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Background & Aims 

Liver fibrogenesis is sustained by myofibroblast-like cells originating from hepatic stellate 

cells (HSC/MFs), portal fibroblasts or bone marrow-derived cells, including mesenchymal 

stem cells (MSCs). Herein, we investigated the mechanistic role of intracellular generation 

of reactive oxygen species (ROS) and redox-sensitive signal transduction pathways in 

mediating chemotaxis, a critical profibrogenic response for human HSC/MFs and for MSC 

potentially engrafting chronically injured liver. 

Methods 

Intracellular generation of ROS and signal transduction pathways were evaluated by 

integrating morphological and molecular biology techniques. Chemokinesis and 

chemotaxis were evaluated by wound healing assay and modified Boyden’s chamber 

assay, respectively. Additional in vivo evidence was obtained in human specimens from 

HCV-related cirrhosis. 

Results 

Human MSCs and HSC/MFs migrate in response to a panel of polypeptide 

chemoattractants and extracellularly generated superoxide anion. All polypeptides induced 

a NADPH-oxidase-dependent intracellular rise in ROS, resulting in activation of ERK1/2 

and JNK1/2. Moreover, menadione or 2,3-dimethoxy-1,4-naphthoquinone, which generate 

intracellular superoxide anion or hydrogen peroxide, respectively, induced ERK1/2 and 
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JNK1/2 activation and migration. JNK1 activation was predominant for migration as shown 

by specific silencing. Finally, activation of ERK1/2 and JNK1/2 was found in extracts 

obtained from HSC/MFs during the course of an oxidative stress-mediated model of liver 

injury and phosphorylated JNK1/2 isoforms were detected in α-smooth muscle actin-

positive myofibroblasts lining fibrotic septa in human cirrhotic livers. 

Conclusions 

Intracellular generation of ROS, through activation of specific signaling pathways, is a 

critical event for directional migration of HSC/MFs and MSCs. 

Abbreviations 

HSC/MFs, hepatic stellate cells; MSCs, mesenchymal stem cells; ROS, reactive oxygen 

species; ERK1/2, extracellular regulated kinase 1/2; CLDs, chronic liver 

diseases; JNK1/2, c-Jun N-terminal kinase isoforms 1/2; MEN, menadione; DMNQ,2,3-

dimethoxy-1,4-naphtoquinone; MFs, myofibroblast-like cells; EMT, epithelial to 

mesenchymal transition; PDGF, platelet-derived growth factor; MCP-1 or CCL2,monocyte 

chemoattractant protein-1; AT-II, angiotensin II; VEGF, vascular endothelial growth factor;  

α-SMA, smooth muscle actin alpha; CCl4, carbon tetrachloride; rATF2,activating 

transcription factor-2; DCFH-DA, 2′,7′-dichlorodihydrofluorescein diacetate;H2O2, hydrogen 

peroxide; HNE, 4-hydroxynonenal; DAPI, 4,6-diamino-2-phenyilindole;HCV, hepatitis C 

virus; HGF, hepatocyte growth factor; bFGF, basic fibroblast growth factor; SDF-1 or 

CXCL12, stromal cell-derived factor 1; X/XO, xanthine–xanthine oxidase; NsC, non-

silencing siRNA; MEFs, mouse embryo fibroblasts; DPI,diphenylphenylene-iodonium;  

HO-1, heme oxygenase 1 
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Introduction 

Fibrotic progression of chronic liver diseases (CLDs) is sustained by hepatic populations of 

myofibroblast-like cells (MFs) that originate mainly from activation of hepatic stellate cells 

(HSC) and portal (myo)fibroblasts [1], [2], [3], [4] and [5] or, to a lesser extent, through 

epithelial to mesenchymal transition (EMT) of hepatocytes and/or cholangiocytes [3], or 

circulating and bone marrow-derived mesenchymal stem cells (MSCs) or 

fibrocytes [4] and [5] engrafting chronically injured liver. Most of our knowledge derives 

from studies on fully activated, MF-like HSC (HSC/MFs) and their phenotypic responses 

(proliferation, increased synthesis of ECM, and pro-inflammatory mediators, migration, 

contractility) that are initiated and/or sustained by growth factors, chemokines, 

adipokines [1], [2], [3], [4] and [5], reactive oxygen species (ROS), and other mediators [6]. 

Whatever their origin be, MFs ability to migrate towards the site of injury and to align with 

nascent and established fibrotic septa represents a relevant pro-fibrogenic feature which, 

in turn, may be critical in recruiting circulating MSCs and driving their migration once 

differentiated into a MF-like phenotype. Induction of HSC/MFs chemotaxis is stimulated by 

polypeptides overexpressed during CLDs, including platelet-derived growth factor (PDGF), 

monocyte chemoattractant protein-1 (MCP-1 or CCL2) [7], angiotensin II (AT-II) [8], 

vascular-endothelial growth factor (VEGF), angiopoietin-1 [9], and ROS like superoxide 

anion [10] and [11]. PDGF, the best characterized and most potent chemoattractant for 

HSC/MFs, is also active on human MSC in their fibroblast-like and α-SMA-positive 

phenotype [12]. Moreover, chemoattractants operate by activating Ras/ERK signaling, with 

only PDGF being able to activate PI-3 K/c-Akt 

signaling [1], [2],[6], [7], [8], [9], [10], [11] and [12]. 

In this study, we show that all effective stimuli for profibrogenic human HSC/MFs and bone 

marrow-derived fibroblast-like MSCs require, as a common critical step, intracellular 

generation of ROS in order to trigger chemotaxis through a mechanism that involves 

redox-sensitive activation of ERK1/2 and JNK1/2. 

Materials and methods 
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Materials 

Human recombinant growth factors and cytokines were from PeproTech Inc. (Rocky Hill, 

NJ). Monoclonal and polyclonal antibodies against phosphorylated and unphosphorylated 

ERK1/2 or JNK1/2 were from Santa Cruz Biotechnology (Santa Cruz, CA) or Cell 

Signaling Technology (Beverly, MA), respectively. SP600125 and PD98095 were from 

Calbiochem (La Jolla, California, USA). Male adult Wistar rats were from Harlan-Nossan 

(Correnzana, Italy). The enhanced chemiluminescence reagents and nitrocellulose 

membranes (Hybond-C extra) were from Amersham Pharmacia Biotech (Milano, Italy). All 

other reagents were from Sigma Aldrich Spa (Milan, Italy). 

Isolation and culture of hepatic stellate cells and mesenchymal stem 

cells 

Human HSC were isolated and characterized [13] from surgical wedge sections of at least 

three different human livers not suitable for transplantation after obtaining the approval of 

the Human Research Review Committee (University of Florence). HSC were cultured as 

previously described [9] and [11], used between passages 4 and 7 (fully activated 

HSC/MFs), plated to obtain the desired sub-confluence level, and then left for 24 h in 

serum-free Iscove’s medium to have cells at the lowest level of spontaneous proliferation. 

Procedures for isolation of rat HSCs have also been extensively described[14]. 

Bone marrow cells were obtained from human donors after informed consent. Aliquots of 

2–3 ml of whole bone marrow were seeded in MSC-medium MEM (Lonza, Versviers, 

Belgium) at 10% of fetal bovine serum and cultured for 5 days. Adherent cells, when at 

confluence, were detached by Trypsin/EDTA, seeded at 1000/cm2, expanded, and used 

for “in vitro” experiments from passage 3 to passage 7, when displaying a fibroblast-like 

and α-SMA positive phenotype [12]. Immunophenotypic analysis of hMSCs and their 

differentiative potential have been described elsewhere [12] and [15]. MSCs used were 

always more than 90% positive (cytofluorimetric analysis) for CD90, CD73, CD105, and 

CD29 but negative for CD34, CD45, and CD14. 
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Animal experiments 

Male adult Wistar rats, initial weight 200–220 g, receiving human care and with 

experimental protocols performed according to national and local guidelines, were fed a 

standard pelleted diet and water ad libitum. Acute liver injury was induced by single oral 

treatment with carbon tetrachloride (CCl4) and animals were sacrificed from 24 to 96 h, as 

previously described [16]. 

Cell migration and chemotaxis 

Non-oriented migration (chemokinesis) and chemotaxis of human HSC/MFs and human 

MSCs were evaluated by performing the wound healing assay (20 h of incubation) or the 

modified Boyden’s chamber assay (6 h of incubation), as described [9], [11] and [16]. 

Molecular biology procedures 

Total cell extracts were subjected to SDS–PAGE on 10% or 7.5% acrylamide gels. The 

blots were incubated with desired primary antibodies and then with peroxidase-conjugated 

anti-mouse or anti-rabbit immunoglobulins in Tris-buffered saline–Tween containing 2% 

(w/v) non-fat dry milk [9] and [16] and developed with the enhanced chemiluminescence 

reagents according to manufacturer’s instructions. 

Target siRNA sequences for down-regulation of human JNK isoforms are: 

(1) 

(5′-GAAAGAATGTCCTACCTTCT-3′), found in both JNK1 mRNA (nucleotide 393–

412) and JNK2 mRNA (nucleotide 425–444) [17]. 

(2) 

(5′-GTGGAAAGAATTGATATATAA-3′) found in JNK1 mRNA. 

(3) 

(5′-AAGAGAGCTTATCGTGAACTT-3′) found in JNK2 mRNA. 

siRNAs and related non-silencing controls were synthesized by Qiagen-Xeragon 

(Germantown, MD, USA). For transfection, the Amaxa nucleofection technology (Amaxa; 
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Koln, Germany) was employed [18]. JNK1/2 protein levels were analyzed by Western blot 

analysis 96 h after transfection. 

JNK activity in HSC lysates was detected using recombinant activating transcription factor-

2 (rATF2) as substrate [19]. 

Detection of intracellular and in vivo levels of ROS 

Intracellular levels of ROS were detected by means of the semi quantitative 2′,7′-

dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence technique, as previously 

detailed [20], in cells exposed to the desired stimulus for 15 min or to 50 μM hydrogen 

peroxide (H2O2, positive control). 

In vivo levels of ROS or 4-hydroxynonenal (HNE) were detected [16] and [21] on extracts 

obtained from the liver of control rats as well as of rats treated with a single dose of 

CCl4and then sacrificed 24, 48 and 72 h after treatment. 

Morphological analysis 

Indirect immunofluorescence was performed on liver cryostat sections from human 

biopsies from HCV cirrhotic patients (6 μm thick), as described [9]. Final dilution of primary 

antibodies was 1:250 (α-SMA), 1:50 (p-JNK1/2). Immune-positivity was revealed by the 

appropriate secondary Cy3-conjugated (1:1000 dilution) or Cy2-conjugated (1:200 dilution) 

antibodies (Amersham Pharmacia Biotech, Milano, Italy). Nuclei were stained using 4,6-

diamino-2-phenyilindole (DAPI) and slides were examined with an Olympus Fluoview 300 

confocal laser scanning microscope. 

Immunohistochemistry was performed on paraffin liver sections from patients with hepatitis 

C virus (HCV) related liver cirrhosis (METAVIR F4). The use of this material conforms to 

the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the 

University of Florence Human Research Review Committee. Sections (2 μm thick) were 

incubated with specific antibodies raised against phosphorylated JNK isoforms or α-SMA 

(final dilutions 1:30 and 1:1000, respectively). Briefly, after microwave antigen retrieval, 

primary antibodies were labelled by using EnVision, HRP-labelled System (DAKO) 

antibodies directed against rabbit antigen and visualized by 3′-diaminobenzidine substrate. 
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Negative controls were performed by replacing the respective primary antibodies by 

isotype and concentrations matched irrelevant antibody. 

Statistical analysis 

Data in bar graphs represent means ± SEM, and were obtained from average data of at 

least three independent experiments. Luminograms and morphological images are 

representative of at least three experiments with similar results. Statistical analysis was 

performed by Student’s t-test or ANOVA for analysis of variance when appropriate 

(p <0.05 was considered significant). 

Results 

Migration of human HSC/MFs and MSCs in response to chemoattractants 

HSC/MFs (Fig. 1A), migrated significantly in response to PDGF-BB, MCP-1, VEGF, and 

superoxide anion, whereas hepatocyte growth factor (HGF), basic fibroblast growth factor 

(bFGF), and stromal cell-derived factor 1 (SDF-1 or CXCL12) were ineffective. Human 

MSCs (Fig. 1B) in their fibroblast-like phenotype migrated in response to a wider panel of 

stimuli including PDGF-BB, VEGF, MCP-1, X/XO, HGF, βFGF, and SDF-1. Angiotensin II 

(AT-II) was the only one able to elicit chemotaxis on both cell types. 
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Fig. 1.  

Migration of hHSC/MFs and hMSCs in response to 

chemoattractants. Wound healing assay (i) and chemotaxis assay (ii) were 

performed on hHSC/MFs (A) and hMSCs (B). Cells were either not treated 

(control) or treated with PDGF-BB (10 ng/ml), VEGF (100 ng/ml), MCP-1 

(100 ng/ml), HGF (20 ng/ml), βFGF (20 ng/ml), SDF1 (20 ng/ml), Ang II (nM) or 

XXO system (0.4 mM/2 mU). Data in bar graphs represent mean ± SEM (n = 4, 

in triplicate) and are expressed as number of cells migrated in the artificial lesion 

or in the filter of Boyden’s chambers. ∗p <0.05 and ∗∗p <0.01 versus control 

values. 

 

All pro-migratory polypeptides induced an early (15 min) activation of ERK1/2 and JNK1/2 

in HSC/MFs and MSCs, with increased phosphorylation of JNK1/2 being mostly limited to 

46 kDa isoforms (Fig. 2 A and B). 
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Fig. 2.  

Polypeptide factors induce migration through early activation of ERK1/2 and 

JNK1/2. Confluent and 24-h-starved HSC/MFs (A) and hMSCs (B) were incubated for 

15 min in the presence of chemoattractants. Levels of phosphorylated and 

unphosphorylated ERK1/2 (p44 and p42) (i) and JNK1/2 (p46 and p54) (ii) were detected 

in western blot analysis on total lysates by using specific antibodies. 

 

A PDGF-BB- (used as reference chemoattractant) and time-dependent analysis of ERK1/2 

and JNK1/2 phosphorylation revealed (Supplementary Fig. 1 A and B) that: (a) increased 

phosphorylation of ERK1/2 was detectable from 15 min until 4–6 h; (b) increased 

phosphorylation of 46 kDa JNK1/2 isoforms followed a biphasic pattern with an early 

activation detected at 15–30 min and a second peak at 2 h of incubation for HSC/MFs or 

afterwards for MSCs. 

Based on preliminary results, PDGF-BB, MCP-1, and VEGF were used throughout the 

study as positive stimuli to investigate in detail the involvement of ERK1/2 and JNK1/2. 

Pre-treatment with PD98095, pharmacological inhibitor of ERK1/2 upstream kinase MEK-

1, inhibited chemokinesis and chemotaxis in HSC/MFs, as previously 

reported, [6],[7], [8], [9], [10] and [11] and MSCs; similar results were obtained by pre-

treating cells with the pharmacological inhibitor of JNK1/2 SP600125 (Supplementary Fig. 

2A and B). In preliminary experiments we then selected an siRNA that significantly down-
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regulated 46 kDa JNK1/2 isoforms in both cell types, and resulted in a significant decrease 

in JNK1/2 phosphorylation in response to PDGF-BB, chosen as a reference 

chemoattractant (Fig. 3A and B). When HSC/MFs and MSCs silenced for JNK1/2 were 

then exposed to PDGF-BB, VEGF, and MCP-1, chemotaxis was either significantly 

reduced (as for PDGF-BB) or almost abolished (Fig. 3A and B) as compared with cells 

carrying non-silencing siRNA (NsC). Moreover, as an additional proof of principle, 

experiments performed in mouse embryo fibroblasts from JNK1/2 double knock-out mice 

(MEF cells, Supplementary Fig. 3B) versus wild type fibroblasts revealed that only few 

MEF cells (15–20% in a typical experiment) migrated in response to PDGF-BB. To further 

explore the role of different isoforms we next employed siRNAs designed to silence JNK1 

or JNK2 isoforms in both cell types and in these conditions we found that, running both 

WHA and chemotaxis assays in response to PDGF-BB, the contribution of JNK1 isoforms 

to migration was more significant (Fig. 3C and D). 
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Fig. 3.  

JNK1/2 silencing inhibited polypeptide-dependent chemotaxis. hHSC/MFs 

(A and C) or hMSCs (B and D) were silenced for JNK1/2 (A and B) or for the 

single JNK1 or JNK2 isoforms (C and D). Total cell lysates (i) from JNK1/2 

silenced hHSC/MFs (A) or hMSCs (B), or cells transfected with a non-silencing 

control siRNA (NsC) were used in western blot analysis to evaluate 

phosphorylated and unphosphorylated JNK1/2 levels 96 h after transfection in 
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cells treated or not with PDGF-BB, used as positive control. Chemotaxis (A–D) 

and chemokinesis (C and D) were always assessed in cells not transfected, cells 

transfected with NsC, and cells transfected with the desired siRNA. Cells were 

then either not treated (control cells) or treated with the indicated polypeptides 

(same concentrations as in Fig. 1 legend). Data are expressed as number of 

cells migrated in the artificial lesion or in the filter of Boyden’s chambers. Data in 

bar graphs represent mean ± SEM (n = 3, in triplicate) and are expressed as 

number of cells migrated in the artificial lesion or in the filter of Boyden’s 

chambers. ∗p <0.05 and ∗∗p <0.01 versus control values.#p <0.01 and ##p <0.05 

versus values in cells stimulated with polypeptide factors. 

Migration induced by polypeptide growth factors critically requires intracellular generation 

of ROS 

We next performed experiments to investigate whether intracellular generation of ROS 

may be critical in our experimental conditions. Preliminary experiments (Supplementary 

Fig. 4) performed with the pharmacological inhibitor of NADPH-oxidase 

diphenylphenylene-iodonium (DPI) indicated that: (a) DPI significantly inhibited or 

abolished chemokinesis and chemotaxis stimulated by PDGF-BB, MCP-1, and VEGF in 

HSC/MFs and MSCs; (b) DPI reduced phosphorylation of both ERK1/2 and JNK 46 kDa 

isoforms induced by PDGF-BB, was used as positive control. By employing the DCFH-DA 

semi-quantitative morphological technique, PDGF-BB, VEGF, and MCP-1 all induced an 

early (within 15 min) and significant increase in ROS-related intracellular fluorescence 

(Fig. 4A and B), a finding significantly prevented by pre-treating cells with the more specific 

NADPH-oxidase pharmacological inhibitor apocynin (Fig. 4C and D). Accordingly, 

apocynin also significantly inhibited polypeptide-induced chemokinesis and chemotaxis in 

HSC/MFs (Fig. 5A) and in MSCs (Fig. 5B). DPI and apocynin, at the experimental dose 

used, were completely ineffective on parameters of either necrotic or apoptotic cell death 

(Supplementary Fig. 4C and D). 
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Fig. 4.  

Intracellular generation of ROS in cells exposed to chemoattractants. 

Generation of intracellular ROS (green fluorescence) was detected by the semi-

quantitative technique based on the use of DCFH-DA at 15 min in control cells, 

HSC/MFs (A) and MSCs (B) treated with PDGF-BB (10 ng/ml), VEGF 

(100 ng/ml), MCP-1 (100 ng/ml), Menadione (0.1 μM), DMNQ (0.1 μM) or H2O2 

(50 μM), the latter used as positive control. When required, cells were pre-

treated for 1 h with apocynin 100 μM (C and D). For any condition, three images 

are offered of the same field representing phase contrast image (left column), 

DCFH-DA positive fluorescence (middle column), and their digital overlay (right 

column). 
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Fig. 5.  

Polypeptide-dependent migration required intracellular ROS 

production. Wound healing assay (i) and chemotaxis assay (ii) were performed 

on (A) hHSC/MFs and (B) hMSCs cells not exposed (control cells) or treated 

with VEGF (100 ng/ml), MCP-1 (100 ng/ml) or PDGF-BB (10 ng/ml) and, when 

required, pre-treated for 1 h with apocynin (100 μM). Data in bar graphs 

represent mean ± SEM (n = 4, in triplicate) and are expressed as number of 

cells migrated in the artificial lesion or in the filter of Boyden’s chambers.∗p <0.05 

and ∗∗p <0.01 versus control values. #p <0.01 and ##p <0.05 versus values in cells 

stimulated with polypeptide factors. 

Polypeptide-independent intracellular generation of ROS is sufficient to induce ERK1/2 

and JNK1/2 activation and migration 

In order to characterize the role of ROS in triggering migration, we employed 2-methyl-1,4-

naphthoquinone (Menadione, MEN) and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), 

http://www.sciencedirect.com/science/article/pii/S0168827810009232


which are known to induce in target cells a significant intracellular generation of 

superoxide and H2O2, respectively. In preliminary experiments, we found that 10 μM 

concentrations of MEN and DMNQ induced in HSC/MFs evident morphological changes or 

changes in LDH release or caspase 3 activation (Supplementary Fig. 5A–C). Since 

homologous results were found for MSCs (data not shown) MEN and DMNQ were 

employed in all experiments at 0.1 μM, a non-toxic dose resulting in intracellular 

generation of ROS in both cell types (Fig. 4A and B). 

Exposure of HSC/MFs and MSCs to MEN or DMNQ triggered an early and significant 

increased phosphorylation of ERK1/2 and JNK1/2 (Fig. 6A and B) as well as chemokinesis 

and chemotaxis that were again prevented by PD98095 (Supplementary Fig. 6A and B). 

Moreover, in cells silenced for JNK1/2 chemotaxis stimulated by MEN and DMNQ was 

significantly decreased (Fig. 6C and D), as compared to cells transfected with a non-

silencing RNA (NsC). 
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Fig. 6.  

ROS-dependent migration was associated with activation of ERK1/2 and 

JNK1/2. Confluent and 24-h-starved (A) HSC/MFs and (B) MSCs were exposed to PDGF-

BB (10 ng/ml), Menadione (0.1 μM), DMNQ (0.1 μM), and XXO system (0.4 mM/2 mU). 

Total cell lysates were used in Western blotting to detect phosphorylated and 

unphosphorylated ERK1/2 (p44 and p42) (i) and JNK1/2 (p46 and p54) (ii) isoforms. 

Chemotaxis was assessed on (C) HSC/MFs or (D) MSCs that were either untransfected, 

transfected with NsC or with JNK1/2 siRNA and finally not treated (control cells) or treated 

with Menadione or DMNQ. Data in bar graphs represent mean ± SEM (n = 4, in triplicate) 

and are expressed as number of cells migrated in the filter of Boyden’s chambers. ∗p <0.05 

versus control values. #p <0.01 versus values in cells stimulated with Menadione and 

DMNQ. 

 

Increased generation of ROS and JNK activity in vivo 

In order to evaluate whether intracellular generation of ROS and JNK activation were likely 

to occur in vivo, activation of JNK1/2 was first investigated in cell extracts obtained from 

freshly isolated rat HSC obtained at different time points after administration of a single 

dose of CCl4, a model of acute liver injury in which oxidative stress is up-regulated from 

early time points (2–6 h) to 48–72 h [17] and [19], as shown by hepatic levels of ROS and 

4-hydroxynonenal (Fig. 7A and B). HSC lysates from CCl4-injured livers, in which 

activation of ERK1/2 was already reported [22], were characterized by a very significant 

increase of JNK activity (24 h) and (6 h) heme oxygenase 1 (HO-1), a cytoprotective 

enzyme that is considered a marker of ongoing oxidative stress (Fig. 7 C and D). HO-1 

protein levels were still elevated until 48 h and declined significantly starting from 72 h 

(data not shown). 
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Fig. 7.  

Oxidative stress“in vivo” was concomitant to JNK1/2 activation in HSC/MFs. In 

vivo oxidative stress was evaluated in terms of hepatic levels of (A) HNE or (B) ROS in 

liver samples obtained from rats receiving either CCl4 (1.25 ml/kg b.w.) or the vehicle 

alone (Control) and then sacrificed after 24, 48 and 72 h. Data in bar graphs, expressed as 

micromolar concentration in liver tissue (HNE) or as arbitrary units of fluorescence for mg 

of proteins (ROS), represent mean ± SEM and are referred to six animals for any 



experimental time point. ∗p <0.05 and ∗∗p <0.01 versus control values. (C) Total cell lysates 

were prepared from freshly isolated HSC obtained from rats treated with CCl4 or vehicle 

alone at the indicated time point. JNK assay was performed after JNK immunoprecipitation 

using recombinant activating transcription factor 2 (rATF2) as a substrate (upper panel). 

An aliquot of the immunobeads was analyzed for JNK levels by Western blotting (lower 

panel). (D) Lysates were prepared as described for panel (C) and levels of HO-1 were 

analyzed by Western blotting (upper panel). Membranes were reblotted for β-actin to 

assess equal loading (lower panel). 

 

As a second approach, immune-positivity for phosphorylated JNK isoforms (pJNKs) and α-

SMA was investigated on liver specimens from chronic HCV cirrhotic patients. 

Immunohistochemistry showed evident p-JNK positive nuclear staining for cells included in 

α-SMA positive fibrotic septa whereas hepatocytes exhibited only faint cytoplasmic 

positivity ( Fig. 8). Confocal laser microscopy analysis (indirect immunofluorescence on 

frozen specimens, Fig. 9) confirmed this scenario and was critical in showing unequivocal 

colocalization of p-JNK positive staining in several α-SMA-positive MFs within septa or at 

the interface between septa and parenchyma. 
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Fig. 8.  

Phosphorylated JNK isoforms and α-SMA in human cirrhosis. Immunohistochemistry 

was performed on paraffin serial sections from patients with hepatitis C virus (HCV) related 

liver cirrhosis (Metavir F4) using antibodies against α-SMA or phosphorylated-JNK. Upper 

panels (C): negative control. Original magnification as indicated. 

 



 

Fig. 9.  

JNK1/2 activation in α-SMA positive cells in cirrhotic livers. Confocal laser microscopy 

was performed on liver cryostat sections from cirrhotic HCV patients. The panel includes: 

(A) tiny images on the left side representing image acquisition of single fluorescence 

identifying nuclei (1, blue fluorescence, DAPI staining), phosphorylated JNK isoforms (2, 

red fluorescence) and α-SMA (3, green fluorescence); (B) a larger image (overlay) offering 

electronic merging of fluorescent images. White arrows indicate colocalization between α-

SMA and phosphorylated JNKs. 

Discussion 

Migration in response to chemoattractant polypeptides or other mediators generated 

during CLDs represents a distinctive feature of HSC/MFs and hepatic MFs of different 

origin [1], [2], [3], [4] and [5], leading these cells to align with inflammatory cells along 

fibrotic septa during fibrogenic progression. The present study provides the following major 

original messages: (a) intracellular generation of ROS and related activation of JNK1/2 

isoforms (as for ERK1/2) are critical steps in the induction of chemotaxis in both human 

HSC/MFs and fibroblastic-like, α-SMA-positive human bone marrow-derived MSCs; (b) in 

both cell types, these common signaling mechanisms are triggered by polypeptide 

chemoattractants, but polypeptide-independent intracellular generation of ROS is sufficient 
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to trigger chemotaxis; (c) human HSC/MFs and fibroblastic-like MSCs respond to a 

common panel of pro-fibrogenic and pro-migratory signals generated in CLDs. 

Migration of human HSC/MFs in response to chemoattractants was already reported to 

involve the Ras/ERK pathway [1], [3], [7], [8] and [9], with only PDGF [1], [3] and [7] being 

able to activate the PI-3 K/c-Akt pathway. The involvement of a more complex scenario 

was first suggested by studies showing that either skin fibroblasts [23] or rat 

HSC [24]migrated in response to PDGF-BB by a pathway involving transient activation of 

JNK isoforms, a scenario that our study revealed to be common to all effective polypeptide 

chemoattractants. 

Since the involvement of the Ras/ERK pathway was already characterized in the literature, 

we then focused on the role of intracellular generation of ROS and of transient activation of 

JNK1/2. JNKs are redox sensitive serine/threonine protein kinases involved in a number of 

“stressful” conditions, including inflammation, differentiation, apoptosis, and insulin 

resistance [25] and [26] as well as in the growth factor – dependent regulation of migration 

and epithelial morphogenesis [27]. A mechanistic relationship between polypeptide-

dependent JNK1/2 activation and migration was unequivocally shown by silencing an 

evolutionary conserved sequence common to both JNK1 and JNK2 isoforms or in 

fibroblasts obtained from mouse embryos with targeted deletion of both JNK isoforms. 

Since polypeptide-dependent activation of JNK1/2 was an early (within 15 min), transient 

(i.e., unable to induce apoptosis) and specific event, being mostly limited to 46 kDa 

isoforms, silencing of both JNK1 and JNK2 was the starting reasonable experimental 

choice because: (a) alternative splicing of JNK1 and JNK2 leads to eight different isoforms 

of 54 and 46 kDa, the latter molecular weight including JNK1α1, JNK1β1, JNK2α1, and 

JNK2β1 isoforms [25]; (b) the combined deficiency for both isoforms in double knock out 

mice is lethal in embryo development. However, it should be noted that under conditions of 

specific selective silencing, we observed that JNK1 silencing was more effective in 

inhibiting migration and chemotaxis, suggesting a prevalent role for JNK1 according to 

recent published data [28] and [29]. 
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In our study, a critical pro-migratory role for ROS-mediated JNK activation was outlined by 

the following in vitro findings: (1) exposure of human HSC/MFs and MSCs to PDGF-BB, 

VEGF, MCP-1, MEN or DMNQ resulted in an early increase in intracellular ROS 

generation; (2) JNK1/2 activation and migration were reproduced simply by exposing cells 

to non-cytotoxic levels of either MEN or DMNQ, two redox-cycling chemicals able to 

generate intracellular superoxide anion or hydrogen peroxide, respectively; (3) 

polypeptide-dependent activation of JNK1/2 (and ERK1/2) by ROS and subsequent 

migration were prevented by inhibiting NADPH-oxidase, a ROS-generating membrane that 

may contribute to most of the polypeptide-induced phenotypical response of 

HSC/MFs [30]; (4) ROS-dependent migration was almost abolished in HSC/MFs and 

MSCs silenced for JNK1/2. 

Human and experimental in vivo data further support this scenario: (1) in HCV cirrhotic 

human livers, positivity for phosphorylated JNK1/2 isoforms was mainly detected in α-SMA 

positive MFs located within fibrotic septa or at the interface between septa and 

parenchyma, a scenario consistent with the one reported by Kluwe et al. [29]; (2) activation 

of JNK1/2, preceded by up-regulation of HO-1 expression, a typical redox-sensitive 

gene [31], was detected at an early time point (i.e., within 24 h) in cell extracts obtained 

from rat HSC/MFs isolated by acutely injured livers suggesting that “in vivo” HSC/MFs 

were indeed exposed to oxidative stress. 

In conclusion, migration/chemotaxis of human HSC/MFs and MSCs stimulated by 

polypeptides critically requires NADPH-oxidase dependent increased generation of 

intracellular ROS and the consequent activation of JNK1/2 isoforms in addition to 

activation of Ras/ERK signaling. Moreover, ROS released in the context of chronic liver 

injury by damaged hepatocytes or activated inflammatory cells may induce 

migration/chemotaxis in both cell types that have been shown to contribute to liver 

fibrogenesis [1], [2], [3] and [4]. The overall scenario emerging from the present study, 

which is fully in agreement with the recent hypothesis of JNK being involved in HSC 

activation and fibrogenesis [29], further suggests JNK as a common putative therapeutic 

target for antioxidants and/or small molecules such as protein kinase inhibitors. 
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