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ABSTRACT  

Vaccines against oncoantigens halt early neoplastic lesions in several cancer-prone, 

genetically engineered mouse models, whereas their ability to prevent chemical 

carcinogenesis has not been explored. This is a significant issue since exposure to chemical 

mutagens is responsible for a substantial percentage of cancers worldwide. Here we show 

that the archetypal oncoantigen ERBB2 is transiently overexpressed in Syrian hamsters 

during the early stages of 7,12-dimethylbenz[α]anthracene (DMBA)-induced oral 

carcinogenesis. Repeated DNA vaccinations against ERBB2 significantly reduce the number, 

size and severity of oral lesions in a manner directly proportional to the anti-ERBB2 antibody 

response. These results support the prospects of vaccines as a fresh strategy in the 

management of individuals at risk for exposure to defined carcinogenic agents.
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INTRODUCTION 

Immunoprevention of tumors associated with microbial infections is expected to 

decrease the human tumor burden in the near future (1, 2). Vaccines against tumor antigens 

with a causal role in the promotion of carcinogenesis unrelated to infections (oncoantigens) 

(3) halt early neoplastic progression in several cancer-prone, genetically engineered mice due 

to their ability to target molecules with an essential role in tumor progression. They have a 

limited therapeutic potential, but are very effective in inhibiting the early stages of cancer. 

Whereas the potential of vaccines against oncoantigens to prevent tumors is being 

extensively studied in transgenic mouse models (4-7), their ability to interfere with the 

progression of chemical carcinogenesis is still mostly unexplored. Chemical pollutants and 

especially polycyclic aromatic hydrocarbons are widespread environmental contaminants 

responsible for many animal and human cancers (8).  

The membrane tyrosine kinase receptor ERBB2 is an archetypal oncoantigen overexpressed 

by several carcinomas generally characterized by a more aggressive course in both humans 

and animals, whereas its expression is low or absent in normal adult tissues (9-12). Anti-

ERBB2 vaccination protects against and cures mice with transplantable ERBB2+ tumors (13), 

and inhibits one of the most aggressive, metastasizing and lethal ERBB2-driven mammary 

carcinogenesis in transgenic mice (14) for the whole of their natural lifespan (15). In cancer 

patients, anti-ERBB2 vaccines elicit both antibody and cell-mediated response to ERBB2, 

while monoclonal (mAb) anti-ERBB2 antibodies display a significant therapeutic activity (16).  

Spurred by Sun et al.’s observation of the expression of ERBB2 during oral 

carcinogenesis induced by a non-heterocyclic polycyclic aromatic hydrocarbon (7,12-

dimethylbenz[α]anthracene, DMBA) in hamsters (17), we first evaluated the intensity and 

persistence of ERBB2 expression in a large group of random-bred hamsters during the 
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DMBA-induction of oral squamous cell carcinomas. This is one of the best characterized 

animal models of chemical carcinogenesis and closely recapitulates several features of the 

development of the corresponding human cancer (17-20). While ERBB2 is expressed only 

transiently during the early stages of DMBA carcinogenesis, we found that repeated boosts 

with a DNA vaccine anti-ERBB2 resulted in significant reduction of the number, size and 

severity of oral lesions in function of the anti-ERBB2 antibody titer. This finding may open a 

fresh scenario in the management of individuals exposed to a defined carcinogenic agent. 

 

MATERIALS AND METHODS  

 

Hamsters  

One hundred and six, six-week-old male, random-bred Syrian golden hamsters (Mesocricetus 

auratus, Charles River Laboratories, Calco, Italy), of about 100 g were maintained in specific 

pathogen-free conditions with a 12 h light–dark cycle, and with rodent chow and tap water ad 

libitum. Their right cheek pouch was painted three times a week with a 0.5% solution of 

DMBA dissolved in mineral oil (Sigma-Aldrich, Milan, Italy) applied with No. 4 paintbrush. The 

amount of carcinogen and treatment delivered to each animal was rendered quite uniform by 

using the ‘‘wiped-brush’’ method (19, 20). The unilateral formation of tumors allowed the 

animals to eat and swallow normally. 

 

Experimental plan 

In the first experiment, thirty-six hamsters were treated with DMBA for twelve weeks (Fig. 1A). 

At the end of every week, three hamsters were randomly sacrificed. Pouches and major 

organs were inspected and processed for histopathological analysis.  
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In the next experiment, seventy hamsters were first electroporated in both tibial muscles with 

50 µg of EC-TM plasmids coding the extracellular and transmembrane domains of rat ERBB2 

receptor, or with the empty pcDNA3 plasmids (21) twenty-one and seven days before starting 

DMBA carcinogenesis induction (day 0), and then every three weeks (Fig. 2A). Every week 

hamsters were anesthetized and the pouches everted. The first onset of visible lesions, and 

their number/single cheek pouch (multiplicity) was evaluated. Each lesion was measured in 

the two perpendicular diameters, classified and photographed. The type, multiplicity and size 

of the lesions at the end of DMBA-induction period were used to elaborate an overall 

pathological score (PS) for each hamster (22). PS 0 for no lesions; 1 for each preneoplastic 

lesion; 2 for an exophytic lesion less than 1 mm in diameter; 3 to 8 for each exophytic lesion 

larger than 1 mm proportionally to the increase of their mean diameter. At the end of twelve 

weeks' carcinogenesis induction blood was collected, hamsters were sacrificed and their 

pouches and major organs were processed for histopathological and molecular analyses. All 

experimental procedures were approved by the Institutional and National Animal Care 

Committee. 

 

Histology and immunohistochemistry  

Specimens were fixed in methyl-Carnoy’s fluid or 10% neutralized formaldehyde solution and 

embedded in paraffin, or fixed in pyridoxal phosphate and embedded in OCT. Four µm thick 

sections were stained with hematoxylin-eosin, or processed for immunohistochemistry. 

Several commercial anti-ERBB2 mAb were assayed for their ability to recognize Syrian 

hamster ERBB2 receptor on cheek pouches with and without preneoplastic and neoplastic 

lesions (c-erbB-2/Her2/neu Ab-17 and c-erbB-2/Her2/neu, LabVision, Fremont, CA; c-erbB-2 

Oncoprotein and HercepTest™, Dako Cytomation, Milan, Italy; Her 2/ErbB2, Cell Signaling, 
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Beverly MA; Neu(C-18) and Neu(9G6), SantaCruz, Santa Cruz, CA). Positive controls were 

microarray slides of human ERBB2+ mammary carcinomas and the appropriate isotype 

antibody for each primary antibody used. Since the best results on formalin fixed-paraffin 

embedded samples were obtained with the anti-ERBB2 mAb c-erbB-2 Oncoprotein, this mAb 

was used for all the studies reported here. For p63 staining, the anti-human p63 protein clone 

4A4 (Dako) was used at 1:50 dilution. 

 

Western Blot analysis 

Samples from normal epithelium, preneoplastic lesions and exophytic lesions were 

homogenized in RIPA buffer (Cell Signaling Technology, Pero, Italy). Forty μg of total proteins 

were separated on an 8% SDS–polyacrylamide gel, and electrotransferred to a Hybond-C 

nitrocellulose membrane (Amersham Pharmacia Biotech, Little Chalfont, UK). Western blot 

analysis was performed with the mouse Ab-3 mAb (Oncogene Research Products, 

Cambridge, MA, USA). The membrane was then exposed to the appropriate horseradish 

peroxidase-conjugate secondary antibody (1:5000) (Sigma) for 1 h at room temperature, and 

labeled bands were detected with a commercial chemiluminescence kit (Immun-Start, Bio-

Rad Hercules, CA, USA). Images of the immunoreactive bands were acquired with a Kodak 

Image Station 440CF (Kodak, Rochester, NY, USA). 

 

Plasmid electroporation 

pcDNA3 vectors coding the extracellular and transmembrane domains of rat HER-2 receptor 

(EC-TM) and the empty control plasmid (pcDNA3) were produced and used as we have 

previously described in detail (21). Briefly, anesthetized hamsters were electroporated by 

injecting 50 µg of plasmids in 40 µl of 0.9% NaCl supplemented with 6 mg/ml polyglutamate 
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into both tibial muscles. Electric pulses were applied by two electrodes placed on the shaved 

skin around the injection area covered with a conducting gel. Two square-wave 25 ms, 375 

V/cm pulses were generated by a T820 electroporator (BTX, San Diego, CA, USA). Hamsters 

were electroporated twenty-one and seven days before starting DMBA carcinogenesis 

induction (day 0), and then every three weeks.  

 

Antibody response 

The titer of anti-ERBB2 antibodies was assessed by flow cytometry with BALB/c NIH-3T3 

fibroblasts stably co-transfected with the wild-type rat ERBB2, mouse class I H-2Kd and B7.1 

genes (BALB/c NIH 3T3-NKB cells) (23). FITC-conjugated goat antibodies specific for 

hamster IgG heavy and light chains (ImmunoKontact, Abingdon, Oxon, UK) were used to 

detect bound primary antibody. Normal hamster serum was used as a negative control, and 

the Ab-4 mAb (Oncogene Research Products, Cambridge, MA, USA) was the positive control. 

Cells were resuspended in PBS-azide-BSA containing 1 mg/ml of propidium iodide to gate out 

dead cells, and evaluated with a CyAn ADP (Dako Cytomation, Heverlee, Belgium) and the 

Summit 4.3 (Dako Cytomation) software. The specific 3T3-NKB binding potential of the sera 

was calculated as follows: ([% positive cells with test serum] [fluorescence mean]) × serum 

dilution (23). A total of 104 viable cells were analyzed in each evaluation. 

 

Statistical analysis 

Differences in antibody titer, multiplicity and diameters of lesions were analyzed with 

one-way analysis of variance. Those in the % of lesion-free hamsters were evaluated with the 

Log-Rank (Mantel-Cox) test and Fisher’s exact test. Differences in the number of fast and 

intermediate progressors were evaluated with Fisher’s exact test, whereas distribution within 
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groups was assessed with Pearson’s chi-square test. Differences in the number of exophytic 

lesions classed in different stage groups were compared with the non-parametric Mann–

Whitney Rank Sum test. All analyses were performed with GraphPad Prism version 5.00 for 

Windows (GraphPad Software, San Diego, CA, USA) with P < 0.05 as the significance cut-off. 

 

RESULTS 

ERBB2 expression throughout the DMBA-induced carcinogenesis 

The right cheek pouch of random-bred Syrian hamsters was painted three times weekly for 

twelve consecutive weeks with a 0.5% solution of DMBA in mineral oil (Fig. 1A). Three 

randomly chosen hamsters were sacrificed at the end of every week to follow the lesion 

development. Direct inspection of the cheek pouch surface (Fig. 1B) disclosed early 

enlargement of blood vessels in the painted area, followed at week 4 by inflammation 

associated with a rough surface. Around week 7, preneoplastic lesions became evident, 

sometimes as corrugated or verrucous leukoplakias. Hereafter exophytic lesions appeared 

and grew. Histological analysis (Fig. 1C) revealed that, within four weeks of DMBA induction, 

a moderate inflammatory reaction was developed as well as the hyperkeratotic feature of the 

epithelium. At week 7, foci of intraepithelial dysplasia became evident, while the epithelium 

displayed hyperkeratotic and acanthotic features. Subsequently dysplastic lesions grew into 

intraepithelial carcinoma. The resulting exophytic lesions consisted of finger-like papillae 

covered by a multilayered epithelium with features of moderately differentiated, in situ 

keratinized squamous cell carcinoma, sometime progressing to invasive squamous cell 

carcinoma. ERBB2 expression was evaluated throughout the induction (Fig. 1D and E): it was 

absent or scarcely present in the basal layer of normal and inflamed epithelium, but became 

markedly enhanced in the hyperkeratotic and acanthotic epithelia of the leukoplakia patches, 
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then almost disappeared in intraepithelial and invasive carcinomas. Preliminary data in few 

specimens from different patients (3 normal mucosae, 6 dysplastic lesions, and 5 carcinomas) 

suggest that a similar pattern of transient ERBB2 expression is also a feature of human oral 

preneoplastic/dysplastic lesions and squamous cell carcinoma (Supplementary Fig. S1). 

 

DMBA-induced carcinogenesis is hampered by anti-ERBB2 DNA vaccine 

To determine whether induction of the immune response against ERBB2 impairs a 

chemically-driven carcinogenesis, forty hamsters were electroporated every three weeks with 

EC-TM plasmids (21, 24). Thirty control hamsters were electroporated with the empty 

pcDNA3 plasmids. In both groups, DMBA induction of cheek pouch carcinogenesis began 

one week after the second electroporation (Fig. 2A). The kinetics of the occurrence of 

preneoplastic lesions was delayed in hamsters electroporated with EC-TM (Fig. 2B) and their 

multiplicity was reduced (Fig. 2C). Ten weeks after the beginning of DMBA induction, 

preneoplastic lesions were present in 60% (18/30) of control hamsters, but in only 32.5% 

(13/40) (p = 0.029) of those electroporated with EC-TM plasmids. In these hamsters, lesion 

multiplicity was less than half (0.62 + 0.15) of that of the controls (1.21 + 0.23) (P = 0.029). 

The assessment of preneoplastic lesions was ended at week 10 since most of them then 

progressed to exophytic lesions. At week 11, in fact, all 30 control hamsters displayed one or 

more exophytic lesions (Fig. 2D). By contrast, 6 of the 40 hamsters electroporated with EC-

TM (15%) (P = 0.034) remained free from exophytic lesions until week 12, when the 

experimental observation was ended. At this time, both the multiplicity (Fig. 2E) and the size 

(Fig. 2F) of the exophytic lesions were lower in EC-TM electroporated hamsters than in the 

controls.  
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Pathological stage of the exophytic lesions. 

Since in human head and neck squamous cell carcinomas, overexpression of p63, a member 

of the p53 family, is widely associated with poor prognosis (25, 26), we assessed p63 

expression in DMBA-induced lesions. Post-mortem pathological analysis showed that 

exophytic lesions of control hamsters displayed a diffuse p63 expression, while in the smaller 

lesions of EC-TM electroporated hamsters it was confined to basal and parabasal cell layers 

(Fig. 2G and H).  

The presence of smaller exophytic lesions is of special interest since size is directly 

associated with a more advanced stage. Most of the smaller lesions were lined by dysplastic 

epithelium with areas of severe dysplasia, whereas the larger lesions were invasive, 

advanced squamous cell carcinomas. A pathological survey performed at the end of the 

experiment on 35 randomly chosen EC-TM and control hamsters displaying exophytic lesions 

showed that both dysplastic lesions and carcinomas were less advanced in those 

electroporated with EC-TM (Supplementary Table S1). 

 

EC-TM immunized hamsters with the highest anti-ERBB2 antibody titer display 

hampered DMBA-carcinogenesis.  

At the end of the induction the PS was assessed for each hamster by evaluating the stage of 

its cheek lesions. It was significantly lower in EC-TM immunized hamsters than in the controls 

(P < 0.001). The analysis was deepened by setting two arbitrary thresholds at PS 2.5 and 5.0 

to classify hamsters as fast (PS > 5), intermediate (2.5 < PS < 5), and slow progressors (PS < 

2.5) (Fig. 3A). The controls were mainly fast progressors (73%) and the other 27% were 

intermediate. No animal had a PS less than 2.5 at the sacrifice. Of the EC-TM electroporated 

hamsters, 27% were fast progressors, 25% intermediate progressors and 48% slow 
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progressors with a very indolent progression (Fig. 3B). Anti-ERBB2 antibody titer was nearly 

undetectable in the controls, whereas in the EC-TM group it was inversely correlated (P < 

0.05) to the PS value (Fig. 3C). Moreover, the time of appearance of exophytic lesions, the 

number of preneoplastic and exophytic lesions, and their diameters were markedly different 

between fast and slow progressors in the EC-TM hamsters (Supplementary Fig. S2). 

 

DISCUSSION 

These findings show that vaccination against an oncoantigen significantly impairs the 

progression of chemically induced oral carcinogenesis. The incidence, number and size of 

preneoplastic and exophytic lesions are reduced and their pathological stage is less 

advanced in hamsters immunized against ERBB2. Moreover, at the end of the observation 

period, all control hamsters displayed exophytic lesions and invasive cancer whereas six 

(15%) of the ERBB2 immunized hamsters were still free from lesions. 

This protection is proportional to the intensity of anti-ERBB2 antibody response induced by 

the vaccine even if the titers in the slow progressors ranged from very low titers to very high. 

The presence of slow progressors with low anti-ERBB2 antibody titers can probably be 

ascribed to the induction of a stronger cytotoxic response against ERBB2+ target cells. Since 

our population was random-bred, vaccination was expected to elicit markedly different levels 

of cytotoxicity. The collaboration of antibody and cell-mediated cytotoxic responses in 

protection against ERBB2+ tumors has been clearly documented (27). We have previously 

shown that electroporation of the EC-TM plasmid in hamsters elicits a protective anti-ERBB2 

antibody and cell-mediated cytotoxic response against ERBB2+ transplantable tumors (21). In 

the present study, a similar cytotoxic response was also elicited in the few ERBB2 vaccinated 

hamsters tested (data not shown). However, when random-bred hamsters are used, 
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differences in major histocompatibility antigens markedly affect the efficacy of T-cell killing of 

ERBB2+ target cell lines, and so the cytotoxic response of all the immunized hamsters was 

not compared.  

Admittedly, random-bred hamsters are not a suitable model for fine dissection of the immune 

mechanisms activated by the vaccine because of the lack of specific reagents and 

standardized procedures. However, the immune mechanisms elicited by anti-ERBB2 DNA 

vaccine have been extensively studied in various mouse models of ERBB2 cancer. In wild-

type BALB/c mice, the electroporation of EC-TM plasmids elicits an antibody and CD8+ T cell 

mediated immune response (28). In BALB/c mice transgenic for the ERBB2 oncogene (BALB-

neuT mice), it inhibits the progression of ERBB2-driven carcinogenesis. However, in these 

mice vaccine elicits mostly, if not only, an antibody response (14, 29). The lack of cell-

mediated cytotoxicity is due to the absence of CD8+ T cells reacting with rat ERBB2 with high 

avidity. In BALB-neuT mice, a form of split-tolerance allows anti-ERBB2 vaccine to induce 

only a CD4+ T cell activation and a significant antibody response to ERBB2 (30, 31). The 

protection elicited in these mice against autochthonous carcinomas rests on the multiple 

direct and indirect antitumor activities of vaccine-induced anti-ERBB2 antibodies.  

The antibody response to ERBB2 is especially effective because ERBB2 is both the target 

antigen of the EC-TM vaccine and a membrane-exposed receptor regulating cell growth (3). 

EC-TM-induced anti-ERBB2 antibodies impede the progression of ERBB2 carcinogenesis by 

blocking the proliferation of ERBB2+ tumor cells (29). Inhibition of ERBB2 receptor 

dimerization and induction of internalization and recycling prevent the transduction of 

activating signals (14, 24). EC-TM induced antibodies reduce the basal level of Akt 

phosphorylation in ERBB2+ cells without impairing PI3K enzymatic activity, and induce an 

increase of PTEN phosphatase activity correlated with reduced PTEN tyrosine 
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phosphorylation (32). They also indirectly affect tumor growth by mediating antibody-

dependent cell-mediated cytotoxicity (23).  

ERBB2 is a tumor associated molecule with a causal role in cancer progression. However, it 

is a self tolerated molecule and triggering a response to it has to circumvent central and 

peripheral tolerance (4, 15). Data in mice (24) and hamsters (21) have shown that EC-TM 

plasmid electroporation is an effective way to break tolerance. However, the antibody 

response thus induced is short-lived and frequent electroporations are required for a 

sustained control of carcinogenesis (24). This requirement is also evident in human patients 

vaccinated against tumor-associated antigens (33). In the present study, EC-TM plasmids 

electroporations repeated every four weeks kept anti-ERBB2 antibody levels stable during the 

twelve weeks of the DMBA carcinogenesis induction (not shown).   

The kinetics of the occurrence of preneoplastic lesions is markedly delayed in ERBB2 

vaccinated hamsters. Their progression to exophytic lesions, and their growth is also delayed. 

Necroscopic pathological observations show that both the progression of preneoplastic 

lesions to severe dysplasia and that of squamous cell carcinomas to frankly invasive cancer 

are hampered. Our work on transgenic mice electroporated with EC-TM plasmids had shown 

that the immunity elicited hampered the progression of neoplastic lesions while it was unable 

to reduce the growth of existing lesions (15, 24, 31). This issue has not been directly 

addressed in the present experiments. However, it is probable that the effects we observed 

on more advanced lesions in ERBB2 vaccinated hamsters are mostly the result of immune 

inhibition of the progression of earlier stages of the lesions.   

Present data extend to specific immunity previous findings showing that IL-12-boosted innate 

immunity effectively counteracts 3-methylcholanthrene carcinogenesis in mice through the 

release of cytokines and boosting of innate immunity mechanisms (34). They also endorse 
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the pioneering work of Thorbecke's group on vaccination with tumor cells (35) and on the 

central role of antibody (36) in preventing DMBA induced sarcomas in chickens. 

Since vaccines against oncoantigens are especially effective in inhibiting the progression of 

early stages of cancer (4), characterization of oncoantigens overexpressed during such 

stages along with refinement of vaccines to make them able to trigger innate and adaptive 

immune mechanisms, may form a fresh strategy for the management of individuals at high 

risk of cancer following exposure to a specific carcinogenic agent. 

However, caution is needed in directly assessing the significance of these results to humans. 

While the hamster cheek pouch model mimics many aspects of human cancer (e.g. multi-

stage development, pathological and histological features, molecular alterations) it has some 

limitations (e.g. the human mouth does not have a similar structure and chemical induction is 

very quickly elicited in hamsters by a high carcinogen dose) (18). Moreover, studies 

addressing the expression of ERBB2 in human preneoplastic and neoplastic oral cavity 

lesions have provided inconclusive and conflicting results (37-43). Whether ERBB-2 is driving 

the early stage of carcinogenesis, and at which stage this driving role acquires critical 

significance are not yet clearly defined. The pathological evidence in supplementary Figure 1 

suggests that the controversy on ERBB2 overexpression in human head and neck cancer 

may be partly due to its transient overexpression in critical stages of carcinogenesis. 

However, the samples analyzed are too few as a source of definitive conclusions. 

Nevertheless, the question of whether the ERBB2 expression in our model really mimics the 

human scenario, while important, is not a central issue of this study. Although ERBB2 

expression in the human head and neck cancer is debated, our data suggest that an immune 

response against an oncoantigen, even if it is apparently transiently expressed only in a few 

stages of carcinogenesis, may hamper the progression of mutagen-induced carcinogenesis. 
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The differences we observed between control and ERBB2 immunized hamsters are relatively 

small and thus may seem of limited clinical significance. However, vaccine-induced protection 

was observed against a continuous and prolonged chemical induction of oral cancer that in 

eleven weeks causes the onset of oral exophytic lesions in all control hamsters. As evinced 

by necroscopic analysis at the twelfth week, most of them were lesions characterized by a 

severe grade of dysplasia or were invasive carcinomas (Supplementary Table S1). In this fast 

and aggressive model, our multiple protection data acquire a special significance since they 

provide a proof of concept on the potential of vaccination in hampering chemical 

carcinogenesis. In a slower and less aggressive chemical induction, more refined vaccines 

and more effective vaccination schedules may lead to a stronger immunity, and the protection 

afforded may acquire a true clinical significance. The experimental evidence that 

pharmacological (17) and vaccine-induced interference with an oncogene product impairs 

mutagen induced carcinogenesis provides a further demonstration on the efficacy of 

preventive maneuvers for cancer prevention and may spur the search for fresh immune, 

pharmacological and combined strategies to treat healthy persons at risk, for whom no active 

therapeutic option exists at present. 
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CAPTIONS  

 

Figure 1: Stages of DMBA-induced carcinogenesis . A, weeks when the right cheek pouch 

mucosa was painted with DMBA (blue arrows). B, appearance of DMBA painted area: 

enlargement of blood vessels (B1); inflammation and whitish granular appearance (B2); foci 

of leukoplakia (B3 and B4), exophytic lesions (B5 and B6). C, histological examination: 

moderate (C1) and marked inflammatory reaction (C2); focal dysplasia (C3 and C4); 

moderately differentiated, in situ (C5) and invasive squamous cell carcinoma (C6). D, 

immunohistochemistry of ERBB2 expression: absent or scarcely present (D1 and D2); 

markedly evident in hyperplastic and dysplastic epithelia (D3 and D4); poorly evident and only 

persisting in limited areas of the squamous cell carcinomas (D5 and D6). E, Western blot 

analysis of ERBB2 expression evaluated on three hamster cheek pouches. Data were 

normalized with actin expression. (Original magnification: C1-2, D1-2 x400 and C3-6, D3-6 

x200).  

 

Figure 2: Anti-ERBB2 DNA vaccine hampers DMBA-induced carcinogenesis. A, starting two 

weeks before the cheek pouch painting with DMBA, hamsters were electroporated every 

three weeks with pcDNA3 or EC-TM plasmids (red arrows). Percent of hamsters free of 

prenenoplasric lesions (B) and their multiplicity (C). Percent of hamsters free of exophytic 

lesions (D), their multiplicity (E) and their size (E). Expression of p63 in large exophytic and 

hyperkeratotic lesions from hamsters electroporated with empty pcDNA3 (G) or EC-TM (H) 

plasmids. * P < 0.05; ** P < 0.01; *** P < 0.001. (Original magnification: G and H x100). 

 

Figure 3: EC-TM immunized hamsters with the highest anti-ERBB2 antibody titer display 



 

20 
 

hampered DMBA-carcinogenesis. A, PS is lower in EC-TM immunized hamsters than the 

controls electroporated with empty pcDNA3 plasmids (P < 0.001). The 2.5 and 5 PS 

thresholds divide hamsters into fast (gray), intermediate (empty), and slow (green) 

progressors. B, The number of fast progressors is significantly lower among the hamsters 

immunized with EC-TM plasmids (P < 0.001). Slow progressors were only present among 

EC-TM electroporated hamsters. C, Among EC-TM electroporated hamsters the slow 

progressors (green square) displayed the highest titer of anti-ERBB2 antibodies, while those 

classed as fast progressors (gray square) the lowest (P < 0.01). * P < 0.05; ** P < 0.01; *** P 

< 0.001. 
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