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Abstract 

Receptors for the scatter factors HGF and MSP that are encoded by the MET and RON oncogenes are key players in 
invasive growth. Receptor cross-talk between Met and Ron occurs. Amplification of the MET oncogene results in kinase 
activation, deregulated expression of an invasive growth phenotype, and addiction to MET oncogene signaling (i.e., 
dependency on sustained Met signaling for survival and proliferation). Here we show that cancer cells addicted to MET 
also display constitutive activation of the Ron kinase. In human cancer cell lines coexpressing the 2 oncogenes, Ron is 
specifically transphosphorylated by activated Met. In contrast, Ron phosphorylation is not triggered in cells harboring 
constitutively active kinase receptors other than Met, including Egfr or Her2. Furthermore, Ron phosphorylation is 
suppressed by Met-specific kinase inhibitors (PHA-665752 or JNJ-38877605). Last, Ron phosphorylation is quenched by 
reducing cell surface expression of Met proteins by antibody-induced shedding. In MET-addicted cancer cells, short 
hairpin RNA–mediated silencing of RON expression resulted in decreased proliferation and clonogenic activity in vitro 
and tumorigenicity in vivo. Our findings establish that oncogene addiction to MET involves Ron transactivation, pointing 
to Ron kinase as a target for combinatorial cancer therapy. Cancer Res; 71(5); 1945–55. ©2011 AACR.  

1. Introduction 

The RON oncogene, also known as “stem-cell derived tyrosine kinase” in mice, belongs to the receptors family of which 
MET is the prototype. RON gene, located on chromosome 3p21.3, is made of 20 exons encoding a 185-kDa 
transmembrane heterodimer, formed by a 35-kDa α chain and a 150-kDa β chain. The α chain is completely extracellular 
and includes a SEMA domain endowed of binding activity for the ligand macrophage stimulating protein (MSP; ref. 1), 
whereas the β chain, crossing the plasma membrane, encompasses a juxtamembrane, a tyrosine kinase, and a C-
terminal domain (2). Ron displays with its sibling receptor Met 25% homology in the extracellular region and 63% within 
the tyrosine kinase domain (3). Ron signals through mechanisms analogous to Met, the receptor for hepatocyte growth 
factor (HGF), and generates similar biological responses, as reviewed by Benvenuti and Comoglio (4). Similar to Met, 
Ron plays a central role in embryo development (5). In addition it is expressed in adult epithelial cells and macrophages, 
where it orchestrates a complex genetic program known as “invasive growth” that includes control of cellular 
proliferation, adhesion, motility, and protection from apoptosis (6). 

 

Scattered observations suggest that RON is overexpressed and aberrantly activated in a number of human cancers, 
including intestinal (7), pancreatic (8), gastric (9), pulmonary (10), mammary (11), ovarian (12), hepatocellular (13), 
urinary (14), and renal carcinomas (15) where it plays a role in tumor progression, possibly being involved in the 
metastatic spread (16). Moreover, RON overexpression correlates with an unfavorable clinical outcome in bladder (14) 
and breast (17) cancers. The Ron oncogenic potential can be unleashed by overexpression both in vitro (11) and in vivo 
(18) where it induces an increase in cellular proliferation, motility, and invasion and drives tumourigenesis. Ron 
synergizes with other oncogenes, that is, polyoma virus middle T (19) and RAS (20), enhancing their oncogenic 



potential. From an opposite but complementary perspective Ron downregulation by siRNA in a panel of colon cancer 
cells impairs proliferation and motility and induces apoptosis (21). A human anti-Ron monoclonal antibody inhibits growth 
of a panel of cell lines xenografted in nude mice (22). 

 

Oncogene addiction—the “Achilles' heel” of cancer—indicates the dependence for survival and proliferation upon an 
overactive oncogene or its downstream pathway. Consequently, the disruption of that oncogene/pathway leads to 
growth arrest and programmed cell death, even in the presence of concomitant multiple genetic lesions (23). The 
oncogene addiction concept represents a major expectation, as it would provide a significant improvement for strategies 
of targeted therapy (24). This concept applies to certain cancer cells displaying MET amplification, as already shown in 
gastric carcinomas (25), rabdomyosarcomas (26) and non–small cell lung cancers (NSCLC; ref. 27). In this study, we 
show that Ron transphosphorylation is critical to sustain the transformed phenotype of MET-addicted cells, offering a 
second target for therapy of sensitive cancers.  

2. Material and methods 

Inducible short hairpin RNA vectors 

Ron short hairpin RNA (shRNA) sequence was as follows: 
GATCCCCGCTGGCTCTCATTGGTATCATTTCAAGAGAATGATACCAATGAGAGCCAGCTTTTTGGAAA; CTR 
sequence was as follows: 

GATCCCCGCTGGCTCCCATTGGTATCATTTCAAGAGAATGATACCAATGAGAGCCAGCTTTTTGGAAA. The 2 
sequences were cloned into the inducible lentiviral vectors as previously described (28). RON cDNA insensitive to 
shRNA was produced by insertion of 3 point mutations (G3460C, C3466A, and T3472C) by QuikChange II XL Site-
directed Mutagenesis Kit (Stratagene), according to manufacturer's instructions. All mutations were verified by DNA 
sequencing. 

Cell lines, lentiviral infections, and reagents 

A549 (lung carcinoma), NCI-H1993 (NSCLC), SW620 (colorectal adenocarcinoma), T47D (breast carcinoma), and Cos-
7 (African Green Monkey SV40-transf'd kidney fibroblast) cell lines were purchased from American Type Culture 
Collection. EBC1 (NSCLC) and MKN45 (stomach cancer, metastasis to the liver) were acquired from Health Science 
Research Resources Bank; GTL16 is a laboratory batch obtained from limiting dilutions of MKN45 (29). All cells were 
kept in culture for less than 8 weeks and used between passage 2 and 20. Cells were grown in recommended media 
(Invitrogen Carlsbad) supplemented with 50 units/mL penicillin (Sigma Aldrich), 50 mg/mL streptomycin (Sigma Aldrich), 
and 2% or 10% FBS (Sigma Aldrich) as indicated. Cells were maintained at 37°C, in 5% CO2 atmosphere. When 
indicated, cells were treated with doxycycline (1 μg/mL). Viral particles were produced by transient cotransfection of 
293T cells with vectors of interest in combination with 3 μg of envelop plasmid (pMD2-VSV-G), 5 μg of core packaging 
plasmid (pMDLg/pRRE), and 2.5 μg of pRSV-REV as previously described (30). Cells were transduced with the lentiviral 
particles for 6 to 8 hours in the presence of Polybrene (Sigma-Aldrich). Particle concentration was estimated by viral p24 
antigen by HIV-1 p24 Core profile ELISA (NEN Life Science Products). PHA-665752 was from Tocris Bioscience; JNJ-
38877605 was produced by Janssen Pharmaceutica/Ortho Biotech (Supplementary Fig. S1). 

Molecular biology 

PCR primers designed to amplify RON (Gene Bank ID: NC_000003 referring to NM_002447) coding sequence—exons 1 
to 20—are listed in Supplementary Table S1. Genomic DNA extractions and PCR amplification reactions were carried 
out as previously described (31). Cycle sequencing was carried out using BigDie Terminator v3.1 Cycle Sequencing Kit 
(Applied Biosystems). Sequencing products were purified using CleanSeq (Agencourt Bioscience, Beckman Coulter) 
and analyzed on a 3730 DNA Analyzer, ABI capillary electrophoresis system (Applied Biosystems). Real-time 



quantitative PCR (qPCR) was done as previously described (31). TaqMan probes for genomic DNA and mRNA were 
from Applied Biosystems. 

Biochemical analysis 

Cells lysates were run as total extracts or immunoprecipitated using anti-Ron (C-20 Santa Cruz Biotechnology); anti Met 
(DL-21 produced in our laboratory (32); anti-Egfr (Upstate Biotechnology), and anti-Her2 -trastuzumab (Roche) 
antibodies. Equal amounts of proteins were loaded on to SDS-PAGE gels and transferred to nitrocellulose membrane 
supports (Hybond C+; Amersham). The membranes were decorated with the following antibodies: anti-Met DL-21, and 
anti-actin (Santa Cruz Biotechnology), anti-phospho Tyr (P-Tyr) (Upstate Biotechnology), and anti-phospho Met 
Y1234/Y1235 (Cell Signaling Technology). Antimouse, antirabbit, antigoat, and protA-peroxidase conjugated secondary 
antibodies were from Amersham. Signal detection was done using ECL system (GE Healthcare). 

Biological assays 

Cell proliferation rates were checked every other day for 7 days using Cell Titre Glo Luminescence (Promega 
Corporation). All the experiments were done at least 2 times in triplicates. 

Anchorage-independent growth was carried out plating 3 × 103 cells in 0.5% low melting agarose. The overlay medium 
was substituted every 3 days. After 2 weeks, cell viability was assessed by Alamar blue staining (Resazurin sodium salt, 
Sigma-Aldrich), and then colonies were visualized using 0.02% iodonitrotetrazolium chloride (0.02% in PBS, Sigma-
Aldrich). 

Xenograft transplantation experiments 

A total of 5 × 105 lentiviral-transduced GTL16 or 1×106 lentiviral-transduced EBC1 cells were injected s.c. in the 
posterior flanks of 6-week-old immunodeficient nu-/- female mice on a CD-1 background (Charles River Laboratories). 
Tumor volume was calculated as previously described (33). At the end of the experiment immunohistochemical staining 
was conducted on paraffin-embedded sections of the tumors using standard techniques (33). Experiments were carried 
out on groups of 12 animals per point. All animal procedures were approved by the Ethical Commission of the University 
of Torino (Italy) and by the Italian Ministry of Health.  

3. Results 

Ron is transphosphorylated in Met-addicted cells 

We investigated Ron expression levels and tyrosine phosphorylation in 4 MET-addicted human cancer cells of different 
histotypes: GTL16 and MKN45 (gastric adenocarcinomas), NCI-H1993 and EBC1 (NSCLCs). All 4 cell lines harbor 
increased MET copies in their genome, being MET-amplified >6 times (Fig. 2), and produce an excess of Met protein at 
the cell membrane resulting in constitutive receptor activation (34). In these cells, MET oncogenic addiction was 
confirmed by treatment with the specific inhibitors PHA-665752 (25, 35) and JNJ-38877605 (Supplementary Fig. S1), 
resulting in growth arrest in G0 (36). Ron expression was investigated by qPCR (data not shown) and confirmed by 
Western blotting; Ron was found to be highly expressed in all cells (Fig. 1A). We then checked Ron activation status in 
basal conditions (e.g., in absence of exogenous ligand -MSP- stimulation) and showed that the receptor was strongly 
phosphorylated in all examined cells (Fig. 1A). No phosphorylation was observed, on the contrary, in a panel of cells 
expressing various levels of Ron, but not addicted to MET (Fig. 1B). 

Figure 1. 

Ron expression and basal activation. A, Western blot analysis of Ron protein in 4 MET-addicted (EBC1, GTL16, MKN45 
and NCI-H1993) and (B) in 4 not addicted (DU145, T47D, SW620 and A549) cell lines; 800 μg of lysates were 
immunoprecipitated with anti-Ron antibody and probed with anti–P-Tyr and Ron antibodies. Ron is expressed in all cells 
but is constitutively active only in the MET-addicted cells. 
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It has been described that constitutive activation of kinase receptors can be achieved in 3 different ways: (i) with 
establishment of ligand/receptor autocrine loops; (ii) via receptor amplification and consequent overexpression; and (iii) 
in the presence of activating point mutations. We therefore explored the mechanism leading to Ron constitutive 
activation in the panel of MET-addicted cells. First, we ruled out the presence of an autocrine circuit ligand/receptor 
(MSP/Ron) conducting qPCR on mRNAs obtained from each cell line (data not shown). We next examined if Ron 
constitutive activation was the result of gene amplification carrying out a gene copy number analysis. To normalize 
variations in copy number we used genomic DNA extracted from nonmalignant retinal pigmental epithelial cells (RPE) 
that are notably diploid. We proved that every cell line contains 2 copies of the RON gene; as a control, we confirmed 
that MET was amplified (>6 times) in all analyzed cells (Fig. 2). It should be noted that there is not a linear correlation 
between MET gene amplification and protein levels; this is likely due to transcriptional and posttranscriptional events 
such as mRNA stability or protein degradation. We finally explored the possibility that Ron basal phosphorylation 
resulted from genetic lesions affecting the RON gene itself. To this end we conducted mutational analysis on genomic 
DNA extracted from EBC1, GTL16, NCI-H1993, and MKN45 cells as previously described (31). PCR primers were 
designed to amplify the 20 exons encompassing RON's entire coding sequence (listed in Supplementary Table S1). A 
total of 104 PCR products were generated and subjected to direct sequencing. No activating mutations were found. Only 
the NCI-H1993 line displayed 2 nucleotide changes corresponding to the amino acid substitutions: Q523R in exon 4 and 
R1335G in exon 20; the first is a single nucleotide polymorphism reported on public databases, whereas the latter does 
not affect amino acids involved in the kinase activity. We therefore concluded that Ron constitutive activation in MET-
addicted cells was not due to the presence of either gene amplification or somatic mutations. 

 

It has been previously shown in our laboratory that—while specifically activated by their ligands—the 2 tyrosine kinase 
receptors Ron and Met cross-talk. Ligand-induced activation of Met results in transphosphorylation of Ron and vice 
versa (37). The experiments were conducted using the “kinase dead” mutants of the 2 receptors (RonKD and MetKD), 
which are devoid of kinase activity. Overexpression of wild-type Ron (RonWT) or Met (MetWT) in Cos-7 cells resulted in 
their ligand-independent phosphorylation, whereas the corresponding “kinase dead” receptors were inactive. However, 
RonKD and MetKD displayed tyrosine phosphorylation when coexpressed with RonWT and MetWT, respectively. This 
indicates that through the formation of Ron/Met heterodimers reciprocal phosphorylation on tyrosines occurs. 

 

We therefore verified if Ron basal activation resulted from specific transphosphorylation by the active cognate receptor 
Met in a scenario of endogenous MET oncogene addiction. We treated for 2 hours EBC1, GTL16, NCI-H1993, and 
MKN45 with 2 Met-selective inhibitors: PHA-665752 and JNJ-38877605 at the standard dose of 500 nmol/L (36). As 
expected we showed that both inhibitors caused a significant reduction of Met phosphorylation but notably of Ron as well 
(Fig. 3A, 3B). Unlike JNJ-38877605, PHA-665752 treatment did not abolish completely Met phosphorylation in NCI-
H1993 cells; accordingly neither Ron was completely inhibited. To rule out the unlike possibility that the 2 compounds 
could inhibit Ron directly, we overexpressed Ron in Cos-7 cells, under conditions resulting in its constitutive 
phosphorylation. Treatment with increasing concentrations of PHA-665752 or JNJ-38877605 (250, 500, and 1,000 
nmol/L) for 2 hours was ineffective on Ron phosphorylation status, confirming Met specificity (Fig. 3D). Afterward, we 
strengthened the data obtained by means of Met specific inhibitors showing that Ron phosphorylation was quenched 
also reducing the number of Met receptors from the cellular surface using specific antibodies. It has been shown that the 
monoclonal antibody DN30, an IgG2A directed against the extracellular moiety of the human Met, acts as inhibitor of Met 
signaling and biological responses through a mechanism of receptor “shedding” (38). The latter results from proteolytic 
generation of a soluble extracellular fragment that removes the receptors from the cell surface and forms inactive 
heterodimers with the residual intact molecules (38). MET-addicted cells (GTL16, NCI-H1993, and MKN45) were plated 
in low serum (2%) and treated with the FAb of DN30 (28 μg/mL) or PBS for 72 hours. As reported in detail elsewhere 
(38), we showed that upon antibody treatment the amount of Met protein was reduced and its phosphorylation strongly 
quenched (Fig. 3D). In agreement with the working hypothesis Met antibody treatment resulted in diminished Ron 
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To further prove that Met-driven Ron transphosphorylation is a direct event not dependent on downstream molecules we 
overexpressed 3 different Met constructs in T47D cells that notably express good levels of unphosphorylated Ron, and 
do not express the cognate receptor Met. The 3 constructs were as follows: Met wild type (MetWT), Met kinase dead 
(MetKD), and the receptor mutated in its docking site (MetDouble) and therefore unable to recruit signal transducers, but 
still retaining its kinase activity. As expected MetWT-induced Ron transphosphorylation, MetKD did not and, notably, 
MetDouble did proving incontrovertibly that Met directly transphosphorylates Ron without the need of downstream 
transducers (Fig. 4C). 

It should be noted that within the contest of MET-oncogene addiction in the absence of active Met (achieved by 
pharmacological inhibition) the loss of Ron phosphorylation is not reverted by its ligand MSP (Supplementary Fig. S2). 
This finding is not surprising since homodimerization of Ron receptors in Met-addicted cells is impaired by 
heterodimerization with the (chemically inhibited) Met, which is overexpressed at an exceedingly high stoichiometry. 

Ron silencing abrogates the transformed phenotype of Met-addicted cells 

To asses the functional contribution of the constitutive phosphorylation of Ron in the contest of MET-addiction, we 
established stable cell lines in which Ron expression could be knocked down by inducible shRNAs. Briefly, as previously 
described (28), shRNAs were cloned into inducible lentiviral vectors in which the transgene expression was under 
doxycycline control; vectors were then used to generate cell lines in which doxycycline treatment (1 μg/mL) modulates 
Ron silencing. To discriminate for unwanted “off-target” effects, we engineered control shRNA (CTR shRNA) displaying a 
single-base substitution (10 T>C) abrogating Ron silencing (Fig. 5A). We transduced the panel of MET-addicted cells 
and produced pools to circumvent clonal variation. After transduction we checked effective Ron silencing both by qPCR 
(data not shown) and Western blotting (Fig. 5B). We showed that the receptor's expression was almost completely 
abolished by RON-specific shRNA, the inhibition being 72 hours after silencing induction, as high as 74% in MKN45, 
77% in NCI-H1993, 81% in GTL16 and 86% in EBC1. As expected Ron protein levels were not altered in cells 
transduced with the CTR shRNA upon antibiotic administration. We checked total Met and phospho-Met levels in the 4 
cell lines upon Ron knockdown and showed that in none of them neither Met total amount nor its phosphorylation status 
changed upon Ron silencing (Fig. 5C). 

Figure 5. 

Inducible shRNA system. A, sequences of RON and CTR shRNAs. Asterisks designate the base change that abrogates 
silencing. B, Western blot analysis of total cell lysates of EBC1, GTL16, MKN45 and NCI-H1993 cells transduced either 
with RON or with CTR shRNA viruses. As shown, 72 hours after doxycycline treatment (1 μg/mL) induced a dramatic 
Ron silencing as high as 74% in MKN45, 77% in NCI-H1993, 81% in GTL16, and 86% in EBC1 (densitometry values 
were normalized over actin and compared with doxycycline untreated cells). As expected Ron protein levels were not 
altered in cells transduced with the CTR shRNA upon drug administration. Actin was used as loading control. C, total 
Met and phospho-Met levels were checked upon Ron knockdown. In none of the 4 cell lines neither Met total amount nor 
its phosphorylation status were altered upon Ron silencing. 
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4. Discussion 

It has been established that, due to their documented genomic instability, cancer cells accumulate an exceedingly high 
number of mutations, some affecting proteins involved in growth control. In this discouraging scenario, the 
pharmacologic inhibition of the whole spectrum of mutated proteins is the therapeutic counterpart of the myth of 
Sisyphus. Growing evidence points out that cancers arising as a result of a given oncogenic lesion remain dependent on 
the continued expression of that oncogene (reviewed in ref. 41). The phenomenon, known as “oncogene addiction,” has 
been documented in cells harboring genetic alterations of EGFR (42), HER2 (43), PDGFR (44, 45), ALK (46), BRAF (47) 
and, last but not least, MET (25), an oncogene implicated in a number of malignant diseases (reviewed in ref. 6). The 
mechanistic explanation of MET oncogene addiction is still elusive (30). In this study, we show that the RON oncogene, 
encoding the MET's sibling tyrosine kinase receptor, is involved. Analyzing 4 cancer cell lines in which MET is 
constitutively active as a consequence of gene amplification, we showed that Ron is transphosphorylated by Met. 
Extending the previous data reporting Ron and Met cross-talk, we observed in an artificial cellular system in which both 
receptors were exogenously overexpressed (37), we provided direct evidence that Ron transphosphorylation also occurs 
in cells naturally coexpressing the 2 oncogenes. In addition, we have shown that Ron transphosphorylation is specifically 
driven by Met, as it is suppressed both by means of Met-specific chemical inhibitors and by reducing the number of Met 
proteins from the surface by antibody-induced shedding. Moreover, Ron is not phosphorylated in cells harboring 
constitutively activated kinase receptors other than Met, such as Egfr or Her2. The consequence of the MET-driven 
transphosphorylation likely results in enhanced signal transduction activity. In fact, Ron is a weak kinase. We previously 
showed that, swapping kinase domains between Met and Ron, by genetically engineering the TPR chimeras, Ron 
catalytic efficiency is 5 times lower than that of Met. Moreover, Ron activation triggers the downstream MAP kinase 
signaling approximately 3 times less than Met (48). We thus suggest that Ron, although a weak kinase per se, behaves 
as an amplifying platform for Met signaling. In a contest of MET oncogene addiction, this signal amplification may be 
critical to reach the equilibrium that sustains tumor growth and survival. An analogous phenomenon has already been 
described for Her3. It was shown that within Her2/Her3 heterodimers Her2 transphosphorylates Her3 but not vice versa, 
being Her3 devoid of kinase activity (49). The interesting observation is that, although kinase death, within this frame, 
Her3 is necessary to sustain Her2-mediated transformation in Her2-positive breast cancer cells (50). 

By means of somatic knockdown, via inducible lentiviral shRNAs, we have shown that Ron deprivation in 4 different 
MET-addicted cells has functional relevance and results in an impaired–transformed phenotype: decreased proliferation 
rates, clonogenic potential in vitro, and tumorigenicity in vivo. Relevant clinical implications can be drawn from the 
knowledge that Met and Ron form a functional oncogenic unit in addicted cells. First of all, Met inhibitors, especially 
those already in clinical trials, could be used in combination with Ron inhibitors to potentiate the therapeutic response. 
Alternatively, dual-specific inhibitors, acting on both members of the Met family, may turn out to be more effective than 
specific ones. In either case, the finding that oncogenic addiction to MET involves Ron transactivation brings to light the 
potential advantage of combinatorial therapies designed at blocking simultaneously Met and Ron. 

In summary, we demonstrate that Ron is essential to support the oncogenic phenotype of cancer cells displaying 
amplification of Met kinase and suggest that Met-addicted tumors exhibit a “non-oncogene” addiction to Ron. Our results 
show on one hand the complexity of the signaling networks regulated by addictive oncogenes and, on the other reveal 
their “Achilles' heel.” Interfering with one single component of the network (here we suggest the weak oncogene Ron) 
seems to be sufficient to attenuate the transformed phenotype sustained by the altered oncogene (Met). 
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