
Towards a Semantic Model for Java Wildcards

Alexander J. Summers
ETH Zurich
Switzerland

alexander.summers@inf.ethz.ch

Nicholas Cameron
Victoria Univ. of Wellington

New Zealand
ncameron@ecs.vuw.ac.nz

Mariangiola Dezani-Ciancaglini
Università di Torino

Italy
dezani@di.unito.it

Sophia Drossopoulou
Imperial College London

United Kingdom
s.drossopoulou@imperial.ac.uk

ABSTRACT
Wildcard types enrich the types expressible in Java, and ex-
tend the set of typeable Java programs. Syntactic models
and proofs of soundness for type systems related to Java
wildcards have been suggested in the past, however, the se-
mantics of wildcards has not yet been studied.

In this paper we propose a semantic model for Java wild-
cards, inspired by work on semantic subtyping, which tradi-
tionally interprets types as sets of possible values. To easily
reflect the nominal type system of Java, our model is defined
in terms of runtime types (closed class types) rather than
the structure of the runtime values themselves. To reflect
the variance introduced by wildcards, our model interprets
types as sets of such closed class types.

Having defined our model, we employ a standard semantic
notion of subtyping. We show soundness of syntactic subtyp-
ing with respect to the semantic version, and demonstrate
that completeness fails in the general case. We identify a re-
stricted (but nonetheless rich) type language for which the
syntactic notion of subtyping is both sound and complete.

1. INTRODUCTION AND BACKGROUND
Java wildcards are closely related to bounded existential

types, which provide a richer underlying type language than
that directly available to the programmer. Soundness and
decidability of the Java type system has been studied in the
context of existential types [2, 20], but there has been little
effort to investigate the meaning of wildcards.

A semantic model of a type system provides a meaning of
types. It can abstract from various syntactic details, and
may be used to address the question of whether a type sys-
tem is as powerful as it could be. In this paper we pro-
pose such a semantic model for Java types, and investigate
the soundness and completeness of Java-like type assignment
with respect to our model. We demonstrate that syntactic
typing and subtyping are sound with respect to their seman-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’10, June 22, 2010, Maribor, Slovenia
Copyright 2010 ACM 978-1-4503-0015-5/10/06 ...$5.00.

tic counterparts, while Java-like subtyping is not complete.
We introduce some restrictions under which syntactic sub-
typing is also complete.

Wildcards in Java.
Wildcards [7, 17, 16, 4] introduce subtype variance into

Java. A wildcard type is a parameterised type in which
the symbol ? is used as an actual type parameter, for ex-
ample in a type such as List<?>. Such a type can be
thought of as a list of some type, where the wildcard is hiding
that type. Wildcards may be given upper or lower bounds
using the extends and super keywords respectively, e.g.,
List<? extends Shape>. Upper bounds give covariance and
lower bounds contravariance: e.g., List<? extends Circle>

is a subtype of List<? extends Shape>.
There have been several formalisations of the Java type

system, for purposes including formal definition [17], type
soundness [4], decidability of type checking [20, 14], and to
gain better understanding of the mechanism [18, 3, 15].

Bounded Existential Types.
Existential types are a form of polymorphic type, based on

logical existential quantification. In traditional treatments
[5, 10, 13], existential types are introduced and eliminated
explicitly in the expression syntax. An existential type is in-
troduced using a pack expression which hides a witness type;
a value with existential type must be unpacked before it can
be used. Unbounded existential types hide all information
about the witness type. Bounded existential types [5, 12]
give partial information about the witness type.

Generic types with variance annotations can be thought of
in terms of existential types [9], and Java wildcards can sim-
ilarly be understood using existential types [17, 16, 4]. For
example, Box<?> can be represented as ∃X.Box<X>. Bounds
on wildcards can be thought of as bounds on the existentially
quantified type variable, thus Box<? extends Shape> corre-
sponds to ∃X:[⊥ Shape].Box<X>, in which ⊥ is the lower
bound and Shape is the upper. We use ⊥ as a lower bound
when a wildcard is unbounded below and Object as a lower
bound when a wildcard is unbounded above. We will omit
bounds in examples when they do not play an important
part.

Therefore, the type Box<Circle> can be packed to the
type ∃X:[⊥ Shape].Box<X> and then unpacked to Box<Z>

where Z is fresh and has bounds [⊥ Shape]. In the first
case, the original type parameter Circle has been hidden

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301866861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by X. Subtyping between wildcard and non-wildcard types
reflects packing of existential types. For example,

Box<Circle> <: Box<? extends Shape>

corresponds to
Box<Circle> <: ∃X:[⊥ Shape].Box<X>

The main difference between traditional type-checking of
existential types and type-checking wildcard types is that,
for wildcard types in Java, packing and unpacking are im-
plicit operations. Whenever a field or method lookup is to be
performed on an expression whose type includes wildcards
these types are temporarily unpacked; a process known as
capture conversion.

The main motivation for using existential types to model
Java wildcards is the presence of expressible but not deno-
table types, such as, e.g., List<∃ X:[⊥ Object].List<X>>.
These are types which arise during Java type checking but
which cannot be denoted using the Java syntax. This hap-
pens because the type checker internally employs a richer
type language in the style of existential types. On the other
hand, the syntax of existential types allows types which are
not expressible in Java, i.e., for which no expression in a
program written in the Java syntax has that type. For ex-
ample, ∃ X:[C<X> Object].List<X> is not expressible in
Java.

Semantic Subtyping.
Semantic types [6] represent types as the sets of values

inhabiting them. Thus, semantic subtyping is naturally in-
duced by the subset relation. In the setting of functional
languages with semantic subtypes, completeness for type
constructors which have natural set theoretic interpretations
(such as cartesian products) comes for free, and subtyping
algorithms can be derived by using boolean algebra laws for
decomposing subtyping on simpler types. Semantic subtyp-
ing for object-oriented types has not yet been attempted.

Outline.
We begin in Section 2 by formulating a syntactic type

system, corresponding to a natural extension of the Java
type system to unrestricted F-bounded existential types. In
particular, we define well-formedness of types, and the ap-
propriate syntactic notions of subtyping and typing, which
generalise those of the Java type system.

In Section 3, we turn to our semantic model. We introduce
a semantic interpretation of closed class types as sets of class
types, employing the sets to model variance. We define a
standard notion of semantic subtyping, and give semantic
versions of subtyping and typing for the full type syntax of
the paper.

In Section 4, we address the questions of soundness and
completeness with respect to our semantic notions. The syn-
tactic notions of subtyping and typing turn out to be sound
with respect to our model (4.1), whereas syntactic subtyp-
ing is shown to be incomplete (4.2). We then identify a
key technical constraint on types which suffices to restore
a partial completeness result; we call rich types the types
fulfilling this constraint (4.2). We prove a weak complete-
ness result for rich types, and then introduce the concept
of weakly independent environments, designed to guarantee
the requirement that types be rich via constraints which are
much more easily understandable and checkable.

Finally, we conclude and discuss future work in Section 5.

2. SYNTACTIC TYPE SYSTEM
To make meaningful comparisons between Java and our

semantic interpretation, we require a syntactic formalisation
of the Java type system. We cannot make a formal compar-
ison with either a Java compiler, nor the Java Language
Specification [7], since these have only informal definitions.
As with most previous models of Java with wildcards [17,
4], we use existential types to model wildcard types. We
include assignment, since the presence of mutable state is
relevant for the correct treatment of advanced type system
features such as wildcards [15]. Our syntactic notion of sub-
typing is close to those employed in other existential type
systems [20, 19, 13] but with some simplifications in pre-
sentation and a closer connection with the logical basis of
existential types. Our language is rich enough to denote the
types that can be expressed in Java (which is a superset of
the types which can be denoted in Java). We can also write
some types which cannot be expressed in Java; for exam-
ple, ∃ X:[C<X> Object].C<X> can be neither denoted nor
expressed in Java.

Following this, we present expressions in our language and
rules for assigning types to expressions.

2.1 Types
We first present the language of types and the subtyp-

ing and well-formedness relations which operate on types.
Types and type environments are defined by the following
grammars:
N ::= C < T > class types
T ::= X | ∃∆.N types
B ::= T | ⊥ type bounds

∆ ::= X : [B B] type environments
Type environments map type variables to pairs of lower

and upper bounds. We use N as short for ∃∅.N . Wild-
card types can be represented by existential types; their
bounds are represented in the quantifying environment (∆
in ∃∆.N); for example, the Java type C<?> can be repre-
sented as the type ∃X:[⊥ Object].C<X> and D<? super E>

as ∃X:[E Object].D<X>.

Well-formed types and environments.
Fig. 1 defines well-formed types and environments. The

rules follow the formulations in FGJ [8] and Tame FJ [4],
with the addition of F-Exists. The rule F-Bottom is
used only to check bounds (since ⊥ can be used only as
a bound). F-Object and F-Class define well-formed class
types. In class declarations � is short for “extends” and
. . . stands for the definition of fields and methods of the
class as in [8, 4]. F-Exists defines well-formed existential
types (which are used to represent wildcard types); it allows
existential types to be checked by moving a set of quanti-
fied variables into the environment. For example the type
∃X:[⊥ C<Y>], Y:[C<X> Object].C<Y> is well-formed; notice
that such a kind of quantification is not expressible in first
order logic.

Subtyping.
We give rules for syntactic subtyping in Fig. 2. All rules

other than those for existential types are standard. S-Exists-
L corresponds to unpacking an existential type, the premises
correspond with the premises of the type rules for an un-
pack expression [13]. S-Exists-R corresponds to packing

X ∈ dom(∆)
(F-Var)

∆ ⊢ X ok
(F-Bottom)

∆ ⊢⊥ ok
(F-Object)

∆ ⊢ Object<> ok
(F-Env-Empty)

∆ ⊢ ∅ ok

class C<X � Tu> � N{. . .} ∆ ⊢ T <: Tu[T/X]
(F-Class)

∆ ⊢ C<T> ok

∆ ⊢ ∆′ ok ∆, ∆′ ⊢ N ok dom(∆′) ∩ fv(∆) = ∅
(F-Exists)

∆ ⊢ ∃∆′.N ok

∆, X : [Bl Bu], ∆′ ⊢ Bl <: Bu ∆, X : [Bl Bu], ∆′ ⊢ ∆′ ok
(F-Env)

∆ ⊢ X : [Bl Bu], ∆′ ok

Figure 1: Syntactic well-formed types and environments.

∆ ⊢ B ok
(S-Reflex)

∆ ⊢ B <: B

∆ ⊢ B <: B′′ ∆ ⊢ B′′ <: B′

(S-Trans)
∆ ⊢ B <: B′

∆ ⊢ B ok
(S-Bottom)

∆ ⊢⊥<: B

∅ ⊢ ∆ ok ∆(X) = [Bl Bu]
(S-Bound)

∆ ⊢ X <: Bu

∆ ⊢ Bl <: X

class C<X � Tu> � N{. . .} ∆ ⊢ T <: Tu[T/X]
(S-Sub-Class)

∆ ⊢ C<T> <: N [T/X]

∆, ∆′ ⊢ N <: T dom(∆′) ∩ (fv(T) ∪ fv(∆)) = ∅
(S-Exists-L)

∆ ⊢ ∃∆′.N <: T

∆ ⊢ Bl[T/X] <: T ∆ ⊢ T <: Bu[T/X]
(S-Exists-R)

∆ ⊢ N [T/X] <: ∃X : [Bl Bu].N

Figure 2: Syntactic subtyping.

in a similar way; T are witness types hidden by X. Both
rules can be seen as the natural extension of the existen-
tial elimination and introduction rules in first order logic to
an arbitrary number of variables1. Similar rules are used in
some existing models of wildcards [20, 3], while some authors
combine them into a single rule (e.g., -Env in [16, 2]).

Expressions.
We use a standard expression syntax for an imperative

featherweight calculus: variables, null, field access and as-
signment, method invocation, and object creation (without
parameters, as in [8, 4]). Method invocation is simpler than
in other models because we do not support type parameters
for methods. The syntax of expressions is as follows:

e ::= x | null | e.f | e.f = e | e.m(e) | new N

Typing Rules.
We define syntactic typing rules in Fig. 3. Variable envi-

ronments, ranged over by Γ, are defined by:

Γ ::= x : T

The most interesting typing rules are those dealing with
the introduction and elimination of existential types. Exis-
tential types are eliminated by implicit unpacking of the type
of the receiver in T-Field, T-Assign, and T-Invk. Method
and field type lookups fType and mType2, are applied to the
unpacked (unquantified) types, and the appropriate extra

1Subtyping coincides with derivability in a formulae-as-
types isomorphism for the common syntax.
2Whose definitions are as in FGJ or Tame FJ and are elided
here.

bounds are present in the rule premises. To avoid the un-
packed type variables escaping into the conclusion (which
would be unsound), they must be quantified over once more
in the conclusion.3

Our rules follow Tame FJ [4], but we simplify by not mod-
elling capture conversion of method type parameters. We
can therefore simplify re-packing of type variables: we do
not require guarding environments to keep track of unpacked
variables. Our rules reflect a simpler subset of Java than
Tame FJ, however, all Tame FJ programs can be encoded
in our calculus by encoding capture conversion of parameter
types to unpacking of the receiver’s type [3].

3. A SEMANTIC MODEL
In semantic types [6], types are interpreted as the sets

of values inhabiting them. Since at runtime, Java objects
have closed class types, our model interprets closed syntactic
types as sets of such closed class types. The sets we use are
closed under subclassing, to reflect inheritance-based vari-
ance. We use these sets to model the variance introduced
by (bounded) existential types — the “hidden” information
of the existentially-bound variables is dealt with consider-
ing each of the possible instantiations which may be hidden,
i.e., by considering all substitutions mapping the variables
to closed types satisfying their declared bounds.

We use σ to range over substitutions mapping type vari-
ables onto closed types, and say that a substitution σ agrees

3In the typing rules T-Assign and T-Invk the variables in
the domain of ∆′ are bound in the first premise, therefore
they cannot occur free in the other premises by the“variable
convention” (see [1] 2.1.12). In particular they cannot occur
free in the expressions e′ and e.

(T-Var)
∆; Γ ⊢ x : Γ(x)

∆ ⊢ N ok
(T-New)

∆; Γ ⊢ new N : ∃∅.N

∆;Γ ⊢ e : ∃∆′.N fType(f, N) = T
(T-Field)

∆; Γ ⊢ e.f : ∃∆′.T

∆;Γ ⊢ e : ∃∆′.N fType(f, N) = T ∆, ∆′; Γ ⊢ e′ : T
(T-Assign)

∆; Γ ⊢ e.f = e′ : ∃∆′.T

∆;Γ ⊢ e : U ∆ ⊢ U <: T
(T-Subs)

∆; Γ ⊢ e : T

∆; Γ ⊢ e : ∃∆′.N mType(m,N) = U : U ∆, ∆′; Γ ⊢ e : U
(T-Invk)

∆; Γ ⊢ e.m(e) : ∃∆′.U

∆ ⊢ T ok
(T-Null)

∆; Γ ⊢ null : T

Figure 3: Syntactic typing rules.

(S-Var)
Γ |= x : Γ(x)

(S-New)
Γ |= new N : ⌈⌈N⌋⌋

Γ |= e : S ∀N ∈ S, fType(f, N) defined
(S-Field)

Γ |= e.f :
[

N∈S

⌈⌈fType(f, N)⌋⌋

Γ |= e : S Γ |= e′ : S′ ∀N ∈ S, S′ ⊆ ⌈⌈fType(f, N)⌋⌋
(S-Assign)

Γ |= e.f = e′ :
[

N∈S

⌈⌈fType(f, N)⌋⌋
Γ |= e : S S ⊆ S′

(S-Subs)
Γ |= e : S′

Γ |= e : S Γ |= e : S ∀N ∈ S, S ⊆ S′ where S′ = ⌈⌈mType(m, N)↓1⌋⌋
(S-Invk)

Γ |= e.m(e) :
[

N∈S

⌈⌈mType(m, N)↓2⌋⌋
(S-Null)

Γ |= null : S

Figure 4: Semantic typing rules.

with an environment ∆, formally ∆ ⊢ σ, if σ respects the
bounds declared in ∆:

Definition 1. ∆ ⊢ σ if dom(∆) = dom(σ) and for
all X ∈ dom(σ) we get ⊢ σ(Bl) <: σ(X) <: σ(Bu), where
[Bl Bu] = ∆(X).

Our model will only provide a semantics for closed types4; we
deal with class parameters instead when we use this seman-
tics, as we will show later. In the case of a non-quantified
(i.e., class) type, the only variance comes from the possibil-
ity of subsumption - an object of a particular static type
may have a runtime type which is a subclass. To define this,
we use a subclassing judgement, N ′ ⊑ N , defined to be the
least preorder such that:

class C < X � Tu > �N{. . .} ∆ ⊢ T <: Tu[T/X]

∆ ⊢ C < T >⊑ N [T/X]

(S-Sub-Class′)

Definition 2 (Semantics of Types).
Semantic types, ranged over by S, are sets of closed class
types. We define a semantics for closed types via a mapping
⌈⌈.⌋⌋ from closed syntactic types to semantic types:

⌈⌈N⌋⌋ = {N ′ | N ′ ⊑ N}
⌈⌈⊥⌋⌋ = ∅

⌈⌈ ∃∆.N ⌋⌋ =
S

σ, with ∆⊢σ
⌈⌈ σ(N)⌋⌋

4We can easily extend our type interpretation to open types
by introducing as usual environments mapping type vari-
ables to closed types. We avoid this generalisation since we
can define subtyping for open types using only the interpre-
tation of closed types, see Definition 3.

Since our semantic model is only defined for closed types,
we handle type variables in the original syntactic types by
considering all of their closed instantiations (which is after
all a reasonable way to understand the meaning of a subtyp-
ing derivation containing free-variables - it is a schema for
all such concrete cases).

Definition 3 (Semantic Subtyping). Semantic sub-
typing is just subset inclusion on semantic types:

S ⊆ S′

Semantic subtyping on syntactic types (notation
∆ |= T ≤ T ′) is defined as follows:

∆ |= T ≤ T ′ if ∀σ st. ∆ ⊢ σ :
⌈⌈σ(T)⌋⌋ ⊆ ⌈⌈σ(T ′)⌋⌋

Using these definitions, we can now define a semantic type
system for our language.

Definition 4 (Semantic Type Assignment). The se-
mantic type assignment judgement Γ |= e : S is defined by
the rules in Fig. 4, in which when mType(m, N) = U → U
we define mType(m,N)↓1 = U and mType(m, N)↓2 = U .

4. CORRESPONDENCE RESULTS
Our original motivation for studying a semantics model

of Java types was to investigate completeness of subtyping,
that is, whether or not all potential subtype relationships be-
tween types are captured by Java subtyping. This question
is difficult because subtyping for wildcard types is complex
and there is no obvious intuition to compare with (as is the
case with plain class types: inheritance gives subtyping). In

this section we investigate the questions of soundness and
completeness of both subtyping and typing, with respect to
our corresponding semantic notions.

The most interesting result of this section is that Java
subtyping is not complete; we give a counter-example below.
We also prove a partial completeness result: Java subtyping
is complete for a subset of Java types which we identify; it
is future work to investigate whether completeness can be
extended to larger subsets.

4.1 Soundness of Syntactic Typing
We investigate first whether the syntactic notions of sub-

typing and typing (based on those of Java), are sound with
respect to our semantics. Since Java with wildcards is sound
[4], one would hope this to be the case, and in fact we do an-
swer these questions affirmatively. In the case of subtyping,
we are able to show that all subtypings derivable in Java are
sound with respect to our semantic notion of subtyping.

Theorem 1 (Soundness of Subtyping).
For all types T and T ′, and for all environments ∆, if ∆ ⊢
T <: T ′, then ∆ |= T ≤ T ′.

Armed with this result, we can show further that all type
derivations in our syntactic formulation of type assignment
are sound with respect to the semantic notion of type as-
signment of Definition 4.

Theorem 2 (Soundness of Type Assignment). For
all ∆,Γ,e and T , if ∆;Γ ⊢ e : T , then, for all substitutions
σ such that ∆ ⊢ σ, we have σ(Γ) |= σ(e) : ⌈⌈σ(T)⌋⌋.

Since our syntactic type system is a generalisation of that
used for Java (allowing more general bounds on existential
quantifiers), this result also implies that all Java typings (for
a suitably restricted sub-language of Java) are sound with
respect to our semantic model of types.

4.2 Incompleteness of Syntactic Subtyping
As well as addressing soundness, it is natural to ask whether

the Java type system is complete, in the sense that all of
the type assignments which are valid semantically are also
derivable in the syntactic system. This property is not com-
pleteness of type checking in the classical sense (i.e., that
all programs which execute without errors will type check),
but that all programs which will type check under a seman-
tic model, type check in the syntactic model. Central to
this question is the treatment of existential types. In the se-
mantic model, such types are interpreted as the enumeration
of all possible closed instances of the type quantified over,
which are then considered independently when checking se-
mantic subtypings. Could it be that the apparently-refined
notion of semantic subtyping produces a more precise no-
tion of subtyping? In fact, this is the case, as the following
example shows.

Example 1 (Subtyping is incomplete).
Consider the types T1 = C<D> and T2 = ∃X:[D D].C<X>.
Then |= T2 ≤ T1, but it is not the case that ⊢ T2 <: T1.

In particular, in the syntactic system we have no way of
making use of the “knowledge” that there is only one way
in which a pair of bounds could ever be satisfied. However,
since this example relies on the use of syntactically identical
lower and upper bounds for an existentially-bound variable,
one might think that completeness of syntactic subtyping
could be achieved by adding a simple extra rule such as

∆ ⊢ B <: U ∆ ⊢ U <: B

∆ ⊢ ∃X : [B U].T <: [U/X]T

(EQ)

However, this is not sufficient in the general case. For exam-
ple, the types T3 = ∃X:[⊥ Y], Y:[X Object].C<X,Y> and
T4 = ∃Z:[⊥ Object].C<Z,Z> are semantically equivalent,
because, to satisfy both sets of bounds, X and Y must be in-
stantiated in the same way. Still, the judgment ⊢ T3 <: T4

cannot be obtained. On the other hand, application of S-
Exists-R and S-Exists-L gives ⊢ T4 <: T3.

We do not believe that additional subtyping rules could
help handle this kind of examples. Note, however, that
a type like T3 is not expressible in Java. This motivates
our search for restrictions under which syntactic subtyping
would be complete.

4.3 Completeness for Rich Types
Having demonstrated that syntactic subtyping is, in gen-

eral, incomplete, in this section, we identify a syntactic re-
striction on types and environments, under which syntactic
subtyping is both sound and complete. Our partial com-
pleteness result (Theorem 3) applies only to closed types,
and under the restriction that the types are rich; a concept
we define below (Definition 6). The full technical develop-
ment of these results required other technical concepts and
many lengthly proofs, which are omitted here for space rea-
sons. We first generalise the notion of agreement between
an environment and a closed substitution to open substitu-
tions, employing a second environment to deal with the free
variables introduced by the substitution.

Definition 5. ∆; ∆′ ⊢ [U/Y] if dom(∆′) = Y and for

all Yi ∈ dom(∆′) we have ∆ ⊢ Bl[U/Y] <: Ui <: Bu[U/Y],
where [Bl Bu] = ∆′(Yi).

The motivation for rich types is a technical property re-
quired for our completeness proof: given two types T and T ′,
whose free variables are X and Y respectively, if whenever
we replace X using a substitution σ, we can find a corre-
sponding substitution σ′ on Y such that the resulting types
are equal (σ(T) = σ′(T ′)), then we need it to follow that
there exist U (which can contain occurrences of variables in

X) such that T = T ′[U/Y]. This amounts to saying that
the substitutions σ′ can all be decomposed into a common
part which changes T ′ to agree with T on the X, followed
by the appropriate substitutions for these variables.

Definition 6. ∆, T ⋉ ∆′, T ′, if dom(∆) ∩ dom(∆′) = ∅
and for all σ s.t. ∆ ⊢ σ, there exists a σ′ s.t. ∆′ ⊢ σ′ and
σ(T) = σ′(T ′).
An environment ∆ is rich if for all ∆′, T , T ′, if ∆, T ⋉

∆′, T ′, then there exist U , Y s.t. ∆; ∆′ ⊢ [U/Y] and T =

T ′[U/Y].
A type T is rich, if T = ∃∆.N and ∆ is rich.

It is obvious that all closed class types are rich; thus the
type T1 = C<D> is rich. We consider the remaining types
from Section 4.2: T4 = ∃Z:[⊥ Object].C<Z,Z> is rich. The
environment ∆2 = X:[D D] is not rich – consider ∆′

2 =∅,
and T =X and T ′=D. Therefore, the type T2 = ∃∆2.C<X>
is not rich. Similarly, ∆3 = X:[⊥ Y], Y:[X Object] is not
rich – consider ∆4 = Z:[⊥ Object], and T = C<X,Y> and

T ′ = C<Z,Z>. Therefore, the type T3 = ∃∆3.C<X,Y> is not
rich either.

In order to show that completeness holds for closed, rich
types we require the following auxiliary lemma, which guar-
antees that substitution commutes with subclassing.

Lemma 1. If ⊢ σ(N) ⊑ N ′ and ∆ ⊢ σ, then there is N ′′

such that ∆ ⊢ N ⊑ N ′′ and N ′ = σ(N ′′). Moreover, N ′′

only depends on N and N ′, and not on σ.

Theorem 3 (Weak Completeness).
For all closed types T1 and T2, if |= T1 ≤ T2 and T1 is rich,
then ⊢ T1 <: T2.

Proof. Let T1 = ∃∆1.N1 and T2 = ∃∆2.N2 with U =
dom(∆2). By definition of semantic interpretations and sub-
typing, we obtain that
S

∆1⊢σ1
{N3 |N3 ⊑ σ1(N1) } ⊆

S

∆2⊢σ2
{N4 |N4 ⊑ σ2(N2) }

Therefore, for all σ1, N3, s.t. ∆1 ⊢ σ1, and N3 ⊑ σ1(N1)
there exists a substitution σ2 s.t. ∆2 ⊢ σ2 and N3 ⊑ σ2(N2).

By weakening the above, we get that for all σ1 s.t. ∆1 ⊢ σ1

there exists a σ2 s.t. ∆2 ⊢ σ2 and σ1(N1) ⊑ σ2(N2).
By Lemma 1 there exists a N5 s.t. ∆1 ⊢ N1 ⊑ N5 and

for all σ1 with ∆1 ⊢ σ1 there exists a σ2 with ∆2 ⊢ σ2 such
that σ2(N2) = σ1(N5).

Because ∆1 is a rich environment, and by Def. 6, there
exist U such that ∆1; ∆2 ⊢ [U/Y] and N5 = N2[U/Y].

From this, and rule S-Exists-R we can derive ∆1 ⊢ N5 <:
∃∆2.N2.

Furthermore, from ∆1 ⊢ N1 ⊑ N5 we obtain that ∆1 ⊢
N1 <: N5.

Application of S-Trans on the last two results gives ∆1 ⊢
N1 <: ∃∆2.N2.

Finally, application of S-Exists-L rule yields the desired
result: ⊢ ∃∆1.N1 <: ∃∆2.N2.

For example, the type T1 = C<D> is rich, while the type
T2 = ∃X:[D D].C<X> is not. Furthermore, |= T1 ≤ T2, and
|= T2 ≤ T1. In holding with our theorem ⊢ T1 <: T2 can be
derived (by application of S-Exists-R, and the substitution
[D/X]), while ⊢ T1 <: T2 can not be derived.

For a more interesting example, consider types T5 =
∃V:[⊥ Object].F<V>, and T6 =∃V:[A Object].F<V>, and
T7=∃U:[T5 T6].E<U>. Then, T7 is not rich, although T5, T6

are. Type T8=∃Y:[⊥ A].E<∃X:[Y Object].F<X>> is rich.
Furthermore, T8 and T7 are semantically equivalent, and
⊢ T8 <: T7 can be derived, while ⊢ T7 <: T8 can not be
derived. Note that T7 is denotable, while T8 is expressible
but not denotable in Java.

Since the notion of rich types is stated rather indirectly,
we now identify a more syntactic criterion on environments
which guarantees them to be rich. The key idea is (in the
language of Definition 6) that ∆ must allow different choices
of σ to take“sufficiently different”choices for the types which
replace the variables. In particular, if it is possible to instan-
tiate each of the type variables belonging to dom(∆) = X
in ways which differ completely in their structure, then the
only way for the corresponding choices for Y (made in σ′) to
manage to account for this is for the occurrences of Y in T ′

to “sit above” the occurrences of X in T . This then allows
for the decomposition described - we can replace the Y in a
way which positions the occurrences of X in the same way
as in T (the substitution [U/Y] achieves this). In order to
formalize the notion of “sufficiently different” choices for the

variables, we first define what it means for two types to be
“sufficiently different”:

Definition 7. Two types T and T ′ are sufficiently dif-
ferent (notation T♯T ′) if:
T = ∃∆.C < . . . >, T ′ = ∃∆′.C′ < . . . > and C 6= C′.

Definition 8. An environment ∆ is weakly independent
if for all X ∈ dom(∆) there exist σ1 and σ2 such that

1. ∆ ⊢ σ1

2. ∆ ⊢ σ2

3. σ1(X)♯σ2(X)

4. σ1(Y) = σ2(Y) for all Y ∈ dom(∆) with Y 6= X.

We use the term weak independence because we do not re-
quire that each variable in the environment can always be in-
stantiated independently of the instantiations of the others.
Instead, we make the weaker requirement (for each variable
X) that there exists at least one instantiation of the envi-
ronment in which the choices for the other variables do not
determine the choice for X (cf. σ1 and σ2 above). For exam-
ple, ∆9 = X:[A Object], Y:[X Object] is weakly indepen-
dent, since we can (for example) choose either to substitute
A for X and Object for Y, or Object for both X and Y.The
environment ∆10 = X:[⊥ Object], Y:[C<X> C<X>] is not
weakly independent, since Y’s substitution is determined by
that of X. Furthermore, the two environments ∆2=X:[D D]

and ∆3=X:[⊥ Y], Y:[X Object] are not weakly indepen-
dent.

One might wonder if (as in all our examples so far), en-
vironments which are not weakly independent involve non-
trivial lower bounds (i.e., bounds different from ⊥). This
question is relevant for the application of our results to
Java, since there it is relatively difficult to denote types
with both complex upper and lower bounds. However, the
existence of mutually-dependent bounds is also enough to
generate interesting examples of environments which are
not weakly independent. As suggested in [11], expressing
the parallel class hierarchies involved in the Subject and
Observer pattern requires mutually recursive bounds, as in:
class Subj<X � Subj<X,Y>, Y � Obs<X,Y>> {...},
and class Obs<X � Subj<X,Y>, Y � Obs<X,Y>> {...}.
Considering the constraints on the class parameters, the en-
vironment ∆11 = X:[⊥ Subj<X,Y>], Y:[⊥ Obs<X,Y>] is
not weakly independent. Moreover, not only are the types
T9 = ∃∆11.Subj<X,Y> and T10 = ∃∆11.Obs<X,Y> denotable
in Java, but they correspond to the wildcards version of
the two classes involved in the Subject and Observer pat-
tern.While the lack of weak independence rules out the ap-
plication of our main results, we do not yet know whether
this example actually yields a counter-example to complete-
ness of subtyping - so far we have not been able to find such
a counter-example using these classes.

The following result shows that the concept of weakly in-
dependent environments is sufficient for weak completeness.

Theorem 4. Any weakly independent environment is rich.

Note that all examples in this section which were not rich
were not weakly independent either. We have not encoun-
tered any examples of rich environments which were not
weakly independent, and in further work we plan to try to
prove that the opposite direction of Theorem 4 holds.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have outlined our research on seman-

tic models for Java types and our steps toward defining and
proving a completeness theorem for Java subtyping and type
checking. Ours is the first study on semantic foundations to
take into account Java wildcards. Such a result is challeng-
ing to obtain, not only because the type language of Java
is very expressive and incorporates technically challenging
features such as F-bounded polymorphism, but also because
the type system underlying the language is neither formally
specified nor semantically well understood. A significant
contribution of this work is to provide an approach to clar-
ifying the semantics and properties of the underlying type
system. To extend this contribution further, we aim to in-
corporate open, as well as closed types, for our completeness
result, for which we already have much of the necessary ma-
chinery.

We have shown that our syntactic model of Java types is
incomplete with respect to our semantics, and have iden-
tified areas of future work in the direction of extending
our completeness results, and investigating whether counter-
examples to full completeness can be expressed in Java. In
particular, we have not yet found a non-trivial (i.e., with-
out employing identical upper and lower bounds) example
which can be denoted directly in the Java language. If such
examples do not occur (as we conjecture), we may yet be
able to extend our weak completeness result to a complete-
ness result (modulo type equivalences) for the full Java type
system.

Acknowledgements
We thank the anonymous FTfJP reviewers for feedback and
good suggestions. Sophia and Nick are grateful to Dave
Clarke for awakening their interest in semantic approaches
to typing.

6. REFERENCES
[1] H. P. Barendregt. The Lambda Calculus: its Syntax

and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[2] N. Cameron. Existential Types for Variance — Java
Wildcards and Ownership Types. PhD thesis, Imperial
College London, 2009.

[3] N. Cameron and S. Drossopoulou. On Subtyping,
Wildcards, and Existential Types. In FTfJP’09, pages
1–7, New York, NY, USA, 2009. ACM.

[4] N. Cameron, S. Drossopoulou, and E. Ernst. A Model
for Java with Wildcards. In ECOOP’08, number 5142
in LNCS, pages 2–26, Berlin / Heidelberg, 2008.
Springer.

[5] L. Cardelli and P. Wegner. On Understanding Types,
Data Abstraction, and Polymorphism. ACM
Computing Surveys, 17(4):471–522, 1985.

[6] A. Frisch, G. Castagna, and V. Benzaken. Semantic
Subtyping: Dealing Set-theoretically with Function,
Union, Intersection, and Negation Types. Journal of
the ACM, 55(4):1–64, 2008. Extends and supersedes
LICS ’02 and ICALP/PPDP ’05 articles.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Third Edition. Addison-Wesley,
Boston, Mass., 2005.

[8] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: a Minimal Core Calculus for Java
and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001. An
earlier version appeared at OOPSLA’99.

[9] A. Igarashi and M. Viroli. Variant Parametric Types:
A Flexible Subtyping Scheme for Generics. ACM
Transactions on Programming Languages and
Systems, 28(5):795–847, 2006. An earlier version
appeared as “On variance-based subtyping for
parametric types” at ECOOP’02.

[10] J. C. Mitchell and G. D. Plotkin. Abstract Types
Have Existential Type. ACM Transactions on
Programming Languages and Systems, 10(3):470–502,
1988. An earlier version appeared at POPL ’85.

[11] M. Naftalin and P. Wadler. Java Generics and
Collections. O’REILLY, Sebastopol, Ca.,USA, 2007.

[12] B. C. Pierce. Bounded quantification is undecidable.
In POPL ’92, pages 305–315, New York, NY, USA,
1992. ACM.

[13] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[14] M. Plümicke. Typeless Programming in Java 5.0 with
Wildcards. In PPPJ’07, pages 73–82, New York, NY,
USA, 2007. ACM.

[15] A. J. Summers. Modelling Java requires State. In
FTfJP’09, pages 1–3, New York, NY, USA, 2009.
ACM.

[16] M. Torgersen, E. Ernst, and C. P. Hansen. Wild FJ.
In FOOL 12, 2005.
http://homepages.inf.ed.ac.uk/wadler/fool/program.

[17] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé,
G. Bracha, and N. Gafter. Adding Wildcards to the
Java Programming Language. Journal of Object
Technology, 3(11):97–116, 2004. Special issue: OOPS
track at SAC 2004, Nicosia/Cyprus.

[18] M. Viroli and G. Rimassa. On Access Restriction with
Java Wildcards. Journal of Object Technology,
4(10):117–139, 2005. Special issue: OOPS track at
SAC 2005, Santa Fe/New Mexico. An earlier version
appeared as “Understanding access restriction of
variant parametric types and Java wildcards” at SAC
2005.

[19] S. Wehr, R. Lämmel, and P. Thiemann. JavaGI:
Generalized Interfaces for Java. In ECOOP’07,
number 4609 in LNCS, pages 347–372, Berlin /
Heidelberg, 2007. Springer.

[20] S. Wehr and P. Thiemann. On the decidability of
subtyping with bounded existential types. In
APLAS’09, number 5904 in LNCS, pages 111–127,
Berlin / Heidelberg, 2009. Springer.

