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Cross-generational comparison of stochastic
mortality of coupled lives

Elisa Luciano� Jaap Spreeuwy Elena Vignaz.

26th November 2010

Abstract

This paper studies the evolution across generations of dependence
among individuals of a couple. We consider a well-known data set of
couples of individuals provided by a large Canadian insurer, and select
three di¤erent generations of couples. For each of them, we model the
marginal survival functions with a doubly stochastic approach and per-
form a best-�t selection of the copula. Since the e¤ect of censoring on the
dependence structure of the couple varies across di¤erent generations, in
the best-�t copula test it is necessary to restrict the attention to the subset
of complete data. Despite the small sample available, the remarkable res-
ult is that the Kendall�s tau varies between 30% for the young generation
and 45% for the old one. As a consequence, for every candidate copula
the dependence parameter decreases when younger generations are taken
into account. This result is intuitive and in accordance with the observed
increase in the rate of divorces, the creation of enlarged families and so
on. The best �t copula is not invariant across generations, but di¤erent
Archimedean copulas perform similarly. An actuarial application to pri-
cing and reserving of joint life products and reversionary annuities shows
that not only insurance companies should dismiss the simplifying inde-
pendence assumption, but they should also select di¤erent dependence
parameters for di¤erent generations.

1 Introduction

The ageing population phenomenon in industrialized countries creates a natural
link between �nancial/pricing and actuarial/pension problems. Indeed, due to
ageing, public (�rst pillar) and private (second pillar) pension systems will play
a crucial role in �nancing the needs of a large part of individuals. Both in the
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�rst and in the second pillar the o¤er of insurance products includes reversionary
annuities. Given the expected increase of reversionary annuities in the insurance
market, the problem of their correct and accurate pricing will become more and
more relevant. Assessing the correct dependency between two members of a
couple is the �rst step in this direction. Investigating whether and how this
dependency evolves over time, i.e. considering di¤erent generations, is a second
important aim. Whereas the �rst issue has been addressed in the literature, to
the best of our knowledge the second has not been tackled. However, we believe
that knowledge of the trend of dependency through generations could help in
the long-time horizon planning of a life o¢ ce. Therefore, we address both issues
in this paper.
Regarding the dependency between members of a couple, the actuarial prac-

tice has been sticking to the independence assumption. This is due to a num-
ber of reasons, including lack of data, paucity of models and computational
convenience. Expectedly, the existing actuarial literature rejects the independ-
ence assumption and measures the extent of mispricing through the comparison
between premiums of insurance products on two lives with and without inde-
pendence. In this �eld, the seminal paper is [9], which introduces a dataset of
couples of individuals provided by a large Canadian insurer. Their paper has
been followed by a few others, including [3], [5], [21], [19], [14].
The present paper, that is a follow-up of [14], addresses the issue of trend

of dependency. We consider the same well-known dataset, and select three
di¤erent generations of couples. For each generation we calibrate the marginal
survival functions of male and female with the doubly stochastic approach. We
then apply the Genest and Rivest method (see [12]) in order to �nd the best �t
copula among a sample of Archimedean. The remarkable result is that for each
copula tested, the dependence parameter decreases when younger generations
are taken into account. This result is intuitive and in accordance with the
observed increase in the rate of divorces, the creation of enlarged families and
so on.
When we apply dependency and take its evolution into account in pricing

and reserving of joint life products - as we do in the last part of the paper - we
do get di¤erent results across generations. Then,the key point of our study is
that not only insurance companies should dismiss the simplifying independence
assumption, but they should also select di¤erent dependence parameters for
di¤erent generations.
The paper is organized as follows. In section 2, we brie�y review the existing

literature on mortality of coupled lives. In section 3, we present the methodology
used in this paper, underlining the di¤erences with the methods used in [14], due
to the selection of di¤erent generations. In section 4, we present the results of
the calibration. In section 5, we present an actuarial application, by comparing
the premiums of last survivor products and reversionary annuities under both
the independence assumption and the generation-based dependency. Section 6
concludes.
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2 Mortality of coupled lives

In this section, we review the existing actuarial literature on mortality of couples.
The �rst paper in this �eld is [9], who use for the �rst time a large dataset of
couples of individuals provided by a Canadian insurer to assess the impact of
dependence on the pricing of life insurance products on two lives. They describe
the marginal survival functions using the Gompertz model, the parameters of
which are estimated using the Kaplan Meier empirical survival functions on the
whole dataset. In order to obtain the joint survival function, they use the copula
approach, and choose the Frank copula. They take into consideration the fact
that data are censored when providing the maximum likelihood (ML) estimate of
the parameters of the marginal survival function and the copula. They apply the
calibrated joint survival probabilities in the pricing of a joint and last survivor
contract. They measure the impact of the independence assumption on the
premium by studying the ratio of the annuity price with dependence to that
with independence. In addition, they make a sensitivity analysis of such ratio
with respect to di¤erent ages of the members of the couple and di¤erent interest
rates. To conclude, they make a robustness check of the choice of marginals and
copula model by extending the annuity exam to Weibull margins and common
shock bivariate models.
A richer description of competing models for joint survivorship is contained

in [5]. They build a di¤erent dataset starting from the NIS (National Institute
of Statistics) Belgian marginals for men and women. In order to describe joint
mortality, they need data related to couples rather than individuals, which they
obtain by sampling data from cemeteries. To this data set they �rst apply the
Makeham model for the marginals with Markov switching intensities, then a
copula model. For the dependence structure, they provide a best �t analysis of
competing Archimedean copulas, using the Genest and Rivest method. The two-
step ML procedure selects the Gumbel Hougaard copula, which is then used for
pricing joint life products and comparing them with the case of independence.
Since the dependence in their data set is low, the Gumbell Hougaard premiums
are very close to the independence ones.
A rigorous marginal and copula best �t analysis is performed by [3]. He

uses the same Canadian dataset introduced in [9] and focuses on the subset of
complete data. The best marginal model turns out to be the Gompertz. The
best �t copula is the linear-mixing frailty model.
[21] use the same Canadian dataset to describe the joint survival function

of couples, but focus on the age di¤erence between the spouses. Like [9], they
select the Gompertz and the Weibull laws for the marginals, and two di¤erent
copulas for the description of dependence, namely the Frank and the Gumbell
Hougaard. Similarly to [9], they also study the impact of the dependence on
the price of insurance products on two lives, i.e. the joint and last survivor
policy. In a companion paper, [19] focus on the Weibull marginal law and on
the Gumbel Hougaard copula to study the impact of dependence on the joint and
last survivor premia. They still classify results depending on the age di¤erence
of the members of the couple, but they use Bayesian methods for the estimate
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of the parameters.
Di¤erently from the papers mentioned, [14] use the doubly stochastic ap-

proach to model the marginal survival functions of the spouses. In particular,
they select a Feller model for the stochastic intensity of mortality, based on pre-
vious investigation of goodness of �t performed by [15] and [16]. At bivariate
level, they provide a best �t copula among di¤erent Archimedean ones. The
main innovation with respect to the previous literature is that the marginal
survival functions in their paper are generation-based, due to the fact that the
doubly stochastic approach is generation-based. As a relevant consequence, the
joint survival function is based on the generations selected too. Moreover, the
marginals are described by a stochastic force of mortality, that turns out to be
a natural extension of the Gompertz model.
This paper extends [14] through a comparison among di¤erent generations

and an application on the pricing of insurance products on two lives.

3 Methodology

This paper models mortality of couples, using a copula approach: the joint
survival probability is written in terms of the marginal survival probabilities and
a function - namely, the copula - which represents dependence. The calibration
procedure is two-step as usual in the copula �eld, in that the best �t parameters
of the margins are chosen separately from the best-�t parameter of the copula.
This section brie�y describes the modelling and calibration choices in the two
steps.
Let the heads of the generation selected be () and ()  belonging respect-

ively to the gender  (males) and  (females). They have remaining lifetimes

 and  

 , which are assumed to have continuous distributions. As usual in ac-
tuarial notation, in the following () and () will refer to the initial ages of male
and female, respectively. Denote by  and  the corresponding marginal
survival functions:

 () = Pr [

  ]  8 � 0

 () = Pr
�
 
  

�
 8 � 0

Denote as ( ) the joint survival function of the couple ( ), i.e.

( ) = Pr
�

    

  
�

8  � 0

As is known, Sklar�s theorem states the existence (and uniqueness over the
range of the margins) of a function 

 : [0 1]� [0 1]! [0 1] such that, for all
( ) 2 [01]� [01],  can be represented in terms of    :

( ) = 
(


 () 


 ())

Such copula is the so-called survival copula, obtained from the corresponding
copula  via the relationship

( ) =  +  ¬ 1 + (1¬  1¬ ) (1)
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It follows that

( ) =  () +  ()¬ 1 + (1¬  () 1¬  ()) (2)

3.1 Marginal life distributions

At marginal level, for each generation, we �nd the survival functions of male and
female with the doubly stochastic approach. This approach is well established in
the actuarial literature, see [4], [2], [18]. The mathematical framework is the one
used in the credit risk theory for the description of the random time to default,
see [1], [13], [8] and [6]. Within this approach, the random time of death � of the
individual is modelled as the �rst jump time of a doubly stochastic process, i.e.
a counting process, the intensity of which is itself a stochastic process (rather
than being a constant or a deterministic function of time as in standard Poisson
processes). Let the intensity of the counting process at time  be represented
by a (nonnegative, measurable) function � of a vector of state variables ().
Under some technical properties, this construction permits to write the marginal
survival probabilities as

 () = Pr(�

  ) = E

�
exp

�
¬

Z 

0

� (())

��
 (3)

where  =    =   , and the expectation is taken over the �ltration gener-
ated by the state variable processes in .
We focus on the case in which the state variables - and consequently the

intensity - evolve according to a di¤usion process. In order to make the model
amenable to computation and calibration, we assume such process to be a¢ ne:

() = (())+ (()) ~ ()

where ~ is a standard Brownian motion and both the drift (()) and the
square of the di¤usion coe¢ cient 2(()) have a¢ ne dependence on ().
This permits to write the marginal survival probability in (3) in terms of the

intensity evaluated at time 0 - the evaluation date - and two functions of time,
denoted as �(�) and �(�). Using the results in [7] one can indeed show that

 () = exp
h
� () + �


 ()(0)

i
 (4)

where the functions � (�) and �

 (�) satisfy generalized Riccati ODEs.

The modelling restrictions described up to now have then an evident ad-
vantage in terms of representation of the survival probabilities in closed form.
A further simpli�cation can be obtained by considering the intensity itself as
the only relevant state variable for each gender and generation. In this case we
have � (()) = �


 () This can be written formally as:

 () = exp
h
� () + �


 ()�


 (0)

i
 (5)
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Practically, in order to write down the survival function for each gender and
generation, it is su¢ cient to determine the functions �(�) and �(�), together
with the initial (observed) value of the mortality intensity. The functions will
solve ODEs which depend on the type process assumed for the intensity.
Previous papers motivated the appropriateness, in the a¢ ne family, of non-

negative intensities without mean reversion. In [15] and [16], using the evidence
provided by a comparison of competing models over the UK population, we
focused on the following intensity:

� () = �

 ()+ �




q
� ()


 ()

where  
 is a one-dimensional Wiener process. For it to be well de�ned, we

assume that the percentage drift is positive -  (�)  0 - and the di¤usion
coe¢ cient is nonnegative: � � 0. The above process belongs to the Feller
family. It stays nonnegative and shows no mean-reversion.
From the modelling point of view, this is a parsimonious choice, involving

only two parameters ( �

 ) for each generation  and gender . From the

empirical point of view, it proved to �t quite accurately a number of di¤erent
generation mortality tables. These are the reasons that motivate its adoption
in this paper too. We know that for such process � () = 0 while

� () =
1¬ exp

�
 
�

 +  exp(

 )

(6)

where 8
>>><

>>>:

 = ¬
r�



�2
+ 2

�
�

�2
 =

+



2

 =  ¬ 

The survival function given by (5) with (6) is biologically reasonable (i.e. it
is decreasing over time) if and only if the following condition holds (sub- and
superscripts are omitted for easier notation)1 :

(�2 + 22)  �2 ¬ 2 (7)

In order to provide an estimate of the marginal parameters for each genera-
tion, (̂  �̂


 ), we �rst identify the generations. A generation could be identi�ed

with males or females born in a speci�c calendar year, or in several of them.
The choice of the de�nition of generation strongly depends on the availability of
data. We consider the large Canadian dataset introduced by [9]. In this dataset
thousands of couples of individuals are observed in a timeframe of �ve years,
from 29 December 1988 till 31 December 1993. Given the scarcity of data for
each single year of birth of the dataset, and observing that persons with years

1This condition always holds in the calibrations of this paper.
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of birth close to each other can be considered to belong to the same genera-
tion, we de�ne a generation as the set of all individuals born in a fourteen-years
time-interval (as in [14]). Due to strong censoring of the dataset, in selecting
the three generations, we make the years of birth partially overlap. As in [14],
in this work we keep the three-years age di¤erence between male and female
of the same couple, as this is the average age-di¤erence between spouses in the
whole dataset. The generations we consider are: 1900-1913, 1907-20, 1914-27
for males, 1903-1916, 1910-23, 1917-30 for females2 . From now on, we will refer
to these generations as �old�, �middle�and �young�. Notice that the members
of each of these generations may enter the observation period in nineteen dif-
ferent years. For instance, the male members of the old generation may start
to be observed at every age between 75 and 94. For notational convenience and
according to [14], we will consider as initial age of each generation the smallest
possible entry age, namely,  = 75 for the old male,  = 68 for the middle male,
 = 61 for the young male,  = 72 for the old female,  = 65 for the middle
female,  = 58 for the young female.
Then, we extract from the raw data the Kaplan-Meier (KM) distribution for

each generation and each gender. Details of the procedure adopted in this step
are in [14].
The last step consists in using the KM data to calibrate the parameters of the

intensity of each gender and generation, (̂  �̂

 ). This is done by minimizing the

mean square error between empirical and theoretical probabilities, the former
being the KMs, the latter being obtained by replacing the appropriate function
�(�) - i.e., (6) - in the survival function (5):

 () = exp

2

4
1¬ exp

�
 
�

 +  exp(

 )
� (0)

3

5  (8)

3.2 Copula

We follow a quite established tradition in survival modelling of couples, by
restricting our attention to Archimedean copulas. These copulas share a number
of mathematical properties. Each one of them is obtained from a (di¤erent)
generator, which is a continuous, decreasing, convex function � : [0 1] !
[0+1]  such that �(1) = 0. If one de�nes the inverse of the generator, �¬1 , as
the function such that �¬1 (� ()) = , the Archimedean copula corresponding
to � can be obtained as follows:

( ) = �¬1 (�() + �()) (9)

One can indeed check that the resulting function has the right properties for
being a copula. Usually the generator - and consequently the copula - contains
one parameter, which we denote as �. We will write indi¤erently � or ��.

2To be more precise, the males of the older generation were born between 1.1.1900 and
31.12.1913, while the corresponding females between 1.1.1903 and 31.12.1916, and so on.
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On top of their mathematical similarities, Archimedean copulas share the
possibility of being calibrated using the so-called Kendall�s process. For the
sake of simplicity, we omit the dependence on generation and gender while
describing such calibration. Let  be the distribution function of the random
number

 = 
¬

   



�


namely
() = Pr( � )

Genest and Rivest in [12] proved that  is linked to the generator - and con-
sequently to the parameter which is contained in it, � - by the relationship

() =  ¬ �� ()
�
0

� ()
 0   � 1 (10)

where the prime denotes di¤erentiation.
Given a complete dataset of observed death ages

��
() ()

�
  = 1  

	
¬

of size  ¬ Genest and Rivest suggested to choose the best-�t copula in a set
of candidates through the following steps:
1) start from an estimate �̂ of the Kendall�s tau coe¢ cient between the raw

data
¬
() ()

�
;

2) determine - for each candidate copula - the parameter value �̂ which
corresponds to �̂ , by working the parameter out of the relationship

�̂ = 4

Z 1

0

[ ¬()]  + 1 (11)

= 4

Z 1

0

"
b�� ()
b�
0

� ()

#
 + 1 (12)

3) build - again for each copula - a theoretical , ��
, by substituting in

(10) the estimate �̂;
4) compare the theoretical  of each candidate Archimedean copula with

the so-called empirical , or Kendall�s process, denoted by b:

b () =
1


# f j �  g  (13)

where
 =

1

¬ 1
#
��
() ()

� ��()  () ()  ()
	

and # fg indicates the cardinality of the set fg.
5) select as best �t copula the one whose theoretical  is the least distant

from the empirical one, b. The comparison can be performed using any dis-
tance between  and b. Using the L2¬norm, which is the typical one, the
best �t copula is the one which minimizes the following error

Z 1

0

�
�� ()¬ b ()

�2
 (14)

8



The couple data we start from are - per se - censored, since the observation
period is �ve years
For censored data the procedure has to be adapted. The adapted procedure

was �rst described in [20]. The modi�cation involves selecting a starting point
for , namely � as follows

� = min
�0

n
 : b()  0

o
= min

�0

n
 : Pr

�
b

¬

   



�
 
�
 1

o
 (15)

where b is a non parametric estimator of the empirical joint survival function
that has to take censoring into account.
The adapted procedure has been used, on the same dataset, in [14], where a

single generation was considered. In the Canadian dataset the starting point �
di¤ers across generations. This can be explained by inspection of the meaning
of � given by (15). In fact, � is the minimum value for which the empirical joint
survival function is positive. Due to the de�nition of generation and the �ve
years observation period, the empirical survival function takes the minimum
value in b (19 19). Thus, we have � = b (19 19)  It is evident that the value of
the joint survival probability for 19 years depends on the age of the members
of the generation at the beginning of the observation period. In particular, an
older generation has a lower � than a younger generation. The ensuing cut of
the domain of the b function �that is unavoidable in the case of censored data
�has an impact also on the estimate of Kendall�s tau, which for censored data,
is obtained after - and not before - a best �t copula has been obtained. In fact,
with censored data, the calculation of b� is the last step of the whole procedure
of [20]. The �rst step consists in choosing as parameter value �̂ for each copula
the one which minimizes the distance between the corresponding theoretical
��()

and the empirical b(). The second step consists in selecting as best
�t copula the one which minimizes such a distance. The third step consists in
getting an estimate of Kendall�s tau from the parameter value of the best �t
copula. In particular, b� is calculated from b� using the relationship:

�̂ = 4

Z 1

�

h
 ¬��()

()
i
 + 1 (16)

that involves the cutting point �.
Clearly, the higher is �  0 the more overestimated is the Kendall�s tau �

considering that the integral in (16) provides a negative value. Therefore, the
e¤ect of � on b� strongly depends on the age of the generation chosen3 . For
instance, in the case of a very old generation such that � ' 0 the e¤ect is
very small, but in the case of a very young generation with � ' 1 the e¤ect is
such that the integral in (16) becomes negligible, leading to a distorted value
of tau equal to or very close to 1. Thus, the younger the generation, the higher
the overestimation of b� . This phenomenon is not acceptable in our context,
given that the focus of this paper is on the comparison of dependence among

3Notice that we can speak of "age of a generation", since the members of the couple have
a 3-years age di¤erence by de�nition.
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di¤erent generations. It is then clear that the straight use of the Wang and
Wells procedure, which was appropriate in the case of one generation, is not
admissible in the presence of di¤erent generations. If we want to compare the
association within a couple across di¤erent generations we are bound to select
smaller subsets of complete data for all the generations selected. Evidently, the
price to pay in order to be able to do consistent comparisons across generations
is a remarkable reduction of the size of the sample, which in our case becomes
66, 102 and 66 for the old, middle and young generations respectively.

4 Calibration results

In this section, we report the results of the calibrations done on the three dif-
ferent generations selected.

4.1 Marginal calibrations

The parameters of their marginal survival functions, for females and males, are
presented (in basis points) in the following table, where OG, MG and YG stay
for old generation, middle generation and young generation, respectively:

OG Male OG Female MG Male MG Female YG Male YG Female
 961.045 790.232 810.051 1249.792 528.581 619.733
� 0.007 0.057 2.426 0.021 0.019 0.5

Parameters of the marginal survival functions (in basis points).

The following six �gures report the plot of the survival probabilities, grouped
by generation and gender. Each �gure reports the analytical survival function
() for initial age , and the empirical survival function obtained with Kaplan
Meier methodology.
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4.2 Joint calibration

Following Genest and Rivest, we �rst compute an estimate b� of the Kendall�s
tau coe¢ cient for each generation. The empirical estimate b� for the Kendall�s
tau is decreasing over generations: it is 0.4396 for the old generation, 0.3826
for the middle one, 0.2792 for the younger one. As intuition would suggest,
dependence decreases as we consider younger generations.
In order to describe this (decreasing) dependence, we examine - through a

best-�t procedure - the following copulas:
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Name  ( ) Kendall�s �

Clayton
�
¬ � + ¬ � ¬ 1

�¬ 1
� �

�+2

Gumbel-Hougaard exp

�
¬
�
(¬ ln)� + (¬ ln )�

� 1
�

�
1 ¬ 1

�

Frank ¬ 1
�
ln

�
1 +

(¬ �¬ 1)(¬ �¬ 1)
¬ �¬ 1

�
1 + 4

�

� �
=0


�(¬ 1) ¬ 1

�
Nelsen 4.2.20

�
ln
�
exp

�
¬ �

�
+ exp

�
¬ �

�
¬ 

��¬ 1
� 1 ¬ 4

�
1

�+2
¬
 1
=0

�+1

�
exp

�
1 ¬ ¬ �

�
Special

�
¬+

p
4+2

2

� 1
�

; with  = 1
�
¬ � + 1

�
¬ � Complicated form

For each copula we estimate the parameter �̂ - from b� - by inverting the
relationship reported in the table above. We then calculate the theoretical 
function, ��

, using (10). From the original joint data, we obtain the Kendall�s

process c of each generation ( = 66 102 66 for the old, middle and young
generations respectively), using (14). For each copula, we compute the distance
between the corresponding ��

function and the empirical c function, accord-
ing to three di¤erent norms: a) the quadratic distance (Q.d), b) the Cramer and
Mises distance (CM.d), and c) the Kolomogorov-Smirnov distance (KS.d).
To test the goodness-of-�t of a copula �, [10] have developed a parametric

bootstrap procedure which consists of the following steps:
1. Estimate � by a consistent estimator � (like the aforementioned �inver-

sion of Kendall�s tau�approach) and calculate the distance 
2. Generate a large number  random samples of size  of � (the copula

under the null hypothesis), and for each of these samples, estimate � by the
same method as under 1., and determine the distances, given by � .
3. If �1: �  � � : are the ordered values of the distances calculated

in step 2, an estimate of the critical value of the test at level � based on  is
given by �b(1¬�)c: , while

1


#
�
 : � � 

	
yields an estimate of the p-value relating to the observed value  (here bc
denotes the integer value of ).
[10] demonstrate that this method works for any copula that satis�es a weak

convergence of Kendall�s process. It is particularly worthwhile for Archimedean
copulas, since for this class the  function derived from a copula a) is available
in closed form, and b) has a one-to-one correspondence with that copula.
The distances, according to di¤erent distance criteria, are reported in the

following tables, together with the p-values. Exploring a dataset, [10] have
shown that cases exist, where copulas, that are selected on the basis of minimum
distance, should be rejected on the basis of the p-value. This explains the
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importance of the formal goodness-of-�ttest as outlined above. The best �t
copula � the one that provides the highest p-value � is in bold in each table.
This is also the copula providing the minimum distance between ��

and b,
which is reassuring.

Old Generation (1900-13).
Copula Q d. p-value CM d. p-value KS d. p-value
Clayton 0.138 0.011 0.16 0.026 0.821 0.137

Gumbel Hougaard 0.048 0.395 0.06 0.486 0.689 0.351
Frank 0.032 0.725 0.044 0.789 0.53 0.816

4.2.20 Nelsen 0.204 0.004 0.248 0.017 0.998 0.051
Special 0.21 0 0.236 0.003 0.937 0.039

Middle Generation (1907-20).
Copula Q d. p-value CM d. p-value KS d. p-value
Clayton 0.069 0.184 0.098 0.17 0.722 0.306

Gumbel Hougaard 0.246 0 0.268 0 1.068 0.007
Frank 0.117 0.028 0.147 0.029 0.829 0.096

4.2.20 Nelsen 0.097 0.071 0.14 0.068 0.892 0.091
Special 0.078 0.123 0.111 0.12 0.868 0.101

Young Generation (1914-27).
Copula Q d. p-value CM d. p-value KS d. p-value
Clayton 0.052 0.377 0.096 0.271 0.832 0.2

Gumbel Hougaard 0.197 0.001 0.285 0.001 1.149 0.007
Frank 0.124 0.023 0.198 0.015 0.988 0.034

4.2.20 Nelsen 0.05 0.411 0.094 0.309 0.816 0.249
Special 0.034 0.669 0.064 0.572 0.66 0.564

Then, we see that the Frank copula performs best for the old generation,
the Clayton for the middle generation and the Special for the young generation.
The best �t copula is not invariant across di¤erent generations. We think that
this may be due to the small size of the restricted dataset for each generation
(namely, 66 couples for the old generation, 102 for the middle one, 66 for the
young one). [11] observe that for a dataset of size 50 it can be hard to compare
di¤erent copulas.
We also observe that di¤erent Archimedean copulas describe the depend-

ency between two random variables in a similar way. In fact, they share some
important characteristics in describing the kind of dependence (symmetry, asso-
ciativity, boundedness of the diagonal section, as described in theorem 4.1.5 of
[17]). Passing from one generation to the other these properties are preserved,
despite the change in best �t copula.
A closer look at the table reveals that Frank and Gumbel Hougaard exhibit

quite similar performance. For the old generation, these families are the only
two that can be accepted at 5% signi�cance (disregarding the 5.1% p-value for
the KS-statistic reported for 4.2.20 Nelsen). On the other hand, for both the
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middle and young generation, only these two families would be rejected at a
level of 5%. One might be able to explain these observations by considering
some properties of these copulas:
a) While Clayton, 4.2.20 Nelsen and Special survival copulae all feature

lower tail dependence, this is not the case for Gumbel Hougaard (upper tail
dependence) and Frank (no tail dependence). (In fact, these tail dependence
properties are reverted for distribution copulae).
b) It is only for Gumbel Hougaard and Frank that dependence decreases

over time. For the 4.2.20 Nelsen and Special copula, dependence increases over
time, while for Clayton it is constant.
In our view, the most important �nding is given by the following table, that

collects the parameters of all copulas for each generation (the Kendall�s tau is
also reported, for the sake of completeness).

GENERATION 1900-13 1907-20 1914-27

Kendall�s tau 0.439627 0.382644 0.279254
Clayton 1.569 1.239 0.774

Gumbel Hougaard 1.784 1.619 1.387
Frank 4.734 3.926 2.686

4.2.20 Nelsen 0.597 0.492 0.33
Special 2.068 1.72 1.213

For each copula selected the dependence parameter is decreasing when passing
from older to younger generations. This is consistent with the decrease of the
Kendall�s tau across generations. This result is not surprising and is in accord-
ance with the observed increase in the rate of divorces, the creation of enlarged
families, the increased independence of the woman in the family and so on.
We would like to remark that this phenomenon, that is intuitive and can be
considered common wisdom, in this context has been exactly quanti�ed and
measured. Furthermore, given that this result has been found with a signi�cant
small size of dataset, we would expect this decreasing trend of dependency to
appear also in larger parts of the populations. Thus, we believe that an insur-
ance company, that has at disposal large dataset of insured people, could well
perform a test of dependence among members of couples of di¤erent generations
to see how this dependency evolves over time. In fact, we believe the changing
dependency factor across di¤erent generations has an impact on the pricing of
insurance policies on two lives that should not be overlooked. Indeed, in the
next section, we will show the e¤ect of mispricing induced by the wrong formu-
lation of the model, both with respect to the copula selection and with respect
to the dependence factor.

5 Pricing bivariate contracts

In this section, we present two di¤erent actuarial applications related to the
pricing of policies on two lives. Namely, we will consider the last survivor policy
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and the reversionary annuity. In both cases, we will measure the mispricing
induced by the independence assumption.

5.1 Last survivor contract

The last survivor insurance policy pays a �xed amount in every period of time as
long as at least one member of the couple is alive. In what follows, we consider
the case of annual unitary payments, made at the end of the year.
If the interest rate used in the actuarial evaluation is constant at the level 

over the maturity of the contract4 , the last survivor contract has the following
fair premium:

X

=1

 � 

where  is the probability that at least one member of the couple survives 
years from now,  is the discount factor,  = (1 + )¬1 and  is, as usual, the
maximal age. The needed probability is computed from the marginal and joint
survival ones as

 = 

 + 


 ¬  =  () +  ()¬ ( ) (17)

where the joint survival probability up to time  is obtained from the corres-
ponding copula as in (2):

( ) =  () +  ()¬ 1 + (1¬  () 1¬  ()) (18)

Putting the two relationships together, we have

 = 1¬ (1¬  () 1¬  ())

Therefore, the annuity price is equal to

X

=1


�
1¬ (1¬  () 1¬  ())

�
which reduces to

X

=1


�
1¬ (1¬  ())(1¬  ())

�
in case of independency between the two lives.
We have implemented numerically the previous pricing formulas for the

three generations in correspondence to di¤erent interest rates, namely  =
1% 2% 3% 4% 5%. We collect the results in the following three tables, which
report, for each rate, the price in correspondence to the best �t copula, the
price which one would obtain by assuming independent lives, and the ratio of
the two.

4The extension to interest rates changing deterministically over time is straightforward.
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 Frank Independence Ratio
1% 16654 17793 0936
2% 14924 15926 0937
3% 13465 14351 0938
4% 12226 13011 094
5% 11164 11864 0941

Old Generation.

 Clayton Independence Ratio
1% 2043 2168 0942
2% 18039 19104 0944
3% 16052 16964 0946
4% 14387 15173 0948
5% 12981 13662 095

Middle Generation.

 Special Independence Ratio
1% 31329 32752 0957
2% 25896 27034 0958
3% 21784 22704 0959
4% 18619 19372 0961
5% 16143 16766 0963

Young Generation.

The reader can notice that the ratio is always less than 1. This result is
expected and intuitive. In fact, the last survivor policy pays until the last
spouse dies. The positive dependence between spouses is re�ected by the fact
that the joint survival probability ( ) is higher than in the independence
case. Thus, looking at (17), a direct consequence is that the probability 
that at least one member of the couple survives  years is lower than in the
independence case, implying a lower fair premium. Clearly, in the case of joint
life annuity the e¤ect of dependence is opposite and we would expect to �nd
ratios higher than 1. This is indeed the case, as we will show in the next
section on reversionary annuities. The practical consequence is that insurance
companies, by assuming independence when pricing the last survivor policy, are
overestimating the premium. This can be interpreted as a prudential manouvre
from the point of view of insurers, and the previous tables give a measure of the
extent of prudentiality so obtained. They also indicate that, for the generations
under scrutiny, prudentiality decreases when the interest rate decreases or when
a younger generation is selected. This trend may be particularly interesting in
an era of decreasing interest rates.

5.2 Reversionary annuity

The annuity described in the previous section is just an example of a more
general contract, named reversionary annuity, which pays 1 as long as both
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members are alive and a fraction  of it ( stays for �reduction factor�) when
only one member of the couple is alive. In fact, in this scheme, the last survivor
product corresponds to  = 1.
More in general, the fair price of the reversionary annuity with reduction

factor  2 [0 1] is
X

=1


�
(


 ¬ ) +(


 ¬ ) + 

�
(19)

since ( ¬ ) is the probability that the bene�t  is paid only to the
male, (¬) is the probability that the bene�t  is paid only to the female,
and  is the probability that the bene�t 1 is paid when both are alive.
In practice, such contracts are quite common (see [9]) for  = 12 23.

However, we want to stress that  = 0 is nothing but the joint life annu-
ity and  = 1 is nothing but the last survivor contract described before.
Therefore, we have implemented the pricing formulas when  takes the val-
ues 0 14 13 12 23 34 1
The results are presented in the following three tables, one for each genera-

tion. As in the interest case, we devote a column to the best��t copula price,
one to the independence assumption and one to the ratio of the two prices.

 Frank Independence Ratio
0 8722 772 113
1
4 10273 9772 1051
1
3 1079 10456 1032
1
2 11823 11823 1
2
3 12857 13191 0975
3
4 13374 13875 0964
1 14924 15926 0937

Old Generation.

 Clayton Independence Ratio
0 12326 11261 1095
1
4 13754 13222 104
1
3 1423 13875 1026
1
2 15183 15183 1
2
3 16135 1649 0978
3
4 16611 17143 0969
1 18039 19104 0944

Middle Generation.
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 Special Independence Ratio
0 17547 1641 1069
1
4 19635 19066 103
1
3 2033 19951 1019
1
2 21722 21722 1
2
3 23113 23492 0984
3
4 23809 24378 0977
1 25896 27034 0958

Young Generation.

The reader can notice the following.

� Each single annuity has a value increasing in , as expected, both under
dependency and independency. This is obvious and due to the fact that a
higher reduction factor implies a higher actuarial value of the bene�ts to
be paid.

� The ratio is decreasing when  increases. This can be explained too. Let
us observe that for  = 0 we have the joint life annuity (as nothing is
paid to the last survivor) and for  = 1 we have the last survivor policy
(where the bene�t paid remains constant also after the �rst death). Then,
 measures the weight given to the last survivor part of the reversionary
annuity, with respect to the joint life annuity part. When  = 0 the
positive dependence implies that the joint survival probability is higher
than in the independence case, leading to a ratio greater than 1. At
the opposite, when  = 1 we have the last survivor, for which we have
already observed that positive dependence implies ratios lower than 1.
The values 0    1 give all the intermediate situations between these
two extremes. In particular, for  2 (0 12) we still have ratios greater
than 1, for  2 (12 1) we have ratios lower than 1. For  = 12, the
ratio is exactly 1, in that the annuity price is shown to be not a¤ected by
the level of dependence. In fact, due to (19), the joint survival probability
does not enter the premium that turns out to be:

X

=1



 
 + 




2

!


In this case, the weight given to the last survivor bene�t is equal to that
given to the joint life annuity, and the two opposite e¤ects of overestima-
tion and underestimation of the premium perfectly o¤set.

� By considering younger generations (both with and without independence)
the value of the annuity increases, for any given reduction factor. This
is expected, because all survival probabilities increase when considering
younger generations.
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6 Conclusions and extensions

This paper analyzes - �rst theoretically, then empirically, on the largest data set
publicly available - the evolution of dependence between couples survivorship.
The evolution has been studied via comparison between di¤erent generations
belonging to the well-known dataset of insured couples introduced by [9]. We
model the marginals of the two spouses with the doubly stochastic setup, while
their dependence is captured with the copula approach. At marginal level we
adopt a time-homogeneous non mean-reverting a¤ne process for the intensity
of mortality, while at bivariate level we perform a best �t copula test among
di¤erent Archimedean copulas.
At theoretical level, we �nd that the Wang and Wells methodology for cen-

sored data should not be adopted when the focus is on comparison among dif-
ferent generations. This depends on the fact that its straight adoption induces
an intrinsec overestimation of the degree of dependence and this overestimation
varies remarkably across generations. This result implies that the dataset to be
considered for the calibration should be complete rather than censored.
At empirical level, the main conclusion is that dependence does matter in

pricing - and consequently in reserving - reversionary annuities, including joint
and last survivor ones. In particular, the e¤ect of dependence on the premium
of insurance products on two lives varies considerably across generations and
should not be overlooked. The e¤ect of mispricing is exactly quanti�ed. Thus,
we believe that not only insurance companies should dismiss the simplifying
independence assumption: they should also measure properly the degree of
dependence of the particular generation the two policyholders belong to.
The natural extension of the current work, which includes stochastic mor-

tality but deterministic interest rates, is to stochastic �nancial rates too. Given
that it seems natural to assume independency between the evolution of interest
rates and mortality over calendar time - and across generations - we do not
expect this extension to provide substantial modi�cation to our conclusions. In
fact, we would expect changes at most in the magnitude of the e¤ect, but not
in its direction.
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