
This is an author version of the contribution published on:

Questa è la versione dell’autore dell’opera:

Sum of weighted Lebesgue spaces and nonlinear elliptic equations

Nonlinear Differential Equations and Applications vol.18, pag.369-405, 2011, 

DOI 10.1007/s00030-011-0100-y

The definitive version is available at:

La versione definitiva è disponibile alla URL:

http://www.springer.com/birkhauser/mathematics/journal/30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301867044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Sum of wheighted Lebesgue spaces and nonlinear

elliptic equations

Marino Badiale — Lorenzo Pisani — Sergio Rolando

Dipartimento di Matematica

Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
e-mail: marino.badiale@unito.it, sergio.rolando@unito.it

Dipartimento di Matematica

Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
e-mail: pisani@dm.uniba.it

Abstract

We study the sum of wheighted Lebesgue spaces, by considering an abstract
measure space (Ω,A, µ) and investigating the main properties of both the Ba-
nach space

L (Ω) = {u1 + u2 : u1 ∈ Lq1 (Ω) , u2 ∈ Lq2 (Ω)} , L
qi (Ω) := Lqi (Ω, dµ) ,

and the Nemytskĭı operator defined on it. Then we apply our general results to
prove existence and multiplicity of solutions to a class of nonlinear p-laplacian
equations of the form

−�pu+ V (|x|) |u|
p−2

u = f (|x| , u) in RN

where V is a nonnegative measurable potential, possibly singular and vanishing
at infinity, and f is a Carathéodory function satisfying a double-power growth
condition in u.

1. Introduction

The recent mathematical literature has seen a growing interest in what we may call,
borrowing a terminology from [19], the zero mass case of noncritical elliptic problems
of the form

−7u+ V (x)u = g (u) in RN , N ≥ 3, (1.1)

namely, the case of nonlinearities different from the critical power and such that
g3 (0) = 0, and potentials satifying lim inf |x|→∞ V (x) = 0 (which is also a particular
critical frequency case, as termed in [22, 23]).



These problems are variational in nature and the main difficulty in studying exis-
tence is that the related energy space

H1
�
R
N , V

�
:=

�
u ∈ D1,2

�
R
N
�
:

]

RN

V (x)u2dx < +∞
�

is not necessarily contained in any Lebesgue space Lq(RN )with q 9= 2∗ := 2N/ (N − 2)
and thus, not only the standard compact embeddings ofH1(RN ) are not avaliable, but
also a single-power growth condition of the form |g (u)| ≤ (const.) |u|q (with q 9= 2∗)
does not ensure the finiteness of the energy functional of the equation on H1(RN , V ).
The existence of solutions for a null potential V = 0 was obtained by Berestycki

and Lions in [19], where the authors probably first used the so-called double power
growth condition on g, namley, g (u) behaves as a subcritical power uq1−1 at infinity
and a supercritical power uq2−1 near the origin, where q1 < 2∗ < q2.
More recently, the zero mass case of equations (1.1) with noncritical nonlinearities

behaving as a single power has been widely studied in both the autonomous and
nonautonomous cases (see e.g. [10, 12, 21, 24, 25, 36] and [1, 3, 20, 30, 36] respectively,
and the references therein), showing essentially that the existence of solutions relies on
suitable compatibility conditions between the power of u and the growth and decaying
rates of V (x) (and possibly of the nonlinearity) at zero and infinity.
Besides, many authors resumed the study of equation (1.1) under the double power

growth condition, after it was successfully exploited in [14, 15] in dealing with the
semilinear Maxwell equations (see also [4, 5] for other recent works using the double
power assumption). The autonomous zero mass case of (1.1) has been considered,
e.g., in [7, 8, 9, 11, 13, 16, 17, 18], where it is seen that the double power assumption
allows the potential V to be very general and no compatibility condition is needed in
order to get existence. For instance, the radial existence and multiplicity results of
[11] only require the mild integrability assumption (V) below, in such a way that no
behaviour is prescribed either at infinity or at the origin to the potential, which may
also have a nonempty, even continuous, set of singularities. As far as we know, the
nonautonomous zero mass case of equation (1.1) is only studied in [6], where (1.1)
is considered with V = 0 and g (x, u) = K (x) f (u), and in [27], where the authors
assume V < 0 and deal with nonlinearities of the form g (x, u) = f (u) +K (x).
Here we study the nonautonomous radial case of equation (1.1) with nonnegative

potentials and double power nonlinearities, by actually considering the more general
p-laplacian problem

−7pu+ V (|x|) |u|
p−2 u = f (|x| , u) in RN (1.2)

where 1 < p < N and 7pu = div(|∇u|p−2∇u). More precisely, we assume that
V : (0,+∞)→ [0,+∞] and f : (0,+∞)×R→ [0,+∞) are, respectively, a measurable
and a Carathéodory function, both nonnegative; then we define the space

W 1,p
�
R
N , V

�
:=

�
u ∈ D1,p

�
R
N
�
:

]

RN

V (|x|) |u|p dx < +∞
�
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and prove existence and multiplicity of solutions to (1.2) in the following weak sense:
we say that u ∈W 1,p(RN , V ) is a weak solution to equation (1.2) if and only if

]

RN

�
|∇u|p−2∇u ·∇h+ V (|x|) |u|p−2 uh

�
dx =

]

RN

f (|x| , u)hdx (1.3)

for all h ∈W 1,p(RN , V ).

Denoting F (x, t) :=
U t
0
f (x, s) ds and p∗ := pN/(N − p), we will exploit the

following hypotheses, where (f) is a double power growth condition:

(V) V ∈ L1 ((a, b)) for some open bounded interval (a, b) with b > a > 0;

(f) there exist γ > p such that for almost every r > 0 and all t ≥ 0 one has

0 ≤ γF (r, t) ≤ f (r, t) t ≤M max{rθ1 , rθ2}min{tq1 , tq2} (1.4)

for some constant M > 0 and θ1, θ2, q1, q2 ∈ R such that

p < q1 < p
∗ +

θ1p

N − p ≤ p
∗ +

θ2p

N − p < q2. (1.5)

Note that (1.4) implies f (·, 0) = 0 almost everywhere and observe that the inequality
p < p∗ + θ1p

N−p ≤ p∗ +
θ2p
N−p of (1.5) is equivalent to

θ2 ≥ θ1 > −p. (1.6)

The requirement q1 > p is not restrictive and may also be avoided in (1.5).
Our existence and multiplicity results are the following Theorems 1.1 and 1.2,

which, as far as we know, are also new for the nonautonomous semilinear case p = 2.
Note that no assumptions neither on the regularity of V nor on its behaviour at zero
or infinity are made, and that V = 0 is allowed in both Theorems 1.1 and 1.2.

Theorem 1.1. Assume (V) and (f). If there exists t∗ > 0 such that

F (r, t) > 0 for almost every r > 0 and all t ≥ t∗, (1.7)

then equation (1.2) has a nontrivial nonnegative radial weak solution.

Theorem 1.2. Assume (V) and (f). If for almost every r > 0 and all t ≥ 0 one has

f (r, t) = −f (r,−t) , (1.8)

F (r, t) ≥ mmax{rθ1 , rθ2}min{tq1 , tq2} (1.9)

for some constant m > 0 (with the same exponents θ1, θ2, q1, q2 of assumption (f)),
then equation (1.2) has infinitely many radial weak solutions.
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For instance, the assumptions of both Theorems 1.1 and 1.2 hold true for

f (|x| , u) = |x|θ
|u|q2−2 u

1 + |u|q2−q1
with θ > −p and q1 < p∗ +

θp

N − p < q2.

More generally, Theorem 1.1 applies for example to nonlinearities of the form

f (|x| , u) = K (|x|) g (u)

provided that K : (0,+∞)→ (0,+∞) is measurable and such that

lim sup
r→0+

K (r)

rθ1
< +∞, lim sup

r→+∞

K (r)

rθ2
< +∞ for some θ1, θ2 satisfying (1.6),

and g : R→ [0,+∞) is continuous and satisfying

lim sup
t→0+

g (t)

tq2−1
< +∞, lim sup

t→+∞

g (t)

tq1−1
< +∞ for some q1, q2 as in (1.5)

together with ] t∗

0

g (s) ds > 0 for some t∗ > 0

and the so-called Ambrosetti-Rabinowitz condition:

∃γ > p, ∀t ≥ 0, γ

] t

0

g (s) ds ≤ g (t) t .

Theorems 1.1 and 1.2 will be proved in Section 5 by applying some abstract results
from the previous sections, where we study of the sum Lq1 + Lq2 of Lebesgue spaces
Lqi . In fact, for a complete treatment, variational problems involving double power
nonlinearities need the use of such a particular type of functional framework, to such
an extent that its main properties have been investigated by different authors in
different works, such as [7, 11, 13, 15, 18, 34] and the unpublished note [32], which
is a preliminary version of our Sections 2 and 3. These studies, though occasional,
have clarified the main features of the Lq1 + Lq2 spaces, showing essentially that
they share several important properties with the usual Lebesgue spaces and that, in
many respects, they play for the Sobolev space D1,2(RN ) the same role that the usual
Lebesgue spaces play forH1(RN) (see for instance [15, Lemma 3] and the compactness
results of [7]). Here, owing to nonautonomous nonlinearities, we need to consider the
sum of wheighted Lebesgue spaces instead of the sum of the usual ones, so that the
interest of our Sections 2, 3 and 4 is actually twofold: on the one hand, we collect
some general results which have already been used in many of the above-mentioned
papers, but which are presently expounded in the unpublished works [32, 34] only; on
the other, we extend the investigation to the sum of wheighted Lebesgue spaces, by
considering an abstract measure space (Ω,A, µ) and studying the space

L (Ω) := {u1 + u2 : u1 ∈ Lq1 (Ω) , u2 ∈ Lq2 (Ω)} , Lqi (Ω) := Lqi (Ω, dµ) . (1.10)
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Going into more detail, the paper is organized as follows.
Section 2 is devoted to the study of the basic properties of L(Ω). Some charac-

terizations of the set L(Ω) are given in Proposition 2.3, showing in particular that it
is made up by the measurable functions which are q1-integrable on some measurable
subset and q2-integrable on its complement. Then we structure L(Ω) as a Banach
space by introducing a natural family of equivalent norms and proving an isometrical
identification between L(Ω) and the dual space of Lq

3
1(Ω) ∩ Lq32(Ω), q3i = qi/(qi − 1),

endowed with the norm n·n
Lq

3
1
+ n·n

Lq
3
2
. The related topology is brielfy studied and

some useful inequalities are given in Subsection 2.3. In the last part of Section 2, we
show that L(Ω) can be characterized as an Orlicz space (cf. [29, 28, 33]), whose Orlicz
norm induces the same topology. We observe that some of the results of Section 2
could be deduced from the theory presented in [29, Chapter 12] for the sum of Orlicz
spaces; nevertheless, the proofs are often simple and direct, so we give them anyway
here, for sake of completeness.
The aim of Section 3 is the investigation of the Nemytskĭı operator N defined on

L (Ω), which is a central topic in nonlinear analysis. Unfortunately, the characteri-
zation of L (Ω) as an Orlicz space is not very helpful in this direction, since, at least
to our knowledge, not many results on the subject are avaliable in the literature; for
instance, the classical monograph [28] only gives some results for Orlicz spaces on a
base set of finite measure, while the Nemytskĭı operator is considered in [26] just from
the point of view of its good definition (see Remark 3 below). On the other hand, the
case

N : L (Ω)→ Lq (Ω)

can be studied through direct arguments, and we will show that, in this respect, L (Ω)
behaves exactly as the usual Lebesgue spaces (cf. [37, Theorem 19.1]): whenever the
Nemytskĭı operator is well defined, it is continuous and (under a suitable continuity
assumption on the measure µ) it is also bounded (see Theorems 3.1 and 3.4 for precise
statements). A differentiability result will also be given (Proposition 3.7).
In Section 4 we prove a new compactness result (Theorem 4.1) involving L (Ω)

with Ω = RN and dµ = ω (x) dx. Some consequences are pointed out at the end of
the section (Corollaries 4.5 and 4.6), recovering a compactness lemma of [15] as a
particular case.
Section 5 is finally devoted to the proofs of Theorems 1.1 and 1.2.

Notations. We conclude this introductory section by defining some notations of
frequent use throughout the paper.

� N is the set of natural numbers, including 0.
� For every r > 0, we set Br :=

�
x ∈ RN : |x| < r

�
.

� For any subset E of an ambient set Ω (which will be understood from the context),
we set Ec := Ω \E and denote the characteristic function of E by χE.
� n·nX and X 3 denote a norm and the dual space of a Banach space X, in which →
and - mean strong and weak convergence respectively.
� /→ denotes continuous embeddings.
� p3 := p/(p− 1) is the Hölder-conjugate exponent of p.
� p∗ := pN/ (N − p) is the Sobolev exponent related to p.
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� For any mapping u : Ω→ R, we denote Λu := Λu (Ω) := {x ∈ Ω : |u (x)| > 1}.

2. The space L (Ω)

Let (Ω,A, µ) be a nonempty σ-finite measure space and fix 1 < q1 ≤ q2 <∞.
For any measurable set E ⊆ Ω, we will omit the indication of the measure µ in

the Lebesgue space notation Lp (E, dµ), simply writing Lp (E) = Lp (E, dµ).

2.1. Definitions and basic properties of L (Ω)

We denote byM (Ω) the linear space of the real valued measurable functions defined
on Ω, in which equality is meant in the µ-a.e. sense, and, as in (1.10), we define

L (Ω) := Lq1 (Ω)+Lq2 (Ω) := {u ∈M (Ω) : u = u1 + u2, u1 ∈ Lq1 (Ω) , u2 ∈ Lq2 (Ω)} ,

which clearly contains both Lq1 (Ω) and Lq2 (Ω). Observe that the set L (Ω) is actually
of interest only if q1 < q2 and the base set Ω has infinite measure, since µ (Ω) < +∞
or q1 = q2 implies L

q2 (Ω) ⊆ Lq1 (Ω) and thus L (Ω) = Lq1 (Ω). Nevertheless, we do
not require such restrictions, for future convenience in encompassing particular cases.

Proposition 2.1. Let u ∈ L (Ω) and let E ⊆ Ω be a measurable set. Then

µ (E) < +∞⇒ u ∈ Lq1 (E) and u ∈ L∞ (E)⇒ u ∈ Lq2 (E) .

Proof. Let u1 ∈ Lq1 (Ω) and u2 ∈ Lq2 (Ω) be such that u = u1 + u2. Then µ (E) <
+∞ implies Lq2 (E) ⊆ Lq1 (E) and thus u = u1 + u2 ∈ Lq1 (E). Now assume u ∈
L∞ (E). Since u1 ∈ Lq1 (E) and u2 ∈ Lq2 (E), in order to get u ∈ Lq2 (E) we need
only to show that u1 ∈ Lq2 (E). Setting Λu1 = {x ∈ Ω : |u1 (x)| > 1}, we write

E = (E ∩ Λu1) ∪
�
E ∩ Λcu1

�
.

Since q1 < q2 and |u1| ≤ 1 µ-a.e. in Λcu1 , we get
]

E∩Λcu1
|u1|

q2 dµ =

]

E∩Λcu1
|u1|

q2−q1 |u1|
q1 dµ ≤

]

E∩Λcu1
|u1|

q1 dµ < +∞.

On the other hand, one has

|u1| = |u− u2| ≤ nunL∞(E) + |u2| µ-a.e. in E,

so that
]

E∩Λu1
|u1|

q2 dµ ≤ 2q2−1
]

E∩Λu1

�
nunq2L∞(E) + |u2|

q2
�
dµ

≤ 2q2−1
#
nunq2L∞(E) µ (Λu1) +

]

E∩Λu1
|u2|

q2 dµ

$
< +∞

since Λu1 has finite measure.
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Corollary 2.2. One has L (Ω) ∩ L∞ (Ω) = Lq2 (Ω) ∩ L∞ (Ω).

Proof. Since the inclusion Lq2 (Ω) ∩ L∞ (Ω) ⊆ L (Ω) ∩ L∞ (Ω) is obvious, the claim
readily follows from Proposition 2.1.

We now give some first characterizations of the functions in L (Ω). In particular,
we show that L (Ω) is the set of the functions u ∈M (Ω) which are q1-integrable on
some measurable subset E ⊆ Ω (possibly depending on u) and q2-integrable on its
complement Ec. For any u ∈ L (Ω), one of such subsets is

Λu := Λu (Ω) := {x ∈ Ω : |u (x)| > 1} , (2.1)

which is defined (up to null measure sets) for every u ∈ M (Ω) and will play an
important role hereafter.

Proposition 2.3. For any u ∈M (Ω), the following propositions are equivalent:

(i) u ∈ L (Ω)

(ii) u ∈ Lq1 (E) ∩ Lq2 (Ec) for some measurable subset E ⊆ Ω

(iii) u ∈ Lq1 (Λu) ∩ Lq2 (Λcu) and µ (Λu) < +∞

(iv) |u| ∈ L (Ω)

(v) |u| ≤ v for some v ∈ L (Ω) .

Proof. Since the implications iii⇒ ii and iv⇒ v are obvious, we need only to show
that i⇒ iii, ii⇒ i, i⇒ iv and v⇒ i.

(i⇒ iii) If u ∈ L (Ω) then u ∈ Lq2 (Λcu) by Proposition 2.1 and u = u1 + u2 for some
u1 ∈ Lq1 (Ω) and u2 ∈ Lq2 (Ω) by definition. Since 1 < |u| ≤ |u1| + |u2| implies
|uj | ≥ 1/2 for some j ∈ {1, 2}, we get

+∞ >

]

Ω

|uj |
qj dµ ≥

]

Λu

|uj |
qj dµ ≥ 1

2qj

]

Λu

dµ =
1

2qj
µ (Λu) ,

which also yields that u ∈ Lq1 (Λu) by Proposition 2.1 again.
(ii⇒ i) If u ∈ Lq1 (E)∩Lq2 (Ec) for some measurable set E ⊆ Ω then u = uχE+uχEc

with uχE ∈ Lq1 (Ω) and uχEc ∈ Lq2 (Ec), which means u ∈ L (Ω).
(i⇒ iv) It follows from from the already proved equivalence i ⇔ iii, since u ∈
Lq1 (Λu) ∩ Lq2 (Λcu)⇔ |u| ∈ Lq1 (Λu) ∩ Lq2 (Λcu) and Λu = Λ|u|.
(v⇒ i) If v ∈ L (Ω) then v ∈ Lq1 (Λv) ∩ Lq2 (Λcv) by implication i ⇒ iii, so that
|u| ≤ v implies u ∈ Lq1 (Λv) ∩ Lq2 (Λcv). This gives that u ∈ L (Ω) since ii⇒ i.
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2.2. The Banach structure of L (Ω)

The set L (Ω) has a natural linear structure as a subspace of M (Ω) and can be
equipped with a family of equivalent norms by setting

nun := nun1 := inf
u1+u2=u

�
nu1nLq1 (Ω) + nu2nLq2 (Ω)

�
(2.2)

nunt := inf
u1+u2=u

�
nu1ntLq1 (Ω) + nu2n

t
Lq2 (Ω)

�1/t
for 1 < t <∞ (2.3)

nun∗ := nun∞ := inf
u1+u2=u

max
q
nu1nLq1 (Ω) , nu2nLq2 (Ω)

r
. (2.4)

Notice that
nunt = inf

u1+u2=u
n(u1, u2)nt for every 1 ≤ t ≤ ∞,

where

n(u1, u2)nt :=





�
nu1ntLq1 (Ω) + nu2n

t
Lq2 (Ω)

�1/t
if 1 ≤ t <∞

max
q
nu1nLq1 (Ω) , nu2nLq2 (Ω)

r
if t =∞

(2.5)

defines the usual family of equivalent norms of Lq1 (Ω)× Lq2 (Ω).

Proposition 2.4. {n·nt}1≤t≤∞ is a family of equivalent norms on L (Ω). Moreover,

nunt = n |u| nt for every u ∈ L (Ω) and 1 ≤ t ≤ ∞.

Proof. The fact that the functionals (2.2)-(2.4) define a family of norms of L (Ω)
is trivial. We just observe that such functionals are positive definite since nunt = 0
implies the existence of (u1,n, u2,n) ∈ Lq1 (Ω)×Lq2 (Ω) such that u = u1,n+u2,n → 0
µ-a.e. in Ω as n → ∞. The equivalence readily follows from the fact that the right
hand sides of (2.2)-(2.4) are the infima of equivalent norms of Lq1 (Ω) × Lq2 (Ω).
Finally, if u ∈ L (Ω), u1 ∈ Lq1 (Ω), u2 ∈ Lq2 (Ω) are such that u = u1 + u2, letting
sign (u) := χ{u>0} − χ{u<0} we have |u| = sign (u)u = sign (u)u1 + sign (u)u2 with
nsign (u)u1nLq1 (Ω) = nu1nLq1 (Ω) and nsign (u)u2nLq2 (Ω) = nu2nLq2 (Ω), which implies
n |u| nt ≤ nunt. Similarly, if ū1 ∈ Lq1 (Ω) and ū2 ∈ Lq2 (Ω) are such that |u| = ū1+ ū2,
then u = sign (u) |u| = sign (u) ū1 + sign (u) ū2 yields nunt ≤ n |u| nt.

Proposition 2.5. The infimum in n·nt is attained for every 1 ≤ t ≤ ∞.

Proof. Let 1 ≤ t ≤ ∞, fix u ∈ L (Ω) and consider a minimizing sequence for nunt,
namely n(u1,n, u2,n)nt → nunt and u = u1,n+u2,n µ-a.e. in Ω. Since Lq1 (Ω)×Lq2 (Ω)
is a reflexive Banach space with respect to the norm (2.5), up to a subsequence there
exists (u1, u2) ∈ Lq1 (Ω)×Lq2 (Ω) such that (u1,n, u2,n)- (u1, u2) in L

q1 (Ω)×Lq2 (Ω)
and

n(u1, u2)nt ≤ lim infn→∞
n(u1,n, u2,n)nt = nunt . (2.6)

Now we observe that the linear mapping defined by (v,w) :→ v+w is continuous from
Lq1 (Ω)× Lq2 (Ω) into L (Ω), as one has

nv + wnt ≤ nvnt + nwnt ≤ nvnLq1 (Ω) + nwnLq2 (Ω) = n(v, w)n1 .

8



Hence u1,n+ u2,n - u1+ u2 in L (Ω). Therefore, u1,n+ u2,n = u implies u = u1+ u2
by uniqueness of the weak limit, so that nunt ≤ n(u1, u2)nt by definition of nunt.
Together with (2.6), this means nunt = n(u1, u2)nt.

Proposition 2.6. The norm n·nt is uniformly convex for 1 < t <∞.

Proof. Let 1 < t <∞. From the abstract theory of product spaces, the norm (2.5)
is uniformly convex, that is, ∀ε > 0 there exists δ > 0 such that

n(u1, u2)nt , n(v1, v2)nt ≤ 1
n(u1 − v1, u2 − v2)nt > ε

,
⇒ 1

2
n(u1 + v1, u2 + v2)nt < 1− δ.

Now, if u, v ∈ L (Ω) satisfy nunt ≤ 1, nvnt ≤ 1 and nu− vnt > ε, then by Proposition
2.5 there exist (u1, u2) , (v1, v2) ∈ Lq1 (Ω)× Lq2 (Ω) such that n(u1, u2)nt = nunt ≤ 1,
n(v1, v2)nt = nvnt ≤ 1 and ε < nu− vnt ≤ n(u1 − v1, u2 − v2)nt. Hence nu+ vnt ≤
n(u1 + v1, u2 + v2)nt < 2 (1− δ).

According to Proposition 2.4, we will henceforth consider L (Ω) as a normed topo-
logical vector space, equipped with the equivalent norms (2.2)-(2.4).

Proposition 2.7. Let {un} ⊆ L (Ω) be such that for every ε > 0 there exist nε > 0
and a sequence of measurable sets Eε,n ⊆ Ω satisfying

∀n > nε,
]

Eε,n

|un|
q1 dµ+

]

Ec
ε,n

|un|
q2 dµ < ε. (2.7)

Then un → 0 in L(Ω).

Proof. Let E = Eε,n for brevity. Since un = unχE + unχEc , (2.7) implies unχE ∈
Lq1(Ω) and unχEc ∈ Lq2(Ω) and thus, by definition (2.2), one has nunn ≤ nunnLq1 (E)+
nunnLq2 (Ec) < ε1/q1 + ε1/q2 for all n > nε, with ε arbitrary.

Proposition 2.8. The convergence in L (Ω) implies pointwise convergence (µ-a.e.
and up to a subsequence).

Proof. Let {un} ⊆ L (Ω) be such that nunn1 → 0 as n → ∞. Then for every
n > 0 there exists (u1,n, u2,n) ∈ Lq1 (Ω) × Lq2 (Ω) such that un = u1,n + u2,n and
n(u1,n, u2,n)n1 ≤ nunn1 + 1/n. Hence u1,n → 0 in Lq1 (Ω) and u2,n → 0 in Lq2 (Ω),
which implies that, up to a subsequence, u1,n, u2,n → 0 µ-a.e. in Ω. Therefore
un = u1,n + u2,n → 0 µ-a.e. in Ω.

We now prove the most important result of this section, an isometrical identi-
fication between (L(Ω), n·n∗) and the dual space of (Lq31 (Ω) ∩ Lq32 (Ω) , n·n

Lq
3
1∩Lq32 ),

where
q3i =

qi
qi − 1

and nϕn
Lq

3
1∩Lq32 := nϕnLq31 (Ω) + nϕnLq32 (Ω) . (2.8)

This will also ensure that L (Ω) is a reflexive Banach space (see Corollary 2.11 below).
For future reference, let us give first the following lemma.
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Lemma 2.9. For any u ∈ L (Ω) and ϕ ∈ Lq31 (Ω) ∩ Lq32 (Ω) one has
]

Ω

|uϕ| dµ ≤ nun∗ nϕn
Lq

3
1∩Lq32

and ]

Ω

|uϕ| dµ ≤ nunmax
q
nϕn

Lq
3
1 (Ω)

, nϕn
Lq

3
2 (Ω)

r
.

Proof. Let u ∈ L (Ω) and let u1 ∈ Lq1 (Ω) and u2 ∈ Lq2 (Ω) be such that u1+u2 = u.
Then, by Hölder inequality, ∀ϕ ∈ Lq31 (Ω) ∩ Lq32 (Ω) one has
]

Ω

|uϕ| dµ ≤
]

Ω

|u1ϕ| dµ+

]

Ω

|u2ϕ| dµ ≤ nu1nLq1 (Ω) nϕnLq31 (Ω)+nu2nLq2 (Ω) nϕnLq32 (Ω) ,

which easily yields the result.

Theorem 2.10. For any u ∈ L (Ω) and ϕ ∈ Lq31 (Ω) ∩ Lq32 (Ω),

J (u)ϕ :=

]

Ω

uϕ dµ

defines a linear continuous functional J (u) : Lq
3
1 (Ω) ∩ Lq32 (Ω) → R. Moreover the

linear operator J : L (Ω)→ (Lq
3
1 (Ω) ∩ Lq32 (Ω))3 is bijective and one has

nun∗ = sup
0 9=ϕ∈Lq31 (Ω)∩Lq32 (Ω)

U
Ω
uϕ dµ

nϕn
Lq

3
1 (Ω)

+ nϕn
Lq

3
2 (Ω)

for every u ∈ L (Ω) . (2.9)

Proof. Denote L := L (Ω) and Lp := Lp (Ω) for brevity.
We begin with some preliminary remarks about the dual space (Lq

3
1 ∩ Lq32)3 of

Lq
3
1 ∩ Lq32 equipped with the norm (2.8). First we observe that there is a natural

linear isometry between Lq
3
1 ∩ Lq32 and the closed subspace

∆ :=
q
(ϕ,ψ) ∈ Lq31 × Lq32 : ϕ = ψ

r

of the Banach space Lq
3
1 × Lq

3
2 equipped with the norm n(ϕ,ψ)n

Lq
3
1×Lq

3
2
:= nϕn

Lq
3
1
+

nψn
Lq

3
2
. Hence (Lq

3
1 ∩Lq32)3 isometrically identifies with the dual space ∆3, so that for

any g ∈ (Lq31 ∩ Lq32)3 there exists a unique G ∈ ∆3 such that nGn∆3 = ngn(Lq31∩Lq32 )3
and G (ϕ,ϕ) = g (ϕ) for all ϕ ∈ Lq31 ∩Lq32 . Then, by the Hahn-Banach theorem, there
exists hG ∈ (Lq31 × Lq32)3 such that n hGn

(Lq
3
1×Lq

3
2 )3
= ngn

(Lq
3
1∩Lq32 )3 and

hG (ϕ,ϕ) = g (ϕ)
for all ϕ ∈ Lq31 ∩ Lq32 . Now, since hG (ϕ,ψ) = hG (ϕ, 0) + hG (0,ψ) with hG (·, 0) ∈ (Lq31)3
and hG (0, ·) ∈ (Lq32)3, by the Riesz representation theorem there exist v1 ∈ Lq1 and
v2 ∈ Lq2 such that

∀ (ϕ,ψ) ∈ Lq31 × Lq32 , hG (ϕ,ψ) =
]

Ω

v1ϕ dµ+

]

Ω

v2ψ dµ .

10



This gives in particular

∀ϕ ∈ Lq31 ∩ Lq32 g (ϕ) =

]

Ω

(v1 + v2)ϕ dµ . (2.10)

Moreover if v1 9= 0 then

n hGn
(Lq

3
1×Lq

3
2 )3
= sup
(ϕ,ψ)9=(0,0)

U
Ω
v1ϕ dµ+

U
Ω
v2ψ dµ

nϕn
Lq

3
1
+ nψn

Lq
3
2

≥
U
Ω
|v1|

q1 dµ

nv1nq1/q
3
1

Lq1

= nv1nLq1

where, for the inequality, we have taken ψ = 0 and ϕ = |v1|
q1−2 v1 ∈ Lq

3
1 . Similarly

one obtains n hGn
(Lq

3
1×Lq

3
2 )3
≥ nv2nLq2 if v2 9= 0. Thus we conclude

ngn
(Lq

3
1∩Lq32 )3 = n hGn(Lq31×Lq32 )3 ≥ max {nv1nLq1 , nv2nLq2} ≥ nv1 + v2n

∗ , (2.11)

which trivially holds even when v1 = v2 = 0.
Now let u ∈ L and let u1 ∈ Lq1 and u2 ∈ Lq2 be such that u1 + u2 = u. For every

ϕ ∈ Lq31 ∩ Lq32 one has
����
]

Ω

uϕ dµ

���� ≤
]

Ω

|u1ϕ dµ|+

]

Ω

|u2ϕ dµ| ≤ nu1nLq1 nϕnLq31 + nu2nLq2 nϕnLq32
≤ max {nu1nLq1 , nu2nLq2} nϕnLq31∩Lq32 .

Hence J (u) ∈ (Lq31 × Lq32)3 and

nJ (u)n
(Lq

3
1∩Lq32 )3 ≤ nun

∗ , (2.12)

which also implies that the linear operator J : L → (Lq
3
1 ∩ Lq32)3 is continuous. The

injectivity of J is plain, as
U
Ω
uϕ dµ = 0 for all ϕ ∈ Lq31 ∩ Lq32 implies u = 0 µ-a.e.

in Ω. Moreover J is surjective by the previous preliminary discussion, since (2.10)
ensures that for any g ∈ (Lq31 ∩ Lq32)3 there exist v1 ∈ Lq1 and v2 ∈ Lq2 such that
g = J (v1 + v2). Finally, if u ∈ L is fixed, then (2.12) and (2.11) (in which we take
g = J (u)) yield

nun∗ ≥ nJ (u)n
(Lq

3
1∩Lq32 )3 ≥ nv1 + v2n

∗ = nun∗

where the last equality holds thanks to the injectivity of J , because (2.10) means
J (u) = J (v1 + v2).

Corollary 2.11. L (Ω) is a reflexive Banach space.

Proof. It follows from the completeness and reflexivity of Lq
3
1 (Ω) ∩ Lq32 (Ω), by

Theorem 2.10.

Corollary 2.12. Let u ∈M (Ω) and v ∈ L (Ω). Then |u| ≤ v implies nun∗ ≤ nvn∗.
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Proof. Recall that |u| ≤ v ∈ L (Ω) implies |u| ∈ L (Ω) by Proposition 2.3. Since
0 ≤ |u| ≤ v, one has

sup
ϕ9=0

U
Ω
|u|ϕ

nϕn
Lq

3
1∩Lq32

= sup
ϕ≥0

U
Ω
|u|ϕ

nϕn
Lq

3
1∩Lq32

≤ sup
ϕ≥0

U
Ω
vϕ

nϕn
Lq

3
1∩Lq32

= sup
ϕ 9=0

U
Ω
vϕ

nϕn
Lq

3
1∩Lq32

where ϕ varies in Lq
3
1 (Ω) ∩ Lq32 (Ω). Then nun∗ = n |u| n∗ ≤ nvn∗ by Proposition 2.4

and Theorem 2.10.

2.3. Some inequalities and continuous embeddings

Recall from Proposition 2.1 that L (Ω)∩L∞ (E) ⊆ Lq2 (E) for any measurable E ⊆ Ω,
and L (Ω) ⊆ Lq1 (E) if µ (E) < +∞.

Proposition 2.13. Let u ∈ L (Ω) and let E ⊆ Ω be a measurable set such that
µ (E) < +∞ and u ∈ L∞ (Ec). Then

nun∗ ≤ max
q
nunLq1 (E) , nunLq2 (Ec)

r
, (2.13)

nun ≤ nunLq1 (E) + nunLq2 (Ec) . (2.14)

Proof. From Proposition 2.1 we know that uχE ∈ Lq1 (Ω) and uχEc ∈ Lq2 (Ω).
Hence the claim follows by definitions (2.2) and (2.4), since u = uχE + uχEc .

Proposition 2.1 can be complemented by the following result.

Proposition 2.14. Let E ⊆ Ω be a measurable set.

i) If µ (E) < +∞, then for every u ∈ L (Ω) one has

nunLq1 (E) ≤
�
1 + µ (E)1/q1−1/q2

�
nun∗ , (2.15)

nunLq1 (E) ≤ max
q
1, µ (E)

1/q1−1/q2
r
nun . (2.16)

ii) For every u ∈ L (Ω) ∩ L∞ (E) one has

nunq2/q1Lq2 (E) ≤
�
nunq2/q1−1L∞(E) + nun

q2/q1−1
Lq2 (E)

�
nun∗ , (2.17)

nunq2/q1Lq2 (E) ≤ max
q
nunq2/q1−1L∞(E) , nun

q2/q1−1
Lq2 (E)

r
nun . (2.18)

Proof. First we prove (2.17)-(2.18), which are is obvious if u = 0. Accordinlgy,
assume u ∈ L (Ω) ∩ L∞ (E), u 9= 0, and define

ϕu :=
|u|q2−2 u

nunq2−1Lq2 (E)

χE.
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Then ]

Ω

|ϕu|
q32 dµ =

1

nunq2Lq2 (E)

]

E

|u|q2 dµ = 1

and
]

Ω

|ϕu|
q31 dµ =

1

nun(q2−1)q
3
1

Lq2 (E)

]

E

|u|(q2−1)q
3
1 dµ

≤
nun(q2−1)q

3
1−q2

L∞(E)

nun(q2−1)q
3
1

Lq2 (E)

]

E

|u|q2 dµ =
nun(q2−1)q

3
1−q2

L∞(E)

nun(q2−1)q
3
1−q2

Lq2 (E)

,

since q1 < q2 implies (q2 − 1) q31 > q2. So ϕu ∈ Lq
3
1 (Ω) ∩ Lq32 (Ω) and thus, since

]

Ω

uϕudµ =
1

nunq2−1Lq2 (E)

]

E

|u|q2 dµ = nunLq2 (E) ,

Lemma 2.9 gives

nunLq2 (E) ≤ nun
∗
�
nϕunLq31 (Ω) + nϕunLq32 (Ω)

�
≤ nun∗


nun

q2−1−q2/q31
L∞(E)

nunq2−1−q2/q
3
1

Lq2 (E)

+ 1




and

nunLq2 (E) ≤ nunmax
q
nϕunLq31 (Ω) , nϕunLq32 (Ω)

r
≤ nunmax




nunq2−1−q2/q

3
1

L∞(E)

nunq2−1−q2/q
3
1

Lq2 (E)

, 1



 ,

which yield the results, since q2 − 1− q2/q31 = q2/q1 − 1 and

max




nunq2/q1−1L∞(E)

nunq2/q1−1Lq2 (E)

, 1



 =

max
q
nunq2/q1−1L∞(E) , nun

q2/q1−1
Lq2 (E)

r

nunq2/q1−1Lq2 (E)

.

Now we let u ∈ L (Ω), assume that µ (E) < +∞ and let u1 ∈ Lq1 (Ω) and u2 ∈ Lq2 (Ω)
be such that u = u1 + u2. By Hölder inequality we get

nunLq1 (E) ≤ nu1nLq1 (E) + nu2nLq1 (E) ≤ nu1nLq1 (E) + µ (E)
1/q1−1/q2 nu2nLq2 (E) ,

whence

nunLq1 (E) ≤
�
1 + µ (E)1/q1−1/q2

�
max

q
nu1nLq1 (E) , nu2nLq2 (E)

r
,

nunLq1 (E) ≤ max
q
1, µ (E)

1/q1−1/q2
r�
nu1nLq1 (E) + nu2nLq2 (E)

�
.

Then (2.15)-(2.16) ensue by passing to the infima.

Recall that L (Ω) and Lq1 (Ω) are the same set if µ (Ω) < +∞.
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Corollary 2.15. If µ (Ω) < +∞, the norms of L (Ω) and Lq1 (Ω) are equivalent.

Proof. One has nun∗ ≤ nunLq1 (Ω) ≤ (1+µ (Ω)
1/q1−1/q2) nun∗ by (2.13) and (2.15).

Recall from Corollary 2.2 that L (Ω)∩L∞ (Ω) and Lq2 (Ω)∩L∞ (Ω) are the same
set.

Corollary 2.16. On the subspace Lq2 (Ω)∩L∞ (Ω) of L (Ω), the norms nun+nunL∞(Ω)
and nunLq2 (Ω) + nunL∞(Ω) are equivalent.
Proof. If u ∈ Lq2 (Ω) ∩ L∞ (Ω) then (2.14), with E = ∅, gives nun ≤ nunLq2 (Ω). On
the other hand, if {un} ⊆ Lq2 (Ω)∩L∞ (Ω) is such that nunn+ nunnL∞(Ω) → 0, then

(2.18) yields

nunnq2/q1Lq2 (Ω) ≤
�
1 + nunnq2/q1−1Lq2 (Ω)

�
o (1) as n→∞,

which implies nunnLq2 (Ω) → 0.

The next proposition collects some embedding properties of L (Ω), some of which
are consequences of the above inequalites. Another relevant embedding result will be
proved in Section 4 (Theorem 4.1) for Ω = RN .

Proposition 2.17. The following continuous embeddings hold:

i) L (Ω) /→ L (E) for any measurable E ⊆ Ω, namely, for every u ∈ L (Ω) one has
χEu ∈ L (E) and nχEunL(E) ≤ nunL(Ω);

ii) L (Ω) /→ Lq1 (E) for any measurable E ⊆ Ω such that µ (E) < +∞;
iii) Lq (Ω) /→ L (Ω) for any q ∈ [q1, q2].

Proof. The first and second continuous embeddings straighforwardly follow from
definition (2.2) and Proposition 2.14.i) respectively. So we take q ∈ [q1, q2] and show
that Lq (Ω) /→ L (Ω). Let u ∈ Lq (Ω) and recall the definition (2.1) of Λu. Then
q1 ≤ q and

µ (Λu) =

]

Λu

dµ ≤
]

Λu

|u|q dµ ≤ nunqLq(Ω) < +∞

imply u ∈ Lq1(Λu) and, by Hölder inequality,
]

Λu

|u|q1 dµ ≤ µ (Λu)1−q1/q
�]

Λu

|u|q dµ

�q1/q
≤ nunq(1−q1/q)Lq(Ω) nunq1Lq(Ω) = nun

q
Lq(Ω) .

On the other hand, q ≤ q2 and |u| ≤ 1 imply |u|q2 ≤ |u|q, so that u ∈ Lq2 (Λcu) and]

Λcu

|u|q2 dµ ≤
]

Λcu

|u|q dµ ≤ nunqLq(Ω) .

Thus u ∈ L(Ω) since u = uχΛu + uχΛcu , and Proposition 2.13 gives

nun ≤ nunLq1 (Λu) + nunLq2 (Λcu) ≤ nun
q/q1
Lr(Ω) + nun

q/q2
Lr(Ω) .

This implies that nunn → 0 if nunnLq(Ω) → 0 and the proof is thus complete.
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Remark 1. On Lq (Ω), q1 ≤ q ≤ q2, the norms (2.2)-(2.4) and the standard Lq (Ω)
norm are not equivalent in general. For this, we have two different counterexamples,
according as q1 ≤ q < q2 or q = q2, both for Ω = R

N endowed with the Lebesgue
measure. In the first case, q ∈ [q1, q2), define the sequence

un (x) :=

+
1/n if |x| ≤ nq2/N
0 otherwise.

Then one has

nunnqLq(RN) =
1

nq

]

|x|≤nq2/N
dx = (const.)nq2−q → +∞,

whereas (2.14) (with E = ∅) gives

nunn ≤
#]

|x|≤nq2/N
1

nq2
dx

$1/q2
=
1

n

#]

|x|≤nq2/N
dx

$1/q2
= (const.) .

Similarly, if q = q2, the sequence

un (x) :=

+
n if |x| ≤ n−q1/N
0 otherwise

(2.19)

is bounded in L (Ω) (by (2.14) again, with E = Bn−q1/N ) and such that nunnq2Lq2 (RN) →
+∞.

The next result is a corollary of Propositions 2.13 and 2.14.

Corollary 2.18. Let u ∈ L (Ω) and recall the definition (2.1) of Λu. One has

max
q nunLq1 (Λu)
1+µ(Λu)

1/q1−1/q2 ,
1
2 nunLq2 (Λcu) −

1
2

r
≤ nun∗ ≤ max

q
nunLq1 (Λu) , nunLq2 (Λcu)

r

(2.20)
and

max

�
nunLq1 (Λu)

max{1,µ(Λu)1/q1−1/q2}
, nunLq2 (Λcu) − l

�
≤ nun ≤ nunLq1 (Λu) + nunLq2 (Λcu) ,

(2.21)

where l := (q2 − q1) (q1/q2)q2/(q2−q1) /q1.

Proof. Since nunL∞(Λcu) ≤ 1 and µ (Λu) < +∞ (recall Proposition 2.3), the right

hand inequalities of (2.20)-(2.21) and part of the left hand ones directly follow from
Propositions 2.13 and 2.14 respectively. Then, setting t := nunLq2 (Λcu), from (2.18)
we get

tq2/q1

max
�
1, tq2/q1−1

� ≤ nun ,
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so that the remaining part of (2.21) follows from the inequality

tq2/q1

max
�
1, tq2/q1−1

� − t ≥ −l

which holds for every t ≥ 0. Finally we show that

nunLq2 (Λcu) ≤ max
�
2 nun∗ , 1

�
,

which completes the proof of (2.20). To this end, we set t := nunq2/q1−1Lq2 (Λcu)
and use

(2.17) to deduce
t

1 + t
nunLq2 (Λcu) ≤ nun

∗ .

Then nunLq2 (Λcu) > 1 implies t > 1 (recall that q2/q1 > 1) and thus we get nunLq2 (Λcu) ≤
2 nun∗, since t > (1 + t)/2.

Remark 2. Note that, according to the above proof of Corollary 2.18, the inequality
nunLq2 (Λcu) − 1 ≤ 2 nun

∗
of (2.20) actually holds in the stronger form

nunLq2 (Λcu) ≤ max
�
2 nun∗ , 1

�
.

On the other hand, inequalites (2.20)-(2.21) cannot be improved in the following sense:
there is no constant C > 0 such that

nunLq2 (Λcu) ≤ C nun
∗ for all u ∈ L (Ω) . (2.22)

Indeed, arguing by contradiction, for any u ∈ L (Ω) ∩ L∞ (Ω), u 9= 0, we set ũ :=
u/ nunL∞(Ω) (so that Λũ = ∅) and by (2.22) we obtain

C
nun∗

nunL∞(Ω)
= C nũn∗ ≥ nũnLq2 (Λcu) = nũnLq2 (Ω) =

nunLq2 (Ω)
nunL∞(Ω)

,

that is,
nunLq2 (Ω) ≤ C nun

∗ . (2.23)

But the sequence {un} ⊆ L (Ω)∩L∞ (Ω) defined in (2.19) does not satisfy (2.23) and
thus a contradiction ensues.

We end this section with a characterization of the boundedness of a sequence in
L (Ω).

Proposition 2.19. Let {un} be a sequence in L (Ω) and denote Λn := Λun . Then
{un} is bounded in L (Ω) if and only if {nunnLq1 (Λn)}, {nunnLq2 (Λcn)} and {µ(Λn)}
are bounded.
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Proof. The “if part” directly follows from Corollary 2.18, which readily gives also
that {nunnLq2 (Λcn)} is bounded if {un} is bounded in L (Ω). We now use an argument
from [15]: since |un| > 1 on Λn, from (2.20) we get

nunn∗ ≥
nunnLq1 (Λu)

1 + µ (Λu)
1/q1−1/q2 ≥

µ (Λn)
1/q1

1 + µ (Λn)
1/q1−1/q2 →∞ as µ (Λn)→∞

and therefore the boundedness of {nunn∗} implies the one of {µ(Λn)}, and then of
{nunnLq1 (Λn)}.

2.4. The Orlicz structure of L (Ω)

Define
φ (t) := min{tq1−1, tq2−1} for all t ≥ 0

and set

Φ (t) :=

] |t|

0

φ (s) ds for all t ∈ R,

that is,

Φ (t) =

+ 1
q2
|t|q2 if |t| ≤ 1

1
q1
|t|q1 + 1

q2
− 1

q1
if |t| > 1.

(2.24)

Then Φ : R→ [0,+∞) is a nice Young function, i.e., an even, convex and continuous
function such that

lim
t→0

Φ (t)

t
= 0, lim

t→+∞
Φ (t)

t
= +∞ and Φ (t) = 0⇔ t = 0,

and we can consider the Orlicz class

LΦ (Ω) :=

�
u ∈M (Ω) :

]

Ω

Φ (u) dµ < +∞
�
.

We will show that LΦ (Ω) is exactly L (Ω). Note that Φ satisfies the so-called global
∆2 condition, that is, there exists η > 0 such that

Φ (2t) ≤ ηΦ (t) for all t ≥ 0,

so that LΦ (Ω) is a vector space (see [33, Theorem 3.2]).

Proposition 2.20. One has LΦ (Ω) = L (Ω) .

Proof. By (2.24), for any u ∈M(Ω) we have
]

Ω

Φ (u) dµ =
1

q1

]

Λu

(|t|q1 − 1) dµ+ 1

q2
µ (Λu) +

1

q2

]

Λcu

|t|q2 dµ

(where Λu is defined in (2.1)), so that u ∈ LΦ(Ω) if and only if µ(Λu) < +∞ and
u ∈ Lq1(Λu) ∩ Lq2(Λcu). This is equivalent to u ∈ L(Ω), by Proposition 2.3.
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As to the complementary function

Ψ (t) := sup
s≥0

(|t| s−Φ (s)) for all t ∈ R

and the corresponding Orlicz class

LΨ (Ω) =

�
ϕ ∈M (Ω) :

]

Ω

Ψ (ϕ) dµ < +∞
�
,

an easy computation shows that Ψ is actually given by

Ψ (t) = max
s≥0

(|t| s−Φ (s)) =





1
q32
|t|q

3
2 if |t| ≤ 1

1
q31

�
|t|q

3
1 − 1

�
+ 1

q32
if |t| > 1

(2.25)

(where q3i = qi/(qi − 1) as usual), i.e.,

Ψ (t) =

] |t|

0

max{sq
3
1−1, sq

3
2−1}ds for all t ∈ R,

so that the same argument of the proof of Proposition 2.20 yields that

LΨ (Ω) = Lq
3
1 (Ω) ∩ Lq32 (Ω) .

We now show that the Orlicz norm

nunΦ := sup
�]

Ω

|uϕ| dµ : ϕ ∈ LΨ (Ω) ,
]

Ω

Ψ (ϕ) dµ ≤ 1
�

(2.26)

gives rise on L (Ω) to the same Banach structure we have considered so far. Recall
the definition (2.8) of n·n

Lq
3
1∩Lq32 .

Lemma 2.21. There exists δ0 > 0 such that for every ϕ ∈ LΨ (Ω) = Lq
3
1 (Ω)∩Lq32 (Ω)

one has

nϕn
Lq

3
1∩Lq32 ≤ δ0 =⇒

]

Ω

Ψ (ϕ) dµ ≤ 1. (2.27)

Proof. Since ]

Λcϕ

|ϕ|q
3
2 dµ ≤

]

Ω

|ϕ|q
3
2 dµ ≤ nϕnq

3
2

Lq
3
1∩Lq32

and

µ (Λϕ) ≤
]

Λϕ

|ϕ|q
3
1 dµ ≤

]

Ω

|ϕ|q
3
1 dµ ≤ nϕnq

3
1

Lq
3
1∩Lq32

(recall definition (2.1)), from (2.25) we get
]

Ω

Ψ (ϕ) dµ =
1

q31

]

Λϕ

|ϕ|q
3
1 dµ+

�
1

q32
− 1

q31

�
µ (Λϕ) +

1

q32

]

Λcϕ

|ϕ|q
3
2 dµ

≤ 1

q32

�
nϕnq

3
1

Lq
3
1∩Lq32

+ nϕnq
3
2

Lq
3
1∩Lq32

�

(recall that q32 ≤ q31) and the result ensues.
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Proposition 2.22. The Orlicz norm (2.26) is equivalent to (2.4).

Proof. Let u ∈ LΦ (Ω) = L (Ω). For any ϕ ∈ LΨ (Ω), ϕ 9= 0, the mapping

hϕ := δ0
ϕ

nϕn
Lq

3
1∩Lq32

∈ LΨ (Ω) ,

where δ0 is given by Lemma 2.21, satisfies
U
Ω
Ψ (hϕ) dµ ≤ 1 by (2.27), so that we get

nunΦ ≥
]

Ω

|u hϕ| dµ ≥
����
]

Ω

u hϕ dµ
���� = δ0

��U
Ω
uϕ dµ

��
nϕn

Lq
3
1∩Lq32

by (2.26). Hence (2.9) yields

nun∗ = sup
09=ϕ∈LΨ(Ω)

U
Ω
uϕ dµ

nϕn
Lq

3
1∩Lq32

= sup
0 9=ϕ∈LΨ(Ω)

��U
Ω
uϕ dµ

��
nϕn

Lq
3
1∩Lq32

≤ 1

δ0
nunΦ .

On the other hand, since q32 ≤ q31, for every ϕ ∈ LΨ (Ω) we have
]

Λϕ

|ϕ|q
3
1 dµ ≥

]

Λϕ

|ϕ|q
3
2 dµ and

]

Λcϕ

|ϕ|q
3
2 dµ ≥

]

Λcϕ

|ϕ|q
3
1 dµ

(recall definition (2.1)), so that, using (2.25), we get

]

Ω

Ψ (ϕ) dµ =
1

q31

]

Λϕ

|ϕ|q
3
1 dµ+

�
1

q32
− 1

q31

�
µ (Λϕ) +

1

q32

]

Λcϕ

|ϕ|q
3
2 dµ

≥ 1

q31

#]

Λϕ

|ϕ|q
3
1 dµ+

]

Λcϕ

|ϕ|q
3
2 dµ

$
≥ 1

q31
max

�]

Ω

|ϕ|q
3
1 dµ,

]

Ω

|ϕ|q
3
2 dµ

�
.

Hence, by Lemma 2.9,
U
Ω
Ψ (ϕ) dµ ≤ 1 implies

]

Ω

|uϕ| dµ ≤
�
nϕn

Lq
3
1 (Ω)

+ nϕn
Lq

3
2 (Ω)

�
nun∗ ≤

�
(q31)

1/q31 + (q31)
1/q32

�
nun∗

and we conclude
nunΦ ≤

�
(q31)

1/q31 + (q31)
1/q32

�
nun∗

by (2.26). This completes the proof.

3. The Nemytskĭı operator on L (Ω)

As in the previous section, we fix 1 < q1 ≤ q2 < ∞ and let (Ω,A, µ) be a nonempty
σ-finite measure space, on which we also consider here a second measure λ, possibly
not different from µ, such that µ and λ are absolutely continuous with respect to each
other, that is,

dµ = ω (x) dλ for some measurable function ω : Ω→ (0,+∞) .
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Accordingly, we use the expanded notation Lp (Ω, dλ) for the Lebesgue spaces with
respect to the measure λ, while we still briefly denote

Lp := Lp (Ω, dµ) , L := Lq1 + Lq2 = Lq1 (Ω, dµ) + Lq2 (Ω, dµ) =: L (Ω, dµ) .

Notice that a proposition holds µ-a.e. if and only if it holds λ-a.e., since µ and λ have
the same null measure sets.

Theorem 3.1. Let 1 ≤ q < ∞ and let f : Ω × R → R be a Caratheodory function
such that ]

Ω

|f (x, u (x))|q dλ < +∞ for all u ∈ L (Ω, dµ) . (3.1)

Then the operator
N : L (Ω, dµ)→ Lq (Ω, dλ) (3.2)

N (u) (x) := f (x, u (x)) (3.3)

is continuous.

The proof of Theorem 3.1 will be achieved through several lemmas.

Lemma 3.2. Let {un} be such that un → 0 in L. Then, up to a subsequence, there
exist {u3n} ⊆ Lq1 and {u33n} ⊆ Lq2 such that

un = u
3
n + u

33
n,

∞[

n=1

]

Ω

|u3n|
q1 dµ < +∞,

∞[

n=1

]

Ω

|u33n|
q2 dµ < +∞. (3.4)

Proof. Let {εn} be an arbitrary sequence of real numbers such that

∞[

n=1

εn < +∞. (3.5)

Since un → 0 in L, ∀n there exists kn ∈ N such that nuknn < min{ε1/q1n , ε
1/q2
n }, and

thus, by definition (2.2) of n·n, there exist u3kn ∈ Lq1 and u33kn ∈ Lq2 such that

ukn = u
3
kn + u

33
kn and

��u3kn
��
Lq1

+
��u33kn

��
Lq2

< min{ε1/q1n , ε1/q2n }.

Together with (3.5), this gives the result.

Lemma 3.3. Let 1 ≤ q < ∞ and let f0 : Ω × R → R be a Caratheodory function
such that f0 (·, 0) = 0 and f0 (·, u (·)) ∈ Lq(Ω, dλ) for all u ∈ L (Ω, dµ). Then the
operator

N0 : L (Ω, dµ)→ Lq (Ω, dλ)

N0 (u) (x) := f0 (x, u (x)) (3.6)

is continuous at 0.
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Proof. First, we notice that N0 is well defined and N0 (0) = 0. Then, arguing by
contradiction, we assume that N0 is not continuous at 0, that is, there exist δ > 0
and a sequence {un} ⊆ L such that un → 0 in L and

nN0 (un)nLq(Ω,dλ) > δ for all n,

that is, ]

Ω

|f0 (x, un (x))|
q

ω (x)
dµ =

]

Ω

|f0 (x, un (x))|
q
dλ > δq for all n. (3.7)

Passing in case to a subsequence, let {u3n} ⊆ Lq1 and {u33n} ⊆ Lq2 be such that (3.4)
holds according to Lemma 3.2.
We claim that ∀k ∈ N there exist Dk ⊆ Ω and nk ∈ N such that

µ (Dk) < +∞ (3.8)

Dk ∩Dk3 = ∅ if k 9= k3 (3.9)]

Dk

|f0 (x, unk (x))|
q

ω (x)
dµ >

δq

2
. (3.10)

Let us proceed by induction on k. For k = 0, we set n0 = 0, so that (3.7) and the
σ-finiteness of µ imply that ∃D0 ⊆ Ω such that µ (D0) < +∞ and

]

D0

|f0 (x, un0 (x))|
q

ω (x)
dµ > δq >

δq

2
.

Then suppose that we have D0, ...,Dk ⊆ Ω and n0, ..., nk ∈ N satisfying (3.8)-(3.10),
and define the set

D :=
k̂

j=0

Dj .

Since µ (D) < +∞, by Proposition 2.17 we know that un → 0 in Lq1(D,dµ) and we
can apply the classical theorem on Nemytskĭı operators (see [37, Theorem 19.1]): the
operator

hN0 : Lq1(D, dµ)→ Lq(D, dµ)

hN0 (u) (x) := ω (x)
−1/q

f0 (x, u (x))

(associated to the Caratheodory function hf0 (x, t) := ω (x)
−1/q

f0 (x, t)) is continuous

and such that hN0 (0) = 0, and thus there exists nk+1 ∈ N, nk+1 > nk, such that
]

D

��f0
�
x, unk+1 (x)

���q

ω (x)
dµ <

δq

2
. (3.11)

On the other hand, again by (3.7) and the σ-finiteness of µ, there exists D3 ⊆ Ω such
that µ (D3) < +∞ and

]

D3

��f0
�
x, unk+1 (x)

���q

ω (x)
dµ > δq. (3.12)
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Then, setting
Dk+1 = D

3 \D,

from (3.11)-(3.12) we deduce

]

Dk+1

��f0
�
x, unk+1 (x)

���q

ω (x)
dµ >

δq

2

and the claim is proved.
Now, using (3.9), we can define

u3 :=
∞[

k=0

u3nkχDk

and, by (3.4), we get

]

Ω

|u3|
q1 dµ =

∞[

k=0

]

Dk

��u3nk
��q1 dµ ≤

∞[

k=0

]

Ω

��u3nk
��q1 dµ < +∞,

so that u3 ∈ Lq1 . Analogously, one defines u33 ∈ Lq2 by setting

u33 :=
∞[

k=0

u33nkχDk
.

Therefore u := u3 + u33 belongs to L and satisfies

u =
∞[

k=0

�
u3nk + u

33
nk

�
χDk

=
∞[

k=0

unkχDk
,

which, by f0 (·, 0) = 0 and (3.10), implies

]

Ω

|f0 (x, u (x))|
q
dλ =

]

Ω

|f0 (x, u (x))|
q

ω (x)
dµ =

∞[

k=0

]

Dk

|f0 (x, unk (x))|
q

ω (x)
dµ = +∞.

So we get a contradiction with f0 (·, u (·)) ∈ Lq(Ω, dλ).

Proof of Theorem 3.1. Let u0 ∈ L and define

f0 (x, t) := f (x, t+ u0 (x))− f (x, u0 (x))

(for almost every x ∈ Ω and every t ∈ R). Then the operator N0 : L → Lq (Ω, dλ)
defined by (3.6) is continuous at 0 thanks to Lemma 3.3, and thereforeN is continuous
at u0 since N (u)−N (u0) = N0 (u− u0).

We now introduce the following condition:
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(µ) for every v ∈ L1 (Ω, dµ) and n ≥ 1 there exists a partition {Ωi}1≤i≤n of Ω such
that ]

Ωi

|v| dµ =
1

n

]

Ω

|v| dµ for all i = 1, ..., n.

We observe that (µ) holds for example if Ω ⊆ R
N and dµ = ω (x) dx for some

ω ∈ L1loc (Ω, dx); indeed, in this case, the mapping the mapping ϕ : ρ :→
U
Ω∩Bρ

|v| dµ

is continuous, monotone and such that ϕ ([0,+∞)) = [0,α] where α :=
U
Ω
|v| dµ, so

that, setting ρi := ϕ−1 (αi/n) and Ωi := Ω ∩ (Bρi \Bρi−1) for i = 1, ..., n, one has

]

Ωi

|v| dµ =

]

Ω∩Bρi

|v| dµ−
]

Ω∩Bρi−1

|v| dµ =
αi

n
− α (i− 1)

n
=

α

n
.

Theorem 3.4. If (µ) holds then, under the same assumptions of Theorem 3.1, the
operator (3.2)-(3.3) is bounded (i.e., it maps bounded sets into bounded sets).

Proof. Define

f0 (x, t) := f (x, t)− f (x, 0) for all (x, t) ∈ Ω×R,

so that the operator N0 : L → Lq (Ω, dλ) defined by (3.6) is continuous at 0 thanks
to Lemma 3.3. Note that

N0 (u) = N (u)−N (0) (3.13)

and thus N0 (0) = 0. Hence there exists R > 0 such that ∀u ∈ L one has

nun ≤ R =⇒ nN0 (u)nLq(Ω,dλ) ≤ 1. (3.14)

Now let u ∈ L and let n ∈ N be such that

n1/q2 ≤
����
2u

R

���� ≤ (n+ 1)
1/q2 . (3.15)

By definition (2.2) of n·n, there exist u3 ∈ Lq1 and u33 ∈ Lq2 such that

2u

R
=

2u3

R
+
2u33

R
, (3.16)

n1/q2 ≤
����
2u3

R

����
Lq1

+

����
2u33

R

����
Lq2

< (n+ 1)1/q2 ,

whence we get
����
2u3

R

����
Lq1

< (n+ 1)
1/q2 ≤ (n+ 1)1/q1 and

����
2u33

R

����
Lq2

< (n+ 1)
1/q2 ,

that is,

]

Ω

|u3|
q1 dµ < (n+ 1)

�
R

2

�q1
and

]

Ω

|u33|
q2 dµ < (n+ 1)

�
R

2

�q2
.
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Hence, by assumption (µ), there exist two partitions {Ai}1≤i≤n+1 and {Bi}1≤i≤n+1
of Ω such that for all i = 1, ..., n+ 1 one has

]

Ai

|u3|
q1 dµ <

�
R

2

�q1
and

]

Bi

|u33|
q2 dµ <

�
R

2

�q2
.

Define a new partition {Cij} of Ω by setting

Cij := Ai ∩Bj for i, j = 1, ..., n+ 1.

Then u3 ∈ Lq1 (Cij , dµ), u33 ∈ Lq2 (Cij , dµ) and nu3nLq1 (Cij ,dµ) , nu33nLq2 (Cij ,dµ) < R/2,
so that the mapping defined by

uij (x) :=

+
u (x) if x ∈ Cij
0 otherwise

belongs to L by Proposition 2.3 and satisfies

nuijn ≤ nu3nLq1 (Cij ,dµ) + nu
33nLq2 (Cij ,dµ) < R,

since (3.16) implies uij = u
3χCij + u

33χCij . Hence (3.14) gives nN0 (uij)nLq(Ω,dλ) ≤ 1,
and thus we get

nN0 (u)nqLq(Ω,dλ) =

]

Ω

|f0 (x, u)|
q
dλ =

n+1[

i.j=1

]

Cij

|f0 (x, u)|
q
dλ

=
n+1[

i.j=1

]

Ω

|f0 (x, uij)|
q dλ =

n+1[

i.j=1

nN0 (uij)nqLq(Ω,dλ)

≤ (n+ 1)2 .

Therefore, by (3.13) and the first inequality of (3.15), we deduce

nN (u)−N (0)nqLq(Ω,dλ) = nN0 (u)n
q
Lq(Ω,dλ) ≤

��
2

R

�q2
nunq2 + 1

�2
.

This yields the result and the proof is thus complete.

A growth condition on f ensuring (3.1) can be easily obtained by Proposition 2.3.

Proposition 3.5. Let f : Ω × R → R be a Caratheodory function and let α,β > 0
be such that

α

β
≤ q1
q2

and β ≤ q2.

Assume that there exist q ∈ [q2/β, q1/α] and g ∈ Lq(Ω, dµ) such that for almost every
x ∈ Ω and every t ∈ R one has

|f (x, t)| ≤
�
M min{|t|α , |t|β}+ g (x)

�
ω (x)

1/q
(3.17)

where M > 0 is a constant. Then the Nemytskĭı operator N : L (Ω, dµ)→ Lq (Ω, dλ)
given by (3.3) is well defined and continuous, and it is bounded if (µ) holds.
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Proof. By Theorems 3.1 and 3.4, it is sufficient to show that f(·, u(·)) ∈ Lq (Ω, dλ)
for all u ∈ L. So let u ∈ L and recall the definition (2.1) of Λu. Since α ≤ β, we have

|f(·, u(·))| ≤
�
M |u|α χΛu +M |u|β χΛcu + g

�
ω1/q almost everywhere on Ω,

so that there exists a constant C > 0 such that
]

Ω

|f (x, u)|q dλ ≤
]

Ω

�
M |u|α χΛu +M |u|β χΛcu + g

�q
ω (x) dλ

≤ C

#]

Λu

|u|αq dµ+

]

Λcu

|u|βq dµ+

]

Ω

gqdµ

$

≤ C

#]

Λu

|u|q1 dµ+

]

Λcu

|u|q2 dµ+ ngnqLq
$
,

where we have used the fact that αq ≤ q1 and βq ≥ q2. The conclusion then follows
from Proposition 2.3.iii.

Remark 3. If µ = λ, then Proposition 3.5 ensures that the operator N : L → Lq

given by (3.3) is continuous (and bounded if (µ) holds) for every q ∈ [q2/β, q1/α],
provided that (3.17) holds with ω (x) ≡ 1 and g ∈ Lq1/α ∩Lq2/β . Taking into account
the characterization of Proposition 2.20, such a result was partially given in [26,
Theorem 2.3], where it is shown that a necessary and sufficient condition in order
that N acts from LΦ into Lq is that there exist M̃ > 0 and g̃ ∈ L1 such that

|f (x, t)|q ≤ M̃Φ (t) + g̃ (x) for almost every x ∈ Ω and every t ∈ R. (3.18)

Indeed, under the assumptions of Proposition 3.5, it is easy to check that there exists
a constant C > 0 such that min{|t|α , |t|β}q ≤ CΦ (t) for all t ∈ R, so that (3.18)
holds provided that (3.17) holds.

The following corollary concerns the case, of particular interest in the applications,
in which the Nemytskĭı operator works between L = L (Ω, dµ) and its dual space L3.
Recall from Theorem 2.10 that L3 identifies with Lq

3
1 ∩Lq32 = Lq31(Ω, dµ)∩Lq32(Ω, dµ).

Corollary 3.6. Let f : Ω × R → R be a Caratheodory function and assume that
there existM > 0 and g ∈ Lq31 ∩Lq32 such that for almost every x ∈ Ω and every t ∈ R
one has

|f (x, t)| ≤M min{|t|q1−1 , |t|q2−1}+ g (x) .

Then the Nemytskĭı operator N : L → Lq
3
1 ∩ Lq32 given by (3.3) is well defined and

continuous, and it is bounded if (µ) holds.

Proof. Recalling the intersection norm (2.8), the continuity and the boundedness
of N : L (Ω) → Lq

3
1 ∩ Lq32 is equivalent to the ones of N from L into both Lq

3
1 and

Lq
3
2 . On the other hand, f satisfies (3.17) with α = q1 − 1, β = q2 − 1, ω (x) ≡ 1

and g ∈ Lq
3
1 ∩ Lq32 . Hence the result follows from applying Proposition 3.5 with

q = q31, q
3
2.
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Another consequence of Theorem 3.1 (and in particular of Corollary 3.6) is the
next differentiability result, which will be exploited in Section 5.

Proposition 3.7. Let f : Ω×R→ R be a Caratheodory function and set

F (x, t) :=

] t

0

f (x, s) ds for all (x, t) ∈ Ω×R.

Assume that there exist M > 0 and g ∈ Lq31 ∩ Lq32 such that for almost every x ∈ Ω
and every t ∈ R one has

|f (x, t)| ≤
�
M min{|t|q1−1 , |t|q2−1}+ g (x)

�
ω (x) . (3.19)

Then the operator
F : L (Ω, dµ)→ L1 (Ω, dλ) (3.20)

F (u) (x) := F (x, u (x))

is well defined and of class C1, with Fréchet derivative F 3 (u) at any u ∈ L (Ω, dµ)
given by

kF 3 (u) , hl (x) = f (x, u (x))h (x) for all h ∈ L (Ω, dµ) .

Proof. From (3.19) it follows that ∃M̃ > 0 such that

|F (x, t)| ≤
�
M̃ min {|t|q1 , |t|q2}+ |t| g (x)

�
ω (x)

(for almost every x ∈ Ω and every t ∈ R), so that u ∈ L implies

|F (u)| ≤ M̃ min {|u|q1 , |u|q2}ω + |u| gω ∈ L1 (Ω, dλ)

since ]

Ω

min {|u|q1 , |u|q2}ω dλ =

]

Ω

min {|u|q1 , |u|q2} dµ < +∞,
]

Ω

|u| gω dλ =

]

Ω

|u| g dµ < +∞

by Proposition 3.5 and Lemma 2.9 respectively. Hence the operator (3.20) is well
defined.
Now let u, h ∈ L and let {tn} ⊆ (−1, 1) be any sequence such that tn → 0. By the

mean value theorem, we infer that for almost every x ∈ Ω and every n there exists
θn = θn (x) ∈ [0, 1] such that

|F (x, u+ tnh)− F (x, u)| = |f (x, u+ θntnh)| |tn| |h|

≤
�
M min{|u+ θntnh|

q1−1 , |u+ θntnh|
q2−1}+ g

�
|tn| |h|ω

≤
�
M min{(|u|+ |h|)q1−1 , (|u|+ |h|)q2−1}+ g

�
|tn| |h|ω,
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so that almost everywhere on Ω one has

F (u+ tnh)− F (u)
tn

→ f (x, u)h as n→∞,
����
F (u+ tnh)− F (u)

tn

���� ≤M min{(|u|+ |h|)q1−1 , (|u|+ |h|)q2−1} |h|ω + g |h|ω,

where
min{(|u|+ |h|)q1−1 , (|u|+ |h|)q2−1} |h|ω, g |h|ω ∈ L1 (Ω, dλ)

by Lemma 2.9, since |u| + |h| ∈ L (recall Proposition 2.3.iv) and Corollary 3.6 gives
min{(|u|+ |h|)q1−1 , (|u|+ |h|)q2−1} ∈ Lq31 ∩ Lq32 . Hence

F (u+ tnh)− F (u)
tn

→ f (x, u)h in L1 (Ω, dλ) (3.21)

by dominated convergence. On the other hand, the Caratheodory function defined by

hf (x, t) := f (x, t)

ω (x)
for all (x, t) ∈ Ω×R

satisfies

| hf (x, t) | = |f (x, t)|

ω (x)
≤M min{|t|q1−1 , |t|q2−1}+ g (x)

(for almost every x ∈ Ω and every t ∈ R), so that, by Corollary 3.6, the operator
u :→ hf (x, u) acts from L into Lq31∩Lq32 and it is continuous. Hence the linear operator

F 3 (u) : h ∈ L :→ f (x, u)h ∈ L1 (Ω, dλ)

is continuous by Lemma 2.9 and thus, by (3.21), it is the Gâteaux derivative of F at
u. Moreover, denoting by L the space of linear and continuous operators from L into
L1 (Ω, dλ), for every u, v ∈ L one has

nF 3 (u)− F 3 (v)nL = sup
nhn=1

]

Ω

��� hf (x, u)− hf (x, v)
��� |h| dµ ≤ n hf (x, u)− hf (x, v) n

Lq
3
1∩Lq32

by Lemma 2.9 again, so that the mapping u ∈ L :→ F 3 (u) ∈ L is continuous and thus
F 3 (u) is the Fréchet derivative of F at u.

4. A compactness result

As a particular case of the previous sections, here we consider the space L(RN , dµ)
where µ is a σ-finite Borel measure such that µ and the Lebesgue measure of RN are
absolutely continuous with respect to each other, that is,

dµ = ω (x) dx for some measurable function ω : RN → (0,+∞) .
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Accordingly, we only omit the indication of the Lebesgue measure, briefly writing

Lp (Ω) = Lp (Ω, dx) for any Ω ⊆ RN ,
while, in order to exclude possible misunderstandings, whenever the measure µ is
concerned we shall use expanded notations, that is,

L
�
R
N ,ω (x) dx

�
= L

�
R
N , dµ

�
= Lq1

�
R
N , dµ

�
+ Lq2

�
R
N , dµ

�
,

just avoiding the mentioning of the exponents q1, q2 in the sum space notation.
Assuming 1 < p < N , we will prove a compactness result involving the radial

subspace
D1,p
rad

�
R
N
�
:=
�
u ∈ D1,p

�
R
N
�
: u (x) = u (|x|)

�

of the Sobolev space

D1,p
�
R
N
�
=
q
u ∈ Lp∗

�
R
N
�
: |∇u| ∈ Lp

�
R
N
�r
,

where p∗ := pN/(N−p). Recall that D1,p(RN ) is actually the completion of C∞c (R
N )

with respect to the norm

nunD1,p :=

�]

RN

|∇u|p dx
�1/p

,

as well as D1,p
rad(R

N ) is the closure in D1,p(RN ) of the radial subspace C∞c,rad(R
N ) of

C∞c (R
N ). Moreover, the continuous embedding

D1,p
�
R
N
�
/→ Lp

∗ �
R
N
�

(4.1)

holds, thanks to Sobolev inequality.

Theorem 4.1. Assume ω ∈ L∞loc(RN \ {0}) and that there exist θ1 > − (1 +N/p3)
and θ2 ∈ R such that

lim
r→0+

esssup
0<|x|<r

ω (x)

|x|θ1
< +∞ and lim

r→+∞
esssup
|x|>r

ω (x)

|x|θ2
< +∞. (4.2)

Then D1,p
rad(R

N ) is compactly embedded into L(RN ,ω (x) dx) for every q1, q2 > 1 such
that

q1 < p
∗ +

θ1p

N − p and p∗ +
θ2p

N − p < q2.

The proof of Theorem 4.1 relies on the following lemmas, where the first one is
a generalization of a pointwise estimate which is well known for p = 2. Some easy
consequences of Theorem 4.1 will be pointed out at the end of the section.

Lemma 4.2. There exists a constant CN,p > 0 (only depending on N, p) such that

∀u ∈ D1,p
rad(R

N ) one has

|u (x)| ≤ CN,p nunD1,p

1

|x|
N−p
p

almost everywhere on RN .
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Proof. See for example [36, Lemma 1].

For future convenience, in the next two lemmas we give more general results than
the ones needed in the proof of Theorem 4.1 (where we will apply with h = u).

Lemma 4.3. Let θ > − (1 +N/p3) and 1 < q < p∗ + θp/ (N − p). Then there exists
C0 = C0 (N, p, θ, q) > 0 such that for every u ∈ D1,p

rad(R
N ), h ∈ D1,p(RN) and r > 0

one has ]

Br

|x|θ |u|q−1 |h| dx ≤ C0r(p
∗+ θp

N−p−q)
N−p
p nunq−1D1,p nhnD1,p .

Proof. We denote by C any positive constant only depending on N, p, θ, q. Take
δ = δ (N, p, q) > 0 such that q−p∗ < δ < q−1, in such a way that (p∗−1)/(q−1−δ) >
1. Then by Hölder inequality, Sobolev embedding (4.1) and Lemma 4.2, for every
u ∈ D1,p

rad(R
N ), h ∈ D1,p(RN ) and r > 0 we have

]

Br

|x|θ |u|q−1 |h| dx ≤
�]

Br

|x|
θp∗
p∗−1 |u|

(q−1)p∗
p∗−1 dx

�(p∗−1)/p∗ �]

Br

|h|p
∗
dx

�1/p∗

≤
�]

Br

|x|
θp∗
p∗−1 |u|

δp∗
p∗−1 |u|

(q−1−δ)p∗
p∗−1 dx

�(p∗−1)/p∗
nhnD1,p

≤ C nunδD1,p

�]

Br

|x|(θ−
N−p
p δ) p∗

p∗−1 |u|(q−1−δ)p
∗3
dx

�1/p∗3
nhnD1,p

Applying Hölder inequality again (with conjugate exponents t = (p∗ − 1)/(q − 1− δ)
and t3 = (p∗ − 1)/(p∗ − q + δ)) we get

]

Br

|x|θ |u|q−1 |h| dx

≤ C

�]

Br

|x|(θ−
δN
p∗ )

p∗
p∗−q+δ dx

� p∗−q+δ
p∗

�]

Br

|u|p
∗
dx

� q−1−δ
p∗

nunδD1,p nhnD1,p

≤ C

�] r

0

ρ(θ−
δN
p∗ )

p∗
p∗−q+δ+N−1dρ

�(p∗−q+δ)/p∗
nunq−1D1,p nhnD1,p (4.3)

where
�
θ − δN

p∗

�
p∗

p∗ − q + δ
+N =

N

p∗ − q + δ

�
p∗ +

θp

N − p − q
�
> 0

by assumption. Hence we conclude

]

Br

|x|θ |u|q−1 |h| dx ≤ C nunqD1,p

�
r

N
p∗−q+δ (p

∗+ θp
N−p−q)

�(p∗−q+δ)/p∗
,

which yields the result.
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Lemma 4.4. Let θ ∈ R and let q > 1 be such that q > p∗+ θp/ (N − p). Then there
exists C∞ = C∞ (N, p, θ, q) > 0 such that for every u ∈ D1,p

rad(R
N ), h ∈ D1,p(RN ) and

R > 0 one has
]

Bc
R

|x|θ |u|q−1 |h| dx ≤ C∞

R(q−p
∗− θp

N−p )
N−p
p

nunq−1D1,p nhnD1,p .

Proof. We denote by C any positive constant only depending on N, p, θ, q. Taking
δ = δ (N, p, q) > 0 as in the previous lemma, the same computation giving (4.3) yields
that for every u ∈ D1,p

rad(R
N ), h ∈ D1,p(RN ) and R > 0 one has

]

Bc
R

|x|θ |u|q−1 |h| dx ≤ C
�] +∞

R

ρ(θ−
δN
p∗ )

p∗
p∗−q+δ+N−1dρ

�(p∗−q+δ)/p∗
nunq−1D1,p nhnD1,p ,

where
�
θ − δN

p∗

�
p∗

p∗ − q + δ
+N =

N

p∗ − q + δ

�
p∗ +

θp

N − p − q
�
< 0

by assumption. Hence we obtain

]

Bc
R

|x|θ |u|q−1 |h| dx ≤ C
�
R(θ−

δN
p∗ )

p∗
p∗−q+δ+N

�(p∗−q+δ)/p∗
nunq−1D1,p nhnD1,p ,

and the result then ensues.

Proof of Theorem 4.1. Let un - 0 in D1,p
rad(R

N ), whence {un} is bounded in
D1,p(RN ), and let ε > 0. By assumption (4.2), there exist C1, C2 > 0 such that

ω (x) ≤ C1 |x|
θ1 for almost every |x| small enough and ω (x) ≤ C2 |x|

θ2 for almost
every |x| large enough, so that, by Lemmas 4.3 and 4.4 (applied with u = h = un),
we can fix rε, Rε > 0 such that

]

Brε

|un|
q1 ω (x) dx+

]

Bc
Rε

|un|
q2 ω (x) dx

≤ C1

]

Brε

|x|θ1 |un|
q1 dx+ C2

]

Bc
Rε

|x|θ2 |un|
q2 dx

≤ C1C0r
(p∗+ θp

N−p−q1)
N−p
p

ε nunnq1D1,p +
C2C∞

R
(q2−p∗− θp

N−p)
N−p
p

ε

nunnq2D1,p

≤ C

#
r
(p∗+ θp

N−p−q1)
N−p
p

ε +
1

R
(q2−p∗− θp

N−p )
N−p
p

ε

$
<

ε

2

for some suitable constant C > 0 and for all n. Then, if q1 ≤ p, from the compactness
of the embedding D1,p

rad(R
N ) /→ Lploc(R

N) we deduce that

]

BRε\Brε

|un|
q1 ω (x) dx ≤ nωnL∞(BRε\Brε )

]

BRε\Brε

|un|
q1 dx→ 0 as n→∞.
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On the other hand, if q1 > p, we use Lemma 4.2 to deduce that there exists a constant
Cε > 0 such that
]

BRε\Brε

|un|
q1 ω (x) dx ≤ nωnL∞(BRε\Brε )

]

BRε\Brε

|un|
q1−p |un|

p dx

≤ nωnL∞(BRε\Brε )
Cq1−pN,p nunnq1−pD1,p(RN)

r
N−p
p (q1−p)

ε

]

BRε\Brε

|un|
p
dx

≤ Cε

]

BRε\Brε

|un|
p dx→ 0

as n → ∞. Therefore condition (2.7) holds with Eε,n = BRε and the conclusion
follows from Proposition 2.7.

The following results are straightforward consequences of Theorem 4.1. In par-
ticular, the first one contains a compactness lemma due to Benci-Fortunato (see [15,
Lemma 3]), corresponding to the case p = 2 and ω constant.

Corollary 4.5. If ω ∈ L∞(RN ), then the space D1,p
rad(R

N ) is compactly embedded
into L(RN ,ω (x) dx) for every 1 < q1 < p

∗ < q2.

Proof. If ω ∈ L∞(RN ) then condition (4.2) holds with θ1 = θ2 = 0 (which are also
the best exponents for such a condition) and the result follows from Theorem 4.1.

Corollary 4.6. If ω ∈ L∞loc(RN \ {0}) and (4.2) holds for some θ1 > − (1 +N/p3)
and θ2 < θ1, then D

1,p
rad(R

N ) is compactly embedded into Lq(RN ,ω(x)dx) for every
q > 1 such that

p∗ +
θ2p

N − p < q < p
∗ +

θ1p

N − p.

Proof. Since θ2 < θ1 implies p
∗ + θ2p/(N − p) < p∗ + θ1p/(N − p), we can apply

Theorem 4.1 with q1 = q2 = q and the result ensues, because L(RN ,ω (x) dx) =
Lq(RN ,ω(x)dx).

5. Application to quasilinear equations

Assume 1 < p < N and let V : (0,+∞) → [0,+∞] and f : (0,+∞) × R → [0,+∞)
be, respectively, a measurable and a Carathéodory function satisfying (V) and (f).
We define the weighted Sobolev spaces

W = W 1,p
�
R
N , V

�
:=

�
u ∈ D1,p

�
R
N
�
:

]

RN

V (|x|) |u|p dx < +∞
�
,

Wrad = W 1,p
rad

�
R
N
�
:= C∞c,rad (R

N ) ∩W 1,p (RN , V )
W 1,p(RN ,V )

equipped with the norm given by

nunpW :=

]

RN

(|∇u|p + V (|x|) |u|p) dx,
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with respect to which they are uniformly convex Banach spaces. Note that assumption
(V) ensures that both W and Wrad are nonempty. Moreover, since W -convergence
implies almost everywhere convergence (up to a subsequence), all the mappings in
Wrad are spherically symmetric.
We will apply some results from the previous sections (in particular Theorem 4.1,

Proposition 3.7 and Corollary 2.18) with Ω = RN and dµ = ω (x) dx, where

ω (x) = max{|x|θ1 , |x|θ2}

according to assumption (f). Note thatWrad is continuously embedded intoD
1,p
rad(R

N )
and thus the embedding

Wrad /→ L(RN ,ω (x) dx) := Lq1(RN ,ω (x) dx) + Lq2(RN ,ω (x) dx)

(where q1, q2 are given by (f) again) is compact by Theorem 4.1.
Thanks to the continuity of the embedding Wrad /→ L(RN ,ω (x) dx), assumption

(f) and Proposition 3.7 ensure that the functional I :Wrad → R given by

I (u) :=
1

p
nunpW −

]

RN

F (|x| , u) dx

(where F (r, t) :=
U t
0
f (r, s) ds) is well defined and of class C1, with Fréchet derivative

I 3 (u) ∈W 3
rad at any u ∈Wrad given by

kI 3 (u) , hl =
]

RN

�
|∇u|p−2∇u ·∇h+ V (|x|) |u|p−2 uh

�
dx−

]

RN

f (|x| , u)hdx (5.1)

for all h ∈Wrad. Hence the critical points u ∈Wrad of I satisfy (1.3) for all h ∈Wrad.
The next lemma shows that Wrad actually is, in some sense, a natural constraint for
finding weak solutions of equation (1.2). Observe that the classical Palais’ principle of
symmetric criticality [31] does not apply in this case, because we do not know whether
I is differentiable, not even well defined, on the whole space W or not.

Lemma 5.1. Every critical point of I : Wrad → R is a weak solution to equation
(1.2).

Proof. We show that if u ∈ Wrad satisfies (1.3) for all h ∈ Wrad, then (1.3) holds
also true for all h ∈ W . Let u ∈ Wrad. By (f) and Lemmas 4.3 and 4.4, ∀h ∈ W we
have

]

RN

|f (|x| , u)h| dx ≤ M

]

RN

min{|u|q1−1 , |u|q2−1} |h|ω (x) dx

≤ M

]

B1

|x|θ1 |u|q1−1 |h| dx+M
]

Bc
1

|x|θ2 |u|q2−1 |h| dx

≤ M
�
C0 nunq1−1W + C∞ nunq2−1W

�
nhnW ,

so that the linear functional defined by

kT (u) , hl :=
]

RN

�
|∇u|p−2∇u ·∇h+ V (|x|) |u|p−2 uh

�
dx−

]

RN

f (|x| , u)h dx
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is well defined and continuous on W . Hence, by uniform convexity, there exists a
unique ũ ∈ W such that T (u) ũ = nũn2W = nT (u)n2W 3 . Then, by means of obvious
changes of variable, one checks that for every h ∈W we have

kT (u) , h (S·)l = kT (u) , hl and nh (S·)nW = nhnW for all S ∈ O (N) ,

whence, applying with h = ũ, one deduces ũ (S·) = ũ by uniqueness. This means
ũ ∈ Wrad, so that, if kT (u) , hl = 0 for all h ∈ Wrad, one has kT (u) , ũl = 0, that is,
nT (u)nW 3 = 0.

By virtue of Lemma 5.1, the proof of Theorems 1.1 and 1.2 reduces to finding
critical points of the functional I, which exhibits a right amount of compactness,
according to the following lemma.

Lemma 5.2. The functional I :Wrad → R satisfies the Palais-Smale condition.

Proof. Let {un} ⊆Wrad be a sequence such that {I (un)} is bounded and I 3 (un)→ 0
inW 3

rad. One has to show that {un} contains aW -converging subsequence. Exploiting
the condition γF (r, t) ≤ f (r, t) t with γ > p of assumption (f), a standard argument
shows that {un} is bounded inWrad. Then Theorem 4.1 applies, yielding the existence
of u ∈Wrad such that (up to a subsequence)

un - u in Wrad

un → u in L(RN ,ω (x) dx).

Now set

I1 (u) :=
1

p
nunpW and I2 (u) := I1 (u)− I (u)

for brevity. Then, by (5.1) and Proposition 3.7, we get

nunnpW = kI 3 (un) , unl+ kI 32 (un) , unl = kI 32 (u) , ul+ o (1)n→∞ ,

so that limn→∞ nunnW exists and one has nunpW ≤ limn→∞ nunnpW by weak lower
semicontinuity. Moreover the convexity of I1 :Wrad → R implies

I1 (u)−I1 (un) ≥ kI 31 (un) , u− unl = kI 3 (un) , u− unl+kI 32 (un) , u− unl = o (1)n→∞
and thus

1

p
nunpW = I1 (u) ≥ lim

n→∞
I1 (un) =

1

p
lim
n→∞

nunnpW .

So nunnW → nunW and one concludes that un → u in Wrad by uniform convexity.

Proof of Theorem 1.1. As we are interested in nonnegative solutions, it is not
restrictive to assume

f (r, t) = 0 for all r > 0 and t < 0 (5.2)
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We want to apply the well known Mountain-Pass Theorem [2]. To this end, observe
that, by (f) and Lemmas 4.3 and 4.4 (applied with h = u), for every u ∈ Wrad we
have
]

RN

F (|x| , u) dx ≤ c1

]

RN

min{|u|q1 , |u|q2}ω (x) dx

≤
]

B1

|u|q1 |x|θ1 dx+

]

Bc
1

|u|q2 |x|θ2 dx ≤ c2 nunq1W + c3 nunq2W

(where c1, c2, c3 denote some positive constants), so that

I (u) ≥ 1

p
nunpW − c2 nunq1W − c3 nunq2W . (5.3)

Since q2 > q1 > p, this proves that I has a mountain pass geometry near the origin,
i.e., there exist δ, ρ > 0 such that for all u ∈ Wrad with nunW = ρ one has I (u) ≥ δ.
On the other hand, there exists ū ∈Wrad such that nūnW > ρ and I (ū) < 0. Indeed,
by assumption (1.7) and condition γF (r, t) ≤ f (r, t) t of (f), one easily deduces

F (r, t) ≥ F (r, t∗)
tγ∗

tγ for almost every r > 0 and all t ≥ t∗

so that, ∀λ > 1 and ∀u ∈ Wrad nonnegative such that the set {x ∈ RN : u (x) ≥ t∗}
has positive Lebesgue measure, we get

]

RN

F (|x| ,λu) dx ≥
]

{λu≥t∗}
F (|x| ,λu) dx ≥ λγ

tγ∗

]

{λu≥t∗}
F (|x| , t∗)u

γdx

≥ λγ

tγ∗

]

{u≥t∗}
F (|x| , t∗)u

γdx ≥ λγ
]

{u≥t∗}
F (|x| , t∗) dx > 0

(recall that F ≥ 0 and F (|·| , t∗) > 0 almost everywhere), which gives

I (λu) ≤ λp

p
nunpW − λγ

]

{u≥t∗}
F (|x| , t∗) dx→ −∞ as λ→ +∞

since γ > p. As a conclusion, I exhibits a full mountain-pass geometry and, by Lemma
5.2, the Mountain-Pass Theorem provides the existence of a nontrivial critical point
for I, which is a weak solution to equation (1.2) by Lemma 5.1. Finally, by (5.2), a
standard argument shows that any u ∈ W satisfying (1.3) for all h ∈ W has to be
nonnegative.

Proof of Theorem 1.2. By the oddness assumption (1.8), one has I (u) = I (−u)
for all u ∈ Wrad and thus we can apply the Symmetric Mountain-Pass Theorem (see
for example [35, Theorem 6.5]). To this end, taking into account (5.3) and Lemma
5.2, we need only to show that I satisfies the following geometrical condition: for
any finite dimensional subspace Y 9= {0} of Wrad there exists R > 0 such that
for all u ∈ Y with nunW ≥ R one has I (u) ≤ 0. In fact it is sufficient to prove
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that any sequence {un} ⊆ Y with nunnW → +∞ admits a subsequence such that
I (un) ≤ 0. Recall the definition (2.1) (where Ω = R

N ) of Λun and briefly denote
Lq1(Λun) := L

q1(Λun ,ω (x) dx), L
q2(Λcun) := L

q2(Λcun ,ω (x) dx). Since all norms are
equivalent on Y , one has

nunnLq1 (Λun ) + nunnLq2 (Λcun) ≥ nunn ≥ c0 nunnW → +∞ (5.4)

for some constant c0 > 0, where the right hand inequality of (2.21) has been used.
Hence, up to a subsequence, at least one of the sequences {nunnLq1 (Λun)}, {nunnLq2 (Λcun)}
diverges. We now use assumption (1.9) to obtain

]

RN

F (|x| , un) dx ≥ m
]

Λun

|un|
q1 ω (x) dx+m

]

Λcun

|un|
q2 ω (x) dx.

Thus, using inequalities (5.4), there exists a constant c > 0 such that

I (un) ≤ c
�
nunnpLq1 (Λun ) + nunn

p
Lq2 (Λcun )

�
−m

�
nunnq1Lq1 (Λun ) + nunn

q2
Lq2 (Λcun)

�

= c nunnpLq1 (Λun ) −m nunn
q1
Lq1 (Λun)

+ c nunnpLq2 (Λcun ) −m nunn
q2
Lq2 (Λcun )

,

so that I (un) → −∞, since q2 > q1 > p. Therefore the Symmetric Mountain-Pass
Theorem implies the existence of an unbounded sequence of critical values for I, to
which there corresponds a sequence of nontrivial critical points and thus a sequence
of weak solutions to equation (1.2), thanks to Lemma 5.1.
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