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Abstract In traditional co-clustering, the only basis for the clustering task is a given
relationship matrix, describing the strengths of the relationships between pairs of ele-
ments in the different domains. Relying on this single input matrix, co-clustering dis-
covers relationships holding among groups of elements from the two input domains.
In many real life applications, on the other hand, other background knowledge or
metadata about one or more of the two input domain dimensions may be available
and, if leveraged properly, such metadata might play a significant role in the effec-
tiveness of the co-clustering process. How additional metadata affects co-clustering,
however, depends on how the process is modified to be context-aware. In this paper,
we propose, compare, and evaluate three alternative strategies (metadata-driven,
metadata-constrained, and metadata-injected co-clustering) for embedding available
contextual knowledge into the co-clustering process. Experimental results show that
it is possible to leverage the available metadata in discovering contextually-relevant
co-clusters, without significant overheads in terms of information theoretical co-
cluster quality or execution cost.
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1 Introduction

Given a set of elements in a feature space and a distance measure defined on this
data space, clustering techniques (such as K-means (Bishop 2006), spectral clustering
(Luxburg 2007; Ng et al. 2001) and Non-negative Matrix Factorization (Lee and
Seung 2000; Xu et al. 2003)) can be used for partitioning the input set in such a
way that elements that are closer to each other (according to the distance measure)
are placed into the same cluster, while elements that are further from each other are
placed in different clusters. In many applications, however, we are given two sets of
objects and their inter-relationships and need to cluster the objects in each set based
on their relationships to the objects in the other set. For example, in market-basket
analysis, one can try to understand what groups of products are being bought by
what groups of customers by studying the customer-product purchase data (Baier
et al. 1997). In this case, the clusters of customers are defined based on what clusters
of products they purchase and, at the same time, the clusters of products can be
identified based on what groups of customers purchase them. Thus, independently
clustering the product and customer sets and then trying to identify which product-
clusters correspond to which customer-clusters and vice versa may not be effective.

Techniques which simultaneously discover relationships holding on different
groups of elements from the two input sets are known as co-clustering (also called
biclustering, bidimensional clustering, and subspace clustering) techniques (Madeira
and Oliveira 2004). In co-clustering, the input information expresses the strength
of the point-to-point relationships between pairs of elements in two (possibly
coinciding) domains. This is usually represented as a bi-dimensional matrix (the
relationships matrix), whose rows are associated to the elements from one domain,
while columns correspond to elements from the other domain, and whose numeric
element values quantify the relationships existing between the corresponding row
and column elements. Given a domain specific objective function (measuring the
quality of co-clusters in grouping related data elements), co-clustering algorithms
partition rows and columns into clusters respectively, in such a way that when these
clusters are considered as pairs, they minimize the given objective value (Fig. 1; see
also Section 2.1 for more details).

In the last few years the co-clustering approach has been successfully applied in
many domains from text mining (Dhillon 2001) to bioinformatics (Cheng and Church
2000; Cho et al. 2004; Madeira and Oliveira 2004). For example, in natural language
processing, tokens and their contexts, can be co-clustered to discover their inherent
relationships (Freitag 2004; Li and Abe 1998). Similarly, in recommender systems,

co-clustering process
(iterative optimization)

Fig. 1 The relationship matrix which describes the relationships between entities in two different
domains (such as customers and products), provided as input, is (often iteratively) modified, seeking
an optimum configuration, to obtain a co-clustering matrix



J Intell Inf Syst (2012) 38:209–239 211

users and objects (such as movies) can be co-clustered to identify losses of users
and their object preferences (George and Merugu 2005). One common shortcoming
of the existing co-clustering algorithms, however, is that they consider only a single
information source (relationship matrix) to partition object sets into clusters. How-
ever, in many application scenarios background knowledge (or contextual metadata)
about one or more of the domains may be available and, if leveraged properly,
such metadata might play a significant role in the effectiveness of the resulting
co-clusters within the given application domain. For example, in market-analysis
there can be an a-priori classification of the products based on their price ranges;
in movie recommendation domain, there can be a taxonomy of users based on their
age or their education degree, as well as a classification of the movies according to
their genre. Such a-priori information might complement the relationships matrix to
support a contextually-relevant co-clustering, in which the metadata impacts (and
possibly corrects) the purely relationships-matrix based grouping of the items.

Example 1 (Metadata supported co-clustering) Consider, the geographical concepts
“United States” and “Afghanistan”. While geographically distant from each other, in
the current geo-political context, these two concepts are related to each other through
non-geographical concepts, such as “taliban”, “Bin Laden”, and “terrorism”. Obvi-
ously, knowledge about these non-geographical relationships are critical in the design
of effective search engines, for example when a user is exploring the geographical
concept “United States”, related news and blog entries can be fetched and displayed
(Cataldi et al. 2009).

Such relationships between concepts in different domains (e.g., the geographical
terms “United States” and “Afghanistan” on one side and the political terms “terror-
ism” and “Bin Laden” on the other in Fig. 2) can be discovered through the analysis
of an appropriate document corpus, such as newspaper articles. Given a relationship
matrix describing the co-occurrences of geographical and political concepts in a news-
paper archive, this can be achieved, for example, by using co-clustering algorithms
described in Section 2.

Simple co-clustering, however, would fail to account for additional domain-
knowledge, such as geographic relationships between countries (“New York” being
in the “United States”). Naturally, if one could leverage geographical data, in addition
to the co-occurrence information in the corpus, the relationships one could discover
among the sets of concepts would likely be more contextually informed (Candan
et al. 2008).

Fig. 2 Correspondences
between sample concepts from
two different domains (the
thickness of the edge denotes
the strength of the
correspondence)

Political concepts

Intifada Conflict UN Nuclear Terrorism Bin Laden

Ir USIsrael Palestine Somalia Iran US Afghanistan

Geographical concepts
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1.1 Contributions of this paper: co-clustering in the presence of contextual metadata

As mentioned above, if available, additional metadata can be used to condition or
contextualize the co-clustering process. Of course, an important question that needs
to be answered is how do different ways in which additional information is used
during co-clustering process impact the resulting co-clusters (Fig. 3).

As we will see in this paper, available secondary metadata can be embedded in
the co-clustering process in different ways. We note that, in most existing works, as
in the semi-supervised clustering algorithms, such as Basu et al. (2002, 2004), Klein
et al. (2002), Wagstaff et al. (2001) and Struyf and Dzeroski (2007), this situation
is often handled in an ad hoc and domain-specific manner without a principled
understanding of why a particular approach is selected. In fact, as discussed in
detail in Section 2.3, existing semi-supervised co-clustering approaches are mostly
limited to “constraint-based” approaches to incorporating contextual metadata. In
this paper, our goal is not presenting one single preferred approach, but, starting form
a well-understood co-clustering reference algorithm, introduce, discuss and compare
alternative strategies to understand when and why different strategies can be used in
incorporating contextual metadata into the co-clustering process. In particular, in this
paper we formally encode metadata as matrices, that express external relationships
among elements involved in the co-clustering process, and show different ways in
which these matrices can be used to enrich the process of co-clustering. To summarize
our contribution, we classify the possible approaches to the problem of co-clustering
in the presence of contextual metadata into three broad classes:

– Metadata-driven co-clustering: One way to leverage metadata in co-clustering
is to modify existing (iterative) co-clustering algorithms in such a way that,
at every step, among all the alternative moves which improve the value of
the objective function, the selected row/columns move is the one that best
preserves the contextual relationships implied by the available metadata. Based
on this observation, we first introduce a semi-supervised search algorithm in
which additional metadata, formally encoded in proper metadata matrices, are
leveraged to af fect the co-clustering process (Fig. 4a and Section 3.3);

– Metadata-constrained co-clustering: Existing literature (Pensa and Boulicaut
2008; Chen et al. 2010; Ma et al. 2010; Song et al. 2010) has shown that metadata

Fig. 3 If available, additional
metadata may help improve or
contextualize the co-clustering
process; the major question
(which we address in this
paper) is how this additional
information should be used
during co-clustering
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constr
aints

(a) Metadata-driven Metadata-constrained(b)

(c) Metadata-injection

Fig. 4 In this paper, we partition the possible approaches to the problem of co-clustering in the
presence of secondary metadata into three broad classes: a metadata-driven, b metadata-constrained
and c metadata-injection

information can be translated into a set of constraints, which are used to limit,
at every step of the co-clustering process, the admissible moves. Enforcing these
constraints might prevent row/columns moves that would be implied by the pure
relationships based optimization process or may imply additional moves that
are not required by the original relationship matrix. Following these constraint-
based approaches, we discuss how metadata-matrices can be used for leveraging
contextual metadata encoded as constraints (Fig. 4b and Section 3.4).

– Metadata-injection co-clustering: A third possible strategy we discuss in this paper
is to reflect the metadata information into the given relationships matrix, before
the co-clustering process is started. Then, a standard co-clustering algorithm can
be applied on this metadata-injected matrix, whose values are combinations of
the initial relationship values with the information extracted from the metadata.
Thus, we discuss alternative combination schemes for integrating metadata
matrices with the relationship matrix (Fig. 4c and Section 3.5).

In the rest of this paper, we present, compare, and evaluate these alternative strate-
gies for embedding the available metadata information into the co-clustering process.
Without loss of generality, we rely on the well understood co-clustering algorithm by
Dhillon et al. (2003) as our reference approach for basic, non metadata-supported,
co-clustering (see Sections 2 for more details). In Section 3 we present in detail
the above three different approaches for metadata supported co-clustering. In
Section 4.1, we introduce a sample application (concept alignment) where metadata-
supported co-clustering is needed and in Sections 4.2 and 4.3, using this application,
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we evaluate and compare the effectiveness of alternative schemes under different
conditions. Note that, since we have two different sources of information (the
original relationship-matrix and the metadata), we need to consider both the co-
clustering objective function as well as the agreement with the original metadata in
the assessment of the alternative schemes. As we see, different approaches perform
differently with respect to the co-clustering objective function versus the results
agreement with the metadata. We end the paper with our conclusions in Section 5.

2 Related works and background

Co-clustering research has a long history. Hartigan presented one of the first co-
clustering algorithms, called direct clustering, in early 70’s (Hartigan 1972). Hartigan
(1972) also introduced various co-clustering models, including an algorithm to per-
form hierarchical co-clustering. Gaul and Schader (1996) introduced an alternating
exchange algorithm for two-mode data. Baier et al. (1997) developed a two-mode
(non-)overlapping additive clustering technique and Vichi (2001) proposed an al-
ternating least squares algorithm for the double k-means model. Cho et al. (2004)
proposed two different algorithms based on two similar squared residue measures:
the first is based on the partitional model proposed by Hartigan (1972) while the
second is based on the squared residue formulated by Cheng and Church (2000).
Dhillon et al. (2003) introduced an information-theoretic approach to co-clustering
that treats co-clustering as an information theoretical optimization problem. More
recently, Banerjee et al. (2007) proposed a generalized approach to co-clustering
based on a large class of loss functions called Bregman divergences. More generally,
co-clustering approaches can be divided in probability-based models (Hofmann and
Puzicha 1999; Kemp et al. 2006; Shan and Banerjee 2008), information-theoretic-
based models (Dhillon et al. 2003; Banerjee et al. 2007; Gao et al. 2006), and graph
theoretic approaches (Dhillon 2001; Gao et al. 2005). A survey of these co-clustering
techniques was presented in Madeira and Oliveira (2004). In this paper, without loss
of generality, we use the information-theoretic approach proposed by Dhillon et al.
(2003) as the basic common building block, necessary to compare the three different
metadata techniques introduced in Section 1.1.

2.1 Information theoretic co-clustering

In this section, we provide an overview of the basic information-theoretic co-
clustering process. In particular, we introduce the proposal of Dhillon et al. (2003)
which will be used in this paper as reference algorithm for different approaches to
metadata integration.

As we mentioned earlier, the co-clustering process relies on a relationship matrix:

Definition 1 (Relationships matrix) Let X = {x1, ...., xm} and Y = {y1, ..., yn} be two
domains. A relationships matrix of values in these two domains, is an m × n matrix
Rrel, where each entry, rrel

ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n quantifies the strength of the
relationship between the i-th row element (denoting the domain element xi ∈ X)
and the j-th column element (denoting the domain element y j ∈ Y).
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Naturally, the relationships captured by the matrix is domain specific. In the
market-basket analysis domain, for example, X can be a set of customers, Y can
be a set of products, and the matrix values may quantify each user’s purchases.

Given the relationship matrix, Rrel, the co-clustering process returns two cluster-
ings, defined by two mappings, CX and CY :

– CX : {x1, ...., xm} → R = {x̂1, ..., x̂k} is a mapping which associates each matrix
row (i.e., element of the domain X) to one of the k row clusters it identifies, and

– CY : {y1, ...., yn} → C = {ŷ1, ..., ŷl} is a mapping which associates each matrix
column (i.e., element of the domain Y) to a column cluster.

Each row- and column-cluster combination is a co-cluster in the relationship matrix,
Rrel. The strength of each co-cluster depends on the strength of the relationships
between the corresponding row-elements and column-elements in the relationship
matrix, Rrel.

The information-theoretic co-clustering algorithm presented by Dhillon et al.
(2003) treats the relationships matrix as a joint probability distribution p(X, Y) be-
tween two discrete random variables, one associated to the rows and the other to the
columns. The input to the algorithm is a non-negative relationship matrix Rrel, nor-
malized to 1. Dhillon et al. (2003) define the optimal co-clustering as the pair,
(CX , CY), of mappings which minimizes the difference between the mutual infor-
mation between the original random variables and the mutual information between
the clustered random variables. In other words, the optimal co-clustering minimizes
the mutual information loss,

MIL = I(X; Y) − I
(
X̂; Ŷ

)
,

where X̂ = CX(X) and Ŷ = CY(Y). Dhillon et al. (2003) prove that this loss in
mutual information can also be expressed in term of the Kullback–Leibler divergence
DKL(p(X, Y) ‖ q(X, Y)) (also known as the KL-distance or relative entropy) be-
tween the joint probability distribution p(X, Y) and the corresponding co-clustered
approximation q(X, Y), where

q(x, y) = p(x|x̂) p(y|ŷ) p(x̂, ŷ), x ∈ x̂, y ∈ ŷ.

The algorithm operates in stages, where in each stage first the row-clusters are
updated in a way that minimizes the Kullback–Leibler divergence function and then
the column-clusters are updated under the same criterion. The row- and column-
clustering stages are iterated, alternatively considering the marginal distributions of
rows and columns, until a locally optimal co-clustering is found. Figure 5 presents
this process in pseudocode. Note that the complexity of the algorithm depends on
the numbers of rows and columns in the relationship matrix and the numbers of
iterations and moves required until the local optimum is found.

2.2 Measuring the co-clustering quality

As described above, traditional information theoretic co-clustering algorithms, such
as the proposal of Dhillon et al. (2003), treat the relationships matrix, Rrel, as a joint
probability distribution and define the optimal co-clustering as the pair, (CX , CY), of
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Fig. 5 The pseudo-code of the
information-theoretic
co-clustering
algorithm (Dhillon et al. 2003)

mappings which minimizes the difference between the mutual information between
the original random variables and the mutual information between the clustered
random variables. Since the loss of mutual information can also be expressed in
terms of the Kullback–Leibler divergence between the joint probability distribution
p(X, Y) and the corresponding co-clustered approximation q(X, Y) the quality of
the co-clustering solution can be measured in terms of how small the KL-divergence
between p(X, Y) and q(X, Y) is; in other words the co-clustering quality can be
defined as

quality = DKL(p(X, Y) ‖ q(X, Y)).

In Section 4.3, we will use this as one of the co-clustering quality measures.

2.3 Higher-order co-clustering and semi-supervised co-clustering

High-order co-clustering approaches (Gao et al. 2005, 2006; Long et al. 2006, 2007)
also add additional information to the co-clustering process. A major difference be-
tween higher-order co-clustering (or multi-relational co-clustering) and the problem
we consider in this paper is that in higher-order co-clustering the relationship is
defined among the members of more than two domains (e.g., customer-product-
season) instead of defining two distinct sources of information (one primary, the
other secondary) among the members of a given pair of domains.

Note that if the available metadata are also in the form of a matrix between the
members of two domains (e.g., costumer-product), one can potentially represent
all available information using a multi-relational representation (e.g., costumer-
product-info_source), where the original relationship matrix and the metadata ma-
trix are included as two distinct slices of a 3-mode tensor (see Kolda and Bader (2009)
for a review of tensors or high-order matrices). Again, potentially, higher-level co-
clustering techniques, such as Tucker-decomposition (Tucker 1966), can then be used
to identify clusters of elements based on the similarities of their relationships across
these distinct slices. This approach, however, does not apply to the problem we aim
to address in this paper: higher-order co-clustering treats the different information
sources as equals and does not provide a way to distinguish their roles in the co-
clustering process and treats one as the primary relationship matrix and the other
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as the secondary metadata information source that contextualizes the primary in-
formation source. One consequence of this is that the resulting co-clusters would
be overly constrained: for example, in the costumer-product-info_source example,
all the customer-product pairs in a resulting co-cluster would need to have similar
relationship vectors with respect to the two information sources. While this might
be desirable in some applications of co-clustering with meta-data support, not all
applications would require such a limitation.

In semi-supervised clustering and co-clustering approaches, available additional
information are used to drive the clustering process (rather than for external valida-
tion), providing a limited form of supervision. In the clustering literature we can find
two kinds of methods: in similarity-adapting methods (Basu et al. 2004; Klein et al.
2002; Bilenko and Mooney 2003; Xing et al. 2002) the objective function (i.e. the
similarity measure) is modified to directly include additional information, while in
search-based methods the clustering algorithm itself is modified to bias the search
of an appropriate clustering with the help of additional information represented
commonly as constraints (must-link or cannot-link) (Bilenko et al. 2004; Ruiz et al.
2007; Struyf and Dzeroski 2007; Wagstaff et al. 2001; Basu et al. 2002; Demiriz
et al. 1999). To the best of our knowledge, in co-clustering literature we can find
only proposals that refer to the latter category. In particular, starting from the co-
clustering algorithm proposed by Cho et al. (2004), Pensa and Boulicaut (2008)
proposed the introduction of constraints (must-link or cannot-link) among elements
to limit the set of resulting co-cluster configurations of gene expression data. Chen
et al. (2008, 2009, 2010) propose a non-negative matrix factorization framework in
which constraints link together data elements. A constraint-oriented data matrix
is then used in the tri-factorization process. A non-negative matrix factorization
approach that leverages must-link and cannot-link constraints is also used by Ma
et al. (2010) for word-document co-clustering. Song et al. (2010) propose yet another
approach to incorporate constraints into information theoretic co-clustering; they
achieve this by using a two-sided hidden Markov random field that allows modelling
of both document and word constraints.

As we mentioned in Section 1.1, in this paper we discuss and compare three
different mechanism to leveraging metadata for co-clustering, including a metadata-
constrained method that use must-link and cannot-link constraints as the extends
the information theoretic co-clustering algorithm by following the constraint-based
approaches mentioned before (Pensa and Boulicaut 2008; Chen et al. 2010; Ma et al.
2010; Song et al. 2010). In contrast, in the metadata-driven technique, we introduce
a new semi-supervised search-based approach to co-clustering (Section 3.3). Finally,
in the metadata-injection we propose to merge the primary information source (the
relationship matrix) with the additional metadata in order to create a new combined
input matrix to the information theoretic co-clustering.

3 Co-clustering with metadata support

As mentioned in the previous section, most existing co-clustering algorithms do not
take into account any information other than the values included in the relationships
matrix. As we mentioned in Section 1, however, in many applications, additional
metadata may be available and may need to be used to inform the co-clustering
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process. Moreover, existing approaches that leverage additional information in co-
clustering use only must-link and cannot-link constraints (Pensa and Boulicaut 2008;
Chen et al. 2010; Ma et al. 2010; Song et al. 2010). In this paper, we note that
such metadata can be taken into account during co-clustering in three different
ways (Fig. 4): first of all, (i) we can modify the objective function in such a way
that the moves that are coherent with the metadata are promoted. Alternatively,
(ii) we can introduce metadata-based constraints which limit the options or which
trigger additional row/column moves, in addition to the ones chosen by the original
co-clustering algorithm, to ensure that the moves are coherent with the metadata.
Finally, (iii) we can incorporate the metadata directly into the relationships matrix
and, thus, define information loss in a way that not only reflects the original relation-
ships, but also the metadata.

In this section, we introduce and discuss these three alternative methods, corre-
sponding the three aforementioned approaches, to include metadata information in
the co-clustering process. We first introduce the relevant terminology and notations
we will use in the rest of the paper.

3.1 Metadata matrices

In this section, without loss of generality, we propose to formally encode the
metadata relating pairs of objects in the given domains as matrices:

Definition 2 (Row- and column-metadata matrices) Given the row domain X =
{x1, ...., xm}, the row-metadata matrix is an m × m matrix Rrow,meta, in which each
value, rrow,meta

ij , 1 ≤ i, j ≤ m, quantifies the degree of closeness, between the domain
elements xi, x j ∈ X. The n × n column-metadata matrix, Rcol,meta, is defined similarly
over the elements in the column domain Y = {y1, ..., yn}.

In addition to the row- and column-matrices, we may also have access to a joint
metadata matrix:

Definition 3 (Joint metadata matrix) Given two domains X = {x1, ...., xm} and Y =
{y1, ..., yn}, the joint metadata matrix is an m × n matrix Rmeta, in which each value,
rmeta

ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n quantifies the degree of metadata-based correspondence
between the i-th row element (denoting the domain element xi ∈ X) and the j-th
column element (denoting the domain element y j ∈ Y).

As the original relationship matrix, the joint metadata matrix also relates the
elements of the two different domains; the correspondences captured by this matrix,
however, are different from the correspondences captured by the original relation-
ship matrix.

3.2 Measuring the influence of the metadata

We are thus dealing with a bi-criteria co-clustering problem, where we need to take
into account both the original relationship matrix and the metadata matrices.

As described in Section 2.2, the quality of the co-clustering process with respect
to the original relationship matrix can be quantified by measuring the difference
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between the mutual information among the original random variables and the mutual
information among the clustered random variables. In the context of co-clustering
with metadata, we also need quality measures that measure how well the co-clusters
align with the information given by the metadata provided by the user. To measure
the overall coherence of the co-clusters with respect to the metadata, we thus define
the average metadata variance as the average variance of the similarities of the
members of the co-clusters with respect to the metadata:

metadata_variance =
k∑

g=1

l∑

h=1

∑
x∈x̂g,y∈ŷh

(
sim(mv(x), mv(y)) − avgSim(x̂g,ŷh)

)2

|x̂g||ŷh| k l
.

where mv(x) and mv(y) are respectively the row vectors Rrow,meta|x and Rcol,meta|y,
and

avgSim(x̂g,ŷh) =
∑

x∈x̂g,y∈ŷh
sim(mv(x), mv(y))

|x̂g||ŷh|
In Section 4.3, in addition to the information theoretic measures described in

Section 2.2, we will use this as one of the co-clustering quality measures.

3.3 Alternative approach I: metadata-driven co-clustering

In metadata-driven co-clustering, the relationship matrix, Rrel, is treated as the
matrix on which the main information-theoretical objective function is evaluated at
every iteration of the algorithm. One or more of the metadata matrices, as they are
available, are used inside the main loop of the algorithm as an information source
governing which rows and columns movements are controlled. Rows and columns of
the metadata matrix are treated as vectors associated to domains objects, and thus,
by transitivity, to the rows and columns in the relationships matrix. More specifically,
each element xi ∈ X is associated with a row vector mv(xi) either based on the row
metadata matrix (in terms of other elements in X) or, if available, based on the joint
metadata matrix (in terms of elements in Y). Thus, for each row co-cluster x̂ (and,
similarly, each column co-cluster ŷ) of vectors, a centroid can be defined.

Definition 4 (Metadata-centroid) Given two domains X and Y let (CX , CY) be a co-
clustering of X and Y with respect to Rrel. For any row co-cluster x̂ ∈ X̂ and any
column co-cluster ŷ ∈ Ŷ, their metadata-centroids are defined as

centr(x̂) = 1

| x̂ |
∑

x∈x̂

mv(x)

centr(ŷ) = 1

| ŷ |
∑

y∈ŷ

mv(y).

The metadata-driven co-clustering scheme, depicted in pseudo-code in Fig. 6, uses row
and column centroids (in addition to the information theoretical objective function)
to drive which rows and columns are clustered together. To start the process the
metadata driven version of the algorithm randomly chooses an initial co-clustering.
Then, at each iteration, for the current configuration, the row and column cluster
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Fig. 6 The pseudo-code for
metadata-driven co-clustering:
among all the moves that
imply a decrease in the
objective function, the one
that brings the candidate
row/column vector closer to
the centroid of the target
cluster is selected. Note that
the algorithm can also be
modified to consider only top
few alternatives in terms of the
minimization of the objective
function

centroid vectors are computed. Differently from the purely information theoretic al-
gorithm proposed by Dhillon et al. (2003), at each iteration, the selected row/column
move is not necessarily the one which ensures the highest decrease in the KL-
divergence based objective function. Instead, among all the moves that imply a drop
in the KL-divergence, the one that brings the candidate row/column vector closer
to the centroid of the target cluster is chosen. This corresponds to optimizing the
metadata-based correspondences between the row and column elements, while also
improving the objective function. In the pseudo-code in Fig. 6, the algorithm chooses
any movement as long as the move implies a reduction in the objective value. In
general, however, the choice can be simply limited to top few (c) candidates in terms
of the KL-distance minimization. As we will show in Section 4.3, considering few
top alternatives is often sufficient for improving the metadata-based co-clustering
quality.

Note that, in this scheme, the centroids have to be re-computed for each iteration,
potentially increasing the cost of the overall process on a per iteration basis.

3.4 Alternative approach II: metadata-constrained co-clustering

In some clustering applications, integration of the metadata to the clustering frame-
work in the form of instance-level constraints has proven to be successful (Bilenko
et al. 2004; Ruiz et al. 2007; Struyf and Dzeroski 2007; Wagstaff et al. 2001).
Along similar lines, Pensa and Boulicaut (2008) introduced a constraint based algo-
rithm building on the co-clustering framework proposed by Cho et al. (2004). As
mentioned before, constraints are also used in other different semi-supervised co-
clustering frameworks by Chen et al. (2010), Ma et al. (2010) and Song et al. (2010).
In the constraint-based approach, the metadata information is used to limit (rather
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than drive) the row and column configurations that the co-clustering process can
consider. For example, Pensa and Boulicaut (2008) exploit user-defined constraints
while minimizing the co-clustering objective function (using the minimum sum-
squared residue co-clustering approach (Cho et al. 2004)). Constraint-based ap-
proaches to co-clustering can use two kinds of constraints: must-link and cannot-link.
A must-link constraint involves two row (or column) elements and states that these
elements must be included in the same cluster. In contrast, a cannot-link constraint
expresses the fact that two row or column elements cannot be together.

In this paper, we generalize the approach proposed by Pensa and Boulicaut (2008)
by considering constraints extracted from the metadata as opposed to being provided
by the user. In particular we define a set of must-link constraints by considering row
vectors introduced earlier as follows:

MLX = {
(xi, x j) ∈ X × X | i �= j ∧ sim(mv(xi), mv(x j) > θ

}

where θ is a lowerbound and sim() is a similarity function (such as cosine()) that
compares the two vectors. The must-link set, MLY , is similarly defined for column
vectors. By definition, must-link shows a transitive closure property; if row xi must-
link to x j and x j must-link to xl , then xi must-link to xl as well. Therefore, for each
xi ∈ X, we also compute a transitive closure, T RX

i . The transitive closure, T RY , of
column vectors is defined similarly. In addition, constraints of type cannot-link can
also be defined and enforced similarly using an upperbound threshold.

In Fig. 7, we present the pseudocode of the metadata-constrained co-clustering
with must-link constraints. As in the original algorithm, at each iteration, each
row/column is moved in the row/column cluster that causes the best reduction in
the objective function value. If a row/column is involved in a must-link constraint, the

Fig. 7 Pseudo-code for
metadata-constrained
co-clustering (for simplicity,
this pseudo-code only
considers “must-link”
constraints)
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algorithm choses the best move of all the rows/columns involved in the corresponding
transitive closure along with the selected row/column. Note that after each iteration,
all must-link and, if available cannot-link, constraints are fulfilled.

3.5 Alternative approach III: metadata-injection based co-clustering

So far, we have considered two different ways in which metadata can be considered
during co-clustering. In the first scheme, metadata is used as a guiding principle,
while in the second approach, metadata provides explicit constraints that hold before
and after each iteration of the co-clustering process. In this subsection, we will
consider a third way to integrate metadata information into the co-clustering process:
to combine the initial relationship matrix and the metadata matrix into a single
unified matrix which is then subjected to co-clustering under a KL-divergence based
optimization function. In other words, given the original relationship matrix Rrel and
the metadata matrix Rmeta (assuming that it exists), a new matrix, Rinject = Rrel ⊕ f

Rmeta, is created and the information-theoretical co-cluster algorithm is executed,
unchanged, with input the matrix Rinject. Here, ⊕ f is a matrix combination function,
defined as follows.

Definition 5 (Matrix combination function) Given two domains X = {x1, ...., xm}
and Y = {y1, ..., yn}, the m × n relationship and metadata matrices, Rrel and Rmeta,
the combination function, ⊕ f , is such that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

rinject
ij = f

(
rrel

ij , rmeta
ij

)
,

for a monotonic combination function f ().

In general, f () can be any monotonic function. Hanisch et al. (2002), for example,
combine information from gene expression data and biological networks using a
domain specific distance function. In this paper, we consider more general combi-
nation functions, including min(), max(), sum(), average(), and product(). The min()

function, for example, takes a conservative view on the correspondences between row
and column elements. When rrel

ij and rmeta
ij are interpreted as joint probabilities, the

product() function also takes a conservative meaning (where the correspondence
between xi and y j holds if it holds under both original relationship and metadata
matrices). The max() and sum() functions on the other hand are more optimistic
in nature; max() for example assumes that the stronger correspondence implied by
one of the two matrices holds. Note that f () can also impose explicit, user provided,
weights to the two information sources (Candan and Li 2001).

4 Comparison of the three metadata supported co-clustering approaches

Since the aim of this work is to evaluate and compare different mechanisms for
leveraging metadata in co-clustering process, in this section we first provide an appli-
cation within which we can study the impact of the alternative approaches.
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Fig. 8 Evaluation setting: X
and Y are two sets of concepts,
the relationship matrix is
obtained using the analysis of
a document corpus D, and two
taxonomies, H(X) and H(Y)

are provided as metadata

X

Y Y1

CX1

CX2

CX3

CC Y2 CY3

H(X) H(Y)

D

4.1 Application: co-clustering-based concept alignment

Let us consider two domains of concepts X and Y and let us assume that we would
like to measure the similarities between these concepts based on their co-occurrences
in a given document corpus, D, and (co-)cluster them based on these similarities.
Let us also assume that we are given two taxonomies, HX(X, EX) and HY(Y, EY),
representing the background knowledge related to these two domains. Therefore, we
can leverage these metadata to contextualize the co-clustering process (Fig. 8).

In our evaluation, we use different sets of geographic concepts (each with average
180 concepts) as the X and Y domains. As the document corpus, D, we use the
300,000 newspaper articles from the New York Times collection,1 with over 100,000
unique keywords. The geographic domain taxonomies, HX(X, EX) and HY(Y, EY),
are extracted from the DMOZ2 open directory categorization and have an average
depth of 5 and a branching factor of 3.75. Here, the co-occurrences in the corpus is
the primary information source, whereas the domain specific metadata (geographic
knowledge) provides the secondary, contextual knowledge (Fig. 8). Next we describe
how these information are encoded for metadata supported co-clustering.

4.1.1 Encoding of the relationship matrix

We encode the first of these, the co-occurences in the corpus, in the form of a rela-
tionship matrix Rrel: i.e, each element rrel

ij is equal to the number of documents in D
that contain both concepts xi and y j.

4.1.2 Encoding of the row- and column-metadata matrices

Given a domain hierarchy, HX or HY , the closeness among the elements in the do-
main, X or Y, can be measured in various ways. Approaches, such as Valtchev and
Euzenat (1997), compute dissimilarities between nodes in a given hierarchy using a
(weighted) count of edges between the nodes or the average distance from a common
ancestor. CP/CV technique, proposed by Kim and Candan (2006), on the other hand

1http://archive.ics.uci.edu/ml/datasets/Bag+of+Words.
2http://www.dmoz.org

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://www.dmoz.org
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uses a spreading-activation based approach to annotate concept nodes with concept-
vectors, which can then be used to measure concept-to-concept similarities. More
specifically, authors introduce a concept propagation (CP) scheme, which relies on
the structural relationships between concepts implied by the hierarchy, to annotate
each concept-node with a concept-vector (CV). Figure 9 provides an example: here,
each concept in the taxonomy fragment (containing nine concept nodes) is mapped
into a 9-dimensional vector. For example, the root is represented by the vector in
which the first component (the one associated to the concept “world”), dominates
over the others that contribute to the definition of the concepts. The second,
third and fourth components reflect the weight of “Asia”, “Africa” and “America”
respectively in the semantic characterization of “world”, while the remaining com-
ponents represent the weights of the three descendants of “Asia” and of the two
descendants of “America”. Relying on data from user studies, Kim and Candan
(2006) showed that semantic similarities of the concepts can be computed using the
cosine similarities of the concept vectors and that such similarity measurements are
often in line with human judgments. Therefore, without loss of generality, we rely on
the CP/CV technique to construct the row- and column-metadata matrices (Rrow,meta

and Rcol,meta) by measuring intra-taxonomy concept similarities.

4.1.3 Encoding of the joint metadata matrix

Unlike the metadata-driven and metadata-constrained algorithms (which require row-
and column-metadata matrices that capture intra-domain relationships between the
concepts), the metadata injection requires a joint metadata matrix that captures the a
priori knowledge of inter-domain relationships among the concepts. Moreover, while
the original relationship matrix captures co-occurrences, the joint metadata matrix
needs to capture the similarities between the domain elements in terms of the domain
taxonomies.

world Asia Africa America Afgh. Iraq China Canada US
cvworld 0.450 0.169 0.141 0.158 0.018 0.018 0.018 0.021 0.021
cvAsia 0.052 0.469 0.006 0.006 0.156 0.156 0.156 0.0003 0.0003
cvAfrica 0.100 0.012 0.873 0.012 0.0006 0.0006 0.0006 0.0007 0.0007
cvAmerica 0.057 0.007 0.007 0.520 0.0003 0.0003 0.0003 0.204 0.204
cvAfgh. 0.004 0.100 0.0002 0.0002 0.872 0.012 0.012 0 0
cvIraq 0.004 0.100 0.0002 0.0002 0.012 0.872 0.012 0 0
cvChina 0.004 0.100 0.0002 0.0002 0.012 0.012 0.872 0 0
cvCanada 0.006 0.0003 0.0003 0.165 0 0 0 0.806 0.023
cvUS 0.006 0.0003 0.0003 0.165 0 0 0 0.023 0.806

Fig. 9 The concept vectors identified for the taxonomy on the left hand side (example taken from
Cataldi et al. 2009)
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In this paper, the joint metadata matrix is created by combining information
coming from the row- and column-metadata matrices introduced in Section 4.1.2.
The idea of this approach is that the relationship between two concepts coming from
two different taxonomies can be expressed by combining the corresponding CP/CV
vectors. More specifically, the joint metadata matrix Rmeta is computed as follow:

Rmeta = Rrow,meta × U × Rcol,meta

where the central matrix U is constructed as follows:

uij =
{

1 if xi ∈ X and y j ∈ Y represent geographical concepts with the same label,
0 otherwise.

Let us assume that B is a concept shared between row and column metadata.
Then, if Rrow,meta relates row-concept A to row-concept B and if Rcol,meta relates the
column-concept B to column-concept C, the combined Rmeta matrix will capture this
indirect relationship between row-concept A and column-concept C.

4.1.4 Encoding of the must-link constraints

As introduced in Section 3.4, row/column must-link constraints are computed starting
from row/column vectors of the corresponding metadata matrices. In this paper
row/column vectors are represented by the CP/CV vectors (see Section 4.1.2), thus
we define a set of must-link constraints by considering the cosine similarity as
similarity function:

MLX = {
(xi, x j) ∈ X × X | i �= j ∧ cos

(
cv(xi), cv(x j)

)
> θ

}

where cv(k) represents the CP/CV vector of the concept k in the given taxonomy.
The must-link set MLY , is similarly defined for column vectors. Table 1 reports

information about row and column constraints in the scenario depicted in Section 4.1.
Since the metadata-constrained algorithm leverages must-links by using the corre-
sponding set of transitive closures T RX and T RY , Table 1 reports also information
about that. As can be seen, the number of must-link constraints increases when the
threshold value θ decreases, while the number of transitive closure increases until
a specific value of θ and decreases when the threshold value causes the creation of
closures containing an high number of concepts.

Table 1 Number of row and
column constraints with
different values of the
threshold θ

θ # Row # Row trans. # Column # Column trans.
constr. closures constr. closures

0.9 0 0 0 0
0.8 12 12 15 15
0.7 12 12 15 15
0.6 33 23 34 25
0.5 36 23 37 23
0.4 66 31 55 28
0.3 93 35 82 33
0.2 106 32 101 24
0.1 185 1 175 1
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4.2 Evaluation metrics

We compare alternative approaches to metadata-supported co-clustering using the
following quality and cost measures:

– Information theoretical objective function (KL-divergence) on the relationship
matrix measures the impact of the main co-occurrence data (see Section 2.2).
The smaller the KL-divergence value is the better the resulting clusters are with
respect to the input relationship matrix.

– Row- and column-metadata similarities and the average metadata variance of
the co-clusters measure how much the resulting co-clusters respect the metadata
(see Section 3.2). For each row and column cluster, the agreement with the
metadata is measured using the average distance to the common ancestor in the
corresponding taxonomy; i.e., if x̂g is a row or column cluster,

�(
x̂g

) =
∑

x1,x2∈x̂g
d
(
x1, ca(x1, x2)

) + d
(
x2, ca(x1, x2)

)

|x̂g||x̂g| ,

where ca(x1, x2) is the closest common ancestor of x1 and x2 in the taxonomy,
then a small �(x̂g) indicates co-clustering which respects the metadata.

– Execution time and the number of moves needed to complete the co-clustering
process measure the efficiency of a given algorithm.

Note that the first two measures, KL-divergence and metadata-variance, are often
in conflict with each other: without any metadata, co-clustering algorithms can more
easily reduce the KL-divergence, but the results would not reflect the background
knowledge provided by the metadata. Therefore, in addition to reporting the
KL-divergence and metadata-variance values individually, we also report a score
(Aslandogan et al. 1995) that combines the KL-divergence and metadata based
performances of the algorithms:

Fβ =
(
1 + β2

) ∗ (
KL_per f ∗ metadata_per f

)

(
β2 ∗ KL_per f + metadata_per f

)

Here, higher β value indicates more emphasis on metadata and lower β value
indicates less emphasis on metadata (β = 1 indicates equal emphasis). Note that, the
higher the Fβ score of a given algorithm is, the better are its combined KL-divergence
and metadata-variance behavior.

In order to improve charts’ readability, input data have been normalized with re-
spect to the reference values KL_per fdefault and metadata_per fdefault, corresponding
to the performances of the default, no-metadata approach:

KL_per fnormalized = 1 − KL_per f
α ∗ KL_per fdefault

and

metadata_per fnormalized = 1 − metadata_per f
α ∗ metadata_per fdefault

In these experiments, we use α = 2.5; thus, in the Fβ charts, the default no-
metadata approach appears as a fixed horizontal line with height 0.6.
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4.3 Discussion of the results

For each of the three approaches experimented within this paper, we varied the
corresponding parameters to observe their impacts on the results. For the metadata-
driven algorithm presented in Section 3.3, we varied c; i.e., the number of top
information theoretical alternatives considered for metadata optimization (default
is c = ∞; i.e., no limit on the number of alternatives). For the metadata-constrained
algorithm presented in Section 3.4, we varied the similarity threshold, θ , (default is
θ = 0.2). For metadata-injection algorithm in Section 3.5, we varied the underlying
combination functions (default is the sum() function).

4.3.1 Main results

In Fig. 10a, we compare the KL-divergence based objective function and metadata
variance for the alternative approaches, for 30 and 40 target row and column clusters.
In this scatter-plot, we can note that the differences in the number of clusters do not
affect the relative behaviors of the algorithms. As expected, all the metadata-based
algorithms help reduce metadata variance of co-clusters, with the metadata-
constrained one providing the highest reduction. However, in the case of metadata-
constrained and metadata-injection based algorithms, this reduction comes with a

(a) KL-divergence vs. metadata-variance scatter-plot

metadataKL-divergence metadataKL-divergence

(b) Fβ plot for 30 clusters (c) Fβ  plot for 40 clusters

Fig. 10 KL-divergence vs. metadata variance for different algorithms
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relatively significant increase in KL-distances with respect to the case where no
metadata is considered.

Figure 10b and c plot the same results in terms of the combined Fβ values
for different β weights (from KL-divergence being 100 times more important to
metadata-variance being 100 times more important):

– A key observation here is that there is no single β value for which no metadata
approach is more desirable; for all β values in this range, the metadata-driven
strategy provides a better combined score.

– A second observation is that metadata-constrained and metadata-injection based
schemes become more attractive only when the importance of metadata becomes
more dominant. In particular, metadata-injection becomes the most effective
approach quickly when the importance of metadata exceeds the importance of
the relationship matrix, while the metadata-constrained approach becomes more
desirable, when the metadata is significantly (> 10×) more important than the
relationship matrix.

Note that since metadata is inherently secondary to the relationship matrix, these
results indicate that (unless there is a strong reason to impose respect to the
metadata) the metadata-driven approach is the most effective approach among all
alternatives (including ignoring the metadata). This is because, as shown in Fig. 10a,
the metadata-driven scheme not only reduced the metadata variance, but also the
KL-divergence; and this indicates that when handled properly, consideration of
background knowledge (i.e., the metadata) can help improve co-clustering results.

In terms of the execution time (Fig. 11), the metadata-constrained scheme, which
has to compute constraints to be imposed, and the metadata-driven scheme, which
has to recompute centroids, observe the biggest jumps. In contrast, the metadata-
injected scheme shows a more similar execution time respect to the original co-
clustering algorithm. In terms of moves, the metadata-driven scheme (which is able
to optimize both KL-distance and metadata variance) sees the highest jump. The
number of moves for metadata-injection is only slightly higher than the base scheme
which does not use metadata, while the metadata-constrained scheme represents an
halfway point.

4.3.2 Impact of the number of candidates (c) on metadata-driven co-clustering

Figure 12a shows the impact of increasing the number of alternatives considered
by the metadata-driven co-clustering scheme. As can be seen here, while increasing
the number of candidates initially helps in terms of metadata variance, after a
while the benefits wore off. One interesting aspect to note is that just adding one
more alternative (i.e., considering the top-2 candidates instead of the top-most one)

Fig. 11 Overview of the
execution time comparison
between different algorithms

Time (sec)
#cl. w/o meta. m.-driven m.-injected m.-const.
30 1.79 2.70 2.02 8.85
40 3.84 6.01 4.44 20.37

Moves
#cl. w/o meta. m.-driven m.-injected m.-const.
30 298.6 444.5 306.2 349.2
40 277.7 445.0 288.1 317.4
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metadataKL-divergence

(a) (b)

Time (sec)
#cl. w/o meta. (c = 1) c = 2 c = 5 c = 9 no limit
30 1.79 2.24 2.35 2.53 2.70

Moves
#cl. w/o meta. (c = 1) c = 2 c = 5 c = 9 no limit
30 298.6 329.3 386.7 417.9 444.5

(c) Complexity

Fig. 12 Impact of the number of candidates (c) on metadata-driven co-clustering

is sufficient in helping reduce the KL-distance (which is an information theoretic
measure not directly optimized by the metadata).

Figure 12b confirms this behavior: as can be seen here, while considering more
than one candidate is sufficient in obtaining significantly better performance than
no-metadata case; moreover, for high values of β, the best result is obtained when
c = 7 is imposed on the alternatives. As can be seen in Fig. 12a, the KL-divergence
value does not differ (except for c = 3) when the number of considered candidates
are limited (c = 2, 5, 7, 9), while c = 7, 9,∞ provide the best results for metadata
variance.

Figure 12c shows that the use of metadata increases the number of moves
needed to converge on a result proportionally with the increase of the number of
candidates, which may partially explain why the KL-divergence itself improves when
using metadata. This, however, cannot be the only factor, because, as one would
intuitively expect, the co-occurrences in the document corpus is related with the
spatial relationships between the geographic concepts captured by the metadata.

4.3.3 Impact of the similarity threshold (θ) on metadata-constrained co-clustering

Figure 13a shows the impact of varying the underlying parameter for the metadata-
constrained co-clustering. The drop in metadata-variance increases when the similar-
ity threshold considered for the creation of the constraints is relaxed (i.e., when the
number of constraints is increased): the value of θ = 0.2 provides the best results for
what concerns the metadata variance. Moreover, the KL-divergence value increases
when the value of θ decreases, with a significant change for θ = 0.2. This behavior is
paralleled by the execution time and number of moves results reported in Fig. 13c:
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metadataKL-divergence

(a) (b)

Time (sec)
#cl. w/o meta. cos( ) = 0.9 cos( ) = 0.6 cos( ) = 0.3
30 1.79 2.04 2.91 4.36

Moves
#cl. w/o meta. cos( ) = 0.9 cos( ) = 0.6 cos( ) = 0.3
30 298.6 323.4 367.2 379.0

(c) Complexity

θ θ

θ θ

θ

θ

Fig. 13 Impact of the similarity threshold (θ) on metadata-constrained co-clustering

they both increase when the number of constraints increases. Figure 13b shows
that metadata-constraint becomes the most effective approach quickly when the
importance of metadata exceeds the importance of the relationship matrix.

metadataKL-divergence

(a) (b)

Time (sec)
#cl. w/o meta. prod min max sum;avg
30 1.79 1.31 1.98 1.82 2.02

Moves
#cl. w/o meta. prod min max sum;avg
30 298.6 205.7 324.5 307.5 306.2

(c) Complexity

Fig. 14 Impact of the combination function on metadata-injected co-clustering
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Selected concept: India
concept cooccur. sim. geo. sim.
bangalore 0.948 0.488
calcutta 0.9291 0.488
afghanistan 0.5625 3.52E-3
iraq 0.5179 3.52E-3
warsaw 0.402 3.45E-7
vienna 0.3405 6.47E-7
average 0.6167 0.1638

(a) pure cooccurrence based

Selected concept: India
concept cooccur. sim. geo. sim.
bangalore 0.948 0.488
calcutta 0.9291 0.488
burma 0.804 3.52E-3
bombay 0.6323 0.488
north korea 0.6103 6.8E-4
china 0.5821 3.52E-3
taiwan 0.5032 3.52E-3
south korea 0.4669 6.8E-4
average 0.6845 0.1845

(b) Metadata-driven

Fig. 15 Graphical and tabular representations of row-clusters containing the concept India obtained
by pure cooccurrence based and metadata-driven co-clustering

4.3.4 Impact of the combination function on metadata-injection based co-clustering

Experiments with different combination functions confirm that metadata-injection
always provides a descrease in metadata variance and an increase in KL-divergence

Selected concept: India
concept cooccur. sim. geo. sim.
bangalore 0.948 0.488
calcutta 0.9291 0.488
bombay 0.6323 0.488
north korea 0.6103 6.8E-4
south korea 0.4669 6.8E-4
korea 0.4097 2.82E-3
average 0.666 0.2447

(a) Metadata-injection

Selected concept: India
concept cooccur. sim. geo. sim.
bangalore 0.948 0.488
calcutta 0.9291 0.488
burma 0.804 3.52E-3
bombay 0.6323 0.488
average 0.8283 0.3669

(b) Metadata-constrained

Fig. 16 Graphical and tabular representations of row-clusters containing the concept India obtained
by pure metadata-injection and metadata-constrained co-clustering
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Selected concept: Mexico City
concept cooccur. sim. geo. sim.
cancun 0.8313 0.0815
mexico 0.7666 0.4878
veracruz 0.7032 0.0815
argentina 0.4155 2.82E-6
chile 0.3806 2.85E-6
cuba 0.3705 7.78E-4
buenos aires 0.3382 2E-8
santiago 0.3292 3.29E-7
la habana 0.2818 1.6E-4
pampas 0.195 1.27E-7
average 0.4612 0.0652

(a) pure cooccurrence based

Selected concept: Mexico City
concept cooccur. sim. geo. sim.
cancun 0.8313 0.0815
mexico 0.7666 0.4878
veracruz 0.7032 0.0815
jamaica 0.5556 1.05E-3
united states 0.4796 8.51E-4
average 0.6673 0.1305

(b) Metadata-driven

Fig. 17 Graphical and tabular representations of row-clusters containing the concept Mexico City
obtained by pure cooccurrence based and metadata-driven co-clustering

value. As shown in Fig. 14a, the highest drop in metadata variance is obtained using
the optimistic (or disjunctive) combination function, max(). This is followed very
closely by the sum() (or equivalently3) avg() combination function. The pessimistic
(or conjunctive) combination functions min() and product() are not competitive in
terms of gain in the metadata-based quality. Moreover, the losses in the information-
theoretical objective function is more evident for product(). Figure 14b confirms

3The matrix is re-normalized after the application of the combination function to ensure that
information-theoretic co-clustering, which treats the values in the matrix as probability distri-
butions, can be applied. Due to this renormalization, the combination function sum() is equiva-
lent to the average() (the two functions would differ for a scaling factor 2, which is absorbed by
re-normalization).
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the fact that, among the different combination functions, the best performance is
obtained by the max() and sum().

Note that, as shown in Fig. 14c, the metadata benefits of the sum() (or avg())
combination function comes with only a modest increase in the number of moves
(indeed, in terms of the execution time, in the experiments, max() based metadata-
injection took slightly more than the base scheme without metadata). Moreover, the
drop in execution times for what concerns product() is reflected to a drop in the
average number of moves.

4.3.5 Sample clusters in the geographical application domain

Finally, in Figs. 15, 16, 17, 18, 19 and 20 we present, sample clustering results obtained
using the different techniques introduced in this paper: these figures provides sample
cases within the application domain to help observe the impact of contextual meta-
data information (the geographical relationships among concepts) used in addition to
the primary co-occurrence data reflecting co-occurrences of the geographic concepts
in a collection of New York Times news articles (note that there are 155 geographic
concepts and the target number of resulting geographic row-clusters is set to 30). In
these figures, we consider three geographic concepts (India, Mexico City, and Rio de
Janeiro) and report the resulting row-clusters that contain each selected concept.
On the map-based graphical representation, the selected concept is connected to
the concepts in its clusters by lines, where the thickness of the line represents the

Selected concept: Mexico City
concept cooccur. sim. geo. sim.
mexico 0.7666 0.4878
venezuela 0.4287 3.96E-6
colombia 0.4037 2.87E-6
average 0.533 0.1626

(a) Metadata-injection

Selected concept: Mexico City
concept cooccur. sim. geo. sim.
cancun 0.8313 0.0815
mexico 0.7666 0.4878
veracruz 0.7032 0.0815
average 0.7671 0.2169

(b) Metadata-constrained

Fig. 18 Graphical and tabular representations of row-clusters containing the concept Mexico City
obtained by pure metadata-injection and metadata-constrained co-clustering
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Selected concept: Rio de Janeiro
concept cooccur. sim. geo. sim.
sao paulo 0.6528 0.1828
paraguay 0.5763 1.2E-3
argentina 0.5274 8.72E-4
brasil 0.4834 0.6375
buenos aires 0.4629 1.83E-5
chile 0.4455 8.85E-4
santiago 0.3765 1.93E-4
south africa 0.3613 2.17E-8
pampas 0.3246 7.86E-5
johannesburg 0.3213 4.63E-10
patagonia 0.3071 1.03E-4
cape town 0.2742 4.63E-10
siberia 0.2722 2.06E-9
pretoria 0.2192 4.63E-10
average 0.4003 0.0588

(a) pure cooccurrence based

Selected concept: Rio de Janeiro
concept cooccur. sim. geo. sim.
sao paulo 0.6528 0.1828
montevideo 0.5947 1.2E-3
paraguay 0.5763 1.2E-3
argentina 0.5274 8.72E-4
brasil 0.4834 0.6375
south america 0.476 0.0915
buenos aires 0.4629 1.83E-5
peru 0.4459 8.96E-4
chile 0.4455 8.85E-4
ecuador 0.4307 1.2E-3
colombia 0.4293 8.85E-4
venezuela 0.4261 1.2E-3
santiago 0.3765 1.93E-4
south africa 0.3613 2.17E-8
bogota 0.3443 1.03E-4
johannesburg 0.3213 4.63E-10
patagonia 0.3071 1.03E-4
cuzco 0.2791 6.31E-5
cartagena 0.2784 1.03E-4
cape town 0.2742 4.63E-10
machu picchu 0.2626 6.31E-5
pretoria 0.2192 4.63E-10
average 0.408 0.0419

(b) Metadata-driven

Fig. 19 Graphical and tabular representations of row-clusters containing the concept Rio de Janeiro
obtained by pure cooccurrence based and metadata-driven co-clustering

strength of co-occurrence similarity between the connected concepts (i.e. cosine
similarity between the cooccurrences row-vectors) in the co-occurrence relationship
matrix, indicating that the two concepts co-occur with similar concepts in the article
collection. The tables on the right side, on the other hand, report these co-occurrence
similarity scores as well as the geographical similarity values (obtained using the
metadata) between the selected concept and the other concepts in the cluster.

As these sample results show, when metadata is used, row-clusters are more
geographically sound. As expected, the metadata-constrained approach provides the
geographically tightest clusters. Metadata-driven and metadata-injected approaches
provide results that are in between the two extremes of no-metadata and metadata-
contrained schemes. This is also quantitatively verified in Table 2 which reports that
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Selected concept: Rio de Janeiro
concept cooccur. sim. geo. sim.
sao paulo 0.6528 0.1828
montevideo 0.5947 1.2E-3
paraguay 0.5763 1.2E-3
brasil 0.4834 0.6375
south america 0.476 0.0915
ecuador 0.4307 1.2E-3
venezuela 0.4261 1.2E-3
cuba 0.3512 4.99E-6
bahamas 0.297 6.93E-6
la habana 0.2167 5.54E-7
average 0.4505 0.0917

(a) Metadata-injection

Selected concept: Rio de Janeiro
concept cooccur. sim. geo. sim.
sao paulo 0.6528 0.1828
montevideo 0.5947 1.2E-3
paraguay 0.5763 1.2E-3
argentina 0.5274 8.72E-4
brasil 0.4834 0.6375
buenos aires 0.4629 1.83E-5
chile 0.4455 8.85E-4
ecuador 0.4307 1.2E-3
santiago 0.3765 1.93E-4
pampas 0.3246 7.86E-5
patagonia 0.3071 1.03E-4
average 0.4711 0.0751

(b) Metadata-constrained

Fig. 20 Graphical and tabular representations of row-clusters containing the concept Rio de Janeiro
obtained by pure metadata-injection and metadata-constrained co-clustering

the average distance to the closest common geographical ancestor (see Section 4.2)
in the input geographical taxonomy is largest when no metadata information is used
and drops to its minimum in the case of metadata-constrained scheme.

Note that an interesting result in Figs. 15–20 is that when considering the meta-
data, not only the average geographical similarity in the resulting clusters have
improved, but also the co-occurrence similarities have seen improvements. This is
further verified in Table 3a and b: let mean_row_sim(c) be the average co-occurrence
similarity of the concept c to all other concepts in the same row-cluster as c; the table
reports the averages of all mean_row_sim values for all concepts for different co-
clustering techniques. As can be seen in this table, for both 30 and 40 target row
cluster cases, the averages improve when metadata is used in co-clustering and they
are highest for the metadata constrained co-clustering strategy. This reflects the fact
that (as one would expect) co-occurrences in the news articles are correlated with
the geographical relationships between the geographical concepts and, if selected

Table 2 Average
(row-)cluster common
ancestor distances for different
numbers of clusters

#cl. W/o meta. M.-driven M.-injected M.-const.

10 4.41 3.42 3.74 3.03
20 3.23 2.43 2.43 2.01
30 2.38 1.99 1.72 1.47
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Table 3 Average value and standard deviation of co-occurrence similarities in the different
approaches

W/o metadata M.-driven M.-injected M.-constrained

(a) Row clusters: 30
Average 0.4875 0.5047 0.5137 0.5412
Standard dev. 0.1420 0.1386 0.1061 0.1177

(b) Row clusters: 40
Average 0.5144 0.5286 0.5503 0.5792
Standard dev. 0.1502 0.1485 0.1132 0.1244

carefully, contextual metadata may in fact help improve the qualities of the resulting
clusters also based on the primary dominant relationship (in this case co-occurrence)
as well.

5 Conclusions

In this paper, we proposed and evaluated three alternative strategies (namely
metadata-driven, metadata-constrained, and metadata-injected co-clustering) for en-
riching the co-clustering process with metadata about the rows and columns of
the given relationship matrix. Experimentals show that it is possible to leverage
available metadata in obtaining contextually-relevant co-clusters. In particular, while
the metadata-constrained approach provides biggest gains in terms of metadata-
preservation, this comes with a relatively high loss in information theoretic objective
function. The metadata-injected co-clustering scheme provides a reasonable trade-
off between preservation of the information theoretic co-clustering quality and
enforcement of structures implied by the available metadata especially in scenarios
in which there is the need to consider the metadata information more important
with respect to the objective function value. In general, the metadata-driven scheme
represents a good choice in all scenarios, since it improves both metadata and
information theoretic objective functions and it always outperforms the original co-
clustering algorithm.
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