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Abstract 

Single and sequential extraction procedures are used for studying element mobility and availability 

in solid matrices, like soils, sediments, sludge, airborne particulate matter and so on. In the first part 

of this review we reported an overview on these procedures and described the applications of 

chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based 

on variable reduction to the experimental results obtained. The second part of the review deals with 

the use of chemometrics not only for the visualization and interpretation of data, but also for the 

investigation of the effects of experimental conditions on the response, the optimization of their 

values and the calculation of element fractionation. We will describe the principles of the 

multivariate chemometric techniques considered, the aims for which they were applied and the key 

findings obtained. The following topics will be critically addressed: pattern recognition by cluster 

analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by 

multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; 

calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of 

Substrates and Element Distributions, CISED); optimization and characterization of extraction 

procedures by experimental design; other multivariate techniques less commonly applied. 
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1. Introduction 

Chemometric techniques are very useful for processing large data sets [1-3], such as those obtained 

by applying single or sequential extraction procedures, commonly used to study element mobility 

and availability in solid matrices like soil, sediment, sludge, incinerator fly ash and atmospheric 

particulate matter [4-7]. A large amount of data is necessary to gain insight into the properties of 

such matrices, because they have a complex composition and their behaviour depends on the 

concentrations of several elements, further divided into fractions in the case of sequential 

extractions, and on their main chemical and physical properties, e.g. pH and organic matter content. 

Consequently, multivariate chemometric techniques, which allow many parameters to be taken into 

account simultaneously, are very helpful for visualization and interpretation of single and sequential 

extraction results [8]. The outcomes of such techniques can be used to classify samples and 

variables according to their characteristics, to understand the causes of a phenomenon, to develop a 

model for predicting future events. Other applications of chemometrics to extraction assays are the 

investigation of the effects of experimental conditions on the response, the optimization of their 

values and the calculation of element fractionation. 

The first part of this review [9] dealt with the following topics: i) an overview on the most common 

extraction procedures, with their advantages and disadvantages; ii) an overview on univariate and 

bivariate chemometric methods, which remain indispensable for data processing and interpretation, 

even when sophisticated multivariate techniques are subsequent applied; iii) the principles and 

applications of pattern recognition techniques based on variable reduction, namely principal 

component analysis (PCA), factor analysis (FA) and N-way methods. 

In this second part of the review we will cover a number of aspects associated to chemometrics and 

single and sequential extractions: i) further pattern recognition procedures; ii) modelling; iii) 



geostatistics; iv) calculation of element fractionation; v) experimental design. Soil and sediment 

matrices will be considered, unless otherwise stated. After a short description of the principles of 

the techniques, we will focus on the aims for which they were applied and the key findings they 

provided. 

The main features of each cited paper are summarized in Tables 1 and 2. Table 1 reports the 

operational definitions of the fractions obtained with sequential extraction procedures, the reagents 

used in the extraction steps and a few comments. Table 2 shows: i) the nature of the investigated 

matrix and its location; ii) the elements determined; iii) the extraction media; iv) the analytical 

method used for the determination of the extracted elements; v) the chemometric technique(s) 

applied; vi) the software package used. Regarding point vi), in sections 2-4 we will mention the 

software packages used in the cited papers. It should be recalled that also other packages can be 

adopted for the calculations required by each chemometric technique. Besides commercial products, 

free software packages are available: in many cases, free products provide the ability to perform 

calculations properly but have less graphical facilities than commercial ones. The choice of the 

most suitable package for data processing should be made taking into account the aim of the study 

(e.g. whether a graphical representation of results is necessary or not) and the chemometric 

techniques that will be applied: in particular, it is convenient to choose a product provided with 

several techniques of the same type (e.g. different pattern recognition techniques) and several 

algorithms for the same technique, so as to have the possibility to compare the results obtained with 

different procedures. 

 

2. Visualization and interpretation of experimental results 

2.1. Cluster analysis 

2.1.1. Principles 

The aim of cluster analysis (CA) is grouping samples or variables [1-3]. CA techniques can be 

divided into two groups: i) hierarchical, in which groups are obtained stepwise with an 



agglomerative (starting from single objects and joining them in successively larger groups) or 

divisive (starting from one cluster comprising all objects and dividing it into successively smaller 

and more homogeneous clusters) approach and ii) non-hierarchical methods, in which objects are 

not successively joined but clusters are determined directly. 

We will focus our attention on hierarchical CA (HCA), which is most frequently used. It is an 

unsupervised pattern recognition technique, in which the clusters are formed during the calculation 

and their number is not decided a priori. The first step in clustering objects is to evaluate their 

similarity (or dissimilarity): distance or correlation coefficient can be used as a measure of 

(dis)similarity. One way of measuring distance between two objects i and j in HCA is the Euclidean 

distance: 
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where n is the number of variables. Using vector notation, equation (1) becomes: 

dij 
2
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T
(xi - xj)                                                                                                                    (2) 

where xi and xj are the column vectors of the two objects and T stands for “transpose”.  

The smallest is the Euclidean distance, the highest is the similarity between the objects. The 

Euclidean distance can be graphically interpreted as the length of a vector starting from i and ending 

in j. It represent a particular case of the general Minkowski distance: 
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with p = 2. When p = 1 the Manhattan or city block distance is obtained, which is scarcely used in 

HCA. Some studies adopt the squared version of the Euclidean distance, which provides a faster 

data processing in comparison to the conventional Euclidean distance, especially in the presence of 

large datasets. Another approach to the calculation of distance is the Malanobis distance: 

dij 
2
 = (xi – xj)

T
C

-1
(xi-xj)                                                                                                                    (4) 



where C is the variance-covariance matrix. 

The comparison of equations (2) and (4) shows that the Euclidean and Malanobis distances differ 

for the presence of matrix C, i.e. Malanobis distance takes correlation into account.  

Other measures of distance can be found in Massart’s et al. [1] and Otto’s [3] textbooks; both texts 

also report some interesting graphs showing the differences between the distances measured with 

different methods. The most common measure of distance used in HCA is the Euclidean distance, 

even if the Malanobis distance is considered to be more reliable by Massart et al. [1] and references 

therein. 

Instead of distance, correlation coefficients between the two row-vectors xi and xj can be used as a 

measurement of similarity. As explained by Massart et al. [1], two objects may have the same 

Euclidean distance from a third one, but different correlation coefficients, if the cosine of the angle 

between the corresponding vectors (which is equal to correlation coefficient) is different: therefore 

different degrees of similarity between the two objects are obtained with the two approaches. The 

choice between the two indexes of similarities is not straightforward; in several cases, distance and 

correlation coefficient are used to classify samples and variables respectively [10], but this rule is 

not always followed. Most of the papers cited in section 2.1.2 started from Euclidean distances [11-

14] or squared Euclidean distances [15-18] for clustering samples and/or variables. Some studies 

adopted correlations as similarity measurements for the classification of variables [10,19,20] or, less 

commonly, samples [21]. 

The second step in HCA is clustering objects, which is more commonly performed with the 

agglomerative approach than with the divisive one. There are several clustering algorithms. One set 

of popular methods is based on the similarity matrix, which contains the similiarities between all 

couples of objects; initially, the two most similar objects (let us call them a, b) are identified and 

substituted with a new combined object (c). The similarity between object c and each of the 

remaining objects is calculated with different procedures, the most typical ones being single 

linkage, complete linkage, also called furthest neighbour, and average linkage: for instance, with 



average linkage the average of the similarities between objects a and b and each remaining object is 

calculated. The process is repeated until all objects are linked. Massart et al. [1] and Otto [3] show a 

numerical example of calculation; in addition, the former text compares the results obtained with 

the three linkage modes mentioned above. Another popular clustering approach is Ward’s method, 

in which the criterion for cluster forming is that a minimum increase of the sum of the squared 

distances of each member to the centroid (the point with mean values of the variables) of the cluster 

should occur. The results of HCA are usually represented as dendrograms, which show the degree 

of similarity among objects. Otto [3] shows a comparison of the dendrograms obtained with average 

linkage and Ward’s methods.  

The majority of the papers cited in section 2.1.2 used Ward’s method of agglomeration [11,13-

18,22]. Other studies applied complete linkage [12,19,21] or average linkage [10,23] clustering. In 

general, using different measures of similarity and/or clustering algorithms yields to different 

results; for this reason, we agree with Massart et al.’s recommendation to combine a clustering 

method with PCA or other data representations and, if possible, compare different methods of 

performing HCA [1]. 

Non-hierarchical methods are not unsupervised techniques, since they start with a decision on the 

number of clusters to be made; then each object is assigned to a cluster, following various 

procedures: for instance, in Forgy’s method the distance between each object and the centroid of the 

clusters is calculated, and each object is assigned in the cluster with the nearest centroid. The 

assignment of objects to the clusters is performed repeatedly, until no change is observed in two 

consecutive steps [1]. 

Fuzzy clustering analysis is a version of CA in which there is not a sharp boundary between clusters 

and is useful for the treatment of data sets affected by uncertainty or vagueness, in which an 

overlapping of clusters can take place. 

As Table 2 shows, most of the cited papers used SPSS (Statistical Package for Social Sciences) as 

software package for calculation. In general, SPSS is one of the most popular products for many 



types of statistical calculations; it was issued in 1968, and many revisions have been made since 

then. Other studies adopted XLStat, which is somewhat less complete than SPSS, but has the 

advantage of being an Add-in package of Microsoft Excel. One paper used Statistica, another well 

known product for statistical calculations.  

 

2.1.2. Applications 

CA has been widely used in conjunction with extraction assays, even if less commonly than PCA. 

In many studies, both techniques were reported and, according to our experience, they yield similar 

results. For this reason, many of the papers cited in this section were already mentioned in Part I of 

the review [9]. 

CA can be used to identify groups of similar samples and anomalous specimen; alternatively, the 

variables can be treated as objects and their similarity or dissimilarity can be investigated. The 

results of this techniques have been used for several purposes: i) to distinguish among sources of 

elements [10,19]; ii) to identify zones with different pollution levels within a contaminated site [15-

17,24 ]; iii) to study the chemical behaviour of main properties and element fractions [12,14,20,23]; 

iv) to study soil-plant relationships [11,18]; v) to distinguish soils from different areas [22] or the 

variations of chemical composition along a sediment core [13]; vi) to evaluate the characteristics of 

extractants [21]; vii) to better interpret the results of PCA [25] or compare the performances of 

different algorithms [26]. Examples of these applications are discussed hereafter. 

Micó et al. [10] determined the total and EDTA-extractable contents of elements in agricultural 

soils. They computed the correlations between element concentrations and main soil properties and 

between element pairs, and studied the classification of variables with HCA. Two main clusters 

were present in the dendrogram. One comprised total and extractable concentrations of Cd, Cu, Pb 

and Zn, and was associated to an anthropogenic influence, since some samples had high levels of 

these elements. The other cluster contained total and extractable concentrations of Co, Cr, Fe, Mn 

and Ni, whose variability was presumed to depend on the parent rock, and represented a lithogenic 



component. The results of HCA and correlation analysis were in good agreement, since the 

lithogenic elements had higher correlations with soil properties than anthropogenic ones (Cd, Cu, 

Pb and Zn), which were mainly influenced by external sources. 

Pérez et al. [15] used HCA to identify groups of samples with similar characteristics within a 

contaminated site; they found three main groups of samples clearly differentiated by element 

mobility; the behaviour of variables was investigated by PCA (see Part I) [9]. 

Zhang et al. [19] applied correlation analysis and HCA to the results of a large database on 1310 

soils, which mainly reports total concentrations, but also the available content of some elements. 

The variables were clustered in four groups in the dendrogram, depending on their characteristics 

(chemical properties or source). The authors pointed out that correlation analysis is effective in 

revealing the relationship between pairs of variables, but the results can be complex in the presence 

of a large number of variables, whereas CA enables the summarization of the multiple relationships 

among all the variables in a single cluster tree. 

Katsaounos et al. [12] treated the results of P fractionation in soils with HCA. The geological 

parameters (sand, silt, organic matter, Fe, CaCO3, Al, Ca) formed a separate cluster from the 

fractions of P. The authors did not discuss further the HCA results and interpreted the data mainly 

on the basis of other techniques (see Part I and section 2.3.1) [9]. 

Tokalioğlu and Kartal [11] applied HCA to element concentrations in vegetables and soils using a 

single extraction (see also Part I) [9]. They found one main cluster comprising of elements (Cd, Co, 

Cr, Fe and Pb) in soil and another cluster with the elements in vegetables and some other ones (Cu, 

Mn, Ni and Zn) in soil. HCA did not provide information on the soil-plant relationships, since no 

clear separation was found as a function of either the matrix or the elements, suggesting that the 

extractant was not representative of the uptake of elements by plants. In a previous paper 

Tokalioğlu et al. [8] studied the availability of elements in vineyard soils to grapes comparing the 

performance of three single extractants. They treated the data with HCA separately for each reagent 

and found similar clusters of variables in the three dendrograms. The results of HCA were used to 



support the conclusions of correlation analysis and PCA (Part I) [9]. 

Our research group applied HCA to the element fractionation results obtained for an agricultural 

soil, a contaminated soil and a marine sediment core [13,16,17,22]. In all cases, the sample 

clustering observed in the dendrogram was in general agreement with the groups evidenced in the 

PCA score plot (Part I) [9]. In addition, the outcome of HCA allowed us to better assess the level of 

similarity among the investigated samples. Fig. 1 shows the dendrogram obtained for element 

percentages extracted into the third fraction of Tessier’s scheme from an industrially polluted soil 

[16]; a clear separation between surface (A1-A14) and vertical profile (A17b-A31) samples is 

apparent, with the exception of sample A19. The sub-clusters of vertical profile samples did not 

show a clear trend as a function of depth, probably because the profile was collected from the side 

of an artificial relief consisting of a mixture of industrial wastes and soil: for this reason, it was not 

characterized by the sequence of horizons expected for natural soils, and element distribution 

depended on the disposal history of the site. The top layer (A17b) was not differentiated from the 

layers underneath, suggesting that weathering, which should have presumably affected sample 

A17b more extensively than A19-A31, apparently did not influence the availability of elements 

bound to Fe and Mn oxides. The PCA score and loading plot for the same samples have been shown 

in Part I [9]. 

 

Fig. 1. Dendrogram obtained by HCA (Ward’s method) for pH and element percentages extracted 

from contaminated soil samples (coded A1-A31) into the third fraction of Tessier’s procedure, after 

column standardization [16]. 

 

Praveena et al. [23] applied HCA separately to data on mangrove sediment samples collected at low 

and high tide (see also Part I) [9]. In both cases, two clusters of variables were observed, but with 

different degrees of similarity. In particular, the salinity and electrical conductivity were more 

closely clustered for samples at high tide than at low tide, indicating a stronger contribution of 

seawater during high tide. 

Relić et al. [20] applied HCA to sequential extraction data for river sediments, but they made few 



comments to the dendrogram and mainly discussed the results considering PCA and correlation 

analysis (Part I) [9]. They observed some analogies between the associations of variables in the 

dendrogram and in PCs. 

Meers et al. [21] compared 13 methods of extractions for Cd from soils with different composition 

and contamination levels. The dendrogram obtained by HCA, using the extractants as objects, 

showed that the extractions were divided into five classes, which mainly differed for the 

aggressiveness of the extracting reagents (see also section 2.2.2). 

Alvarenga et al. [25] used HCA only to decide how to cluster data on contaminated soil in a plot of 

PC1 vs. PC2 (see Part I) [9], but we think that this technique, also used alone, gave interesting 

results. The samples unamended with organic residues were differentiated from the amended ones, 

which were clustered according to the effect of the added material on their chemical properties (e.g. 

pH, mobile element content). 

Richter et al. [14] studied element fractionation in airborne particulate matter (PM10). The 

sequential extraction results were processed with HCA. The investigated elements formed three 

clusters: i) As, Cd, Cu, Mn, Pb and Zn, which were extensively extracted into the first two fractions, 

i.e. showed high mobility; ii) Cr, Ti and V, which were mainly present in the third fraction (bound 

to carbonates and oxides); iii) Al, Ba, Ca, Co, Mg, Mo, Ni, which were primarily extracted into the 

fourth fraction (bound to silicates and organic matter) and consequently highly immobile. The 

authors concluded that the presence of high percentages of toxic elements, such as As, Cd and Pb, 

in the most mobile fractions was a cause of concern for the environment and human health.  

Palumbo-Roe et al. [24] studied the bioaccessibilty of As in mine waste-contaminated soils. They 

applied non-hierarchical CA and found that the samples were clustered in four groups with different 

levels of total and bioaccessible As and of other soil properties (see also sections 2.2.2 and 3.2). An 

interesting aspect of this paper is that the results of CA were reported on a map of the site in order 

to show the spatial distribution of the clusters. 

Sârbu et al. [26] applied a different statistical treatment, namely fuzzy clustering analysis, and 



compared the performance of two algorithms, fuzzy c-mean algorithm and the Gufstasson-Kessel 

(GK) algorithm. They processed the sequential extraction results obtained by BCR on two profiles 

of a contaminated soil, and checked whether the sample solutions could be divided according to the 

extraction step. PCA, classical CA and projection pursuit (see section 2.3.4) gave unsatisfactory 

results, whereas fuzzy divisive hierarchical clustering provided an improved classification of the 

samples into each fraction. In particular, the GK algorithm provided better results than the c-mean 

algorithm in classifying the samples according to their characteristics. 

 

2.2. Multiple linear regression 

2.2.1. Principles 

In multiple linear regression (MLR), a relationship between several independent variables x1-xn 

(predictors) and a dependent variable y (response) is expressed with a mathematical function [1-3]. 

In many cases, the relationship is linear, or can be linearized, and has the form 

y = b0 + b1x1 + b2x2 +... + bnxn                                                                                                        (5) 

where b0...bn are the regression parameters. They can be estimated with least squares regression or 

(in case of non-normal error distribution) with robust regression methods. 

Equations like (5) represent a model of the system under study, which can be used to investigate 

which variables influence its response and at what extent, and/or to predict the value of one variable 

when the others are known. The model is usually validated by applying it to independent 

experimental data (i.e. data not used to develop the model) and comparing the predicted value of the 

variable of interest with the measured one; in the absence of such data, cross-validation procedures 

can be adopted. 

As observed for HCA, SPSS was the software package most extensively used for MLR calculations 

in the cited papers (Table 2). One study adopted Statgraphic Plus. 

 

2.2.2. Applications 

MLR considers experimental results from a different point of view with respect to pattern 



recognition techniques, since it is focused on relationships between variables and not on similarities 

or differences among objects. The aim of MLR studies is often to predict one property from the 

known values of other properties, which are possibly more easily measured. As the examples 

reported below show, several applications of this technique in conjunction with extraction assays 

regard the relationships between extractable element content in soil and its uptake by plants [27-29]. 

MLR permits to take into account the effects of soil properties, in addition to the element 

concentration released with a suitable extractant (see Part I, section 2.1), on the amount of such 

element assimilated by plants. The models so obtained can be helpful for two main purposes: i) to 

predict the risks of transfer of pollutants from soil into the food chain, and consequently to decide 

on the proper land use; ii) to estimate the amount of micronutrients available for crops, and detect 

possible deficiencies. Despite the agreement between predicted and observed behaviour found by 

numerous researchers in their studies, there is not yet a generally accepted model for the estimation 

of element uptake by plants. Another less common application of MLR to biotic matrices is the 

study of the effect of soil properties and element content on microorganisms [30]. MLR also finds 

application to identify the level of contamination of a soil, in particular with the aim of predicting 

the amount of mobile elements from total concentrations and other properties which influence its 

release [31,21]. In addition, MLR has been used to investigate the parameters affecting some 

properties of the investigated matrix or of a specific element; for instance, much attention was 

devoted to the effect of soil properties on As adsorption and bioaccessibility [24,32-34] (see part I, 

section 2.2).  

Krishnamurti et al. [27] compared seven extractants to test their suitability for predicting the plant-

available Cd concentration. They grew durum wheat in greenhouse experiments and calculated the 

correlation between the concentration in the stem and leaves and that extracted from the soil with 

the different reagents. The amount extracted with NH4Cl gave the highest correlation coefficients, 

hence the authors chose the results obtained with this reagent as a starting point to develop a 

multivariate model to predict Cd uptake in plants, taking into account some soil variables, such as 



free Fe, pH, organic carbon and clay content. They observed a good agreement between actual and 

predicted Cd concentrations in plant leaves. 

Tian et al. [28] studied the relationships between element content in the roots and unpolished grains 

of field-grown rice and the contents in rhizosphere soil measured in leachates obtained by single 

extraction, in soil solution and by diffusive gradients in thin films (DGT). Simple bivariate linear 

regression analyses between concentrations in plants and those leached from soil with each 

treatment showed that DGT gave better correlation coefficients than the other techniques. The 

authors used PCA only as a means of reducing multidimensional soil properties to lower-dimension 

parameters. They extracted two factors and included them in models having the concentrations of 

Cu or Pb in roots as responses and the element concentrations in soil and PCs as predictors. 

Correlation coefficients for models involving concentrations in soil solution and in single extracts 

improved in comparison to bivariate equations, because MLR took into account the effect of soil 

properties on element uptake by roots; on the contrary, there was only a slight improvement using 

DGT data. The authors concluded that DGT takes all the important soil factors into account, and 

that it gives a better prediction of element availability to rice than the other techniques. 

Alvarez et al. [29] used MLR to compare the suitability of extraction with EDTA and of two 

fractionation procedures for predicting the phytoavailability of Mn and Zn for barley in agricultural 

alkaline soils. The phytoavailable portion of the elements was assumed to be represented by their 

concentrations in the stem and leaves of barley, which was the dependent variable in the models. 

The predictability improved when some soil properties (clays for Mn and CaCO3 for Zn), the total 

element content, or both, were included as variables. The authors concluded that the sequential 

extraction results were not significantly better than EDTA extractions plus soil properties for the 

estimation of phytoavailability. 

Illmer et al. [30] investigated the importance of Al availability for micro-organisms in forest soils 

(see also Part I) [9]. First of all, they studied the relationship between organic matter and other soil 

properties by MLR and obtained a model including moisture content, pH, concentration of 



extractable Ca, stable aggregates and electrical conductivity, whereas other parameters, including 

concentration of KCl-extractable Al, had no significant effect on organic matter. However, 

significant correlations between Al and biotic parameters (e.g. microbial biomass and ATP 

concentration) were found for acidic soils. MLR was again applied, and each biotic parameter was 

put against all abiotic parameters investigated. The authors found that the content of organic matter, 

the pH, the electrical conductivity and the aggregate stability occurred in many of the models and 

had high positive or negative influence on biotic parameters, but the concentration of Al was the 

only abiotic factor present in every model, indicating its importance for abundance and activities of 

microorganisms in acidic soils. 

Meers. et al. [31] sampled the soil solution from clean and contaminated soils and calculated the 

bivariate correlation coefficients between the main soil properties, total Zn content, Zn in the soil 

solution, their respective log-transformed counterparts and the relative solubility of Zn, calculated 

as the ratio of its concentrations in the soil solution and the total content in soil. They found that soil 

pH and soil texture had a strong influence on the level of Zn in the soil solution. Subsequently the 

authors reported a series of multivariate equations, expressing soil solution levels of Zn as a 

function of main soil properties and total Zn concentration in the soil. They compared the predicted 

and observed levels of zinc in the soil solution with the aid of scatter plots and individuated the 

most satisfactory equations. They also treated their data with multivariate regression formula 

derived from the literature. The authors pointed out that the current Flemish soil legislation links the 

relevant threshold values to clay and organic matter content, but not to soil pH, whereas the results 

of their research suggest that this parameter should be taken into account in site specific 

environmental risk assessment. Finally, two model speciation programmes, namely Visual Minteq 

and WHAM VI, were used to assess free ion activity based on soil solution composition: the results 

of the two models were in disagreement, suggesting the need for further investigation in the 

parametric background of the models. 

In a later study, Meers et al. [21] compared Cd extractability from soils with 13 extracting reagents. 



They constructed equations expressing extractable Cd contents as a function of main soil properties 

and total Cd concentrations. The variables required to describe Cd extractability with aggressive 

and mild reagents were different, confirming the clustering identified with HCA (see section 2.1.2). 

The equations were validated using literature datasets: reasonably good fits between predicted and 

observed concentrations were found. The authors warned that multiple regression models must be 

used with caution, and no single universal function will suffice to express Cd extractability for all 

soils. They suggested that these models can play a valuable role for a preliminary evaluation of soils 

potentially contaminated with Cd based on total element content and main soil properties, without 

the need of performing single extractions, thus reducing analysis costs and times. 

Juhasz et al. [32] determined As bioaccessibility in soils contaminated by different sources of this 

element. They developed regression models aimed to predict bioaccessibility as a function of soil 

properties. The predictors that best described this characteristic in railway corridor, dip site and 

mine site soils were total As, total Fe and dithionite-citrate extractable Fe. A poor fit was found for 

soils containing geogenic As sources (gossans). The authors treated the experimental results with a 

model reported in a literature study and tested their own model with data reported in such study: 

they found that their own model had better prediction capacity than the literature model. They 

concluded that As bioaccessibility is controlled by a number of variables (soil properties, 

speciation, mineralogy, duration of contaminant–soil contact) which may be difficult to accurately 

model if only a few soil parameters are considered. 

Palumbo-Roe et al. [24] developed two models for the prediction of As bioaccessibility in the two 

soil clusters previously identified with CA (see section 2.1.2). They found different explanatory 

variables for the two groups of soils, suggesting the binding of arsenic to different phases. Such 

phases were identified from the results of the sequential extraction data treatment (see section 3.2) 

as Fe oxyhydroxides adsorbing or coprecipitating As and sulphide, probably in the form of 

arsenopyrite. The presence of different phases can be the cause of the difference in bioaccessibility 

of As observed in the two groups of soils. 



Yang et al. [33] tested the bioaccessibility of As(V) added to 36 well-characterized soils with a 

wide range of soil properties. They used MLR to identify the properties controlling As(V) 

adsorption (defined as the fraction of As(V) adsorbed to the soil over 48 h contact period), 

bioaccessibility and sequestration (the relative change in bioaccessibility over 6 months). Fe oxide 

content and pH were the most important soil properties governing As(V) adsorption and 

sequestration respectively, whereas both these properties and, to a lesser extent, total inorganic 

carbon (TIC) significantly influenced the steady-state bioaccessibility of As measured after six 

months. They validated the models on five independent samples and applied them to predict the in 

vivo bioavailability of As, previously measured in swine dosing trials, in nine contaminated soils. 

They found a good agreement between the experimental and predicted values and concluded that 

the models can be used to estimate As(V) bioaccessibility and bioavailability on the basis of soil 

properties. 

In a subsequent paper [34] the authors made a similar study on soils spiked with As(III). Several 

soil properties significantly influenced the adsorption and sequestration of As(III), indicating the 

complexity of the behaviour of As(III) in comparison to As(V), which was influenced by few 

variables. The bioaccessibility of As(III)-spiked soils was initially higher than that of As(V)-spiked 

soils, but it decreased with ageing to levels closer to those of the As(V)-spiked soils. Such a 

decrease was accompanied by the heterogeneous oxidation of As(III) to As(V). One of the models 

previously developed [33] was used to estimate the bioaccessibility of As in the As(III)-spiked soils 

and the in vivo bioavailability of As to juvenile swine with reasonable errors, but it failed in 

predicting the bioavailability measured for monkeys in a different set of samples. The authors 

concluded that the model can provide an initial estimate of As bioavailability in soil, which can be 

used to screen and prioritize As-contaminated sites and justify expensive in vivo studies. In 

addition, such estimate is supposed to be valid over the long-term, since it is based on major soil 

properties which should be stable over a relatively long period of time. 

 



2.3. Other techniques 

2.3.1. Linear discriminant analysis 

Linear discriminant analysis (LDA) is a supervised pattern recognition technique, in which objects 

are grouped in classes established by the researcher a priori [1-3]. It is based on the calculation of 

new variables, called discriminant functions, obtained from linear combinations of the original 

variables. Such linear combinations are derived so as to best indicate the differences between the 

classes in contrast with the variance within the classes. LDA has two main applications: i) the 

evaluation of the discriminating power of variables with regard to the separation of the groups; ii) 

the assignment of each object to one of the groups. SPSS was used for LDA calculations in one of 

the papers cited below (Table 2), whereas the software used in the other paper was not reported. 

LDA has been scarcely applied to extraction results, but we think it deserved more attention, 

because it is relatively easy to use and can aid in distinguishing among samples with different levels 

of contamination or different element availability. 

Katsaounos et al. [12] applied LDA to classify river sediments (see also Part I and section 2.1.2) [9] 

into three classes (clean: < 0.6 mg g
-1

 P; marginally polluted: 0.6 mg g
-1

 P; and polluted: > 0.6 mg g
-

1
 P) from the results of P fractionation and speciation. The variables identified as redundant for 

PCA were not considered in LDA, in order to reduce uncertainty. 

Dalurzo et al. [35] used LDA to differentiate Alfisols, Ultisols and Oxisols soils (see also Part I). 

The variables with the highest discriminating power were exchangeable Al and pH, but also 

different fractions of P aided in the discrimination among the different kinds of soils. 

 

2.3.2. Artificial neural network 

Artificial neural network (ANN) techniques process data by simulating the behaviour of a 

biological neuron. A network consists of several units, the neurons, interconnected according to 

suitable designs; neurons are arranged in layers, defined as “input layers”, “output layers” and 

intermediate “hidden layers”. A neuron receives the input signals (i.e. data) from other neurons, 



aggregates them with the use of weights, applies a transfer function to transform them and passes 

them as the output signal [1,3]. The main applications of ANN in chemometrics are unsupervised 

pattern recognition (input vectors, representing the objects, are grouped according to their features), 

supervised patter recognition (objects are assigned to predefined classes depending on the value of 

the output neurons), modelling (the weights are the parameters of the model). To our knowledge, 

few applications of neural network techniques to extraction results exist. Their application is 

actually less simple than PCA and HCA and, at least in the two examples reported hereafter, the 

visualization of the experimental results is less straightforward. The two cited studies used Statistica 

for data processing but (as pointed out in the Introduction) other software packages can be adopted. 

Boszke and Astel [36] used self-organizing map (SOM), a neural network-based technique, to 

classify floodplain soil samples, potentially affected by urban pollution sources, according to the 

level of contamination with Hg. The samples were divided into two clusters, corresponding to 

"heavily polluted" and "moderately polluted" samples. The authors concluded that SOM may be 

helpful in estimation of the contamination levels in samples and for the identification of "site-

specific" polluted samples. They underlined the finding that different patterns of contributions of 

mobile and immobile Hg species were present in moderately polluted and heavily polluted samples, 

the former having higher percentages of mobile element than the latter. They estimated that the risk 

of remobilization of Hg from the investigated samples was relatively low, but the possibility of 

leaching of organomercury and acid-soluble species in case of high water levels or heavy floods 

could not be excluded. 

Buszewski and Kowalkoski [37] used columns packed with artificially polluted soil samples and 

leached them with solutions of nitric acid (pH 2.5 – 5) simulating acid rain. They determined 

element concentrations and other parameters in subsequent aliquots of the eluate. They discussed 

the trends of element release during column leaching and the correlations between element 

concentrations and the main soil properties. ANN was used to model element transport. The input 

parameters were the initial element concentrations in the contamination solution, redox potential 



and pH in the artificial acid rain, soil properties and total and inorganic carbon content in the eluate; 

the output parameters were the element concentrations in the eluate. The agreement between 

calculated and experimental elution curves was good, with some exceptions for Cd due to the small 

number of available samples. The authors concluded that ANN could be the future tool for 

modelling transport of inorganic substances in soil profiles; however, they pointed out that their 

model should be further refined. 

In our opinion, the potential of ANN in conjunction with extraction assays has not yet been fully 

exploited and this technique can provide useful information on the process under study. 

 

2.3.3. Geostatistics 

Geostatistic techniques are used to process spatially or temporally correlated data [2,38]. It was 

developed in the field of mining, but it has found wide application in the assessment of soil 

pollution and, in general, for the investigation of soil properties. A geostatistic analysis typically 

consists of the following steps: i) the development of a model describing the spatial relationships 

among sampling points based on a semivariogram, i.e. a plot of semivariance as a function of 

distance between couples of samples; ii) the interpolation of the data, based on the semivariogram, 

using the so-called kriging procedure; iii) the mapping of the results, usually with contour maps, 

representing the estimates of the values in the investigated areas and the errors of the estimates. 

Geostatistics is extensively used for processing total concentrations, but its application to 

extractable element contents is less common. Software packages for geostatistics are usually 

different from those used for the other techniques considered in this review. Table 2 shows that the 

product most frequently adopted in the cited papers is GS
+
 alone or coupled to other software 

packages (like ArcGIS or GIS ArcView) for mapping. Other studies employed Surfer or free 

packages, such as R, Variowin, Vesper, GSLIB, GSTAT, WLSFIT, KRIGE and COKRI, a Matlab 

program. In one case computer programs developed by another researcher (S.R. Vieria, from 

Instituto Agronômico de Campinas, Campinas, Brazil) was used. 



Many authors investigated the spatial variability of extractable K, P and/or N and main properties in 

agricultural or forest soils. The aims of such studies were: i) the implementation of site-specific 

agricultural management practices in order to lower costs, increase crop yields and/or improve 

sustainable agricultural land use [39-44]; ii) the identification of the characteristics (e.g. parent 

material, slope gradient, land use, presence of vegetation, fertilizer input) most extensively affecting 

soil composition [45-49]; iii) the investigation of other phenomena, such as: the short term effects 

of wildfire [50]; the difference in spatial patterns before and after poultry litter application [51]; the 

relationship between spatial dependence in oak leaves and in soil, which can have important 

consequences for herbivores and nutrient cycling in the ecosystem [52]; the soil properties at a 

forest-prairie boundary and the effect of woody plant expansion on it [53]; the effect of soil 

composition on rice growth and nutrient content [42]; the sorption of P from waters in riparian 

wetlands [54]; the effect of pH variability on element fractionation [55]. 

Another application of geostatistics is the evaluation of the spatial variability of extractable 

concentrations of some elements, such as Cd, Cu, Pb and Zn, from the point of view of their role as 

micronutrients (with the exception of Cd and Pb) or as contaminants. Several topics were 

addressed: i) the sources of the elements [41] and the properties influencing their concentrations 

[56-61]; ii) the seasonal variations [62]; iii) the identification of areas with different contamination 

levels and consequently different risks for plant growth or human health [47,57,63-65]; iv) the 

effect of different data processing procedures [66,67]; v) the relationship between Cd content in 

durum wheat grain and in soil [68]; vi) the effect of gypsum addition and water management 

(flooded vs. non-flooded) on the yield of marsh vegetation [69]; vii) the identification of deficiency 

of micronutrients [56]. 

As Sigua and Hudnall [61] pointed out, the knowledge of the spatial pattern of soil characteristics is 

useful to select the proper land use, to apply the necessary amount of amendments or fertilizers and 

in general to assist the activities of environmental scientists, water resource planners, regulators, 

decision makers, engineers, soil scientists, and resource managers. 



Geostatistics has been primarily applied to soils, but it can also be used for the investigation of 

sediments. Van Griethuysen et al. [69] focused their attention on the immobilizing effect of acid 

volatile sulphides (AVS) on elements, and estimated availability in lake sediments as the difference 

between simultaneously extracted metals (SEM, defined as the sum of the molar concentrations of 

all metals extracted during the acid volatilization step and with solubility products lower than those 

of MnS and FeS) and AVS. The authors examined the spatial variations of total element 

concentrations and main properties in comparison to spatial variations in redox conditions and 

available concentrations. No clear spatial dependence was detected for main properties, total and 

SEM concentrations, whereas AVS concentrations showed a strong spatial dependence, due to 

differences in lake depth, total sulphur pools and redox potential: this behaviour caused differences 

in availability within the lake. The authors remarked that alternative sediment quality criteria like 

SEM - AVS and (normalized) total concentrations may yield different priority settings for 

contaminated sites, due to differences in spatial variability of the underlying variables. The results 

were also treated by PCA, but no meaningful findings were obtained for SEM. 

Castrignanò et al. [70] used factorial kriging analysis (FKA), a combination of geostatistics and 

PCA, to explore the characteristics of agricultural soils. This technique allows to study the 

behaviour and relationships among variables at different spatial scales. The strong correlation 

among N, exchangeable Na and cation exchange capacity (CEC) at plot-size level suggested that 

the short-range variation mainly derived from the spreading of fertilizers; at long spatial scale, clay 

was correlated with Na and CEC, supporting the hypothesis that the long-range variation was 

related to soil structure. The authors concluded that this kind of soil characterization is useful for 

farmers, since it enables them to follow crop management practices fitted with the real soil 

situation. Castrignanò et al. [71] applied FKA also to estimate the probability of occurrence of 

Tuber melanosporum, an ectomycorrhizal fungus which produces black truffles, in relation to some 

soil properties. In particular they suggested that a soft and well-aerated soil environment might be 

an essential condition for the growth and production of the fungus. 



We think that the application of geostatistics to single and sequential extraction results should 

increase, because it can give useful information for risk assessment and land management. This 

technique requires a substantial expertise in statistics and soil science, especially in the choice of the 

most suitable model for the semivariogram. 

 

2.3.4. Miscellaneous techniques 

Snape et al. [72] used a commercially available software mainly designed for the treatment of 

environmental/ecological data (PRIMER), and applied a series of techniques aimed at investigating 

similarities and dissimilarities among data, namely non-metric multidimensional scaling (nMDS), 

analysis of similarities (ANOSIM), similarity percentages (SIMPER), relative dispersion and 

correlations between similarity matrices (RELATE). These techniques, which are not so common in 

chemometrics, were used to examine differences among marine sediments collected in different 

locations and to compare 0.5 and 4 h HCl-extraction data. The authors concluded that the 4 h 

extraction provided better definition of the low to moderately contaminated locations by picking up 

small differences in anthropogenic element concentrations. 

In a later paper of the same research group, Stark et al. [73] described a survey on the small-scale 

spatial distribution of extractable element concentrations and of the abundance of soft-sediment 

communities in marine sediments collected along three transects (A, B and C) in the vicinity of an 

abandoned waste dump and a fourth transect (D) at increased distance from the dump. The values of 

the investigated parameters in transects A, B and C showed a high variability; nevertheless, 

conventional and non parametric ANOVA, nMDS and ANOSIM revealed the presence of a 

gradient of contaminant concentrations and of some infaunal taxa along the transects. Sediments in 

transect D were distinctly different from the ones in the other three transects for sediment 

communities, grain size and composition. The authors remarked that the spatial heterogeneity 

observed in their study indicates the need for careful sampling design and adequate spatial 

replications. They found significant correlations between the presence of contaminants and the 



distribution and composition of soft-sediment communities. A procedure (BIOENV) available in 

the commercial software was used to identify the combinations of environmental variables giving 

highest correlations with biotic data with: the combinations of Cd, Cu, Sn, Pb concentrations and 

grain size were the variables that best matched the community patterns in transects A, B and C; a 

larger number of variables were involved when all four transects were examined together. The 

authors stated that the results of their study, and of other studies in the same area, form a baseline 

for the assessment of recovery of communities after remediation of the dump. 

González et al. [74] obtained soil solution by displacement with water from columns packed with 

calcareous soils. They examined the correlations between the composition of the soil solution 

(elements content and other parameters) and of the soil samples (elements batch-extracted with 

ammonium acetate and main soil properties). For instance, the significant negative correlation 

between dissolved and extractable Ca was interpreted as the tendency of this element to be strongly 

retained by the exchange complex, particularly in calcareous soils in semi-arid and arid regions. 

Furthermore, the authors applied redundancy analysis (RDA, also called reduced rank regression, 

RRR, or PCA on instrumental variables) with the aid of CANOCO, a software package mainly used 

for ecological applications. RDA is an extension of multiple regression, used in the case of more 

than one response variables, therefore it is aimed at examining the relationships between a set of 

explanatory (independent) variables, the soil properties in this case, and a response data set, i.e. the 

variables measured in the soil solution in the present study; this goal is reached by calculating linear 

combinations of the independent variables which explain most of the total variation contained in the 

dependent variables [1]. In RDA the matrix of dependent variables Y is approximated by the 

regression on a limited set of combinations of the matrix of independent variables X. Since each Y-

variable is fitted by a linear combination of X-components, and such components are linear 

combinations of independent variables, then Y-variables are expressed by a linear combination of 

the X-variables. In the study by González et al., the results of RDA showed that the characteristics 

of the soil solution were primarily determined by the mineralogical nature of the soil and by the 



variables related with the organic fraction of the soil. 

Rhoton et al. [75] analyzed suspended sediments from a semiarid watershed and built a multivariate 

mixing model to identify the relative contribution of six subwatersheds (SWs) to the suspended 

sediment load leaving the watershed. They used the following procedure: they inserted the average 

values of sediment parameters into sediment properties vectors dj, one for each subwatershed; they 

treated the data with the aim of finding the vector (x) containing the proportion of sediment from 

each subwatershed that minimizes the function (Cx-d)
T
 (Cx-d) = 0, where C is the matrix made up 

of the sediment property vectors of the contributing SWs, d is the sediment property vector of the 

outlet watershed and T stands for “transpose”. Since the vectors contain mean values, a Monte 

Carlo routine was added to the mixing model to take into account the distribution of the data and 

obtain an estimate of the standard deviation of the individual SW contributions. The authors found 

that the greatest amount of the sediments originated in three SWs, which were characterized by the 

lowest soil aggregation index, and consequently by the highest erodibility. The goodness of fit of 

the mixing model was evaluated by comparing the experimental values of sediment properties in the 

outlet subwatershed with the values predicted from the relative contributions of the six SWs: a very 

good fit was observed for most properties. The authors also determined the composition of the soils 

collected from the SWs (these data were not used in the multivariate model) and discussed the 

relationships between soil and sediment properties. They concluded that the ability to identify 

primary sediment sources in watersheds contributes to a more efficient design of management 

practices aimed at resolving excessive runoff and erosion problems. 

In projection pursuit techniques high-dimension data are projected to low dimensions [8]. Among 

the possible projections, the one in which the data have the highest deviation from the normal 

distribution is considered to have the highest “interestingness” index and to reveal more information 

than the other projections. Kowalik and Einax [8] showed that projection pursuit was more efficient 

than PCA in separating data on mobile and scarcely reactive fractions extracted from floodplain 

sediment depth profiles. 



3. Use of chemometrics for the calculation of element fractionation 

3.1. Principles 

In 1997 Cave and Wragg [76] proposed the use of a single, non-specific extractant, namely nitric 

acid, at different concentrations, soil/solution ratios and extraction times. Their approach started 

from the assumption that the soil is made up of a number of physico-chemical components, each 

having its own chemical composition (e.g., carbonate component, iron oxide component). By 

leaching the sample, under certain conditions, a proportion of these components is released into 

solution. The concentration of an element in each extracting solution can be described as a linear 

sum of the amounts leached from each physico-chemical source present. The authors applied a 

chemometric mixture resolution procedure to the data (i.e. element concentrations in the leachate 

solutions) to determine the number and composition of physico-chemical components in the soil. 

The chemometric procedure was refined in further studies and was later called “Chemometric 

Identification of Substrates and Element Distributions” (CISED). We will briefly describe it by 

referring to the procedure reported in a paper written in 2004 [77], in which the Matlab 

programming language was used. CISED is based on the equation: 

A = B C                                                                                                                                           (6) 

where A is a k×n leachate concentrations matrix, in which each row contains the amounts of the n 

elements present in one of the k extracts, B is a k×c matrix, in which each row contains the 

proportions of the c components present in one of the k extracts, C is the c×n matrix, in which each 

row contains the concentrations of the n elements present in one of the c components. Matrix A is 

obtained experimentally, and the objective of the treatment is to find matrices B and C. The 

following steps are carried out: 

- the data in matrix A are scaled and treated with PCA, followed by Varimax rotation, in order to 

identify the number of components in the samples, i.e. the value of c; 

- the scores are scaled and used as a first approximation of the proportion of each component 

leached in each extract; 



- a multiple linear regression (see section 2.2) is carried out with the sum of each row in the scaled 

leachate concentration matrix (i.e. the total solids present in each extract) as the dependent variable 

and the scaled score matrix as the independent variable. The columns of the scaled score matrix are 

then multiplied by their corresponding MLR coefficients. This matrix, with its rows scaled to 1, is 

used as the first approximation of B; 

- a first approximation of C is calculated from 

C = A B
T
 [B

T
 B]

-1 
                                                                                                                            (7) 

where B
T
 is the transpose of B; 

- negative values are corrected to 0 and a second approximation of B is obtained from 

B = [C
T
 C]

-1
 C

T
 A                                                                                                                            (8) 

the negative values in B are corrected to 0 and the rows are scaled to unity; 

- successive values of B and C are iteratively computed until no significant correction is performed. 

This mixture resolution procedure yields two kinds of results: the concentrations of the elements 

present in each component and the percentage of each component extracted into the various 

leachates. Such results are interpreted taking into account the properties of the elements and of the 

investigated matrix, and the geochemical nature of each component is hypothesized. 

 

3.2. Applications 

The validity of the procedure was tested with a synthetic data set: the correct number of components 

was identified, and a good agreement between the expected and calculated element concentrations 

in such components was obtained [77]. The mixture resolution procedure was applied to: i) a 

Standard Reference Material by the National Institute of Standard and Technology, NIST SRM 

2710 (a highly contaminated soil from pasture land along Silver Bow Creek in the Butte, Montana, 

area), for which the correlation of the components with existing data on Tessier’s fractionation were 

evaluated [76-78]; ii) NIST SRM 2711 (a moderately contaminated agricultural soil collected in the 

till layer of a wheat field) and river sediment samples prior to and after addition of humic acids, to 



study the effect of the latter on element distribution [79]; iii) mine-impacted soils and soils naturally 

enriched in As, to study the relationships between bioaccessible As and the soil physico-chemical 

phases [24,80,81] (see also sections 2.1.2 and 2.2.2); iv) river sediments, to study element 

distribution and sediment formation processes [82]. The extracting reagent was nitric acid at 

different concentrations in all studies, with one exception, in which aqua regia or aqua regia and 

hydrogen peroxide were employed [80]. 

Two examples of the information obtained with CISED will be given here. Nine components were 

identified in NIST SRM 2711 in one study [77], in which a mineralogical analysis was also carried 

out. One component was extracted into water and into 0.01 – 0.05 M HNO3; it was made up mainly 

of Ca (42%), Mn (20%), Zn (17%), K and Mg (> 6%) and was identified as the exchangeable 

fraction. The possibility that it could be connected to calcite, due to the high concentration of Ca, 

was ruled out because of its solubility in water and the absence of calcite observed in the 

mineralogical analysis. Two other components, characterized by high percentages of Fe, were 

extracted in the ranges 0.1 – 1 M and 0.05 – 5 M HNO3, respectively; they were hypothesized to 

derive from the partial dissolution of Fe oxide/hydroxide materials and to reflect the presence of 

amorphous and crystalline forms, which are dissolved at different rates by each extracting reagent. 

In the case of river sediments treated with humic acids [79], ten components were identified. One of 

these components was extracted in the range 0.1 -1 M HNO3 and was made up of Al (32%), Fe 

(23%), Si (16%), Na (14%) and smaller amounts of Mg, Zn, Cu; it was not influenced by the 

presence of humic acids, and it was interpreted as a clay component, such as chlorite. Three Fe-

based components were identified. One of them was extracted into 0.05 – 0.5 M HNO3 and was 

attributed to amorphous oxides; another one was soluble in 0.5 – 5 M HNO3, and it was assigned as 

the crystalline oxide phase. Their extractability increased with increasing humic acid amount, 

probably due to the complexation of Fe. The third component was extracted into 5 M HNO3 and it 

was present also in the original humic acid, which was subjected to the same extraction procedure; 

it was identified as the Fe humic complex derived from the original humic acid material. The small 



amount of this component found in the sediment as such was interpreted as Fe-humic compound 

naturally present in the sample. 

In our opinion, the CISED procedure is powerful, but it requires expertise both in chemometrics and 

in geochemistry, for the assignment of the components to the correct phases, so that its application 

could require the cooperation between researchers with different competencies. Supplementary 

data, like knowledge on soil mineralogy or the results of other sequential extraction techniques, are 

helpful for the correct interpretation of the results. 

 

4. Experimental design 

4.1. Principles 

The term “experimental design” comprises a series of procedures used to plan experiments, with 

several aims: i) to understand which variables (“factors”) influence the performance of the 

investigated system (“response”); ii) to model the effects of such factors, also taking into account 

their interactions; iii) to optimize the experimental conditions, i.e. find the values (“levels”) of the 

factors which provide the optimum performance of the system; iv) to reach these goals with a 

limited number of experiments, in comparison to univariate approaches, in order to save time and 

reduce costs [1-3]. These purposes are achieved by performing a series of experiments in which 

several factors are varied at the same time according to predefined schemes. We can distinguish 

between sequential and simultaneous approaches. The former are used for optimization purposes 

and not for modelling, and are based on carrying out a few experiments at a time: according to the 

results obtained the next experiments are planned. Simultaneous strategies are suitable for both 

modelling and optimization, and require the execution of a series of experiments following a pre-

arranged plan. A main class of simultaneous designs is the full two-level factorial design, in which 

two levels of each examined factor are established and experiments are carried out at all possible 

combinations of such levels; for k factors, 2
k
 experiments are required. When several factors must 

be examined, which would call for a very high number of experiments (e.g. for six factors: 2
6
 = 64), 



fractional factorial designs are used, in which only a reduced number (e.g. 2
k-1

 or 2
k-2

) of such 

experiments, chosen with suitable criteria, is carried out. Full and fractional two-level factorial 

designs are adopted to identify the factors with significant effect on the response, to estimate the 

extent of such effect and their interactions and to obtain first-order models including binary 

interactions. Another class of simultaneous designs includes multi-level designs, in which more 

than two levels of each factor are investigated and a second-order (quadratic) model is usually 

obtained, consisting of a constant term, first and second order terms and interactions between 

factors (see for instance equation 6 in section 4.2). Higher order models are seldom developed. The 

coefficients are calculated by multiple regression and can be used to plot the response as a function 

of the values of the factors, yielding response surfaces. An example of multi-level design is the 

central composite design, which arises from the combination of a two-level factorial design, a star 

design plus a centre point. The software packages Statistica and Statgraphics were used in the 

papers cited in section 4.2; as remarked in the Introduction, other commercial or free products can 

be used to set up an experimental design. 

 

4.2. Applications 

Experimental design has been applied to single and sequential extraction assays much less 

extensively than pattern recognition or modelling techniques. Four studies will be reported 

hereafter. Santamaria-Fernandez et al. [78] used experimental design to optimize the conditions for 

the non-specific extraction method described in section 3. In a first step, they adopted a fractional 

factorial design and considered several factors potentially influencing the extraction efficiency: 

centrifugation rate, centrifugation time, ratio between sample weight and extractant volume, number 

of extraction steps, acid type and acid concentration. They established maximum and minimum 

values for all parameters with the exception of acid type (aqua regia or nitric acid) and performed 

sixteen experiments, which yielded 224 solutions. The application of ANOVA allowed them to 

identify the significant and non-significant factors. After fixing some conditions (nitric acid, 



number of extractions) they made a second set of experiments in which they studied the effects of 

centrifugation time, centrifugation rate and ratio between extractant volume and sample weight with 

a central composite design. They performed experiments in 16 different conditions and draw 

response surfaces reporting the values of two parameters against the amount of each extracted 

element. They identified the optimum conditions for every element and finally adopted compromise 

conditions which enabled to obtain the maximum recovery for most of the elements. 

In other studies experimental design was used for the characterization of extraction procedures, by 

studying the effects of the variation of experimental conditions on element leachability. Such 

information enables to evaluate the robustness of an extraction procedure and the comparability of 

data obtained in different laboratories with different conditions (e.g. temperature, stirring rate). 

Cave and Wragg [76] studied the effect of operating conditions on the dissolution of soil 

components (see section 3) into nitric acid. They applied a central composite experimental design 

with five levels for each variable (time, T; acid concentration, A; sample to extractant ratio, S) and 

carried out the experiments in duplicate. They treated the data by multiple linear regression and 

modelled the total extracted solids in each component of the soil (identified with the procedure 

described in section 3) for each sample as a function of the three main effects (A, T, S), their 

interactions (AT, AS and TS) and the quadratic effects (A
2
, T

2
, S

2
). The form of the model was 

Ec = k + x1A + x2T + x3S + x4AT + x5AS + x6TS + x7A
2
 +x8T

2
 + x9S

2
                                                (9) 

where Ec is the total extracted solids for component c, k is a constant term, and x1·-·x9 the linear 

regression coefficients. 

They also calculated a regression coefficient R
2
 for each component, which expresses a measure of 

how well the model fits the data (R
2
 = 1 is a perfect fit). Initially they considered all the effects, 

their interactions and the quadratic effects. Then they removed the insignificant effects one by one. 

They also checked the significance of the effects by ANOVA and reported the corresponding table. 

Finally, they constructed surface plots of the two most significant factors against the total extracted 

solids for each component, and discussed the effects of such factors on element extractability. For 



instance, the dissolution of one component in 0.3 – 0.7 M nitric acid, with highest concentrations 

extracted at very short reaction times, was interpreted as reflecting a component quickly dissolved 

at a reasonable acid concentration, whereas the decrease of the extraction yield with time suggested 

a readsorption process. This component, which was mainly made up of Pb, Cu, Zn and Mn, was 

attributed to very fine particulate or clayey material. 

Boonjob et al. [83] critically compared and evaluated two automated flow-through fractionation 

methods, namely sequential injection microcolumn extraction (SI-MCE) and sequential injection 

stirred-flow chamber extraction (SI-SFCE). The main difference between the methods is the sample 

housing, i.e. microcolumn or stirred flow-chamber. Element extractability in a standard reference 

material (NIST 1633b, coal fly ash) was investigated with the BCR scheme. The authors used a 

two-level full-factorial design to investigate the effect of experimental parameters, namely sample 

weight and extraction flow rate, on element leachability for the two methods. The response data was 

the sum of the extractable amounts of a given element in the three BCR steps. The results were 

reported as Pareto charts [1], i.e. histograms in which the length of each bar is proportional to the 

absolute value of each estimated effect (i.e. sample weight and extractant flow rate) and interaction 

between them, on element extractability. The results showed that the two parameters and their 

interactions had no significant influence on total extractability (with a few exceptions) as a 

consequence of the multistage nature of dynamic fractionation. The authors concluded that SI-MCE 

and SI-SFCE are not operationally defined procedures: therefore the extraction conditions can be 

modified without statistically significant changes on percentage leachability, provided that 

exhaustive extraction is ensured and appropriate sample containers are used. 

In a further paper from the same research group, Rosende et al. [84] adopted a two-level full 

factorial design to study the effects of extractant flow rate, sample weight and sample fluidization 

(the latter is a qualitative factor, i.e. the presence or absence of fluidization were considered) on the 

performance of an automated flow-through extraction system equipped with a column of large 

volume capacity. Such column was devised to overcome a major drawback of most dynamic 



extraction procedures, i.e. the small sample amount involved, which does not ensure 

representativeness in case of heterogeneous matrices; the extractant flows upward through the 

column, and the drag force it exerts on the sample particles matches the apparent weight of the 

particle bed: this assembly ensures sample fluidization, i.e. a homogeneous suspension of the bulk 

sample. The fluidized-bed column method was tested by applying the Toxicity Characteristic 

Leaching Procedure (TCLP) to highly inhomogeneous municipal solid waste incineration (MSWI) 

bottom ashes [9,85]. The results were represented with Pareto charts and the significance of factors’ 

influence and their second-order interactions on the analytical response for each element was 

evaluated by ANOVA and by examining the coefficients of first-order regression equations of the 

full factorial design: high values of the coefficients indicated a highly significant effect of the 

corresponding factor on the leachability of an element and vice versa. Sample fluidization had the 

strongest (positive) effect on the extraction efficiency, followed by sample amount; extractant flow 

rate was significant only for Cu and Pb. The interactions between parameters were statistically 

significant for several elements, showing that a one-at-a-time approach for investigation of factor 

effects would have been unsuitable. The authors concluded that sample fluidization was imperative 

for proper performance of the extraction system. Finally, the macrocolumn fluidized-bed apparatus 

provided shorter operation times and better repeatability and accuracy than the batch procedure, and 

better repeatability than microcolumn flow-through techniques. 

 

5. Concluding remarks 

Chemometric techniques have been applied to single and sequential extraction results mainly for 

pattern recognition and modelling, but such techniques can be used also for other purposes. In 

particular, we believe that experimental design should deserve more attention; from the analytical 

and methodological points of view, this technique is extremely useful to optimize the extraction 

conditions, identify the effects of the experimental parameters on element leachability and evaluate 

the robustness of a procedure. In addition, it would be desirable to explore new procedures for 



computing element fractionation, in order to evaluate the possibility to tackle the drawbacks of 

sequential extraction, as it was done with CISED.  

Regarding data visualization and interpretation, PCA, HCA and MLR are the multivariate 

techniques most extensively used in conjunction with single and sequential extractions, followed by 

FA, N-way methods and LDA. Other strategies, such as nMDS, RDA and projection pursuit have 

rarely been applied. Presently, geostatistics is mainly being applied to total element concentrations 

or to the available portion of macronutrients, but it would be worthwhile to use it more frequently to 

investigate the spatial distribution of available concentrations of trace elements, obtained with 

single or sequential extractions, both with agronomical and environmental purposes: this treatment 

might permit to obtain more information on the relationships between trace element and main soil 

properties and to identify more punctually the areas with high environmental risks, or with a 

deficiency or excess of micronutrients. 

The application of two or more multivariate methods, as several researchers did, is helpful to 

confirm some findings and/or to better exploit the data in order to acquire useful information. As we 

pointed out in the first part of the review, it is crucial to be aware of the meaning and the steps of 

whatever technique is being used, and respect the underlying assumptions. 

A cooperation among chemometricians, experts in the matrices under study and analytical chemists 

is highly desirable. The contribution of specialists in chemometrics is especially necessary in the 

case of procedures that require algorithms developed by the authors, or complex processing, as well 

as in the exploration of the applicability of further multivariate techniques to extraction assay 

results. 
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Captions to figures 

Fig. 1. Dendrogram obtained by HCA (Ward’s method) for pH and element percentages extracted 

from contaminated soil samples (coded A1-A31) into the third fraction of Tessier’s procedure, after 

column standardization [16]. 



Table 1 

Sequential extraction procedures adopted in the papers cited in this review. 

Procedure Comment Ref. 

Tessier’s sequential extraction: exchangeable (1 M MgCl2, pH 7); bound to carbonates (1 M 

CH3COONa/ CH3COOH, pH 5); bound to Fe-Mn oxides (0.04 M NH2OH·HCl in 25% v/v 

CH3COOH, 96°C); bound to organic matter (HNO3/H2O2, pH 2, 85°C; 3.2 M CH3COONH4 

in 20% v/v HNO3); residual (HF/HClO4). The original reference reports also the possibility to 

use 1 M CH3COONa, pH 8.2 and 0.3 M Na2S2O4/0.175 M Na-citrate/0.025 M H-citrate for 

the first and third fractions respectively. 

One of the first sequential extraction 

procedures developed. Most of the other 

procedures derive from it. It was the most 

extensively applied scheme before the 

introduction of the BCR protocol 

[16,22,29,5

5] 

Revised BCR sequential extraction: exchangeable, water- and acid-soluble (0.11 M 

CH3COOH); reducible (0.5 M NH4OH·HCl, pH 1.5); oxidisable (H2O2; 1 M CH3COONH4, 

pH 2); residual (aqua regia). 

Developed by SMT in order to harmonize 

fractionation procedures and ensure 

comparability. It provides a detailed 

description of operative conditions. For 

these characteristics it is the most 

extensively applied sequential extraction 

technique nowadays 

[11,13,15,2

5,26,29, 

83] 

5-step sequential extraction: exchangeable (1 M CH3COONH4, pH 7); bound to carbonates 

and easily reducible phases (0.6 M HCl, pH 4; 0.1 M NH2OH·HCl in 0.01 M HCl, pH 2); 

bound to moderately reducible phases (0.2 M (NH4)2C2O4/0.2 M H2C2O4, pH 3); bound to 

organic matter and sulphides (H2O2/HNO3,  pH 2, 85°C; 3.2 M CH3COONH4); bound to acid-

soluble residue (6 M HCl, 85°C). 

Based on Tessier’s scheme. The 

differences are: exchangeable fraction 

following Kersten and Förstner’s scheme 

[see part I]; reagents and definitions of 

second, third and fifth fractions 

[20] 

4-step sequential extraction: water-soluble (H2O); environmentally mobile (1 M 

CH3COONH4, pH 7); bound to carbonates and oxides (1 M NH2OH·HCl in 25% v/v 

CH3COOH); organic and refractory-associated (HNO3/ HF/ H2O2). 

The reagents and the operational 

definitions of the fractions substantially 

differ from the popular Tessier’s and BCR 

schemes. 

[14] 



Table 1 (continued) 

Procedure Comment Ref. 

5-step sequential extraction: labile inorganic and labile organic (0.5 M NaHCO3); inorganic 

moderately labile, chemisorbed on Fe, Al and organic moderately labile, chemisorbed on 

humic acids (0.1 M NaOH); within small stable aggregates, physically inaccessible and 

within small stable aggregates, physically inaccessible (0.1 M NaOH + sonication); Ca-bound 

(1 M HCl); residual inorganic (HCl); residual organic (HCl/H2O2). 

5-step sequential extraction: exchangeable (1 M Mg(NO3)2); organically bound or associated 

with organic matter (0.7 M NaOCl); in crystalline Mn oxide or coprecipitated (0.2 M 

(NH4)2C2O4
.
H2O/H2C2O4); in crystalline Fe oxide or coprecipitated (Na2S2O4).  

Sequential extraction scheme for P. It is 

distinctly different from procedures for 

metals, owing to the anionic nature of P 

compounds. 

 

Sequential extraction scheme for Fe, Mn 

and Al. The reagents and the operational 

definitions of the fractions substantially 

differ from the popular Tessier’s and BCR 

schemes. 

[35] 

4-step sequential extraction : soil solution and labile (water and anion exchange resin); labile, 

inorganic, organic and microbic (0.5 M NaHCO3, pH 8.2); in humic and fulvic acids and in 

Al and Fe phosphates (0.1 M NaOH); hardly soluble (1 M H2SO4). 

Sequential extraction scheme for P. 

Characterized by the use of an anion 

exchange resin in addition to chemicals 

[39] 

4-step sequential extraction : plant-available and water-extractable (H2O); weakly sorbed-

bioavailable organic and inorganic (0.5 M NaHCO3, pH 8.2); strongly bound chemisorbed-

potentially bioavailable (0.1 M NaOH); apatite or Ca-bound and non-bioavailable (1 M HCl). 

Sequential extraction scheme for P. The 

reagents are similar to the ones reported in 

the previously mentioned schemes, but the 

definitions of the fractions are different 

[12] 

6-step sequential extraction : organomercury (CHCl3; 0.01 M Na2S2O3); water-soluble (H2O); 

acid-soluble (0.5 M HCl); associated to humic matter (0.2 M NaOH); elemental (aqua regia, 

150°C); residual, HgS (aqua regia). 

Sequential extraction scheme for Hg. The 

reagents and the operational definitions of 

the fractions substantially differ from the 

popular Tessier’s and BCR schemes 

[36] 



Table 1 (continued) 

Procedure Comment Ref. 

3-step sequential extraction: exchangeable (1 M CH3COONH4); readily soluble 

nonexchangeable (0.01 M HCl); recalcitrant nonexchangeble (0.2 M sodium 

tetraphenylborate). 

Sequential extraction scheme for K. It is 

mainly focused on the exchangeability of 

the element 

[42] 

Physiologically Based Extraction Test (PBET): simulated stomach conditions (simulated 

stomach fluid: 1.25 g pepsin, 0.50 g sodium malate, 0.50 g sodium citrate, 420 μL lactic acid 

and 500 μL acetic acid made up to 1 L with H2O/HCl, pH 2.5, 37°C); simulated small 

intestine conditions (pH 7 with NaHCO3, addition of bile salts and pancreatine to the 

simulated stomach fluid). 

Aimed at studying element 

bioaccessibility. It simulates 

gastrointestinal tract environment 

[80,81] 

Modified PBET: stomach phase (simulated stomach fluid: 1.25 g pepsin, 0.50 g sodium 

malate, 0.50 g sodium citrate, 420 μL lactic acid and 500 μL acetic acid made up to 1 L with 

H2O/HCl, pH 2.5, 37°C); small intestine 1 (pH 7 with NaHCO3, addition of 175 mg bile salts 

and 50 mg pancreatine to the simulated stomach fluid); small intestine 2 (the same as small 

intestine 1 after an additional 2 hours incubation). 

Aimed at studying element 

bioaccessibility. It differs from the above 

cited PBET method for the presence of 

two steps in simulated intestine conditions 

[24] 

Simplified PBET (SBET): 30.03 g L
-1

 glycine/HCl, pH 1.5, 37°C. Aimed at studying element 

bioaccessibility. It considers only one 

gastric phase. 

[32] 

 



Table 2 

Selected applications of chemometric techniques to single or sequential extraction results. The papers are arranged in the order in which they have 

been discussed in the “Application” sections. 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Agricultural soils with 

vegetable crops (Lower 

Vinalopò region, Spain) 

Cd, Co, Cr, Cu, Fe, Mn, 

Ni, Pb, Zn 

FAAS, GF-AAS Single extraction (0.05 

M EDTA, pH 7) 

Correlation analysis, 

HCA 

SPSS 13.0 [10] 

Contaminated soils from an 

abandoned mining area 

(Salsigne, France) 

As, Cd, Cu, Ni, Pb, Zn ICP-AES, ICP-

MS 

BCR Correlation analysis, 

PCA, HCA 

SPSS 10.0, 

XLStat 5.2 

[15] 

Soils from a national 

database project (Ireland) 

K, Mg, P (plus total Al, 

As, Ba, Ca, Cd, Ce, Co, 

Cr, Cu, Fe, Ga, Ge, Hg, 

La, Li, Mg, Mn, Mo, Na, 

Nb, Ni Pb, Rb, S, Sb, Sc, 

Se, Sn, Sr, Ta, Th, Ti, Tl, 

U, V, W, Y, Zn) 

ICP-AES, ICP-

MS 

Single extraction 

(acetate buffer) 

Correlation analysis, 

HCA  

SPSS 14 [19] 

Surface river sediments 

(Louros River, Greece) 

P UV-vis spectro-

photometry 

4-step sequential 

extraction, speciation 

within each extract 

PCA, HCA, LDA SPSS 13.0 [12] 

Soils from urban garden 

(Kayseri, Turkey) 

Cd, Co, Cr, Cu, Fe, Mn, 

Ni, Pb, Zn 

FAAS BCR Correlation analysis, 

PCA, HCA 

SPSS 9.05 [11] 

Soils from around a zinc 

smelter (Kayseri, Turkey) 

and grapes 

Ca, Cd, Co, Cr, Cu, Fe, 

Mg, Mn, Ni, Pb, Zn 

FAAS Single extractions 

(0.1M HCl in 0.025 M 

H2SO4, 1 M 

CH3COONH4, aqua 

regia) 

Correlation analysis, 

PCA, HCA 

SPSS 10.0 [18] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Marine sediments (Terra 

Nova Bay, Antartica) 

Cd, Cr, Cu, Fe, Mn, Ni, 

Pb, Zn 

ICP-AES, GF-

AAS 

BCR PCA, HCA XLStat [13] 

Contaminated soils 

(Piedmont, Italy) 

Al, Cu, Cr, Fe, La, Mn, 

Ni, Pb, Sc, Ti, V, Y, Zn 

ICP-AES Tessier PCA, HCA XLStat [16] 

Agricultural soils (Piedmont. 

Italy) 

Al, Cd, Cr, Cu, Fe, Mn, 

Ni, Pb, Ti, Zn 

ICP-AES, GF-

AAS 

Single extraction (0.02 

M EDTA in 0.5 M 

CH3COONH4), Tessier  

PCA, HCA XLStat [22] 

Contaminated soils 

(Piedmont, Italy) 

Al, Cd, Cu, Cr, Fe, La, 

Mn, Ni, Pb, Sc, Ti, V, Y, 

Zn, Zr 

ICP-AES, GF-

AAS 

Single extractions 

(water,0.5 M 

CH3COOH, 0.02 M 

EDTA in 0.5 M 

CH3COONH4) 

PCA, HCA XLStat  [17] 

Mangrove sediments 

(Mengkabong Lagoon, 

Sabah, Malaysia) 

Al, Ca, Cu, Fe, K, Na, 

Mg, Pb, Zn  

FAAS Single extraction (Na, 

K, Ca, Mg: 

CH3COONH4; other 

elements: aqua regia) 

PCA, HCA Not reported [23] 

Alluvial river sediments 

(Danube river, Pančevo Oil 

Refinery, Serbia) 

Cu, Fe, Mn, Ni, Pb, Zn,  FAAS 5-step sequential 

extraction 

Correlation analysis, 

PCA, HCA 

SPSS for 

Windows 10 

[20] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Soils with different 

composition and pollution 

levels (Flanders, Belgium) 

Cd ICP-AES, GF-

AAS 

Soil solution, single 

extractions (0.01 M 

CaCl2, 0.1 M 

Ca(NO3)2, 0.1 M 

NaNO3, 1 M NH4NO3, 

1M CH3CONH4, 1 M 

MgCl2, 0.11 M 

CH3COOH, 0.1 M 

HCl, 0.5M HNO3, 0.02 

M EDTA+0.5 M 

CH3COONH4+0.5 M 

CH3COOH pH 4.65, 

0.005 M DTPA+0.01 

M CaCl2+0.1 M TEA 

pH 7.3, aqua regia) 

Correlation analysis, 

HCA, MLR 

SPSS 11.0 [21] 

Contaminated soil treated 

with organic residues 

(Aljustrel mining area, 

Portugal) 

Cu, Pb, Zn FAAS, GF-AAS Single extractions 

(0.01 M CaCl2 pH 5.7, 

0.5 M CH3COO NH4, 

0.5 M CH3COOH, 

0.02 M EDTA), BCR 

Correlation analysis, 

PCA, HCA 

Statistica 6.0 [25]  

Airborne particulate matter, 

PM10 (Santiago, Chile) 

Al, As, Ba, Ca, Cd, Cr, 

Cu, Mg, Mn, Mo, Ni, Pb, 

Ti, V, Zn  

ICP-MS 4-step sequential 

extraction 

HCA Not reported [14] 

Mine waste-contaminated 

soils (Devons Great Consols 

Mine, UK) 

Al, As, Ba, Ca, Cr, Cu, 

Fe, K, Li, Mg, Mn, Na, 

Ni, P, Pb, S, Sr, V, Zn 

ICP-AES Modified PBET, 

CISED 

CISED, CA, MLR Not reported [24] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Contaminated soil profiles 

(Bad Liebenstein, Thuringia, 

Germany). 

Cd, Co, Cr, Cu, Eu, Fe, 

Mn, Ni, Pb, Sb, Se, Y, Zn 

ICP-AES, ICP-

MS 

BCR Fuzzy CA Not reported [26] 

Agricultural soils (South 

Australia) 

Cd GF-AAS Single extractions 

(0.01 and 0.05 M 

CaCl2, 0.1 M 

Na2EDTA, 0.005 M 

DTPA-TEA, 1 M 

NH4NO3, 0.02 M 

AAAC-EDTA, 1 M 

NH4Cl 

Correlation analysis, 

MLR 

Not reported [27] 

Soils cultivated with rice 

(Jiangsu province, China) 

Cd, Cu, Pb, Zn ICP-AES, ICP-

MS 

Single extractions 

(0.01 M CaCl2, 0.11 M 

CH3COOH), soil 

solution, DGT 

PCA, MLR SPSS 13.0 [28] 

Uncontaminated soils 

(Central Spain) 

Mn, Zn AAS Single extraction (0.05 

M EDTA), modified 

Tessier, BCR, 

Correlation analysis, 

MLR 

Statgraphic 

Plus 5.0 

[29] 

Acidic forest soils (Tyrol, 

Austria) 

Al AAS 1 M HCl Correlation analysis, 

FA, MLR 

Not reported [30] 

Contaminated and 

uncontaminated soils and 

sediments (Flanders, 

Belgium) 

Al, Ca, Cd, Cr, Cu, Fe, K, 

Mg, Mn, Na, Ni, Pb, Zn 

ICP-AES, FES  Soil solution Correlation analysis, 

MLR 

SPSS 10.0, 

Excel 9.0, 

Surfer 6.04 

[31] 

Contaminated soils 

(Australia) 

As ICP-AES SBET MLR SPSS 15.0 [32] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Soils spiked with As(V) 

(USA) 

As(V) AAS Streamlined PBET MLR Not reported [33] 

Soils spiked with As(III) 

(USA) 

As(III) AAS Streamlined PBET MLR Not reported [34] 

Alfisols, Ultisols, Oxisols 

soils (Misiones Province, 

Argentina) 

Al, Ca, Fe, Mg, Mn, P Not reported P: 11-step 

fractionation; Al, Fe, 

Mn: 5-step sequential 

extraction; single 

extractions (Al: KCl; 

Ca and Mg: 

CH3COONH4) 

FA, LDA Not reported [35] 

River sediments and 

floodplain soil (Warta River, 

Poland) 

Hg CV-AFS 6-step sequential 

extraction for Hg 

Correlation analysis, 

ANN 

Statistica 6.0 [36] 

Soil profiles (Torun, Poland) Cd, Ni, Pb FAAS Column leaching with 

modeled acid rain  

Correlation analysis, 

ANN 

Statistica 6-0 [37] 

Agricultural soils (Harz 

mountains, northeastern 

Germany) 

K, Mg, P ICP-AES 4-step sequential 

extraction (P), double 

lactate extraction (K, 

Mg, P) 

Correlation analysis, 

geostatistics 

Surfer [39] 

Soils from grassland fields 

(Northern Ireland) 

K, Mg, N, P  ICP-AES Single extractions (P: 

NaHCO3; K: 1 M 

CH3COONH4; S: 

Ca(H2PO4)2) 

Geostatistics GS
+
 [40] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Agricultural soils (northeast 

China) 

K, N, P Colorimetry Single extractions (K: 

1 M CH3COONH4) 

Correlation analysis, 

geostatistics 

GS
+
, GIS 

ArcView 3.2, 

Spatial 

Analyst  

[41] 

Soils from rice fields 

(Takatsuki City, Japan) 

K, N, P FES, 

colorimetry  

3-step sequential 

extraction (K), water 

and Bray method (P), 

single extractions (N: 

2 M KCl) 

Correlation analysis, 

geostatistics 

GS
+
 [42] 

Soils (Philippoi peatland, 

northern Greece) 

Ca, Cu, Fe, K, Mg, Mn. 

Na, Zn 

AAS Single extraction (Fe, 

Cu, Zn, Mn: 0.005 M 

DTPA; Ca, K, Mg, Na: 

1 M CH3COONH4) 

Geostatistics Not reported [43] 

Soil (Field Research Station, 

Dastjerd, western Iran) 

K Not reported Single extraction 

(CH3COONH4), 

successive extractions 

(0.01 M CaCl2) 

Geostatistics GS
+
 [44]  

Forest soil (La Palma Island, 

Canary Islands, Spain) 

N, P Colorimetry Single extractions (N: 

0.5 M K2SO4; P: 0.5 M 

NaHCO3) 

Geostatistics R 2.7.2 for 

Linux  

[45] 

Forest soils (coastal British 

Columbia, Canada) 

N, P Colorimetry Single extraction (N: 

chloroform), ion 

exchange resin probe 

Geostatistics GS
+ 

 [46] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Agricultural cambisol 

(Kassow, Germany) 

P Colorimetry Single extractions 

(0.01 M CaCl2, 0.5 M 

CH3COONH4/0.5 M 

CH3COOH/0.02 M 

Na2-EDTA; 0.43 M 

HNO3; aqua regia; 

0.1M Ca-lactate/0.1 M 

Ca-acetate/ 0.3M 

CH3COOH) 

Correlation analysis, 

geostatistics 

Variowin 2.2 [47] 

Agricultural soils (northeast 

China) 

K, N, P Colorimetry Single extractions (K: 

1M CH3COONH4) 

Correlation analysis, 

geostatistics 

GS
+
, ArcGIS  [48] 

Agricultural and forest soils 

(Lugo Province, Spain) 

Ca, Cu, Fe, K, Mg, Mn, 

Zn 

FAAS Single extraction (Ca, 

K, Mg: CH3COONH4; 

Cu, Fe, Mn, Zn: 0.05 

M EDTA) 

Geostatistics Computer 

programs 

developed by 

Vieira 

[49] 

Forest soil (La Palma Island, 

Canary Islands, Spain) 

N, P Colorimetry Single extractions (N: 

2 M KCl; P: 0.5 M 

NaHCO3) 

Geostatistics 

 

R 2.4.1 for 

Linux  

[50] 

Agricultural soils (coastal 

plain region of Maryland) 

P - 

 

Single extraction 

(Mehlich III 

extractant: 0.2 M 

CH3COOH, 0.25 M 

NH4NO3,
 
0.015 M 

NH4F, 0.013M HNO3, 

0.001M EDTA) 

Geostatistics Vesper, 

Surfer 

[51]  



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Forest soils (northwestern 

Spain) 

N, P Colorimetry Single extraction (N: 2 

M KCl; P: 2.5 % 

CH3COOH) 

Correlation analysis, 

geostatistics 

R  [52]  

Forest soils (Kitsatchie 

National Forest, Winn 

Parish, Louisiana) 

Ca, Mg, K, Fe, Mn ICP-AES Single extraction 

(Mehlich III 

extractant: 0.2 M 

CH3COOH, 0.25 M 

NH4NO3,
 
0.015 M 

NH4F, 0.013M HNO3, 

0.001M EDTA) 

Correlation analysis, 

geostatistics 

GS
+
 [53] 

Forest soil (North Carolina) Al, Fe, P Not reported Single extraction (Al, 

Fe: oxalate) 

Correlation analysis, 

geostatistics 

GS
+
 [54] 

Soil from a landfill 

(Bedfordshire,UK) 

Cr, Cu, Zn ICP-AES Tessier Correlation analysis, 

geostatistics 

Variowin 2.2 [55] 

Soil (northern Zhejiang 

Province, around Taihu 

Lake, China) 

B, Cu, Fe, Mn, Mo, Zn ICP-AES Single extraction 

(DTPA) 

Geostatistics GS
+
, ArcGIS [56] 

Surface soils from seven land 

uses. (Fuyang County, 

China) 

Cu AAS Single extraction 

(DTPA, CaCl2, TEA) 

Correlation analysis, 

geostatistics 

GS
+
, ArcGIS [57] 

Forest soils (La Coruña, 

Spain) 

Co, Cr, Fe, Mn, Ni, Zn  ICP-MS Single extraction (0.05 

M EDTA) 

Correlation analysis, 

geostatistics 

KRIGE, 

COKRI, 

Surfer 

[58] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Forest soils (Jizera 

Mountains, Bohemia, Czeck 

Republic) 

Al ICP-AES Single extraction (0.5 

M KCl, 0.05M 

Na4P2O7) 

Correlation analysis, 

geostatistics 

GS
+
,Variowi

n 2.21 

[59]  

Agricultural soils (North 

Dakota) 

B, Cd, Cu, Se, Zn  AAS, ICP-AES, 

HG-AAS, 

colorimetry 

Single extraction (Cd, 

Cu, Zn: DTPA; B, Se: 

H2O) 

Geostatistics GS
+
 [60] 

Surface soil samples 

(Luisiana) 

Al, Ca, Fe, Mg, Na, S,  ICP-AES Single extraction 

(water) 

Geostatistics Not reported [61] 

Agricultural soils (central 

Greece) 

Cd, N GF-AAS Single extractions (Cd: 

DTPA) 

Correlation analysis, 

geostatistics 

ArcInfo [62] 

Soil affected by the 

Aznancóllar mine spill 

(Spain) 

As, Cd, Cu, Pb, Zn Not reported Single extraction (0.05 

M EDTA) 

Correlation analysis, 

geostatistics  

Vesper 1.6 [63] 

Forest soil (northwestern 

Spain) 

N, P Colorimetry Single extraction (N: 1 

M KCl; P: 2.5% 

CH3COOH) 

Correlation analysis, 

geostatistics 

R 1.8 for 

Linux 

[64] 

Contaminated soils (Nantou 

Country, Taiwan) 

Pb AAS Single extraction (1 M 

HCl) 

Geostatistics Surfer [65] 

587 soils (North Dakota) Zn AAS Single extraction 

(DTPA) 

Correlation analysis, 

geostatistics 

GSLIB [66]  

Cultivated soils (Galicia, 

Spain) 

Cu, Mn, Pb, Zn ICP-AES Single extractions 

(0.05 M EDTA and 

CaCl2) 

Geostatistics GSTAT, 

PCRaster 

[67] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Grain and agricultural soil 

(North Dakota) 

Cd, Na, S ICP-AES, IC Single extraction (Cd 

and Na: 0,005 M 

DTPA; S: H2O) 

Geostatistics GS
+
 [68] 

Lake sediments (The 

Netherlands) 

Al, Ca, Cd, Cr, Cu, Fe, 

Mn, Ni, P, Pb, S, Zn 

ICP-AES, ICP-

MS 

Single extraction (1 M 

HCl, expressed as 

SEM, see text) 

Correlation analysis, 

geostatistics 

WLSFIT, 

Surfer 

[69] 

Agricultural soils from an 

experimental area (Italy) 

K, Na, P Not reported Single extractions (K, 

Na: CH3COONH4; P: 

NaHCO3); 

Correlation analysis, 

geostatistics, FKA 

Not reported [70] 

Soil from an experimental 

area (Volperino, Italy) 

Fe, Mn ICP-AES Single extraction (Fe 

and Mn:0.005 M 

DTPA/0.01 M CaCl/ 

0.1 M 

tetraethylammonium 

Correlation analysis, 

geostatistics, FKA 

Not reported [71] 

Marine sediments 

(Antarctica) 

Ag, As, Cd, Cr, Cu, Fe, 

Mn, Ni, Pb, Sn, Zn 

ICP-MS 1 M HCl nMDS, ANOSIM, 

SIMPER, RELATE 

PRIMER 

5.2.2 

[72] 

Marine sediments adjacent to 

an abandoned waste dump, 

(Brown Bay, Casey Station, 

Antarctica) 

Ag, As, Cd, Cr, Cu, Fe, 

Mn, Ni, Pb, Sb, Sn, Zn 

ICP-MS 1 M HCl nMDS, ANOSIM, 

BIOENV procedure 

PRIMER [73] 

Calcaric Fluvisols (Spain) Ca, K, Mg, Na, Si (+ 

anions) 

FAAS, FAES Column leaching with 

water 

Correlation analysis, 

RDA 

Canoco 4.5 [74] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Soils and suspended 

sediments (Walnut Gulch 

Experimental Watershed, 

Arizona, USA) 

Ca, Fe, K, Mg, Mn, Na, 
137

Cs, 
40

K 
226

Ra 

AAS Single extractions (Fe 

and Mn: Na4P2O7, acid 

ammonium oxalate, 

sodium citrate–

bicarbonate– 

dithionite; Ca, K, Mg, 

Na: CH3COONH4) 

Model Not reported [75] 

Floodplain sediments (Bad 

Liebenstein, Thuringia) 

Cd, Co, Cu, Cr, Eu, Fe, 

Mn, Ni, Pb, Sb, Se, Y, Zn 

Not reported Four sequential 

extractions  

PCA, Projection 

pursuit 

Not reported [8]  

NIST SRM 2710 

(contaminated soil in the 

Butte, Montana area) 

Al, Ba, Ca, Cd, Cu, Fe, K, 

Mg, Mn, Na, Ni, P, Pb, S, 

Si, Sr, Ti, V, Zn 

ICP-AES CISED CISED Matlab [77] 

NIST SRM 2710 

(contaminated soil in the 

Butte, Montana, area) 

Al, Ba, Ca, Cd, Cu, Fe, K, 

Mg, Mn, Na, Ni, P, Pb, 

Si, Ti, V, Zn 

ICP-AES CISED CISED, experimental 

design  

Statistica 5.1, 

MathCadPlus 

[76] 

NIST SRM 2710 

(contaminated soil in the 

Butte, Montana, area) 

Al, Ba, Ca, Cd, Cu, Fe, K, 

Mg, Mn, Na, P, Pb, S, Si, 

Sr, Ti, V,  Zn 

ICP-AES CISED CISED, experimental 

design  

Not reported [78] 

NIST SRM 2711 

(moderately contaminated 

agricultural soil) and river 

sediment (Carnon River, 

Cornwall, UK) 

Al, Ba, Ca, Cd, Cu, Fe, K, 

Mg, Mn, Na, P, Pb, S, Si, 

Sr, Ti, V and Zn 

ICP-AES CISED CISED Not reported [79] 



Table 2 (continued) 

Matrix Elements Analytical 

technique 

Extraction procedure Chemometric 

treatment 

Software Ref. 

Ironstone-derived soil from 

the archive of British 

Geological Survey 

Al, As, B, Ba, Ca, Cd, Co, 

Cr, Cu, Fe, K, Li, Mg, 

Mn, Mo, Na, Ni, P, Pb, S, 

Se, Si, Sr, V, Zn 

ICP-AES CISED, PBET CISED Not reported [80] 

Ironstone-derived soil 

(Wellingborough, 

Northamptonshire, UK) 

Al, As, Ba, Ca, Co, Cr, 

Cu, Fe, K, Mg, Mn, Na, 

Ni, P, Pb, S, Se, Si, Sr, Ti, 

Zn 

XRF, ICP-AES CISED, PBET (As) CISED, MLR  Not reported [81] 

Estuarine sediments (Arosa 

Estuary, Galicia, Spain) 

Al, Ba, Ca, Cd, Cu, Fe, K, 

Mg, Mn, Na, P, Pb, S, Si, 

Sr, Ti, V, Zn 

ICP-AES CISED CISED Not reported [82] 

NIST SRM 1633b (coal fly 

ash) 

Cr, Cu, Ni, Pb, Zn ICP-AES BCR (sequential 

injection dynamic 

extraction) 

Experimental design Statgraphics [83] 

Municipal solid waste 

incineration bottom ashes 

(Palma de Mallorca, Spain)  

Cd, Cr, Cu, Pb, Zn ICP-AES TCLP (column 

dynamic extraction) 

Experimental design Statgraphics  [84] 

List of abbreviations. AAS: atomic absorption spectroscopy (the atomizer was not indicated); CV-AFS Cold Vapour Atomic Fluorescence Spectroscopy; DGT: 

Diffusive Gradients in Thin Films; DPASV: Differential Pulse Anodic Stripping Voltammetry; FA: Factor Analysis; FAAS: Flame Atomic Absorption 

Spectroscopy; FES: Flame Emission Spectroscopy; GF-AAS: Graphite Furnace Atomic Absorption Spectroscopy; HG-AAS: Hydride Generation Atomic 

Absorption Spectroscopy; IC: Ion Chromatography; ICP-AES: Inductively Coupled Plasma Atomic Emission Spectroscopy; ICP-MS: Inductively Coupled 

Plasma Mass Spectrometry; PBET: Physiologically Based Extraction Test; XRF: X Ray Fluorescence. 
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