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Asbestos is a naturally occurring fibrous silicate, whose inhalation is
highly related to the risk of developing malignant mesothelioma
(MM), and crocidolite is one of its most oncogenic types. The
mechanism by which asbestos may cause MM is unclear. We have
previously observed that crocidolite in human MM (HMM) cells
induces NF-kB activation and stimulates the synthesis of nitric oxide
by inhibiting the RhoA signaling pathway. In primary human meso-
thelial cells (HMCs) and HMM cells exposed to crocidolite asbestos,
coincubated or not with antioxidants, we evaluated cytotoxicity and
oxidative stress induction (lipid peroxidation) and the effect of
asbestos on the RhoA signaling pathway (RhoA GTP binding, Rho
kinase activity, RhoA prenylation, hydroxy-3-methylglutharyl-CoA
reductase activity). In this paper we show that the reactive oxygen
species generated by the incubation of crocidolite with primary HMCs
and three HMM cell lines mediate the inhibition of 3-hydroxy-3-
methylglutharyl-CoA reductase (HMGCR). The coincubation of HMCs
and HMM cells with crocidolite together with antioxidants, such as
Tempol, Mn-porphyrin, and the association of superoxide dismutase
and catalase, prevented the cytotoxicity and lipoperoxidation caused
by crocidolite alone as well as the decrease of HMGCR activity and
restored the RhoA/RhoA-dependent kinase activity and the RhoA
prenylation. The same effect was observed when the oxidizing agent
menadione was administrated to the cells in place of crocidolite. Such
a mechanism could at least partly explain the effects exerted by
crocidolite fibers in mesothelial cells.
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Exposure to asbestos is associated with pulmonary fibrosis and
tumor diseases such as lung cancer and malignant mesothelioma
(MM). Asbestos is a generic term indicating a group of fibrous
minerals that can be subdivided into two major groups: amphiboles
and serpentine (1). The amphibole fibers include crocidolite, which
is often considered the most oncogenic type of asbestos (2).
Although a causative linkage between asbestos exposure and lung
diseases has been well established epidemiologically, the molecu-
lar mechanisms by which crocidolite or other asbestos forms induce
these pathologies are poorly understood. However, accumulating
evidence has established that reactive oxygen species (ROS) and
reactive nitrogen species are important second messengers of

asbestos toxicity (3, 4). The mechanisms responsible for asbestos-
induced free radical generation are in part caused by reactions
occurring at the surface of mineral dusts, by the activation of
alveolar macrophages or neutrophils attempting to take up the
fibers, and by the mitochondrial dysfunction in target cells (5).
Furthermore, we have previously observed that crocidolite inhibits
the pentose phosphate oxidative pathway and glucose 6-phosphate
dehydrogenase activity in human lung epithelial cells (6), providing
a further reason for ROS generation (i.e., a decrease of one of the
main antioxidant pathways of the cell). Asbestos, by stimulating
ROS production, may modulate different redox-sensitive signaling
pathways, such as NF-kB and activating protein-1 (7).

In human MM (HMM) cells, we have previously demonstrated
that crocidolite exposure down-regulates the ability of the small G
protein RhoA (Ras homologous small GTPase A) to bind GTP and
the RhoA-dependent kinase (ROCK) activity. In that work, we
correlated the crocidolite-induced RhoA inhibition with the acti-
vation of the IkB (inhibitor kB) a kinase and the Akt/PKB (protein
kinase B) signaling pathway, thus leading to NF-kB translocation
and to nitric oxide (NO) radical generation (8). Because mevalo-
nate, the product of the 3-hydroxy-3-methylglutaryl-coenzyme A
reductase (HMGCR), reversed all the effects of crocidolite except
the crocidolite-induced accumulation of the products of lipid
peroxidation (8), we assumed that the inhibition was dependent
on an oxidative impairment at the level of the rate-limiting enzyme
HMGCR or of an upstream step, but we did not provide an
explanation for the mechanism.

HMGCR is sensitive to redox regulation, although the data
concerning this enzyme are few. It has been shown that each of
the four identical subunits of Pseudomonas mevalonii HMGCR
contains two cysteine residues (cys156 and cys296), both of which
are accessible to modification by oxidant reagents (9). Rat liver
microsomal HMGCR has been demonstrated to be extremely
sensitive to oxidative inactivation, which involves the formation
of an intramolecular S-S disulfide bond inactivating the enzyme
(10, 11).

We investigated whether, in human mesothelial cells (HMCs)
and MM cells, the crocidolite-induced RhoA inhibition might be
ascribed to the increased generation of ROS and to the sub-
sequent oxidative inhibition of HMGCR, thus adding a new
possible link between the oxidative stress evoked by asbestos
exposure and the development of MM.

CLINICAL RELEVANCE

Antioxidant prevention of crocidolite asbestos-mediated re-
active oxygen species production, by restoring RhoA preny-
lation, is important not only in controlling asbestos oxidative
stress but also should be related to the cellular transformation
into a malignant mesothelioma.
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MATERIALS AND METHODS

FBS and HAM’S F-12 nutrient mixture medium were supplied by
BioWhittaker (Verviers, Belgium). Plasticware for cell culture was from
Falcon (Becton Dickinson, Bedford, MA). Electrophoresis reagents were
obtained from Bio-Rad Laboratories (Hercules, CA). The protein content
was assessed with the BCA kit from Pierce (Rockford, IL). Mn-porphyrin
[manganese(III)meso-tetra-(4-N-methylpyridinium)porphyrin] and other
reagents, when not otherwise specified, were purchased from Sigma
Chemical Co. (St. Louis, MO).

Cells

Primary HMCs and HMM cell lines MM98, OC99, and GF99 were obtained
from the biobank of the Hospital of Alessandria (Pathology Unit). HMCs
were isolated from three patients with no history of malignant disease.
HMM cell lines were obtained from the pleural effusions of three patients
with histologically confirmed MM, as previously described (12).

Asbestos Fibers

UICC (Union International Contre le Cancer) crocidolite fibers were
sonicated (100 W, 30 s) (Labsonic Sonicator; Sartorius Stedim Biotech
S.A., Aubagne, France) before incubation with cell cultures to dissociate
fiber bundles and allow better suspension in the culture medium. The
involvement of endotoxins, known contaminants of many particulates,
was ruled out by coincubating the endotoxin inhibitor polymixin B
(10 mg/ml) on cell cultures with crocidolite; no change in asbestos-related
effects was observed in the presence of polymixin B (data not shown).

Extracellular Lactate Dehydrogenase Activity

Lactate dehydrogenase (LDH) activity was measured in the extracel-
lular medium and in the cell lysate as previously described (14).

Measurement of Lipid Peroxidation by 8-Isoprostane Assay

The levels of free 8-epi-PGF2a were measured using an enzyme
immunoassay kit (Cayman Chemical, Ann Arbor, MI) (15). Briefly,
50 ml of standard or culture supernatant samples were placed in a 96-well
plate precoated with mouse monoclonal antibody after purification. The
absorbance of plates was read at 412 nm, and the 8-epi-PGF2a levels
were calculated according to a calibration curve.

RhoA-GTP Binding Assay

Rho-GTP binding activity was measured using the G-LISA Kit
(Cytoskeleton, tebu-bio, Milan, Italy) as previously described (8).

ROCK Assay

ROCK activity was measured as previously described (8).

Analysis of RhoA Prenylation

Cells were separated, and proteins were analyzed by Western blotting
as previously described (8). As control for equal loading of samples, the
expression of actin (Santa Cruz Biotechnology, Santa Cruz, CA) in
whole lysate and the content of porin (Calbiochem, San Diego, CA) in
detergent-rich fractions were analyzed.

Measurement of HMGCR Activity

The HMGCR activity was assayed according to Philipp and colleagues
(16), with modifications as previously described (17). Cell lysates and
microsomal fractions were supplemented with 10 mM dithiothreitol.
HMGCR activity was expressed as nmol HMG-CoA/mg cell proteins.

Immunofluorescence Microscopy

Cells were seeded on glass coverslips and loaded with the actin phalloidin-
tetramethylrhodamine B isothiocyanate and the nuclear 49,6-diamidino-
2-phenylindole dihydrochloride dye and examined with a DC100 Leica
fluorescence microscope (Leica Microsystems Srl, Milan, Italy).

Statistical Analysis

All data in the text and figures are provided as means 6 SEM. The results
were analyzed by a one-way ANOVA and Tukey’s test (SPSS 11.0 for
Windows; SPSS Inc., Chicago, IL). P , 0.05 was considered significant.

RESULTS

The increase of Crocidolite-Induced LDH Leakage and Lipid

Peroxidation (as 8-Isoprostane Detection) Is Prevented

by Coincubation with Antioxidants

On the basis of previously published results (8, 13) and of the
relative toxicity exerted by crocidolite, we incubated HMM
cells with 25 mg/cm2 and HMCs with 10 mg/cm2 crocidolite for
24 hours as the most effective dose and time conditions. These
concentrations of asbestos did not exert significant toxic effects
(, 20% cell deaths) after a 24-hour incubation. HMCs were
more sensitive than HMM cells to the crocidolite toxic effects.

After a 24-hour incubation with crocidolite, HMCs (Figure 1A
and 2A) and HMM cells (Figure 1B and 2B) showed increased
release of LDH (Figure 1) and augmented production of 8-
isoprostane (Figure 2), used respectively as indexes of cytotoxicity
and oxidative stress. These crocidolite effects were significantly

Figure 1. Effect of crocidolite and antioxidants on lactate dehydroge-
nase (LDH) leakage in human mesothelial cells (HMCs) (A) and in human

malignant mesothelioma (HMM) cells (B). The cells were incubated for

24 hours in the absence (CTRL) or presence of the following compounds,

alone or in different combinations: crocidolite fibers (CRO, 10 mg/cm2 in
HMCs or 25 mg/cm2 in HMM cells), Tempol (TEMP, 200 mM), Mn-

porphyrin (MnP, 20 mM), superoxide dismutase (SOD, 100 U/ml)/

catalase (CAT, 1,000 U/ml), and menadione (MEN, 10 mM). Cells were

then washed, detached, and checked for LDH activity in HMCs (A) and
HMM cells (B). (A) Data are presented as means 6 SEM (n 5 6). Vs.

CTRL: *P , 0.001. Vs. CRO: diamond, P , 0.001. Vs. MEN: square, P ,

0.001. (B) Data are presented as means 6 SEM (n 5 9; i.e., three for
each HMM cell line). Vs. CTRL: *P , 0.001; **P , 0.0001. Vs. CRO:

diamond, P , 0.001. Vs. MEN: square, P , 0.005.

626 AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY VOL 45 2011



reversed in HMCs and HMM cells when they were incubated with
the antioxidant agents Tempol (Sigma Chemical Co., St. Louis,
MO), Mn-porphyrin (MnP), or the association superoxide dismu-
tase/catalase (SOD/CAT) (Figures 1 and 2). A 24-hour incubation
of the cells with menadione, used as a positive control of oxidative
stress, induced LDH leakage and lipoperoxidation, which were
prevented by the coincubation with antioxidants (Figures 1 and 2).

The Crocidolite-Induced Inhibition of RhoA Is Prevented

by Antioxidants

GTP-bound RhoA can be used as an index of RhoA prenylation
and activation (18). In HMCs (Figure 3A) and HMM cells (Figure
3B), a 24-hour incubation with crocidolite fibers markedly
lowered the level of GTP-bound RhoA (Figures 3A and 3B), as
we had previousy demonstrated in HMM cells (8). This effect was
significantly prevented when crocidolite-treated cells were in-
cubated with antioxidants, which per se did not modify the
amount of GTP-bound RhoA (Figures 3A and 3B). Crocidolite

lowered also the activity of ROCK in HMCs (Figure 4A) and
HMM cells (Figure 4B), and again the antioxidants reversed this
effect (Figures 4A and 4B). The incubation with menadione
significantly inhibited GTP-bound RhoA and ROCK activities,
which were prevented by Tempol coincubation (Figures 3 and 4).

The Crocidolite-Induced Inhibition of RhoA Prenylation

Is Prevented by Antioxidants

A confirmation of RhoA inhibition and its reversion with
antioxidants was assessed by investigating the RhoA prenylation.
After crocidolite exposure, the RhoA prenylated form was sup-

Figure 2. Effect of crocidolite and antioxidants on the production of 8-
isoprostane in HMCs (A) and in HMM cells (B). The cells were incubated

for 24 hours in the absence (CTRL) or presence of the following

compounds, alone or in different combinations: crocidolite fibers (CRO,

10 mg/cm2 in HMCs or 25 mg/cm2 in HMM cells), Tempol (TEMP, 200 mM),
Mn-porphyrin (MnP, 20 mM), superoxide dismutase (SOD, 100 U/ml)/

catalase (CAT, 1,000 U/ml), menadione (MEN, 10 mM). Cells were then

washed, detached and checked for 8-isoprostane production in HMCs

(A) and HMM cells (B). (A) Data are presented as means 6 SEM (n 5 6).
Versus CTRL: *P , 0.001; **P , 0.0001. Vs. CRO: diamond, P , 0.001;

double diamond, P , 0.0001. Vs. MEN: square, P , 0.002. (B) Data are

presented as means 1 SEM (n 5 9; i.e., three for each HMM cell line).
Vs. CTRL: *P , 0.005; **P , 0.0001. Vs. CRO: diamond, P , 0.01;

double diamond, P , 0.001. Vs. MEN: square, P , 0.05.

Figure 3. Effect of crocidolite and antioxidants on RhoA-GTP binding
in HMCs (A) and in HMM cells (B). The cells were cultured for 24 hours

in the absence (CTRL) or presence of the following compounds, alone

or in different combinations: crocidolite fibers (CRO, 10 mg/cm2 in
HMCs or 25 mg/cm2 in HMM cells), Tempol (TEMP, 200 mM),

superoxide dismutase (SOD, 100 U/ml)/catalase (CAT, 1,000 U/ml),

menadione (MEN, 10 mM). Subsequently, cells were lysed and checked

for RhoA-GTP binding in HMCs (A) and HMM cells (B), as described
under MATERIALS AND METHODS. (A) Data are presented as means 6 SEM

(n 5 6). Vs. CTRL: * P , 0.001. Vs. CRO: diamond, P , 0.01; double

diamond, P , 0.001. Vs. MEN: square, P , 0.05. (B) Data are presented

as means 6 SEM (n 5 9; i.e., three for each HMM cell line). Vs. CTRL:
*P , 0.05; **P , 0.001. Vs. CRO: diamond, P , 0.05; double diamond,

P , 0.01. Vs. MEN: square, P , 0.05.
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pressed, while the unprenylated RhoA increased when compared
with the control in HMCs (Figure 5A) and HMM cells (Figure
5B). Tempol and SOD/CAT completely reversed these effects
(Figures 5A and 5B), without changing the expression of total
RhoA (Figures 5A and 5B). Simvastatin was used as a known
inhibitor of RhoA prenylation via HMGCR inhibition. The
incubation with menadione significantly inhibited the RhoA
prenylation, an effect prevented by the coincubation with Tempol
(Figures 5A and 5B).

The Crocidolite-Induced Inhibition of HMGCR Activity

Is Prevented by Antioxidants

To investigate the mechanism by which crocidolite-evoked
ROS production inhibits the RhoA/ROCK pathway, we checked

the activity of HMGCR, the enzyme responsible for the syn-
thesis of isoprenoid molecules and essential for RhoA pre-
nylation. After a 24-hour incubation with crocidolite, HMCs
(Figure 6A) and HMM cells (Figure 6B) showed a significant
decrease of HMGCR activity, whereas this event was completely
prevented in the presence of antioxidants (Figures 6A and 6B).
The incubation with menadione significantly inhibited the
HMGCR activity, an effect prevented in the presence of Tempol
(Figures 6A and 6B). Simvastatin, used as a known inhibitor of
HMGCR activity, significantly inhibited HMGCR activity (Fig-
ures 6A and 6B).

The RhoA Inhibition Involves another Asbestos-Induced

End Point, the Actin Organization in the Cytoskeleton

One of the most important end points downstream of RhoA
activation concerns changes at the level of the cytoskeleton, in
particular the modifications of actin organization. In the same
experimental conditions shown above, we evaluated the actin
alterations in fluorescently labeled cells. In HMM cells, crocid-

Figure 4. Effect of crocidolite and antioxidants on ROCK activity in HMCs

(A) and in HMM cells (B). The cells were cultured for 24 hours in the
absence (CTRL) or presence of the following compounds, alone or in

different combinations: crocidolite fibers (CRO, 10 mg/cm2 in HMCs or

25 mg/cm2 inHMMcells), Tempol (TEMP,200 mM), superoxidedismutase

(SOD, 100 U/ml)/catalase (CAT, 1,000 U/ml), menadione (MEN, 10 mM).
Subsequently, cells were lysed and checked for ROCK activity in HMCs (A)

and HMM cells (B), as described under MATERIALS AND METHODS. (A) Data are

presented as means 6 SEM (n 5 6). Vs. CTRL: *P , 0.001. Vs. CRO:

diamond, P , 0.01. Vs. MEN: square, P , 0.02. (B) Data are presented as
means 6 SEM (n 5 9; i.e., three for each HMM cell line). Vs. CTRL: *P ,

0.001. Vs. CRO: diamond, P , 0.01. Vs. MEN: square, P , 0.01.

Figure 5. Effect of crocidolite and antioxidants on RhoA prenylation.

The cells were treated as indicated in Figures 4 and 5 and the samples

processed for TX-114 phase-partitioning. Simvastatin (SIM, 10 mM)

was used as a known inhibitor of RhoA prenylation. Proteins from
whole extracts, detergent-rich phase and aqueous fraction were

analyzed for RhoA content by Western blotting in HMCs (A) and

HMM cells (B). Actin and porin expression was evaluated as loading
control. Blots are representative of a set of three independent exper-

iments for HMCs and HMM cells, giving similar results.
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olite as well as menadione and simvastatin modified the actin
morphology, and this event was reversed by the antioxidant
MnP (Figure 7). We obtained analogous data on HMCs (data

not shown). These results suggest that the crocidolite-induced
RhoA inhibition involves not only the effect on HMGCR but
also on other RhoA-dependent events.

Figure 6. Effect of crocidolite and antioxidants on

HMGCR activity in HMCs (A) and in HMM cells (B).

The cells were cultured for 24 hours in the absence
(CTRL) or presence of the following compounds,

alone or in different combinations: crocidolite fibers

(CRO, 10 mg/cm2 in HMCs or 25 mg/cm2 in HMM
cells), Tempol (TEMP, 200 mM), Mn-porphyrin

(MnP, 10 mM), superoxide dismutase (SOD, 100 U/ml)/

catalase (CAT, 1,000 U/ml), menadione (MEN,

10 mM), simvastatin (SIM, 10 mM). Subsequently,
cells were lysed and checked for HMGCR activity, as

described under MATERIALS AND METHODS. (A) Data are

presented as means 6 SEM (n 5 6). Vs. CTRL: *P ,

0.0001. Vs. CRO: diamond, P , 0.0001. Vs. MEN:
square, P , 0.0001. (B) Data are presented as

means 6 SEM (n 5 6; i.e., two for each HMM cell

line). Vs. CTRL: *P , 0.0001. Vs. CRO: diamond, P ,

0.0001. Vs. MEN: square, P , 0.0001.

Figure 7. Effect of crocidolite and antioxidants on the

actin organization in HMM cells. The cells were cultured

for 24 hours in the absence (CTRL) or presence of the
following compounds, alone or in different combinations:

crocidolite fibers (CRO, 25 mg/cm2), Mn-porphyrin (MnP,

10 mM), menadione (MEN, 10 mM), simvastatin (SIM, 10 mM).

Subsequently, the cells were treated to detect the actin
organization, as described under MATERIALS AND METHODS.

Data are representative of a set of three independent

experiments, giving similar results.
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DISCUSSION

Chronic lung diseases, such as chronic obstructive pulmonary
disease, asbestosis, silicosis, and cancer, are some of the major
disorders induced by enhanced generation of ROS/reactive
nitrogen species, which is strongly involved in the development
of lung cancer (19). Asbestos induces cytotoxicity and apoptosis
in HMCs (20, 21), as well as in other lung cell types (3, 4), and in
such an effect the generation of superoxide and hydroxyl
radicals has been deeply implicated. Some evidence suggests
that cytotoxicity and mutagenesis induced by asbestos fibers are
prevented by antioxidants and radical scavengers (22, 23), such
as in lung epithelial (24, 25) and mesothelial cells (26). For this
reason, we investigated whether ROS generation is involved in
RhoA impairment in primary HMCs and HMM cell lines
exposed to crocidolite.

The coincubation with the antioxidants Tempol, MnP, and
SOD/CAT reversed the onset of crocidolite-induced cytotoxicity
and oxidative stress, respectively, investigated as LDH release and
8-isoprostane production, a sensitive index of membrane lipid
peroxidation. How ROS generation leads to cytotoxicity and
genotoxicity of asbestos and other carcinogenic agents is matter
of investigation, although high ROS levels and persistent oxidative
stress have been recognized as characteristic features of carcinoma
cells in vivo and in vitro (27).

In previous research, we observed that the incubation of
HMM cells with crocidolite is associated with the nuclear trans-
location of the redox-sensitive factor NF-kB and that this
activation involves a crocidolite-mediated RhoA inhibition (8).
Our results suggested that the inhibition was at the level of
HMGCR, the rate-limiting step in isoprenoid molecules synthe-
sis, or at an upstream step, but until now the site and mechanism
of the inhibition was not clear. The data of the present work show
for the first time that crocidolite-induced RhoA/ROCK inhibi-
tion in HMCs and HMM cells is completely reversed by the
coincubation with antioxidants. This complete reversal is detect-
able in terms of RhoA-GTP binding, ROCK activation, and
RhoA prenylation, which is necessary to RhoA-GTP binding.

In our experiments, we caused the ROS increase by using
menadione, a compound that exerts an oxidative stress by
generating superoxide anion through its redox cycling and by
forming a conjugate with glutathione (28): menadione signifi-
cantly increased the oxidative stress, as evidenced by the increase
of LDH release and 8-isoprostane production, and these effects
were completely reversed by coincubation with Tempol or MnP.
Similarly to crocidolite, menadione strongly inhibited RhoA-GTP
binding, ROCK activation, and RhoA prenylation, and all these
events were prevented by coincubation with Tempol. This suggests
that an oxidative stress different from crocidolite exposure can
induce the same pattern of response in HMCs and HMM cells.

The biosynthesis of isoprenoid compounds occurs via
HMGCR, the rate-controlling enzyme in the sterol and nonsterol
isoprenoid biosynthesis pathway, which is strictly regulated by
different mechanisms, including, in bacteria and rats, the redox
cell balance (9–11, 29). Our data provide further evidence for
a similar regulation of HMGCR in humans. In fact, crocidolite
exposure strongly inhibited HMGCR activity, and this effect was
probably strictly related to the asbestos-induced production of
cellular ROS. Indeed, we have demonstrated that the presence of
antioxidants completely restored the enzyme activity.

Moreover, we have demonstrated that, in our experimental
conditions, incubation with crocidolite fibers induces modifica-
tions of actin organization, a RhoA-dependent mechanism, and
that this effect was reversed by the coincubation with antioxi-
dants. This suggests that crocidolite incubation may affect other
RhoA-dependent events besides HMGCR activity.

In conclusion, we propose that crocidolite-elicited ROS
prevent RhoA prenylation by blocking the HMGCR activity
and the subsequent geranylgeranyl pyrophosphate formation,
necessary to the prenylation process, via the oxidation of the
enzyme. The mechanism of such inactivation needs to be
investigated. In this way asbestos, inhibiting RhoA, induces
NF-kB activation and stimulates the synthesis of NO (8).

Although HMCs and HMM cells gave similar results in
response to asbestos, the cytotoxic effect and the oxidative
stress occurred in HMM cells at a higher concentration. In our
opinion, this is in line with the evidence that, once generated,
the HMM cells are more resistant than HMCs to the toxic effect
exerted by crocidolite fibers. This is not the only effect of
asbestos, and the molecular basis of crocidolite-associated
toxicity and carcinogenesis is under investigation, but we have
provided further insight into the complex series of events
leading to asbestos-induced cytotoxicity, assuming that the
crocidolite-mediated ROS production is considered an impor-
tant signaling pathway in the transformation of normal meso-
thelial cells into a malignant mesothelioma.
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