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Network: definition

A network is given by a set of nodes

and of interactions among nodes
called edges
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Directed Networks
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Complex Networks: Nodes Centralities

• degree-centrality: the importance of a node grows proportionally
with its degree

• betweenness-centrality: the importance of a node given by the
number of paths of minimum lenght that cross the node

• eigenvector-centrality: the importance of a node is proportional to
the sum of the importance of all vertices that point to it (Newman
2003):
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Complex Networks: Communities Detection

A community is defined as a subnet having few number of edges
departing from it
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Complex Networks: Distance among Nodes

Distance among nodes is defined as the minimum number of edges
necessary to connect two nodes.

The shortest path in network is called the radius of the network while
the longest is the diameter. In real world network it has been
observed the small-world phenomena: a small diameter compared
with the number of nodes.
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Complex Networks: Assortativity

We try to answer the question whether nodes prefer to connect with
their similar (assortative behaviour) or not (dissasortative). In
particular for node similarity we intend degree similarity.

Two approaches are known to detect the assortativity:

• the study of the Pearson assortative coefficient, that detect the
correlation among nodes;

• the study of the average degree of the nearest neighbors
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Complex Networks: Clustering Coefficient

The clustering coefficient of a node is a measure of how its neighbors
are connected.

?
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Complex Networks: Heterogenity

The degree distribution of a network is the probability for a node to
have a number of edges departing from it.
Complex networks could be distinct in:

regular having homogeneous degree distribution such as fixed,
binomial, Poisson, exponential or normal

;

scale-free having fat tailed degree distribution well described by
power law distribution (at least asymptotically);
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have a number of edges departing from it.
Complex networks could be distinct in:

regular having homogeneous degree distribution such as fixed,
binomial, Poisson, exponential or normal;

scale-free having fat tailed degree distribution well described by
power law distribution (at least asymptotically);

a measure of the heterogeneity is given by:

〈k〉
〈k2〉
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Complex Networks: Heterogenity

The degree distribution of a network is the probability for a node to
have a number of edges departing from it.
Complex networks could be distinct in:
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Bipartite Networks

A A A A

B B B B B

Many example:

• co-authorship network;

• diseasome;

• heterosexual contact network;

• vector-borne disease network;
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Bipartite Networks
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Bipartite Networks

The A-projection
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Bipartite Projection is less informative

B B B
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We-Sport: a sparse network

We consider a snapshot of the entire network:
• 1680 athletes

• 240 sports
• 6107 interactions

we define the density for bipartite network as:

δ =
edges

sports · athletes
' 0.014

We observe only two large connected components:
• the first have 1679 athletes and 239 sports
• the second

A man

landyachting
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Graphical representation of bipartite We-Sport network
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Graphical representation of bipartite We-Sport network
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The 70 most played Sports
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The 70 most played Sports: gender frequencies
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A complex network

partition mode median 〈k〉 〈k2〉 〈k〉
〈k2〉

sport 1 5 25.54 6.183 · 103 0.0041
athletes 1 3 3.63 23.78 0.1530
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Degree distribution: sport nodes
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Degree distribution: sport nodes logarithmic scale
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Degree distribution: athletes nodes
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Degree distribution: athletes nodes logarithmic scale
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Nodes distance

The maximum distance between every pairs of nodes in a graph is
defined as the diameter of the graph. We observe a diameter of 8 but
on average the shortest path between nodes is 3.33.
We are in presence of so called small-world phenomena.
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The distance distribution

the athletes-athletes distance
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The distance distribution

the sport-sport distance
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The distance distribution

the sport-athletes distance
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Assortativity in bipartite

We-sport network shows a disassortative behaviour: the Pearson
coefficient is −0.2425.
Moreover if we calculate the nearest neighbor degree:
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Assortativity in bipartite

We-sport network shows a disassortative behaviour: the Pearson
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The joint probability
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2-length assortativity in bipartite

We want to try to answer the question:

do people choose sports that connect them with similar
people or not?

Therefore we analyze the 2-length assortativity: we observe a weak
assortative behavior for athletes-nodes (0.0326) and stronger for
sport-nodes (0.2620)
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2-length assortativity in bipartite
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2-length assortativity in bipartite
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The Clustering Coefficient for Biparite Networks

Again in order to understand the aggregation behavior of athletes we
try to understand if people prefer to connect with other sharing the
same sport’s preference. Hence we define a similarity matrix cc which
counts for each couple of athletes the number of sports they share:

|N(v) ∩ N(u)|

then we can normalize that matrix. Le Blond et al., Latapy et al., and
Borgatti suggest the three following denominator:

• min (|N(v)|, |N(u)|) for cc•(u, v)

• max (|N(v)|, |N(u)|) for cc•(u, v)

• |N(v) ∩ N(u)| for cc•(u, v)
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The clustering coefficient II

From the similarity matrix we can calculate the clustering coefficient
of each nodes.

cc(v) =

∑
u∈N(N(v)) cc(v , u)

|N(N(v))|
and from that the clustering coefficient of A-partition:

cc =
1

|A|
∑
v∈A

cc(v)

graph cc• cc• cc•
athletes 0.6628 0.2672 0.2315

sport 0.4126 0.0615 0.0536
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The clustering coefficient II

The athletes case
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The clustering coefficient II

The sport case
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The centrality

 2−mode Key Sports Analysis
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escursionismo

acquagym
badminton_(special_sport)
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An application: which is the best sport to meet girls?
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Contacts

for further informations:

www.we-sport.com

or contact us:

luca.ferreri@unito.it

fabio.daolio@unil.ch
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