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Abstract There has been little investigation on the
association between cognitive impairment and the micro-

bleeds (MBs) frequently seen in subcortical vascular

dementia (SVaD). One possible mechanism of cognitive
decline in individuals with SVaD could be disruption of

cholinergic fibers by vascular lesions. Central cholinergic

circuits in human brain can be tested non-invasively by
means of a transcranial magnetic stimulation (TMS) pro-

tocol named short latency afferent inhibition (SAI) of

motor cortex. In the present study, we used this test in
SvaD patients with and without MBs. SAI was evaluated in

13 SVaD patients with MBs (MB-positive group) and the

data were compared with those from a group of 15 SVaD
patients without MBs (MB-negative group) and with those

from 20 healthy subjects. Moreover, we studied covariation

of individual SAI values with the Mini-Mental State
Examination (MMSE) total score and subscores. SAI was

significantly reduced in the MB-positive group when
compared with the MB-negative group and the control

subjects. Total MMSE score, ‘‘attention and calculation’’

and ‘‘orientation’’ subscores were significantly lower in the
MB-positive group than in the MB-negative group; SAI

showed a positive correlation with total MMSE score.

Adjustment for age, gender, education, presence of lacu-
nae, severe white matter hyperintensities or severe peri-

ventricular hyperintensities did not affect these findings.

This study provides novel physiological evidence that MBs
have an impact on central cholinergic function that is

independent of the extent of associated white matter

changes and ischaemic stroke. This finding shows that
TMS have potential diagnostic and therapeutic implica-

tions. TMS studies may help in evaluating the causes of

cognitive impairment in cerebrovascular diseases.

Keywords Microbleeds ! Subcortical vascular dementia !
Transcranial magnetic stimulation ! Short latency afferent
inhibition ! Mini-Mental State Examination

Introduction

Small-vessel disease (SVD), particularly of an ischemic

nature, is generally accepted as a major risk factor for sub-
cortical vascular dementia (SVaD). With recent advent of

T2* gradient-echo magnetic resonance imaging (GE-MRI)

many studies demonstrated that SVD can produce not only
ischemia, but also microbleeds (MBs) (Koennecke 2006;

Viswanathan and Chabriat 2006). Since MBs are a mani-

festation of pathology affecting cerebral small vessels, they
are particularly associated with lacunar stroke, cerebral white

matter lesions and hypertension (Kwa et al. 1998; Kato et al.

2002). MBs are characterized histologically by the presence
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of hemosiderin around small vessels (Fazekas et al. 1999;

Tanaka et al. 1999), and appear as small, dot-like lesions of
low signal intensity within the brains of patients with

haemorrhagic and ischaemic stroke, patients with hyperten-

sion, and a smaller proportion of healthy elderly subjects
(Chan et al. 1996; Offenbacher et al. 1996; Kwa et al. 1998;

Roob et al. 2000). Increasing attention has been paid to

associations between cognitive dysfunction and brain MBs.
Central cholinergic mechanisms are believed to modulate

cognitive and attentional processes in humans (Kasa et al.
1997; Bartus 2000); impaired central cholinergic neuro-

transmission has a central role in patients with Alzheimer’s

disease (AD), whereas cholinergic deficit seems to be less
relevant in the pathogenesis of SvaD. Interestingly, in AD

brain MBs are of special interest as they may play a crucial

role in the pathophysiology of the disease (Cordonnier and
van der Flier 2011). However, the potential link between

MBs and cholinergic function has not been clearly

established.
Central cholinergic circuits of human brain can be tested

non-invasively by coupling peripheral nerve stimulation

with transcranial magnetic stimulation (TMS) of motor
cortex. Muscle responses recorded in hand muscles after

TMS of the contralateral motor cortex can be suppressed

by electrical stimulation of the median nerve if the time
interval between stimulation of median nerve and motor

cortex is 2–8 ms longer than the time taken by the

peripheral nerve afferent input to reach the cortex
(Tokimura et al. 2000). This effect, named short latency

afferent inhibition (SAI), is produced by inhibitory inter-

actions within the cerebral cortex (Tokimura et al. 2000; Di
Lazzaro et al. 2004a). SAI has been shown in healthy

subjects to be sensitive to the blockage of muscarinic

acetylcholine receptors (Di Lazzaro et al. 2000) and is
impaired in cholinergic forms of dementia, such as AD and

dementia with Lewy bodies (Di Lazzaro et al. 2002, 2004b,

2007) while it is normal in non-cholinergic forms of
dementia such as fronto-temporal dementia (Di Lazzaro

et al. 2006). In previous TMS studies, a reduced SAI was

found in patients with vascular dementia but not to the
same extent as AD. Nardone et al. (2008) reported that SAI

responses in patients with SVaD varied widely, ranging

from normal to markedly reduced values. In another TMS
study significant SAI abnormalities were disclosed in 3 out

of 12 patients with vascular dementia (Di Lazzaro et al.

2008).
The objective of the present study was to investigate

central cholinergic circuits in SVaD patients with and

without MBs. We evaluated SAI in a group of patients with
SvaD and MBs and compared the data with those from a

group of SVaD patients without MBs and a control group

of age-matched healthy individuals. Furthermore, we ana-
lyzed correlation between this putative marker of central

cholinergic activity, presence of MBs and global cognitive

function.

Materials and methods

Patients

We examined 28 patients (17 men and 11 women, mean

age 69.5 years, range 57–79 years, 26 right-handed) who
met the clinical and imaging criteria of SvaD proposed by

Erkinjuntti et al. (2000) and had undergone GE-MRI. MBs

were detected in the brain for 13 patients (eight men and
five women, mean age 69.7 years, range 58–78 years, 12

right-handed).

Twenty age-matched neurologically healthy controls
(13 men and 7 women, mean age 69.2 years, range

55–79 years, 19 right-handed) constituted the control

group. None of the controls have MBs.
Exclusion criteria were: inability to undergo cerebral

MRI; other concomitant or pre-existing major neurological

disease, including epilepsy, presence of major cortical
infarcts, evidence of concomitant dementia such as AD,

frontotemporal, or reversible dementias; evidence of

depression, other psychiatric diseases, drug addiction;
systemic diseases or traumatic brain injuries.

All the selected patients were able to understand and

carry out the simple tasks required for this electrophysio-
logical study, such as to contract a hand muscle or to keep

fully relaxed.

None of the patients were treated with anticholinergic
drugs before the study. Administration of all drugs that affect

motor cortex excitability in patients and control subjects was

discontinued at least 2 weeks before the study.
Patients provided informed consent before participation

in this study, which was performed according the Decla-

ration of Helsinki and approved by the institutional Ethics
Committee.

Magnetic resonance imaging

MRI was performed using a 1.5-T scanner. MBs were

defined on GE-MRI as homogeneous rounded areas of
signal loss, with a diameter of 2–10 mm. Two investigators

(P.G., S.G.) who were blinded to subject data reviewed the

number and location of MBs. Symmetrical hypointensities
in the globus pallidum likely to represent calcification and

flow void artifacts of pial vessels, as well as hypointense

lesions within the subarachnoid space, were disregarded.
Moreover, to differentiate MBs from other intra-axial

lesions with a hemorrhagic component, only areas of signal

loss that were not locally associated with other abnormal-
ities were counted as MBs.
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Nine patients displayed only supratentorial MBs and

four patients showed both supratentorial and infratentorial
MBs. The total number of MBs in the 13 patients was

4,147 and the number of MBs per patient ranged from 4 to

248 with a median number of 17. MBs were most com-
monly distributed in the cortex and basal ganglia; the

cortical MBs were most pronounced in the frontal area.

White matter hyperintensities (WMH), periventricular hy-
perintensities (PVH), and lacunae were independently

reviewed by 2 of the authors (F.C., S.G.) who were blinded
to subject data. Severity of WHM or PVH on both T2-

weighted and fluid-attenuated inversion recovery-weighted

images was rated according to the Fazekas scale (WMH:
grade 1, punctate; grade 2 early confluence and grade 3

confluent; and PVH: grade 1, caps or lining; grade 2,

bands; and grade 3, irregular extension into the deep white
matter) (Fazekas et al. 1987).

The lacunar infarction was defined as a focal, small and

sharply demarcated lesion, with a diameter of 3–15 mm
showing low signal on T1-, high signal on T2-weighted

images, and perilesional halo on fluid-attenuated inversion

recovery images.
The main demographic characteristics and MRI features

of the patients are reported in Table 1.

Neuropsychological examination

Global cognitive function was assessed using the Mini-
Mental State Examination (MMSE) (Folstein et al. 1975).

MMSE is used worldwide as method to assess cognitive

function; this test was chosen in this preliminary study also
because it has been used in a recent study that explored the

correlation between MBs and cognitive function (Yakushiji

et al. 2008).

Transcranial magnetic stimulation

TMS was performed using a High-power Magstim 200

magnetic stimulator (Magstim Co., Whitland, Dyfed, UK)

connected to a Bistim module throughout all measure-
ments. A figure-of-eight coil with external loop diameters

of 9 cm was held over the motor cortex at the optimum

scalp position to elicit motor responses in the first dorsal
interosseous (FDI) muscle. The dominant hemisphere was

selected for stimulating patients and healthy subjects. The

induced current flows in a postero-anterior direction. Motor
evoked potentials (MEPs) were recorded via two 9 mm

diameter Ag–AgCl electrodes with the active electrode

applied over the motor point of the muscle and the refer-
ence on the metacarpophalangeal joint of the index finger.

MEPs were amplified and filtered (bandwidth 3–3,000 Hz)

by D150 amplifiers (Digitimer, Welwyn Garden City,
Hertfordshire, UK).

We evaluated the following TMS parameters: the resting

motor threshold (RMT), the central motor conduction time
(CMCT), the short latency intracortical inhibition (SICI)

and intracortical facilitation (ICF) to paired TMS, and the

short latency afferent inhibition (SAI).
RMT was defined as the minimum stimulus intensity

that produced a liminal motor evoked response (about

50 lV in 50% of 10 trials) at rest. CMCT was calculated by
subtracting the peripheral conduction time from spinal cord

to muscles from the latency of responses evoked by cortical
stimulation with the formula: MEP latency - (F latency ?

M latency - 1)/2 (Rossini et al. 1994). SICI and ICF were

studied using the technique of Kujirai et al. (1993). Two
magnetic stimuli were given through the same stimulating

coil over the motor cortex and the effect of the first (con-

ditioning) stimulus on the second (test) stimulus was
investigated. The intensity of the conditioning stimulus was

set to 80% RMT; the second, test, shock intensity was

adjusted to evoke a MEP in relaxed FDI with an amplitude
of approximately 1 mV, peak-to-peak.

The timing of the conditioning shock was altered in

relation to the test shock. Inhibitory interstimulus intervals
(ISIs) of 2, 3 and 5 ms and facilitatory ISIs of 7, 10 and

20 ms were investigated. Ten stimuli were delivered at

each ISI. For these recordings, muscle relaxation is very
important and the subject was given audiovisual feedback

at high gain to assist in maintaining complete relaxation.

The presentation of conditioned and unconditioned trials
was randomized. The amplitude of the conditioned EMG

responses was expressed as the percentage of the amplitude

of the test EMG responses. The amplitudes of the condi-
tioned responses were averaged obtaining grand mean

amplitudes of the three inhibitory and of the three facili-

tatory ISIs.
SAI was studied using the recently described technique

(Tokimura et al. 2000). Conditioning stimuli were single

pulses (200 ls) of electrical stimulation (with the cathode
positioned proximally) applied through bipolar electrodes

to the median nerve at the wrist. The intensity of the

conditioning stimuli was set at just over motor threshold
for evoking a visible twitch of the thenar muscles. The

intensity of the test cortical magnetic shock was adjusted to

evoke a muscle response in relaxed FDI with an amplitude
of approximately 1 mV peak-to-peak. The conditioning

stimulus to the peripheral nerve preceded the test magnetic

cortical stimulus. ISIs were determined relative to the
latency of the N20 component of the somatosensory

evoked potential evoked by stimulation of the median

nerve. In the right-handed subjects, the active electrode for
recording the N20 potential was attached 3 cm posterior to

C3 (10-20 system), and the reference was 3 cm posterior to

C4 (vice versa in the left-handed subjects. Five hundred
responses were averaged to identify the latency of N20
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peak. ISIs from the latency of the N20 component plus
2 ms to the latency of the N20 component plus 8 ms were

investigated in steps of 1 ms.

Eight stimuli were delivered at each ISI. We calculated
an average of the MEP obtained after cortical magnetic

stimulation alone and of the MEP obtained by conditioning

cortical magnetic stimulus with a peripheral stimulus to the
median nerve at the wrist at the seven different ISIs stud-

ied. The amplitude of the conditioned MEP was expressed

as percentage of the amplitude of the test MEP. The per-
centage inhibition of the conditioned responses at the seven

different ISIs was averaged to obtain a grand mean. Sub-

jects were given audio-visual feedback at high gain to
assist in maintaining complete relaxation.

To clarify a possible spinal or peripheral contribution on
the motor cortex excitability parameters, supramaximal

stimulation (0.2-ms square-wave constant current pulses)

of the ulnar nerve at the wrist was used to assess spinal and
peripheral motor excitability. While FDI was relaxed, the

peak-to-peak amplitude of F waves (average, 20 trials) and

CMAP (maximum, 3 trials) were determined. We identi-
fied the F waves according to the criteria reported by the

International Federation of Clinical Neurophysiology as

responses that are variable in their latency, amplitude and
configuration but that which occur grouped with a consis-

tent range of latency (Kimura et al. 1994).

To test if SAI was effectively sensitive to changes in
cholinergic activity, RMT and SAI were examined in four

Table 1 Demographic and MRI parameters of patients with SVaD

Patients Demographic variables Neuroradiological measurements

Age (years) Gender Education
(years)

Presence
of lacune

Presence
of WMH

Presence
of PVH

MB-negative group

1 75 M 8 ? 2 1

2 68 M 6 – 2 2

3 57 F 8 – 2 1

4 79 M 5 – 1 0

5 66 F 10 – 2 2

6 60 M 8 ? 2 2

7 72 M 8 – 3 1

8 75 M 10 – 1 1

9 64 F 13 ? 3 2

10 76 M 5 ? 1 1

11 74 F 8 – 2 0

12 72 F 17 ? 2 2

13 64 M 8 – 1 0

14 71 M 17 ? 1 0

15 66 F 10 – 2 1

MB-positive group

1 65 F 8 ? 1 0

2 75 M 5 – 2 1

3 74 M 8 – 2 2

4 68 M 5 ? 3 1

5 78 F 13 ? 2 1

6 66 F 8 ? 3 2

7 70 M 17 – 1 0

8 58 M 10 – 1 1

9 74 F 9 – 1 0

10 72 M 8 ? 2 1

11 71 M 7 ? 2 2

12 62 F 15 – 1 2

13 73 M 8 ? 2 1

WMH white matter hyperintensities. Grade 1: punctuate; grade 2: early confluence; grade 3: confluent. PVH periventricular hyperintensities.
Grade 1: caps or lining; grade 2: bands; grade 3: irregular extension into the deep white matter

1352 R. Nardone et al.

123



patients of the MB-positive group and in four patients of the

MB-negative group before and after the administration of a
single dose of 5 mg of the acetylcholinesterase (AchE)

inhibitor donezepil. Measurements were made before and

4 h after the administration, when AchE inhibition in the
cerebrospinal fluid is maximal (Rogers and Friedhoff 1998).

Statistical analysis

The electrophysiological parameters of the MB-positive
group, the MB-negative group and the control group were

compared by means of analysis of variance (ANOVA)

F tests and t tests. Similar analyses were performed to
explore the correlation between MMSE scores and the

presence of MBs. Where of interest, Bonferroni corrected

post hoc comparisons were conducted.
The effects of donezepil on RMT and SAI were assessed

by means of a paired t test. p value\0.05 was taken as the

significant threshold for all tests.
For the SvaD patients, the relation between SAI and

neuropsychological tests (MMSE total score and sub-

scores) was studied using the Pearson correlation coeffi-
cient and the Spearman rank correlation coefficient. Then,

multiple linear regression was used to determine the cor-

relation between SAI, presence of MBs and neuropsycho-
logical tests (MMSE total score and subscores), corrected

for partial confounding by demographic variables and the

remaining MRI findings (WMHs, PHVs, lacunar infarcts).
We considered the linear model with SAI as dependent

variable (yi), MB-positive group indicator (MBi) and

MMSE score (Si) as explanatory variables with interaction:

yi ¼ b0 þ b1MBi þ b2Si þ b3MBiSi þ ei ð1Þ

where ei are i.i.d. Gaussian error term. Significant inter-

action coefficient b3 implies different regressions of SAI on

MMSE for the two MB groups. Correction for partial
confounding by demographic variables and MRI mea-

surements reported in Table 1 was accomplished by their

introduction as extra-explanatory variables in model (1)
one at the time.

Results

SAI values of the SVaD patients and the control subjects are
shown in the Table 2. ANOVA F test showed a significant

difference between the mean amount (denoted by l) of SAI

among the three groups (F(2,45) = 46.729, p \ 0.0001).
Since the MB-negative group displayed a larger variability

than the other two groups, we used t test with Welch

approximation for post hoc comparison. SAI was signifi-
cantly reduced in the MB-positive group (lpos = 83.0%)

than in the MB-negative group (lneg = 68.8%) and in the

normal controls (lcontr = 45.85%). Multiple t tests showed

that lpos [ lneg [ lcontr, (p = 0.008 after Bonferroni

correction).
RMT, CMCT, SICI, ICF, CMAP and F wave did not

differ significantly between the two patient groups and the

control group (ANOVA not significant for all F tests). All
neurophysiological data are summarized in the Table 3.

RMT was not significantly modified by the administra-
tion of a single oral dose of donezepil (p = 0.17, paired

t test). In contrast, SAI was significantly increased after

donezepil administration (the mean amplitude of the con-
ditioned response was 85.62% of the control size before the

administration and 64.50% after the administration of

donezepil; p \ 0.001, paired t test).
Differences in MMSE (total score and subscores)

between MB-negative group, MB-positive group and con-

trol group were all significant (Table 4); t tests showed
significant differences for MMSE total score, ‘‘orientation’’

and ‘‘attention and calculation’’ subscores between the two

MB groups (p = 0.004, 0.01 and 0.0014, respectively).
In the SVaD patients, SAI was positively correlated with

MMSE total score and the 5 subscores: reduced SAI values

were associated with lower scores in the neuropsycholog-
ical tests (Table 5). Estimation of model (1) with Si as

MMSE total score showed that the regression coefficients

are all statistically significant with b3 [ 0 (p = 0.003). The

Table 2 SAI (% of test response) of the SVaD patients and control
subjects

MB-negative group MB-positive group Control group

Patient SAI Patient SAI Subject SAI

1 51 1 72 1 48

2 70 2 85 2 55

3 74 3 88 3 35

4 49 4 94 4 51

5 88 5 74 5 53

6 46 6 67 6 35

7 84 7 86 7 57

8 82 8 92 8 39

9 59 9 85 9 45

10 55 10 84 10 52

11 82 11 82 11 44

12 79 12 88 12 31

13 84 13 82 13 54

14 49 14 47

15 80 15 43

16 40

17 62

18 36

19 55

20 35
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hypothesis of normality of the residuals is respected as

shown by the Kolmogorov–Smirnov test (H0: ei * N(0,1),

p = 0.56). We plot the data in two panels that show sep-
arate fitted regression lines in Fig. 1. Notably, the corre-

lation between SAI and MMSE was negative in both

patient groups (as shown by the slopes b2 \ 0 and

b2 ? b3 \ 0) and the regression line of MMSE to SAI was

steeper for the MB-negative group.

Finally, adjustment for age, gender, education, presence
of lacunae, severe PVH and severe WMH did not affect the

estimation results of model (1): when added as explanatory

variables, estimation showed no significant effect, and the

Table 3 Explanatory comparison of the neurophysiological data of the SvaD patients (MB-positive and MB-negative patient groups) and the
control subjects

MB-positive group MB-negative group Control group F(2,45)

Mean (SD) Mean (SD) Mean (SD) p value

SAI (% of test response) 83.00 (7.80) 68.80 (15.46) 45.85 (8.90) <0.001

RMT (% of MSO) 48.92 (8.74) 48.27 (7.80) 47.90 (8.51) 0.9427

CMCT (ms) 6.18 (0.48) 6.20 (0.56) 6.09 (0.61) 0.8238

SICI (% of test response)a 34.92 (9.80) 35.80 (11.49) 34.35 (10.37) 0.8853

ICF (% of test response)b 117.31 (26.44) 118.27 (27.20) 116.65 (26.22) 0.9601

CMAP (mV) 7.67 (0.73) 7.61 (0.96) 7.63 (0.95) 0.9826

F wave (lV) 254.92 (50.89) 240.80 (54.40) 242.35 (45.80) 0.7159

Bold type indicates significant differences among the three groups

SAI short latency afferent inhibition, RMT resting motor threshold, MSO maximum stimulator output, CMCT central motor conduction time,
SICI short latency intracortical inhibition, ICF intracortical facilitation, CMAP compound muscle action potential
a Grand mean of the SICI at the three ISIs studied
b Grand mean of the ICF at the three ISIs studied

Table 4 Mini-Mental State Examination (MMSE) total score and subscores in the MB-positive and MB-negative groups

MB-negative group MB-positive group Control group F(2,45)

Mean (SD) Mean (SD) Mean (SD) p value

MMSE total 22.07 (1.67) 19.92 (1.93) 29.65 (0.59) <0.001

MMSE orientation 8.33 (0.72) 7.62 (0.65) 10.00 (0.00) <0.001

MMSE immediate 2.60 (0.51) 2.38 (0.65) 3.00 (0.00) <0.001

MMSE atten. and calc. 1.60 (0.63) 0.77 (0.60) 4.85 (0.37) <0.001

MMSE delayed rec. 1.87 (0.35) 1.62 (0.51) 2.85 (0.37) <0.001

MMSE language 7.67 (0.82) 7.54 (0.66) 8.95 (0.22) <0.001

Bold type indicates significant differences between the two patient groups

Table 5 Correlation between SAI and MMSE total score and subscores in the patients with SVaD evaluated by means of Pearson and Spearman
correlation coefficients

MMSE total MMSE
orientation

MMSE
immediate rec.

MMSE
atten. and calc.

MMSE
delayed rec.

MMSE
language

Pearson

Estimate 20.861 20.794 20.417 20.523 20.314 20.552

p value <0.0001 <0.0001 0.027 0.004 0.104 0.002

Spearman

Estimate -0.896 20.774 20.397 20.553 20.353 20.620

p value <0.0001 <0.0001 0.036 0.002 0.065 <0.001

Bold type indicates significant correlation
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significant relationship between MMSE, MB grouping and

SAI was not influenced by their introduction.

Discussion

We first explored the relationship between MBs, SAI and

cognitive function in patients with SvaD. Our study shows

that SAI, a putative marker of cholinergic cortical activity,
is significantly more abnormal in the patients with SVaD

and MBs than in SVaD patients without MBs who also

present a significantly reduced SAI as compared with
normal controls.

The recently reported interaction of SAI with the other

inhibitory process N100 EEG response has provided fur-
ther evidence of the cortical origin of SAI (Bikmullina

et al. 2009). Moreover, we failed to find in the present

study significant differences in F wave between groups that
might be expected if spinal mechanisms are contributory.

SAI is thought to be related to central cholinergic activity

because in normal subjects it can be reduced or abolished by
intravenous injection of the muscarinic antagonist scopol-

amine (Di Lazzaro et al. 2000) and is modulated by Ach in

healthy subjects (Di Lazzaro et al. 2005a, 2006; Fujiki et al.
2006). SAI is also influenced by GABAergic drugs such as

some benzodiazepines in healthy subjects (Di Lazzaro et al.

2005a, b, c) and by dopaminergic drugs in patients with
Parkinson disease (Sailer et al. 2003). Preliminary data

suggest that other neurotransmitters/neuromodulators are

likely not involved in the regulation of SAI in that quetia-
pine, an antagonist at multiple neurotransmitter receptors in

the brain such as serotonin 5HT1A and 5HT2, dopamine D1

and D2, histamine, and adrenergic a1 and a2 receptors, does
not modify SAI in healthy subjects (Di Lazzaro et al. 2005b).

Therefore, SAI is thought to represent a non-invasive way of

testing the integrity of some cholinergic cortical circuits

(Ziemann 2004), while the contribution of neurotransmitters

other than Ach is not well understood. On the other hand, it
has been recently reported that dopamine modifies SAI in

AD (Martorana et al. 2009). Therefore, it should be con-

sidered that other neurotransmitters such as dopamine may
be able to modulate cortical cholinergic function in AD

patients.

Interestingly, administration of a single dose of the
AchE inhibitor donezepil improved SAI in our patients,

similarly to that previously reported in AD patients. These

results suggest that the evaluation of the effects of the
AchE inhibitors on SAI could be useful in the management

of SvaD patients (similar to that reported in patients with

AD) because it is currently impossible to predict an indi-
vidual therapeutic response in these patients.

We cannot rule out the possibility that in some patients

the cholinergic dysfunction was due to a concurrent AD
pathology. The patients with abnormal SAI could have

concomitant neuropathological changes of AD and thus

represent the percentage of patients with a mixed form of
dementia. Indeed, neuropathological studies of VD have

demonstrated that 25–30% of patients with the clinical

diagnosis of VD show the concomitant neuropathology of
AD (Kalaria and Ballard 1999; Vinters et al. 2000).

However, SvaD and AD can be distinguished by the mode

of onset and progression of the cortical deficits. Memory
impairment, usually the first and more severe cognitive

manifestation of AD, was quite mild in our patients while

they display significant poor performance on ‘‘attention
and calculation’’ tasks, similar to that previously reported

(Yakushiji et al. 2008).

A possible explanation for the SAI abnormality is
that the subcortical lesions in SVaD interrupt ascend-

ing cholinergic axons determining cortical cholinergic
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denervation. White matter lesions may directly affect

cholinergic projection (Selden et al. 1998; Swartz et al.
2003), and preclinical (Togashi et al. 1994; Kimura et al.

2000) as well clinical evidence (Gottfries et al. 1994;

Martin-Ruiz et al. 2000) suggest that the cholinergic sys-
tem might also be involved in SVaD. Mesulam et al. (2003)

demonstrated in a patient with cerebral autosomal domi-

nant arteriopathy with subcortical infarcts and leukoen-
cephalopathy (CADASIL) that pure white matter infarcts,

similar to those seen in SVaD, can cause cortical cholin-
ergic denervation, but in patterns that vary from those seen

in AD. Interestingly, in CADASIL patients the amount of

SAI was found to be significantly smaller than in normal
subjects (Manganelli et al. 2008).

Clinical implications of MBs have rarely been studied.

Despite considerable interest in MBs as a marker of
bleeding-prone small-vessel angiopathy, they have initially

been considered to be clinically silent (Kwa et al. 1998;

Kato et al. 2002; Tsushima et al. 2003). However, since
they are located in widespread cortical and basal ganglia

regions and are histologically characterized by tissue

damage, they could cause cognitive dysfunction. More-
over, histopathological data that MBs show not only hae-

mosiderin deposition but also surrounding gliosis, and

sometimes frank necrosis or infarction also support the
clinical importance of MBs (Tanaka et al. 1999).

Werring et al. (2004) found that stroke patients with

MBs were more impaired at frontal executive functions
than those without MBs, and postulated that MBs located

in the frontal lobe and the basal ganglia might have caused

it. There were two studies that investigated MBs in patients
with vascular dementia (Hanyu et al. 2003; Cordonnier

et al. 2006). One study enrolled 31 patients with vascular

dementia (not necessarily SvaD) and reported the fre-
quency of MBs of 65% (Cordonnier et al. 2006); the other

study that involved Asian SvaD patients reported the fre-

quency of 77% (Hanyu et al. 2003). Moreover, a recent
review article suggested that the cognitive impairment of

patients with cerebral amyloid angiopathy (CAA) might

be associated with the number of baseline hemorrhages
(Viswanathan and Chabriat 2006). The number of micro-

hemorrhages in the frontal lobes and basal ganglia was the

only independent predictor of executive dysfunction in the
CAA patients; however, the investigators did not evaluate

all potential confounders, particularly the number or loca-

tion of associated lacunar infarctions. In agreement with
our findings, another study showed that MBs affect the

general cognitive dysfunction and the severity of dementia

in patients with SvaD (Won Seo et al. 2007). Yakushiji
et al. (2008) recently also reported that MBs appear to be

primarily associated with global cognitive dysfunction.

The results of the present study are thus consistent with
the more recent literature on the clinical significance of the

MBs in SVaD and further support the notion that not only

ischemia but also MBs are primary pathomechanisms of
cognitive impairment. Only in CADASIL patients MBs

were previously found not to be associated with cognitive

dysfunction (Liem et al. 2007). This finding could be
explained by the more extensive ischemic lacunar changes

occurring at a younger age in CADASIL.

The mechanisms underlying the pathological association
between MBs and cognitive dysfunction remain still

unclear. A histopathologic study on MBs in patients with
primary cerebral hemorrhage has shown that the presence

of MBs indicated widespread damage of arterioles by

hypertension or amyloid deposition (Fazekas et al. 1999).
The location of brain MBs may be of importance, with

cortico-subcortical brain MBs being more strongly related

to CAA than brain MBs in deep of infratentorial locations
(Cordonnier and van der Flier 2011); however, this issue

has not been addressed in this preliminary study. Anyway,

the presence of MBs may thus imply much more severe
disruption of the neural network between cortical and

subcortical structures than ischemic SVDs. MBs would be

expected to cause cognitive impairment if they disrupt
strategically important white matter tracts or eloquent

cortical areas.

Since MBs are particularly common in the white matter
regions (Offenbacher et al. 1996), it could be hypothesized

that executive functions would be most affected, due to

disruption of frontal–basal ganglia connections.
Interestingly, patients with Parkinson’s disease and

dementia have also been shown to display significantly

poor performance on ‘‘attention and calculation’’ tasks in
the MMSE (Yakushiji et al. 2008). This cognitive deficit is

considered to result from severe dysfunction of cholinergic

pathways in the frontal-subcortical circuits (Bohnen et al.
2003, 2006). In common with previous studies, we

observed MBs most frequently in the basal ganglia as well

as in the frontal regions. Predominant occurrence of MBs
in these regions may thus cause executive dysfunction

(Werring et al. 2004). This hypothesis requires confirma-

tion by future studies employing more detailed neuropsy-
chological tests which offer higher sensitivity for the

assessment of cognitive functions (in particular the exec-

utive functions) in patients with SvaD (O’Sullivan et al.
2005). The association we have found between MMSE

scores and the presence of MBs as well as with SAI values

would be more even prominent if it would have used more
sophisticated neuropsychological testing.

Our data indicate that the cumulative effect of MBs on

cognition appears to be independent of coexisting ischae-
mic cerebrovascular disease, and in particular is indepen-

dent of the severity of ischaemic SVaD as assessed by MRI

white matter changes. The finding that MBs are associated
with cholinergic dysfunction has potential diagnostic and
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therapeutic implications. It would be of particular interest

to explore in future studies the responsiveness of patients
with MBs, stratified according to their cholinergic dys-

function, defined using SAI, to AchE inhibitors.

TMS studies may be important for evaluating the causes
of cognitive impairment in cerebrovascular disease. Thus,

in patients with cerebrovascular risk factors and cognitive

impairment, T2*-weighted GE-MRI may be a helpful
adjunct to standard MRI in clarifying the mechanism of

cognitive impairment.
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