifo {
IList l;
Lifo() { l = new CArrayList(); }
boolean isEmpty() { return (l.size() == 0); }
boolean isNotEmpty() { return !isEmpty(); }
void push(Object o) { l.addFirst(); }
void pop() { l.removeFirst(); }
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Object top() { return l.getFirst(); }
}

and the flattening of the versions of the class Lifo obtained by using the version of the trait TLifo given immediately
after Example 2 produces the class

class Lifo implements ILifo {
IList l;
Lifo() { l = new CArrayList(); }
Object old pop() { Object o = l.getFirst(); l.removeFirst(); return o; }
boolean isEmpty() { return (l.size() == 0); }
boolean isNotEmpty() { return !isEmpty(); }
void push(Object o) { l.addFirst(); }
void pop() { old pop(); }
Object top() { return l.getFirst(); }
}

2.3. Type System

The TRAITRECORDJ type system supports type checking traits in isolation from classes and other traits that use
them, and supports type checking records in isolation from classes and other records that use them. Therefore, each
trait and record definition has to be type checked only once, i.e., every class or trait can use any trait or record without
type checking it again, and every class or record can use any record without type checking it again. This is more
efficient and convenient in practice, e.g., if the trait/record source is not available. The basic idea of the type system
is to collect constraints when checking traits and records, and to establish that these constraints hold when a class is
declared, in order to ensure that the pseudo-variable this in all the methods of used traits can be used safely.

In the TRAITRECORDJ type system, a nominal type is either a class name or an interface name. The subinterfacing
relation is the reflexive and transitive closure of the immediate subinterfacing relation declared by the extends clauses
in the interface definitions. The subtyping relation for nominal types is the reflexive and transitive closure of the
relation obtained by extending subinterfacing with the interface implementation relation declared by the implements
clauses in the class definitions.

Note that in TRAITRECORDJ classes are not source types. Class names cannot be used as types in the code written
by the programmer: they are used only internally by the compiler to type object creation expressions (new C(· · ·)).
The type of this is an inferred structural type, used only internally by the compiler. The syntax for expression types
is as follows θ ::= I | C | 〈F p σ〉 where I is an interface name, C is a class name and the 〈F p σ〉 is the structural
type for this, which contains all the fields (F) and the signatures (σ ) of the methods that can be selected on this in
the context where the expression occurs. If the expression is a constructor call, such as new C(), its type is the class
C; if the expression is this, its type is 〈F p σ〉; otherwise, the type of the method is an interface, for instance, if the
expression is a method call, such as x.m(), the type is the interface that I declares as return type of the method m.

The TRAITRECORDJ type system analyzes each trait (in isolation from classes and other traits that use it) and
infers a constraint (used only internally by the compiler) for each method provided by the trait. A constraint is a triple
〈F p S p I〉 consisting of required fields, method signatures and interfaces collected while analyzing an expression.
The constraints contain the types of every field and method selected on this and the name of every interface used,
either as type in the methods parameters to which this is passed as argument or as return type in the methods in
which this is returned. When analyzing a class, the TRAITRECORDJ type system checks that all the constraints of
the methods in used traits are satisfied in the class.

Example 4. The constraints inferred by the TRAITRECORDJ type system for the methods provided by the version of
the trait TLifo given immediately after Example 2 are as follows:

Object old pop() : < IList l | | >
boolean isEmpty() : < IList l | | >
boolean isNotEmpty() : < | boolean isEmpty() | >
void push(Object o) : < IList l | | >
void pop() : < | Object old pop() | >
Object top() : < IList l | | >
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CAccount

-bal: int
-owner: int

+deposit(x: int)
+withdraw(id: int, x: int)
+update(y: int)
+validate(id: int): bool

CAuth

-a1: int
-a2: int

+add(a: int)
+update(a: int)
+validate(a: int): bool

CAuthAccount

+validate(a: id): bool

CMyAccount

+validate(id: int): bool

CFeeAccount

-fee: int
-accFee: int

+update(y: int)
+monthly()

Figure 1: Class Diagram of the Account Example

3. TRAITRECORDJ by Example

In this section, we explain the use of TRAITRECORDJ using a comprehensive example. We implement a bank
account with additional authentication and billing functionalities. This example is an adapted version from the ex-
ample used in [32]. In that paper, the implementation of these bank account functionalities illustrates the subtle
difficulties introduced by multiple inheritance. Here, we show that the trait and record composition operations of
TRAITRECORDJ provide flexible means for code reuse, while alleviating the problems of multiple inheritance.

The class hierarchy of an implementation of the bank account example in a language supporting class-based mul-
tiple inheritance is depicted in Figure 1. The base class is the class CAccount which implements basic functionalities
for depositing and withdrawing money from an account. The balance of the account is stored in the field bal and the
owner of the account in the field owner (both are represented by integers for simplicity). The balance of the account
is changed by the update method. The validate method checks that the account is accessed by its owner. Listing 1
shows the implementation of the account class CAccount in TRAITRECORDJ. The bal and the owner fields are pro-
vided by the record RAccount. The methods of the class are introduced by the trait TAccount. The class CAccount
is assembled from the record RAccount and the trait TAccount.

The class CAuth is independent of class CAccount. It provides the functionality for storing two client identities
in the fields a1 and a2. Listing 2 shows the implementation of the class CAuth in TRAITRECORDJ. The fields are
introduced by the record RAuth. The methods update for updating the stored identities, add for adding an identity
and validate for validating a stored identity are provided by the trait TAuth. The record RAuth and the trait TAuth
are composed in the class CAuth.

In the class diagram in Figure 1, the class CAuthAccount inherits its functionalities from the classes CAccount
and CAuth such that it can provide more sophisticated authentication facilites by reusing the fields of the class CAuth.
In class CAuthAccount, the method validate first performs the same validation as the validate method of the
class CAccount and, if this validation fails, it performs the same validation as the method validate of class CAuth.
In TRAITRECORDJ, in order to realize this functionality, a new implementation of the method validate is provided
in trait TAuthAccount (cf. Listing 3) that has two required methods: the method validateAccount, which comes
from trait TAccount, and the method validateAuth, which comes from trait TAuth. When the class CAuthAccount
is composed from the traits TAccount, TAuth and TAuthAccount, the validate methods of the traits TAccount
and TAuth are renamed to match the names of the methods required by trait TAuthAccount. Instead of renaming,
also the operation aliasAs, followed by an exclusion of the original method, can be used, as it is shown in List-
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interface IAccount {
void deposit(int x);
void withdraw(int id, int x);
}

record RAccount is {
int bal; //Provided field
int owner;//Provided field
}

trait TAccount is {
int owner; //Required field
int bal; //Required field

void deposit(int x) {this.update(x);}

void update(int y) {this.bal = this.bal + y;}

void withdraw(int id, int x){
boolean v = this.validate(id);
if (v) {this.update(−x);}
}

boolean validate(int id) {
boolean b = false;
if (this.owner == id){b = true;}
return b;
}
}

class CAccount implements IAccount by RAccount and TAccount {
CAccount() {

this.bal = 0;
this.owner = 0;
}
}

Listing 1: Implementation of class CAccount

ing 3. Additionally, in the class CAuthAccount, the update methods of traits TAccount and TAuth are renamed for
disambiguation. In this way, the functionalities provided by the traits TAccount and TAuth (originally introduced
for implementing the classes CAccount and CAuth, respectively) can be reused and combined in a new manner. To
summarize: the class CAuthAccount is composed from the records RAccount and RAuth and the traits TAccount,
TAuth and TAuthAccount, reusing fields and methods developed for other classes with the necessary adjustments
described above.

According to the class diagram in Figure 1, besides authentication, the CAccount class can also be extended by
billing facilities which is done in class CFeeAccount. For each transaction, a particular fee has to be paid. The fees are
accumulated and deducted from the account once a month. In TRAITRECORDJ, in order to realize this functionality,
a new trait TFeeAccount is introduced in Listing 4 which modifies the update method of the trait TAccount by
first updating the account’s balance and then adding the transaction fee to the accumulated fee. The fee for each
transaction and the accumulated fees are stored in the fields provided by the record RFeeAccount. Additionally,
the trait TFeeAccount provides the method monthly which deduces the accumulated fees once a month. The class
CFeeAccount is composed from the records RAccount and RFeeAccount and the traits TAccount and TFeeAccount
with renaming the update method of trait TAccount to updateAccount such that this method can be called form the
modified update method of trait TFeeAccount. In this way, the original update method can be reused and wrapped
with additional functionality.

Finally, the class CMyAccount combines the billing and the authentication functionalities. Hence, the class
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interface IAuth { }

record RAuth is {
int a1;
int a2;
}

trait TAuth is {
int a1;
int a2;

void update(int a) {this.a2 = this.a1; this.a1 = a;}

void add(int a) {
if (this.a1 != −1) {this.update(a);}
else {this.a1 = a;}
}

boolean validate(int a){
boolean b = (a == this.a1) || (a == this.a2));
return b;
}
}

class CAuth implements IAuth by RAuth and TAuth {
CAuth() {

this.a1 = −1;
this.a2 = −1;
}
}

Listing 2: Implementation of class CAuth

interface IAuthAccount extends IAuth, IAccount {}

trait TAuthAccount is {
boolean validateAccount(int id); // Required Method
boolean validateAuth(int id); // Required Method

boolean validate(int id){
boolean r = this.validateAccount(id);
if (!r) {r = this.validateAuth(id);}
return r;
}
}

class CAuthAccount implements IAuthAccount by RAuth + RAccount and
TAccount[validate aliasAs validateAccount,exclude validate,update renameTo updateAccount]
+ TAuth[validate renameTo validateAuth, update renameTo updateAuth] + TAuthAccount {
CAuthAccount(){

[...] // set default values
}
}

Listing 3: Implementation of class CAuthAccount
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interface IFeeAccount extends IAccount {
void monthly();
}

record RFeeAccount is {
int fee;
int accFee;
}

trait TFeeAccount is {
void updateAccount(int y); // Required method
int fee; // Required field
int accFee; // Required field

void update(int y) {
this.updateAccount(y);
if (y < 0){

this.accFee = this.accFee + this.fee;
}
}

void monthly() {
this.updateAccount(−this.accFee);
this.accFee = 0;
}
}

class CFeeAccount implements IFeeAccount by RFeeAccount + RAccount and
TFeeAccount + TAccount[update renameTo updateAccount]{

CFeeAccount() {
[...] // set default values
}
}

Listing 4: Implementation of class CFeeAccount

trait TMyAccount is {
boolean validateAuthAccount(int id); // Required method
boolean validate(int id) {this.validateAuthAccount(id);}
}

class CMyAccount implements IFeeAccount, IAuthAccount
by RFeeAccount + RAccount + RAuth
and TFeeAccount +
TAccount[validate aliasAs validateAccount,exclude validate,update renameTo updateAccount]

+ TAuth[validate renameTo validateAuth, update renameTo updateAuth]
+ TAuthAccount [validate renameTo validateAuthAccount]{
CMyAccount(int owner, int f) {

[...] // set default values
}

}

Listing 5: Implementation of class CMyAccount
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CMyAccount (cf. Listing 5) is composed from the records RAccount, RAuth and RFeeAccount providing together
the fields for the basic account, the authentication and the billing functionalitites and from the traits TAccount, TAuth,
TFeeAccount and TMyAccount where the trait TMyAccount only provides a wrapper for the validate method of
the trait TAuthAccount.

In this example, it can be observed that flexible code reuse can be easily be achieved in TRAITRECORDJ using the
trait and record composition operations when assembling classes from pre-existing records and traits. Furthermore,
this example demonstrates that TRAITRECORDJ is powerful enough to achieve the same reuse capabilities as (multi-
ple) inheritance while allowing explicit disambiguation and wrapping of methods by renaming, aliasing and method
exclusion.

4. Discussion

TRAITRECORDJ programs may look more verbose than standard class-based programs. However, the degree of
reuse provided by records and traits is higher than the reuse potential of standard static class-based hierarchies. The
distinction of each programming concept in a separate entity pays off in the long run, since each component is reusable
in different contexts, in an unanticipated way. This does not happen so easily with standard class-based OO linguistic
constructs. Class hierarchies need to be designed from the start with a specific reuse scenario in mind. In particular,
for single inheritance, precise design decisions should be made from the very beginning. This design might be hard
to change, if not impossible, forcing either to refactoring or to code duplication (Murphy-Hill et al. [48]).

Our linguistic constructs are lower-level than standard OO mechanisms. However, some syntactic sugar can be
added to reduce the amount of code to write in some situations. For instance: fields might also be declared directly
in classes (thus encompassing the JAVA-like calculus by Bono et al. [21]), class names might be used as types, etc.
Along the same lines, we can simulate class inheritance with our linguistic constructs; thus encoding JAVA dialects,
like Chai2 by Smith and Drossopoulou [61], and programming environments, like the one by Quitslund et al. [54],
where traits coexist with class inheritance. This can be achieved easily by inverting the “flattening” concept. For
instance, if we start from the JAVA-style class Stack given in Section 1, we can easily separate fields and methods
into automatically generated records and traits, and generate the corresponding TRAITRECORDJ class declaration.
Similarly, inheritance and method overriding can be simulated with inherited interfaces and trait method renaming,
respectively. The super call can be simulated with a call to the renamed version of the method. However, this would
decrease the level of reuse for such components.

This issue of having these additional constructs in the language is related to the debate of whether it is better to
have a pure or hybrid programming language. In this respect, the purity of a language usually imposes more verbose
solutions than a hybrid language. For instance, consider the amount of code for writing the main static public method
of a public class in JAVA, and compare it to the simple form of the corresponding function in C++ which also provides
functions besides classes and methods. The goal of reducing verbosity often led to additional language constructs
which may break the pure linguistic features, e.g., the addition of imperative features to a purely functional language
(see, e.g., OBJECTIVE CAML [55]). The general debate between pure and hybrid languages is out of the scope of the
present paper. Nonetheless, we argue that having linguistic constructs for reusable code development eases adding
other high-level linguistic constructs which otherwise may often only be possible at the cost of code duplication and
of the resulting complexity of code maintenance.

We might also introduce other syntactic sugar constructs to ease programming with our language; for instance,
instead of writing the required methods in a trait, we could group the required methods in a specific interface and let
the trait “implement” that interface meaning that the trait requires all the methods specified in the interface. However,
this would not make traits types, since as we stressed throughout the paper, not having traits as types enhances their
reuse potential.

Concerning the performance of the generated JAVA code we did not experience any difference with respect to a
possible manually implemented version. Indeed traits and records (and the TRAITRECORDJ versions of classes and
interfaces) are static constructs which do not have any overhead in the generated JAVA code.
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Figure 2: Class Diagram of the Case Example

5. Case Study

In order to evaluate the usability of TRAITRECORDJ and its prototypical implementation based on XTEXT, we
reimplemented a part of a commercially used software system (that was previously implemented in JAVA) with TRAIT-
RECORDJ. The goal of this case study is to analyze how far code duplications caused by the limitations of single
inheritance can be avoided by trait and record composition. Furthermore, we aim at evaluating the potential for code
reuse offered by records and traits in TRAITRECORDJ for existing application software.

The software analyzed in this case study is a part of the rendering engine for a web-based geographical information
system [59]. The rendering engine allows printing geometrical objects to a screen or plotting them on paper. Figure 2
shows the class diagram of the analyzed code. The geometrical objects are organized in a class hierarchy in order
to provide a taxonomy by inheritance. The COutline class is the superclass of all geometrical objects. COutline

objects have a pen attribute describing how the objects should be painted and a plot and a print method. The plot
method displays an object on a screen (using the API of the operating system) and the print method prints the object
to paper (using a transformation to PostScript). Subclasses of the COutline class are the classes CLine and CArc,
which represent more specialized geometrical objects. Both lines and arcs have start and end coordinates determining
their position on a map. Additionally, a CArc object has an attribute clockwise denoting the direction in which the
arc is bent. The CArc and the CLine class override the plot and print method of the COutline class.

A CSymbolDef object is a composite of COutline objects and represents a particular configuration of Outline
objects on a map as a symbol. It contains two lists of COutline objects, definition containing the actual COutline
objects and mask storing information about the order of the combined COutline objects for clipping purposes. Be-
sides two methods to add objects to these lists, the CSymbolDef class contains a plot and a print method that call
the plot and the print method, respectively, on each COutline object in the list. The class CSymbol is a subclass
of the COutline class encapsulating a reference to a symbol definition described by a CSymbolDef object. The
plot and print method implemented by the CSymbol class call the plot and print method, respectively, on the
referenced CSymbolDef object with additionally performing some scaling operations.

The CArea class represents a region on a map. This region is defined by the set of Outline objects stored in the
list-valued attribute definition. Thus, a CArea is not a COutline object itself. It implements a plot and print

method that iterate over the COutline objects contained in the list referenced by the definition attribute.
In this case example, code duplication occurs in several places: Both classes CSymbolDef and CArea contain

lists of Outline objects. However, CSymbolDef and CArea objects do not have a common superclass, since they are
technically different entities in the rendering engine application. Hence, in the JAVA version of the code, the code for
handling these lists is copied in the CArea and CSymbolDef classes. In TRAITRECORDJ, this code duplication can
be avoided by factoring common attributes and methods into records and traits. On the top part, Listing 6 shows how
a list of COutline objects and the method add for inserting objects into the list can be implemented as a TRAITRE-
CORDJ record RList and trait TAddList. On the bottom part of the listing, it is shown how this record and this trait
can be instantiated to implement the definition and mask lists and the respective add methods in the CArea and
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record RList is{
IList list;
}

trait TAddList is {
IList list;
void add(IObject o){

this.list.add(this.list.size(), o);
}
}

class CArea implements IArea by RList[list renameTo definition]
and TAddList[list renameFieldTo definition]
+ TAreaPlot + TAreaPrint {

CArea() {
this.definition = null;
}
}

class CSymbolDef implements ISymbolDef by RList[list renameTo definition] + RList[list renameTo mask]
and TAddList[list renameFieldTo definition] + TAddList[list renameFieldTo mask, add renameTo addToMask]
+ TSymbolDefPlot + TSymbolDefPrint {

CSymbolDef(){
this.definition = null;
this.mask = null;
}
}

Listing 6: Reuse of record RList and trait TAddList for storing Outline lists

CSymbolDef objects.
The plot and print methods for the CArea and CSymbolDef classes are provided by the traits TAreaPlot,

TSymbolDefPlot, TAreaPrint and TSymbolDefPrint depicted in Listing 6 in the class definitions. The plot and
print methods of both classes iterate over the definition list and call the plot and print method, respectively, on
each contained COutline object. Since the structure of these method implementations is very similar, it is possible
to compose the above traits from a set of shared basic traits. These basic traits are depicted in Listing 7. The
traits TSymbolDefOutput and TAreaOutput provide the generic output functionality for CSymbolDef and CArea

objects, respectively. For CSymbolDef objects, some operations for the mask list are required before generating the
output. For CArea objects, the target of the output has to be initialized and closed appropriately. Both provided
output methods require a method invokeIterator that encapsulates the iteration over a required list of COutline
objects. This iterator method is provided by the trait TIterateOutput. In order to adapt the invokeIterator

method to calling the print or plot method on the Outline objects, the trait TIterateOutput requires a method
invokeOutputMethod that encapsulates the respective calls. The invokeOutputMethod can be provided by the
trait TInvokePlot for plotting or by the trait TInvokePrint for printing. The level of indirection is necessary to
rename a method call on an object different from this.

In order to build the TAreaPlot, TSymbolDefPlot, TAreaPrint and TSymbolDefPrint traits, the basic traits
defined in Listing 7 have to be adapted by renaming and composed appropriately. This composition is depicted
in Listing 8. The TSymbolDefPlot and TSymbolDefPrint traits use the trait TSymbolDefOutput for outputting
CSymbolDef objects. The TAreaPlot and TAreaPrint traits reuse the TAreaOutput trait. The traits providing
plotting functionality contain the TInvokePlot trait and rename the respective output method to plot. The traits
involved with printing comprise the TInvokePrint trait and rename the output method to print. Since all outputs
involve iteration over a list of COutline objects, the TIterateOutput trait is contained in every composed trait. In
all traits requiring a reference to the list of COutline objects, the list field is renamed to the definition field.

In the original implementation, the code of the two print and the two plot methods was written separately and
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trait TInvokePlot is {
void invokeOutputMethod(IPlotable elem1, IOutput target){

elem1.plot(target);
}
}

trait TInvokePrint is {
void invokeOutputMethod(IPlotable elem1, IOutput target){

elem1.print(target);
}
}

trait TIterateOutput is {
IList list;
void invokeOutputMethod(IOutline elem1, IOutput target);
void invokeIterator(IOutput target) {

int i =0;
while(i < this.list.size()) {

IObject elem = this.list.get(i);
IOutline elem1 = (IOutline) elem;
this.invokeOutputMethod(elem1,target);
inc(i);
}
}
}

trait TSymbolDefOutput is {
IList list;
IList mask;
void invokeIterator(IList list, IOutput target);
void symbolDefOutput(IOutput target) {

if (this.mask != null){
// perform operations for mask
}
this.invokeIterator(this.list,target);
}
}

trait TAreaOutput is {
IList list;
void invokeIterator(IList list, IOutput target);
void areaOutput(IOutput target){

if (this.list.size() > 0){
target.newPath();
this.invokeIterator(this.list,target);
target.closePath();
}
}
}

Listing 7: Basic Traits for plotting and printing of CArea and CSymbolDef class

16



trait TSymbolDefPlot is TSymbolDefOutput[list renameFieldTo definition, symbolDefOutput renameTo plot]
+ TInvokePlot + TIterateOutput[list renameFieldTo definition]

trait TSymbolDefPrint is TSymbolDefOutput[list renameFieldTo definition, symbolDefOutput renameTo print]
+ TInvokePrint + TIterateOutput[list renameFieldTo definition]

trait TAreaPlot is TAreaOutput[list renameFieldTo definition, areaOutput renameTo plot]
+ TIterateOutput[list renameFieldTo definition]
+ TInvokePlot

trait TAreaPrint is TAreaOutput[list renameFieldTo definition, areaOutput renameTo print]
+ TIterateOutput[list renameFieldTo definition]
+ TInvokePrint

Listing 8: Composed Traits for plotting and printing in CArea and CSymbolDef classes

contained code duplications to a large extent since the CArea and CSymbolDef are unrelated in the class hierarchy.
In contrast, Listing 8 shows how similar functionality can be factored into shared traits and how it can be adapted and
composed to provide the functionality of a particular class without suffering the limitation of a class hierarchy with
respect to code reuse.

Figure 3 provides a visualization of how classes CSymbolDef and CArea can be composed from four shared
composite traits and six shared basic traits (for simplicity interfaces are records are not shown in the diagram). The
basic traits are listed in the left column of the figure, the composite parts are listed in the middle column, and the
classes are in the right column.

In our case study, we observed that there is a high potential to reuse common code parts in various places of the
considered implementation. The main reason for code duplication we found in this case example is that common
functionality in two classes that are non-related in the class hierarchy cannot be shared by the means of class-based
inheritance. Using TRAITRECORDJ, this common code can be factored out into records and traits that can be cus-
tomized and composed to define more complex traits and classes. Notably, we found natural to exploit the field
renaming and the method renaming operations, which are not supported by FORTRESS and SCALA.

6. Implementing TRAITRECORDJ in XTEXT

In this section, we describe the implementation of TRAITRECORDJ using XTEXT [5]. Although Eclipse itself
provides a framework for implementing an IDE for programming languages, this procedure is still quite laborious and
requires a lot of manual programming. XTEXT eases this task by providing a high-level framework that generates
most of the typical and recurrent artifacts necessary for a fully-fledged IDE on top of Eclipse.

The first task in XTEXT is to write the grammar of the language using an EBNF-like syntax. Starting from
this grammar, XTEXT generates an ANTLR parser [51]. The generation of the abstract syntax tree is handled by
XTEXT as well. In particular, during parsing, the AST is generated in the shape of an EMF model (Eclipse Modeling
Framework [63]). Thus, the manipulation of the AST can use all mechanisms provided by EMF itself. There is a direct
correspondence between the names used in the rules of the grammar and the generated EMF model JAVA classes. For
instance, consider the XTEXT grammar snippet on top of Listing 9. The XTEXT framework generates the EMF model
JAVA interfaces (and the corresponding implementation class) as shown in the rest of Listing 9. Note also the inferred
inheritance relations, since both MethodInvocation and FieldAccess are Messages.

Moreover, XTEXT generates many other classes with IDE functionalities; in particular, it generates an editor
with syntax highlighting, background parsing with error markers, outline view and code completion. Furthermore,
XTEXT provides the infrastructure for code generation. Most of the code generated by XTEXT can already be used
off the shelf, but other parts have to be adapted by customizing some classes used in the framework. The usage of
the customized classes is dealt with by relying on Google-Guice [2], a dependency injection framework, so that the
programmer does not have to maintain customized abstract factories [37].

After the parsing stage, in a compiler, once we have the AST of the program, we need to visit the AST in order
to perform, for instance, type checking, possible optimizations, and code generation. This usually requires specific
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Figure 3: Classes CSymbolDef, CArea and used traits
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Message : MethodInvocation | FieldAccess;

MethodInvocation :
method=[Method]

’(’ (argumentList+=Expression (’,’ argumentList+=Expression)*)? ’)’;

FieldAccess : field=[Field];

public interface MethodInvocation extends Message {
Method getMethod();
void setMethod(Method value);
EList<Expression> getArgumentList();
}

public interface FieldAccess extends Message {
Field getField();
void setField(Field value);
}

Listing 9: From the XTEXT grammar to the EMF model generated code.

visitors to be written for the abstract syntax tree [37]. The main problem of the visitor patter, besides requiring lot
of manual programming and cluttering the classes of the model with specific methods, is that it works with methods
with only one parameter; this might not be enough in some cases, e.g., to check the subtyping relation we need two
parameters, and have a dynamic overloading like mechanism to select the right method at run-time according to the
run-time type of the arguments. XTEXT provides a more powerful mechanism for inspecting a model (i.e., the AST) at
runtime, through the class PolymorphicDispatcher, which performs method dispatching according to the run-time
type of arguments (dynamic overloading).

6.1. Scoping

Binding the symbols (e.g., the binding of a field reference to its declaration) is part of the validation of a program,
since if a symbol cannot be bound then it means that there is an error in the program (e.g., a reference to a mispelled
variable name). Actually, it can be considered one of the checking parts which should come earlier in the validation
of a program; in fact, once all the symbols are bound to the corresponding declarations, implementing type checking
is easier, since given a symbol we can immediately “jump” to its declaration. If a symbol cannot be bound, the type
checking makes no sense at all.

When defining the grammar of the language in XTEXT, we can already specify that a token is actually a reference
to a specific declared element. Going back to the grammar snippet of Listing 9, we note that the name of the method
in a method invocation MethodInvocation is enclosed in square brackets ([Method]). In the generated EMF Java
code, the name of the method in a method invocation expression will not be simply a string, but it will be a cross
reference to an instance of Method (see getMethod in Listing 9).

EMF uses “proxies” to represent references. It can delay the resolution (binding) of references when they are
accessed. Note that, since the EMF model representing the program contains cross-references, the AST is not actually
a tree; however, we will continue to use the term AST to refer to such a model. XTEXT already provides an imple-
mentation for binding references, which basically binds a reference to a symbol n to the first element definition with
name n occurring in the model. This usually has to be adapted in order to take the visibility of names in a program
into account. For instance, a field is visible only in the methods of a class, such that different hierarchies can safely
have fields with the same name. XTEXT supports the customization of binding in an elegant way with the abstract
concept of “scope”. The actual binding is still performed by XTEXT, but it can be driven by providing the scope of a
reference, i.e., all declarations that are available in the current context of a reference.

The programmer can provide a customized AbstractDeclarativeScopeProvider. XTEXT will search for
methods to invoke, using reflection and polymorphic dispatch, according to a convention on method name signature:

IScope scope <ContextRuleName> <ReferenceAttributeName>(<ContextType> ctx, EReference ref)
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public IScope scope MethodInvocation method(DottedExpression context, EReference ref) {
ExpressionType expressionType = ExpressionType.createInstance(context.getReceiver());
Collection<Method> methodList = new LinkedList<Method>();
if (expressionType != null)

methodList = expressionType.getInvokableMethods();
return Scopes.scopeFor(methodList);

}

public IScope scope FieldAccess field(DottedExpression context, EReference ref) {
ExpressionType expressionType = ExpressionType.createInstance(context.getReceiver());
Collection<Field> fieldList = new LinkedList<Field>();
if(expressionType != null)

fieldList = expressionType.getInvokableFields();
return Scopes.scopeFor(fieldList);

}

Listing 10: Scoping for method invocation and field access.

This is used when evaluating the scope for a specific cross-reference stored in the attribute ReferenceAttributeName
of an element of type ContextRuleName (separated by an underscore) in the context of a rule ContextType. if such a
method does not exist, then XTEXT will use the default binding semantics (see above).

For instance, if we consider the grammar rules for message selection on an expression (called receiver of a
message):2

DottedExpression: receiver=Expression ’.’ message=Message
Message : MethodInvocation | FieldAccess;
MethodInvocation : method=[Method]

’(’ (argumentList+=Expression (’,’ argumentList+=Expression)*)? ’)’;
FieldAccess : field=[Field];

we can drive the resolution of the method name in a MethodInvocation statement in any DottedExpression

where such statement can occur by defining the method in Listing 10. The code should be understandable without
the knowledge of XTEXT: we get the type of the receiver of the message, using additional classes we implemented
to perform type checking (not shown here); if the type can be inferred then we return as the scope all the methods
which are invokable on such a type. Thus, in this case, ReferenceAttributeName is method, ContextRuleName is
MethodInvocation and ContextType is DottedExpression. The scope implementation for FieldAccess is simi-
lar, but it returns the list of fields which are available on the type of the receiver. It is up to the programmer to choose
the right context for computing the scope of a reference; in this example, to compute the list of all invokable methods,
we need the receiver, thus the context with this information is DottedExpression.

Using the returned scope, XTEXT will then take care of resolving a cross reference. If XTEXT succeeds in
resolving a cross reference, it also takes care of implementing the functionalities Eclipse users are used to, e.g., by
Ctrl+clicking on a reference (or using F3) we can jump to the declaration for that symbol. Furthermore, the scope
provider will be used by XTEXT to also implement code completion. Thus, a programmer achieves two goals by
implementing the abstract concept of scope. Note that the code above can also return an empty scope, e.g., if the
receiver expression in a method call cannot be typed. In that case, XTEXT generates an error due to an unresolvable
method name during validation, and an empty code completion list in case the programmer requests content assistance
when writing the method name of a method invocation expression. This mechanism is handled by the framework itself,
so that the programmer is completely relieved from these issues, once the correct scope provider is implemented.

6.2. Validation
The concept of validation comes from the EMF framework: it corresponds to checking that a model is consistent.

When implementing a language with XTEXT the EMF model is the AST of the current program. In the case of a

2This grammar rule is slightly more involved in the actual implementation of TRAITRECORDJ; this is due to the fact that in order to deal with
left recursion, which LL-parsing tools cannot handle directly, we need to “left-factor” the grammar [6].

20



@Check
public void thisCheck(This thisRule) {

if((lookup.getOwner(thisRule) instanceof Program)) {
error("’this’ is not allowed in program context", thisRule));
}
}

Listing 11: Validation of an occurrence of this.

@Check
public void checkConstructorName(Constructor constructor) {

Class classRef = (Class)lookup.getOwner(constructor);
if(!classRef.getName().equals(constructor.getName()))

error("Constructor must have the same name of the class",
constructor,
CONSTRUCTOR NAME));

}

Listing 12: Validation of a constructor.

statically typed programming language the validation corresponds to checking that the current program is well typed
according to the type system of the language.

As we said at the beginning of Section 6, XTEXT provides some useful and powerful mechanisms that do not
require the programmer to implement the typical visitor structure [37] in order to validate the AST. In Section 6.1 we
already saw that XTEXT uses reflection and polymorphic dispatch to deal with the different kinds of nodes in the AST.
In the context of validation, XTEXT leverages this mechanism by requiring methods with a @Check annotation, in a
customized validator (extending the base class AbstractDeclarativeValidator), that will be called automatically
for validating the model according to the type of the AST node that has to be checked. The validation takes place in
the background, together with parsing, while the user is writing a TRAITRECORDJ program, so that an immediate
feedback is available, as it usually happens in IDEs.

For instance, the method in our validator shown in Listing 11 checks that the this variable is not used in the
program context (i.e., that this can be used only in method bodies). Note that the important things in this method
definition are the @Check annotation and the parameter: the internal validator of XTEXT will invoke this method
when it needs to validate an AST node representing an occurrence of this, which is declared in the grammar as the
This non-terminal symbol (remember that given a grammar symbol, XTEXT will generate a corresponding class for
the AST with the same name). We do not have to handle the actual visiting of the EMF model corresponding to the
program: we just need to tell XTEXT what to do in order to check that a specific kind of node in the AST is correct.

If an error is found during the validation, then calling the method error of the validator base class will make
XTEXT generate the appropriate error marker (and since we specify the element in the AST which did not pass
validation, XTEXT is able to put the marker in the right place without any additional information by the programmer).

In Listing 12 we show another example of validator method: this checks that the constructor name is the same
as the name of the class where it is defined. Note that in this case, since the Constructor object in the model
corresponds to a long string in the text of the program, we also specify, when we invoke the method error, the
attribute (in the example, it is the constructor name, using the constant generated by EMF) to be highlighted in the
error marker and in the problem view of the Eclipse editor.

6.3. Other functionalities

XTEXT provides a (mostly) automatic support for file import/inclusion in the developed language. We use this
functionality so that TRAITRECORDJ programs can be split into separate files. This way, in the EMF model (AST)
corresponding to the current file, there are cross references to the EMF models corresponding to the imported files.
These cross references are handled automatically by XTEXT and when using F3 (or Ctrl+click) to jump to the defi-
nition of a symbol, if that symbol is in an imported file, we will be automatically redirected to the file (i.e., another
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editor window will be automatically opened for the imported file). Furthermore, the corresponding dependencies
among source files are handled by XTEXT itself. Thus, the modification of an included file f automatically triggers
the re-validation of all the files including f .

The code generation phase can be dealt with in XTEXT by relying on XPAND [4], a code generation framework
based on “templates”, specialized for code generation based on EMF models (however, other generation frameworks
can be used). In our implementation of TRAITRECORDJ, code generation produces standard JAVA code, which does
not need any additional libraries to be compiled and executed. Our code generation phase basically implements the
flattening procedure sketched in Section 2.2. However, by providing different templates, we could also generate into
different target languages (this is subject of future work).

XTEXT generates three plugin projects: one for the language parser and corresponding validators, one for the
code generator, and one for the user interface IDE parts. The first two plugins do not depend on the third. Thus, it is
straightforward to build a stand-alone compiler for TRAITRECORDJ to be executed outside Eclipse on the command
line, which we also provide.

6.4. XTEXT Evaluation
Our experience with XTEXT was definitely positive. XTEXT seems to be the right tool to experiment with language

design and to develop implementations of languages. Furthermore, experimenting with new constructs in the language
being developed can be handled straightforwardly. It requires to modify the grammar, regenerate XTEXT artifacts and
to deal with the cases for the new constructs.

Even though XTEXT hides many internal details of IDE development with Eclipse, still it lets the programmer
customize every aspects of the developed language implementation by specialized code (which is flexibly “injected”
in XTEXT using Google Guice). Even EMF mechanisms are still open to adaptation. For instance, we developed
a customized EMF resource factory for synthesizing the interfaces and classes of the internal library described in
Section 2, such as IList and CArrayList, which will then be transparently available in every program (represented
as an EMF model), without having to treat them differently in program validation.

As we described in Section 6, by using our own validator, XTEXT can create the error markers in the editor (and
also in the “Problem View”) related to the EMF element which caused the error. We can provide our own “quickfixes”
by simply deriving from an XTEXT default class and providing a method which refers to a specific error detected
by our validator. Since we deal with EMF model objects, which are connected by XTEXT to the program text in
the editor, we can simply manipulate the EMF model and the program in the text editor will reflect this change; in
particular, we do not need to manipulate the eclipse text editor document at all.

XTEXT also provides some useful functionalities to write Junit tests for many language development components;
it generates a stand-alone class for the developed language with all the functionalities to correctly initialize all the
EMF mechanisms so that the language can be tested as a stand-alone application (i.e., outside from Eclipse). This
way, we can easily test our language with no need of: manually running an Eclipse application, writing a code snippet
in our language, and checking that the error mark shows up. This speeds up the development of the language.

Summarizing, XTEXT lets the language developer concentrate on the aspects that are typical of his own language,
while relying on the framework for all the other recurrent jobs.

7. Related Work

Traits are well suited for designing libraries and enable clean design and reuse which has been shown using
SMALLTALK/SQUEAK (see, e.g., Black et al. [19] and Cassu et al. [25]). Recently, Bergel et al. [11] pointed out limi-
tations of the trait model caused by the fact that methods provided by a trait can only access state by accessor methods
(which become required methods of the trait). To avoid this, traits are made stateful (in a SMALLTALK/SQUEAK-like
setting) by adding private fields that can be accessed from the clients possibly under a new name or merged with other
variables. In TRAITRECORDJ traits are stateless. By their required fields, however, it is possible to directly access
state within the methods provided by a trait. Moreover, the names of required fields (in traits) and provided fields (in
records) are unimportant because of the field rename operation. Since field renaming works synergically with method
renaming, exclusion and aliasing, TRAITRECORDJ has more reuse potential. Concerning field requirements, they
are not present in most formulations of traits in the SMALLTALK/SQUEAK-like and JAVA-like settings. They were
introduced in the formulation of traits in a structurally typed setting by Fisher and Reppy [34].
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TRAITRECORDJ requires that the summed traits must be disjoint. The disjoint requirement for composed traits
was proposed by Snyder [62] for multiple class-based inheritance (see also Bracha’s JIGSAW framework [22]). Ac-
cording to other proposals, two methods with the same name do not conflict if they are syntactically equal (Ducasse
et al. [33, 49]) or if they originate from the same subtrait (Liquori and Spiwack [46]). When a recursive method is
aliased in our language, its recursive invocation refers to the original method (as proposed by Schärli et al. [60, 33]).
The variant of aliasing proposed by Liquori and Spiwack [46] (where, when a recursive method is aliased, its recur-
sive invocation refers to the new method) can be straightforwardly encoded by exclusion, renaming and symmetric
sum. Instead, exclusion, renaming, symmetric sum and the variant of aliasing are not able to encode aliasing. Con-
cerning method renaming and required field renaming, they are not present in most formulations of traits in the
SMALLTALK/SQUEAK-like and JAVA-like settings. Method renaming has been introduced in the formulation of traits
in a structurally typed setting by Reppy and Turon [57]. Renaming operations were already present in the JIGSAW
framework [22] in connection with module composition and in the EIFFEL language [47] in connection with multiple
class-based inheritance.

Reppy and Turon [58] proposed a variant of traits that can be parametrized by member names (field and methods),
types and values. Thus, the programmer can write trait functions that can be seen as code templates to be instantiated
with different parameters. This enhances the code reuse provided by traits already. It could be interesting to adapt
this approach to our context and to extend the parametrization functionalities also to interfaces, records and classes.
This will be the subject of future work. However, an important difference between our proposal and the one by Reppy
and Turon [58] is that, in the latter, traits play also the competing role of type, which is avoided in TRAITRECORDJ.
Another feature of TRAITRECORDJ is that structural types are used only “internally” on this, i.e., the programmer
works with nominal types (interfaces) alone. We believe this is an important feature from a practical point of view, as
it reduces the distance between the classical JAVA-like languages and our linguistic constructs, from the perspective
of the programmer.

Quitslund et al. [54] proposed an Eclipse plugin that supports JAVA programmers with using trait-like mechanisms
for JAVA classes. JAVA is not extended: traits are modeled as (possibly) abstract classes and trait method requirements
as abstract methods. The plugin also aims at helping the programmer to refactor JAVA hierarchies with traits: the
programmer can select a set of methods to be extracted into stateless classes that play the role of traits. When a class
uses a trait, the methods provided by the trait are copied into that class; the programmer then has to use this plugin to
keep track of the actual source of a method, in order not to accidentally change the copy of a method and to be aware
of what to change: either the copy of the class or the original method in the trait. Thus the programmer has to rely on
this plugin completely, while in our case the TRAITRECORDJ compiler can be used also outside from Eclipse.

The work by Quitslund et al. [54] starts from an earlier work by Quitslund [53] where traits are implemented
directly as an extension of a subset of the JAVA language, and a compiler translates such programs into standard JAVA
programs. The authors, however, state that such an approach requires a strong effort to be conservative with respect to
JAVA since, in order to generate well typed JAVA code, many type checking functionalities for JAVA related code must
be implemented in their compiler. Such extension, moreover, lacks a formalization, thus no property of type safety
for such language extension is available.

In our approach, since we deal with a JAVA dialect, we can concentrate on the linguistic parts that are characteristic
of our own language, without re-implementing JAVA checks. However, the code generated by our compiler is standard
JAVA code, and our formalization [14] guarantees that such code will be type correct with respect to the JAVA compiler
(starting from a well-typed TRAITRECORDJ program).

There are other tools for implementing both domain specific and general purpose languages and their text editors
and IDE functionalities (we also refer to Pfeiffer and Pichler [52] for a comparison). Tools like IMP (The IDE Meta-
Tooling Platform) [28] and DLTK (Dynamic Languages Toolkit) [1] only deal with IDE functionalities and leave
the parsing mechanism completely to the programmer, while XTEXT starts the development cycle right from the
grammar itself. TCS (Textual Concrete Syntax) [3] is similar to XTEXT since it enables the specification of textual
concrete syntaxes for DSLs by attaching syntactic information to metamodels; however, with XTEXT one describes
the abstract and concrete syntax at once, and it is completely open to customization of every part of the generated IDE
(besides, TCS seems to be no longer under active development). Another framework, closer to XTEXT is EMFText
[38]. EMFText basically provides the same functionalities. But, instead of deriving a meta-model from the grammar,
it does the opposite, i.e., the language to be implemented must be defined in an abstract way using an EMF meta
model. (A meta model is a model describing a model, e.g., an UML class diagram describing the classes of a model).
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Note that XTEXT can also connect the grammar rules to an existing EMF meta model, instead of generating an EMF
meta model starting from the grammar. Furthermore, XTEXT also has a wizard to generate an XTEXT grammar
starting from a EMF meta model. XTEXT seems to be better documented than EMFText (indeed, both projects are
still young and always under intense development), and more flexible, especially since it relies on Google Guice. On
the other hand, EMFText offers a “language zoo” with many examples that can be used to start the development of
another language. In this respect, the examples of languages implemented using XTEXT, that we found on the web,
are simpler DSLs, and not programming languages like TRAITRECORDJ. Thus, this paper can also be seen as a report
of effective usage of XTEXT for implementing more complex programming languages.

EriLex [67] is a software tool for generating support code for embedded domain specific languages and it supports
specifying syntax, type rules, and dynamic semantics of such languages. EriLex does not generate any artifact for IDE
functionalities, and it concentrates on other aspects of language development such as type systems and operational
semantics. MPS (Meta Programming System) [36] is another tool for developing a DSL, and it also provides IDE
functionalities, but it does not target Eclipse.

Neverlang [27] is based on the fact that programming language features can be easily plugged and unplugged.
A complete compiler/interpreter can be built in Neverlang as the result of a compositional process involving several
building blocks. With respect to composition functionalities, XTEXT allows the programmer to mix grammars (so
called “grammar mixins”) and also to reuse recurrent syntax artifacts (like the standard terminal definition grammar,
typically included at the beginning of an XTEXT grammar definition). However, these compositional functionalities
are not yet as powerful as the ones provided by Neverlang.

Finally, we just mention here other tools and frameworks for implementation of DSLs, such as, e.g., JTS [9],
MetaBorg [24] and MontiCore [41] which are based on language specification preprocessors and XMF [29] and
Language Boxes [56] which target host language extensions and internal DSLs.

8. Conclusions and Future Work

We presented the programming language TRAITRECORDJ and its implementation. The language isolates each
linguistic entity in a separate linguistic construct, namely, types into interfaces, behaviors into traits, states into records,
and instance generators into classes. TRAITRECORDJ programs may look more verbose than standard class-based
programs. However, as illustrated by the case study in Section 5, the degree of reuse provided by records and traits is
higher than the reuse potential of standard static class-based hierarchies.

TRAITRECORDJ is based on the calculus presented in [13, 14]. In that paper, we considered mechanisms for
code reuse for implementing Software Product Lines (a set of software systems with well-defined commonalities and
variabilities [30]). We explored a novel approach to the development of SPL, which provides flexible code reuse with
static guarantees. In order to be of effective use for SPL, the type checking has to facilitate the analysis of newly added
parts without re-checking already existing products. The TRAITRECORDJ type system (see Section 2.3) satisfies this
requirement since it supports type checking records and traits in isolation from classes that use them.

A special form of reuse is at the base of the contemporary agile software development methodologies, which are
based on an iterative approach, where each iteration may include all of the phases necessary to release a small incre-
ment of a new functionality: planning, requirements analysis, design, coding, testing, and documentation. Another
example is the use of Extreme Programming [10], where team members work on activities simultaneously. While an
iteration may not add enough functionality to guarantee the release of a final product, an agile software project intends
to be capable of releasing new software at the end of every iteration. However, this means that the next iteration will
reuse the software produced in the previous ones. We believe that an interesting future research direction is to inves-
tigate whether the programming language features proposed in this paper may help in writing software following an
agile methodology.

Bettini et al. [12] present a tool for identifying the methods in a JAVA class hierarchy that could be good candidates
to be refactored in traits (by adapting the SMALLTALK analysis tool by Lienhard et al.[44] to a JAVA setting). It will be
interesting to investigate the application of this approach also for detecting possible candidates for records and traits
in the context of porting existing JAVA code to TRAITRECORDJ code.
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[44] A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal concept analysis. In ASE, pages 66–75. IEEE, 2005.
[45] M. Limberghen and T. Mens. Encapsulation and composition as orthogonal operators on mixins: A solution to multiple inheritance problems.

Object Oriented Systems, 3(1):1–30, 1996.
[46] L. Liquori and A. Spiwack. FeatherTrait: A Modest Extension of Featherweight Java. ACM TOPLAS, 30(2), 2008.
[47] B. Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall, 1997.
[48] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black. Removing duplication from java.io: a case study using traits. In OOPSLA, pages 282–291.

ACM, 2005.
[49] O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening traits. JOT, 5(4):129–148, 2006.
[50] M. Odersky. The Scala Language Specification, version 2.4. Technical report, Programming Methods Laboratory, EPFL, 2007.
[51] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. Pragmatic Programmers, May 2007.
[52] M. Pfeiffer and J. Pichler. A comparison of tool support for textual domain-specific languages. In DSM, pages 1–7, 2008.
[53] P. J. Quitslund. Java Traits — Improving Opportunities for Reuse. Technical Report CSE-04-005, OGI School of Science & Engineering,

Beaverton, Oregon, USA, Sept. 2004.
[54] P. J. Quitslund, R. Murphy-Hill, and A. P. Black. Supporting Java traits in Eclipse. In ETX, pages 37–41. ACM, 2004.
[55] D. Remy and J. Vouillon. Objective ML: An effective object-oriented extension to ML. Theory and Practice of Object Systems, 4(1):27–50,

1998.
[56] L. Renggli, M. Denker, and O. Nierstrasz. Language Boxes: Bending the Host Language with Modular Language Changes. In SLE, volume

5969 of LNCS, pages 274–293. Springer, 2009.
[57] J. Reppy and A. Turon. A Foundation for Trait-based Metaprogramming. In FOOL/WOOD, 2006.
[58] J. Reppy and A. Turon. Metaprogramming with traits. In ECOOP, volume 4609 of LNCS, pages 373–398. Springer, 2007.
[59] T. Sauer, K. Maximini, R. Maximini, and R. Bergmann. Supporting collaborative business through integration of knowledge distribution and

agile process management. In MKWI, pages 349–361. GITO-Verlag, 2006.
[60] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior. In ECOOP, volume 2743 of LNCS, pages 248–274.

Springer, 2003.
[61] C. Smith and S. Drossopoulou. Chai: Traits for Java-like languages. In ECOOP, LNCS 3586, pages 453–478. Springer, 2005.
[62] A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In OOPSLA, volume 21(11), pages 38–45. ACM, 1986.
[63] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Framework. Addison Wesley Professional, 2nd edition,

2008.
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