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japonicus starch mutants
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Abstract

Arbuscular mycorrhizal (AM) fungi are obligate symbionts dependent for completion of their life cycle on
plant carbohydrates, which they trade for mineral nutrients. Plant colonization by AM fungi is therefore
expected to induce profound changes in plant carbon metabolism. We have previously observed that on
one hand starch accumulation increases in responses to pre-symbiotic fungal signals and on the other
hand, it decreases in mycorrhizal Lotus japonicus roots (Gutjahr et al. in New Phytol 183:53-61, 2009). To
examine the importance of starch metabolism for AM development, we took advantage of a novel series of
Lotus japonicus mutants impaired either in starch degradation or in synthesis. Normal AM colonization in
all mutants indicated that defects in starch metabolism do not affect AM development and that
carbohydrates can be supplied to the AM fungus without a requirement for starch synthesis. Furthermore,
our experiments allowed us to characterize root starch dynamics in detail and point to continued turnover
of starch in the degradation mutants in the presence of mycorrhiza.
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Introduction

Most vascular land plants form root symbioses with beneficial arbuscular mycorrhizal (AM) fungi that take
up inorganic ions (especially phosphate and nitrogen) from the soil and transfer them to their host (Smith
and Read 2008). In turn, plants provide these obligately biotrophic fungi with up to 20% of their
photosynthetically fixed carbon (Bago et al. 2000). Due to the beneficial effects on plant mineral nutrition,
AM symbioses receive increasing attention for their application in sustainable agriculture. Since AM fungi
also represent a carbon cost to the plant, it is of utmost importance to characterize and understand the
molecular components involved in the mutual exchange of nutrients and their impact on plant physiology
and productivity (Sawers et al. 2008). While transcriptomics and genetics studies have provided convincing
evidence that the AM fungus plays an important role in plant P and N uptake (Balestrini et al. 2007; Javot et
al. 2007; Gomez et al. 2009; Guether et al. 2009a; Branscheid et al. 2010) and indicate how the nutrient
status of the plant influences AM development (Javot et al. 2007; Yoneyama et al. 2007; Nagy et al. 2009;
Breuillin et al. 2010), information on the molecular components important for carbon transfer to the fungus
and carbon metabolism in mycorrhizal plants remains rather patchy (Franken 2010).

Several studies have described metabolic and transcriptional changes in plants in relation to carbon
metabolism during AM colonization (Shachar-Hill et al. 1995; Blee and Anderson 2002; Ravnskov et al.
2003; Schubert et al. 2003; Schaarschmidt et al. 2006; Garcia-Rodriguez et al. 2007; Tejeda-Sartorius et al.
2008) and in some cases, the extent to which carbon supply is limiting. For example, transgenic
manipulation of invertase levels demonstrated on one hand that hexose supply to roots limits AM
colonization (Schaarschmidt et al. 2007a), but on the other hand that AM colonization cannot be increased
above a certain threshold by elevating carbon transport to the root (Schaarschmidt et al. 2007b).

Starch is the major storage polymer of carbon in plants (Tetlow et al. 2004). We have recently observed in
Lotus japonicus that AM colonization affects the root starch economy as the starch content decreases in
mycorrhizal as compared to control roots (Gutjahr et al. 2009). Interestingly, prior to colonization in
response to AM fungal signals starch accumulates indicating that changes in root carbon metabolism
precede mycorrhizal colonization (Gutjahr et al. 2009). However, it remains unclear whether starch
accumulation is absolutely required for AM colonization. To investigate the importance of root starch
metabolism for AM development we took advantage of the availability of an extensive series of novel Lotus
japonicus mutants that are either defective in starch synthesis or breakdown (Vriet et al. 2010). Here we
show that AM colonization does not depend on root starch accumulation and plant sugars can be supplied
to the AM fungus without a detour through starch. We further provide evidence that starch turnover does
occur in wild type and some of the degradation mutants, indicating that when starch is present, it is used as
a second source of energy for the AM symbiosis.



Materials and methods

Plant culture

Lotus japonicus (Regel) Larsen ecotype Gifu seeds, wild type (produced at Dipartimento di Biologia
Vegetale, Universita di Torino, Italy) and mutants SL5035-7, SL4841-4 and pgm1-4 (SL 4725-4) (produced at
John Innes Centre, Norwich Research Park, UK) were surface sterilized and scarified for 3 min in sulphuric
acid, washed three times for 15 min with sterile, distilled water and germinated on water agar (0.6%) in
Petri dishes. The Lotus japonicus mutants, SL5035-7, SL4841-4 and pgm1-4 have been described previously
(Table 1; Vriet et al. 2010).
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Mycorrhizal inoculation

Mycorrhizal colonization of Lotus japonicus was induced as described in Novero et al. (2002). Two weeks’
old seedlings (pre-germinated on 0.6% water agar) were inoculated with Gigaspora margarita Becker and
Hall (strain deposited in the Bank of European Glomales as BEG 34) using the Millipore sandwich method
(Giovanetti et al. 1993) and grown in a climatic chamber at 21°C during the day, 18°C during the night and
with 16 h of light per day. After 4 weeks when full colonization was reached (Novero et al. 2002), plants
were harvested at the beginning of the day (2 h of light) and roots cut and stained for observation of
mycorrhization or used for starch extraction.

Fungal staining and quantification of colonization

Five entire root systems of each genotype grown in separate magenta boxes were stained in 0.1% cotton

blue (w/v) in lactic acid and mycorrhizal colonization was quantified as described (Novero et al. 2002). For
morphological observations, semi-thin root sections were prepared as described (Novero et al. 2002) and
stained in 1% toluidine blue.

Periodic Acid Schiff staining and starch extraction



Amyloplasts were stained by the Periodic Acid Schiff (PAS) reaction as described previously (Gutjahr et al.
2009). For SL5035-7, SL4841-4 and wild type at least five semi-thin microtome sections each from five
different plants grown in independent magenta boxes were obtained.

Starch was extracted from five to six samples grown in independent magenta boxes as described (Gutjahr
et al. 2009). Each sample was a pool of two root systems which where grown in the same magenta box. The
different mutants were grown and analyzed along with wild type at different points in time, revealing a
high variability among the independent experiments. The different experiments were therefore analyzed
and displayed separately.

Statistics

Data were analyzed with the statistical software SYSTAT 10. The significance of differences at the 95%-level
was assessed using the Kruskal-Wallis test for non-parametric data.

Results

Morphology and intensity of mycorrhizal colonization

We hypothesized that defects in starch breakdown and accumulation may interfere with the sugar flow
towards the root and impact on the formation of the AM symbiosis. To test this hypothesis, we chose the
Lotus japonicus mutants SL5035-7 and SL4841-4 that are disturbed in starch breakdown, and SL4725-4 that
cannot produce starch in any parts of the plant (Vriet et al. 2010). SL5035-7 and SL4841-4 have been
mapped to two different loci on chromosome 1 but the mutated genes are unknown. SL 4725-4 carries a
mutation in PHOSPHOGLUCOMUTASE 1 and was named pgm1-4 (Vriet et al. 2010). All mutants were
subjected to colonization by G. margarita for 4 weeks, to reach full colonization (Novero et al. 2002). We
determined first whether the morphology of the colonizing fungus was changed due to the defective starch
metabolism of the mutants. The colonization pattern and the morphology of arbuscules were equivalent to
the wild type in all three mutants SL5035-7, SL4841-4 and pgm1-4 (Fig. 1).
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Mycorrhizal colonization of the four genotypes was quantified with the estimative method of Trouvelot et
al. (1986). Data from 1 cm root segments of five whole root systems for each genotype were taken to
calculate the four parameters that display the intensity of colonization by the AM fungus. The frequency of
colonization in the wild-type was around 60% as expected for the time point of 4 wpi at which samples
were taken (Novero et al. 2002). No significant differences were found among the values assumed by the
parameters in the three mutants and the wild type according to the Kruskal-Wallis non-parametric test
(Table 1). In conclusion, the mutations SL5035-7, SL4841-4 and pgm1-4 do not affect AM colonization
negatively. However, although not statistically significant at the 95% level, pgm1-4, which cannot produce
starch, seemed to be slightly more receptive to the AM fungus. Especially the percentage of arbuscules in
the root system was more than double as high than in the wild type, suggesting the possibility of
competition between starch biosynthesis and sugar supply to the fungus (Table 1).

Starch accumulation in the root

Vriet et al. (2010) focussed on starch accumulation in leaves for most mutants described in their study and
investigated starch accumulation in roots only in selected mutants such as pgm1-4. Furthermore, starch
dynamics in roots in response to stimuli other than the diurnal light cycle have not been investigated.
Therefore, normal colonization levels of the mutants as detected in our study could be due to the fact that
starch metabolism in roots or upon AM colonization is not affected. To examine this possibility we
determined starch accumulation in mock inoculated and G. margarita colonized roots of the wild type,
SL5035-7, SL4841-4 and pgm1-4 at 4 wpi using two approaches. First, cross-sections of roots from all four
genotypes were stained using the PAS reaction which reveals amyloplasts. Amyloplasts were
distinguishable not only in wild type, but also in SL5035-7 and SL4841-4, showing that the defects in starch
breakdown in leaves do not interfere with a regular sugar supply to the root and subsequent starch
accumulation. Observations on pgm1-4 confirmed that this mutant does not contain any amyloplasts in the
root (Fig. 2d, h). Taken together the absence of amyloplasts in pgm1-4 and the normal AM colonization
levels in this mutant we conclude that starch accumulation is not required for AM colonization.
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Starch granules have never been observed in arbusculated cells of wild-type plants (Bonfante 2001), but
according to the previous experiment (Fig. 2a—d), mutants that are perturbed in root starch breakdown
should in theory contain amyloplasts in some arbusculated cells. However, we did not find amyloplasts in
arbusculated cells of the mutants SL5035-7 and SL4841-4 (Fig. 2j, k, m, n). Small dark dots in arbusculated
cells that seemed at first sight to be amyloplasts were identified as collapsed fragments of fungal
arbuscules (Fig. 2n, for comparison see also Bonfante-Fasolo 1984). This supports the widely accepted
hypothesis that the AM fungal arbuscule and the enhanced metabolism of the arbusculated cell (Hause and
Fester 2005; Franken 2010) consume all carbohydrates that enter the cell and prevent starch accumulation
(Gutjahr et al. 2009). However, since our morphological analysis offers only a snapshot of the colonization
events, we cannot exclude that starch might have already accumulated in a root cortex cell before it was
colonized by an arbuscule.

To address this question, the number of amyloplasts in root semi-thin sections was quantified for SL5035-7
and SL4841-4 (Fig. 3a). In mock-inoculated plants, amyloplast numbers were significantly lower in SL5035-7
and SL4841-4, as compared to the wild type. In the presence of the fungus, amyloplast numbers were lower
in uninfected cells of the wild type when compared to non-mycorrhizal roots, as observed previously
(Gutjahr et al. 2009). As expected, in roots of SL4841-4 AM colonization led to a significant decrease of
amyloplast number similar to the wild type. However, SL5035-7 showed an opposite trend, and the number
of amyloplasts significantly increased upon mycorrhizal colonization.
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To confirm the morphological observations, we quantified starch extracted from complete root systems of
all investigated genotypes. The enzymatic starch quantification assay used in our study may detect starch
as well as glycogen. Therefore, as glycogen is used as sugar storage molecule by AM fungi, we first
evaluated the specificity of the assay by quantifying starch in colonized and non-colonized wild type and
the pgm1-4 mutant (cannot synthesize starch). In the colonized pgm1-4 roots, starch is absent, but the
presence of the AM fungus might lead to unspecific detection of its sugar reserve molecule glycogen.
However, background starch-detection levels in pgm1-4 were very low and did not increase in presence of
the AM fungus, showing that a possible contribution of fungal glycogen to the results was negligible.
Furthermore, the experiment confirmed that mycorrhizal roots of wild type consistently contained less
starch than non-mycorrhizal roots (Fig. 3b; Gutjahr et al. 2009).



Second, starch extracted from complete root systems of wild type, SL5035-7 and SL4841-4 at 4 wpi in the
presence and in the absence of G. margarita was enzymatically quantified (Fig. 3c, d). In all experiments,
starch levels of wild type decreased by more than half in the presence of the fungus (Fig. 3b—d). In SL5035-
7, the starch level was significantly higher (Fig. 3c), while in SL4841-4 it decreased—even if not
significantly—by about one third (Fig. 3d). In summary, measurement of total root-starch levels confirmed
the trend shown by amyloplast numbers in the different genotypes. We conclude that SL4841-4 is able to
break down starch in the root, supporting the results of Vriet et al. (2010) where turnover of starch was
observed in the leaves of similar mutants. The increase in starch levels in roots of SL5035-7 upon AM
colonization is consistent with an enhanced sugar transport to the root induced by AM colonization
(Gutjahr et al. 2009) and an inability of SL5035-7 to break down starch in roots. These data indicate that the
lesion in SL5035-7 is likely to be affecting a different process in starch turnover than that in SL4841-4.

Specific starch breakdown in arbusculated cells of SL5035-7

The increase of amyloplast number and starch amount in SL5035-7 upon AM colonization seems somewhat
contradictory to the fact that in this mutant, amyloplasts were never observed in arbusculated cells, since
starch could already accumulate in cortex cells before the formation of arbuscules. We therefore assessed
whether the mutant might be able to break down starch exclusively in arbusculated cells. As an indirect
measure of this ability, we quantified the number of amyloplasts in relation to the number of arbuscules in
root sections of SL5035-7 by classifying the root sections according to their arbuscule content (Fig. 3e). We
then quantified amyloplasts in sections belonging to the different classes. There was a clear negative
relationship between arbuscule and amyloplast numbers (Fig. 3e), whereas in sections with 0-2 arbuscules,
amyloplast numbers were more than twice as high as in the mock-inoculated control; in sections with 3-5
arbuscules, amyloplast numbers were similar to the mock-inoculated control and they were approximately
20% lower in sections with 6—8 arbuscules. We conclude that SL5035-7 must retain the ability to break
down starch in arbusculated cells. This finding provides circumstantial evidence that carbon is not only
provided directly to the AM fungus but likely also via root starch catabolism.

Discussion

Arbuscular mycorrhizal fungi are obligate symbionts dependent on carbon supply by their host plant for the
completion of their life cycle (Smith and Read 2008). We have recently shown that changes in carbon
metabolism of Lotus japonicus roots occur already prior to AM colonization visible as starch accumulating
in response to diffusible factors released by the AM fungus (Gutjahr et al. 2009). However, it remained
open whether starch accumulation is a requirement for AM colonization or simply a read-out of enhanced
carbon flux into the root in response to AM fungal signals in the absence of colonization and carbohydrate
consumption. By taking advantage of novel Lotus japonicus mutants affected in starch metabolism (Vriet et
al. 2010), we demonstrate that starch can be used but is not indispensable for AM colonization.
Furthermore, the different metabolic defects of the analyzed mutants lead to a diverse distribution of sugar
resources in the colonized roots.

Starch accumulation is not required for arbuscular mycorrhizal colonization



The mutant pgm1-4 is deficient in plastidial phosphoglucomutase and therefore cannot synthesize starch in
any part of the plant. Quantity and morphology of AM structures do not change when starch is absent as in
the roots of pgm1-4. The mutant directly provides the fungus with carbohydrates delivered from the shoot
without a detour through starch. We have clearly demonstrated, therefore, that starch accumulation is not
required for AM colonization, as already shown for the symbiosis with rhizobia (Vriet et al. 2010). However,
if starch is present, it can be consumed by the AM symbiosis as will be discussed below. Elevated
colonization levels of pgm1-4 roots as compared to the wild type might even suggest competition between
starch biosynthesis and carbon supply to the fungus.

Plants fix carbon and synthesize sugars only during the day when excess carbon is stored in the form of
starch that could, theoretically, be used by the AM fungus during the night. Our results with pgm1-4
provokes the hypothesis that carbon uptake by AM fungi might be coupled to the plants photosynthetic
activity and take place only during daytime (at least in this mutant). The pgm1-4 mutant provides an
excellent tool to test this hypothesis in the future.

Are the mutants SL5035-7 and SL4841-4 perturbed in root starch breakdown?

Our results further show that inoculation with AM fungi can be a useful bioassay to study starch dynamics
in roots of mutants defective in starch breakdown. Although the two mutants SL5035-7 and SL4841-4
displayed an equivalent starch breakdown phenotype in leaves, starch dynamics in roots could be
discriminated by the arbuscular mycorrhiza assay. These mutants are known to map to different positions
in the Lotus genome (Vriet et al. 2010) and may well encode genes representing entirely different activities
affecting starch turnover.

Starch dynamics in SL5035-7 confirmed that the presence of the fungus enhances the carbon sink strength
of the root sequestering sugars from the shoot (Franken 2010) that are then stored as starch, but cannot
efficiently be metabolized due to the mutation in SL5035-7. The increased number of amyloplasts and
starch amount (Fig. 3a, b) suggest that AM colonization induces sugar transport to the root that exceeds
the immediate plant and fungal need, otherwise starch levels in SL5035-7 roots should remain constant
upon mycorrhizal colonization. Alternatively, starch accumulates after an initial increase in carbon
transport to the root in response to AM fungal pre-colonization signals (Gutjahr et al. 2009). On the other
hand, amyloplast numbers were negatively correlated with arbuscule numbers in root sections of the same
mutant. Several plant genes are known to be specifically expressed in arbusculated cells (Liu et al. 2003;
Frenzel et al. 2005; Balestrini et al. 2007; Gutjahr et al. 2008; Guether et al. 2009b) and more are expected
to be confirmed (Gomez et al. 2009). It is possible that a homologue of the protein mutated in SL5035-7
exists that is specifically expressed in arbusculated cells where it contributes to starch breakdown. In an
alternative scenario, starch breakdown might be normal in roots of the mutant SL5035-7 but starch
accumulation might be accelerated. This might be less visible in a situation where sugars are deviated away
from starch biosynthesis to the fungus. The decrease in amyloplast numbers and starch levels in roots of
SL4841-4 upon AM colonization clearly shows that this mutant can break down starch in roots. We also
found a strong and significant decrease in starch levels and amyloplast number in the mutant gwd1-1
defective in GLUCAN WATER DIKINASE 1 in response to AM colonization (data not shown). This suggests
that AM symbioses might utilize a starch breakdown route, which is independent of GLUCAN WATER
DIKINASE 1, for example via a-AMYLASE (Zeeman et al. 2010). Such a hypothesis is fostered by the
observed up-regulation of an a-AMYLASE gene in mycorrhizal Medicago truncatula roots (Gomez et al.
2009).



In conclusion, our results demonstrate that starch metabolism does not influence AM colonization, and
that the fungus is mostly fed by soluble sugars stemming from sucrose transported to the root by the host.
This raises new questions about the circadian regulation of this nutrient supply. The negative correlation
between arbuscule and amyloplast numbers in root sections of SL5035-7 suggest that starch serves as a
buffer between photosynthesis and nourishment of the AM fungus. However, to address further the role of
sugar metabolism and starch breakdown during the mycorrhizal symbiosis, a mutant that cannot degrade
starch at all is required. This would also allow us to examine the possibility whether AM fungi possess
AMYLASE activity themselves.
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