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Introduction

LTCCs are hetero-oligomers consisting of a pore-forming 
α

1
-subunit interacting with accessory subunits (β and α

2
-δ) to 

form a functional channel complex. LTCCs belong to the large 
family of voltage-gated Ca2+ channels that are permeable to Ca2+ 
and include the N, P/Q, R and T-types.1 Like the other Ca2+ 
channels, LTCCs open readily during membrane depolarization 
and allow Ca2+ to enter the cell. In this way, LTCCs can both 
regulate cell excitability and trigger a variety of Ca2+-dependent 
physiological processes, such as: excitation-contraction coupling 
in all muscle types, gene expression, synaptic plasticity, brain 
aging, hormone secretion2 and pacemaker activity in heart, neu-
rons and endocrine cells.3-6 Presently, four genes are identified 
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Voltage-gated L-type calcium channels (LTCCs) are expressed in 
adrenal chromaffin cells. Besides shaping the action potential 
(AP), LTCCs are involved in the excitation-secretion coupling 
controlling catecholamine release and in Ca2+-dependent 
vesicle retrieval. Of the two LTCCs expressed in chromaffin 
cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for 
pacemaking spontaneously firing cells: low-threshold, steep 
voltage-dependence of activation and slow inactivation. By 
using CaV1.3-/- KO mice and the AP-clamp it has been possible 
to resolve the time course of CaV1.3 pacemaker currents, which 
is similar to that regulating substantia nigra dopaminergic 
neurons. In mouse chromaffin cells CaV1.3 is coupled to fast-
inactivating BK channels within membrane nanodomains and 
controls AP repolarization. The ability to carry subthreshold Ca2+ 
currents and activate BK channels confers to CaV1.3 the unique 
feature of driving Ca2+ loading during long interspike intervals 
and, possibly, to control the Ca2+-dependent exocytosis and 
endocytosis processes that regulate catecholamine secretion 
and vesicle recycling.
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coding for the Ca
V
1.1, Ca

V
1.2, Ca

V
1.3 and Ca

V
1.4 subunits.1 Of 

these, Ca
V
1.1 and Ca

V
1.4 exhibit specific expression profiles that 

are restricted to skeletal muscle, endocrine pituitary cells and the 
retina, whereas Ca

V
1.2 and Ca

V
1.3 are widely expressed through-

out the central nervous system, sensory and endocrine cells, atrial 
myocytes and cardiac pacemaker cells.7,8

Ca
V
1.2 and Ca

V
1.3 channels are widely expressed in the chro-

maffin cells of the adrenal medulla6,9-11 and possess key properties 
that are conditional for the control of chromaffin cell activity. 
First, Ca

V
1.2 and Ca

V
1.3 channels markedly contribute to cat-

echolamine secretion.12-15 In rat (RCCs) and mouse chromaffin 
cells (MCCs) they are responsible for nearly half of the total 
Ca2+ current and the corresponding exocytosis.12,16-20 Second, 
compensatory and excess endocytosis are strongly attenuated 
when LTCCs are blocked.21 Third, LTCC gating can be either 
up or downregulated by autocrinally released neurotransmitters 
coupled to membrane-delimited G protein dependent receptors 
or cGMP/PKG and cAMP/PKA pathways.20,22-27 Fourth, Ca

V
1.3 

channels activate at very low voltages and inactivate slowly with 
respect to Ca

V
1.2 and other high-threshold channels (N, P/Q, 

R).2,28,29 This enables Ca
V
1.3 to carry pacemaker currents sus-

taining chromaffin cell spontaneous activity.6,15,20 Finally, Ca
V
1.3 

is tightly coupled to fast inactivating BK channels, suggesting a 
key control of AP firings and shape.6

All these peculiar properties of Ca
V
1.2 and Ca

V
1.3 channels 

highlight the strategic role that these two channels exert on chro-
maffin cell activity. Full understanding of the function of Ca

V
1.2 

and Ca
V
1.3 on adrenal medulla physiology could help solving 

neuronal and cardiovascular pathologies deriving from stressful 
conditions that develop during prolonged and elevated levels of 
circulating catecholamine’s.

Why Chromaffin Cells Fire Spontaneously?

Bovine, rat, mouse and human adrenal chromaffin cells fire 
spontaneously when cultured in vitro6,20,30-39 or maintained in 
slices of the adrenal gland.40,41 The percentage of firing chro-
maffin cells varies considerably (from 20 to 80%) depending 
on the animal species, the intracellular physiological solutions 
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and is indicative of a main role of Ca2+ channels in sustaining 
both the AP upstroke and the firing frequency.46 In the case of 
SNc neurons, the block of firing after Co2+ application causes 
hyperpolarization due to the block of a dominant subthreshold 
Ca2+ current.46 In MCCs and RCCs this is not always the case, 
in some cells the block of firing by Cd2+ causes slight depolariza-
tions, as illustrated in Figure 2, indicating a parallel block of 
Ca2+-activated K+ currents. As in SNc46-50 and other neurons,51-56 
the persisting firing in the presence of TTX can be effectively 
blocked by nifedipine (3 μM) and accelerated by BayK 8644 
(1 μM) (Fig. 2, bottom), suggesting a main role of LTCCs in 
controlling AP firing in these cells.

Evidence for the existence of an L-type pacemaker current in 
MCCs comes directly from AP-clamp experiments20 when K+ 
and TTX-sensitive Na+ channels are blocked. Figure 3 shows the 
time course of these currents in a WT MCC, which is very simi-
lar to that recorded in SNc46 or suprachiasmatic neurons55 and is 
highly suggestive of a contribution of Ca

V
1.3 currents. However, 

as for SNc neurons and cardiac sino-atrial node cells,3-5 a direct 
role of Ca

V
1.3 in pacemaking MCCs was uncovered by using 

Ca
V
1.3-/- KO mice.6 Deletion of Ca

V
1.3 reduces drastically the 

amplitude of the pacemaker L-type current (Fig. 3, bottom) and 
the fraction of firing cells (from 80% to 30%). Figure 3 (bottom) 
shows how small the average L-type pacemaker currents are in 
Ca

V
1.3-/- KO MCCs and how BayK 8644 can effectively restore 

them. This reminds of the restored L-type-dependent bursting 
activity of silent mid-brain spiny neurons in Ca

V
1.3-/- KO mice 

after addition of BayK 8644.57

Figure 3 shows also that Na+ pacemaker currents are nearly 
absent in MCCs when compared to the sum of Ca2+ and 
Ca2+-activated K+ currents recorded from the same cell. The  
former are obtained by subtracting TTX-insensitive from  
control currents and the latter from a similar procedure using 
Cd2+ (200 μM).

and methods of cell isolation. In spite of this, chromaffin cells 
fire spontaneously regardless of the patch-clamp technique used 
for AP recording: whole-cell, cell-attached and perforated-patch 
recording modes.

Spontaneous activity of chromaffin cells can also be moni-
tored by extracellular recording techniques. When plated on a 
multi-electrode array (MEA) recording system38 the spontane-
ous activity is maintained. This proves that AP firing is a genu-
ine phenomenon of chromaffin cells persisting in the absence 
of splanchnic nerve stimulation and not related to cell damage 
induced by the patch-clamp electrode. With the MEA system, 
the intact cell simply adheres to the TiN microelectrodes42 and 
the extracellular AP firing is recorded in a non-invasive manner. 
Indeed, the firing frequencies and the firing modes (tonic versus 
bursts) monitored by the MEA (Fig. 1) match those intracellu-
larly recorded in perforated-patches.37,38

Given that chromaffin cells are contacted by multiple 
cholinergic innervations that effectively control their activity by 
splanchnic nerve discharges, an unsolved question is why in vivo 
adrenal chromaffin cells should possess spontaneous AP activity. 
A possible explanation could be that chromaffin cells are packed 
together and electrically coupled by gap-junctions41,43 to form 
groups of cells that synchronously release the content of secre-
tory granules in nearby blood capillaries.44 Under these condi-
tions, the spontaneous firing of one or a group of chromaffin 
cells could warrant the basal release of catecholamines of sev-
eral electrically coupled cells. Tonic or burst firing, as shown in 
Figure 1, could be also at the basis of the adrenal gland response 
to increased blood levels of histamine, acetylcholine, angio-
tensin II (ATII) and K+ ions. Histamine and acetylcholine are 
known to increase the firing rate of spontaneous APs34,36,37 and 
the same is likely to occur during postprandial hyperkaliemia 
and enhanced blood levels of ATII that is known to increase 
the levels of circulating catecholamines. All these events could 
occur independently of the neurogenic control of chromaffin 
cell activity and could be sustained by the electrical synchronism 
through gap-junctions.43

CaV1.3 Expression and Pacemaking:  
Ca2+ Versus Na+ Subthreshold Currents

All the above arguments justify a detailed analysis of the 
pacemaker current sustaining chromaffin cell firing, but sur-
prisingly enough there are only few reports on the ion chan-
nels controlling chromaffin cell pacemaking. The few studies 
available focus on the main role of TTX-sensitive Na+ channels 
in sustaining the AP upstroke,30,32 and voltage-gated Ca2+ chan-
nels contributing to AP activity30,35,40 or shaping APs through 
their coupling to BK channels.45 The critical role of voltage-
gated Ca2+ channels in pacemaking MCCs is best illustrated 
in Figure 2, where addition of 300 nM TTX reduces both the 
AP overshoot and undershoot with little effect on the firing fre-
quency. In the presence of TTX, there are oscillatory potentials 
of smaller amplitude that do not overshoot and are effectively 
blocked by Cd2+ (200 μM). This is similar to what is reported 
for substantia nigra pars compacta (SNc) dopaminergic neurons 

Figure 1. Two types of extracellularly recorded AP firings in rat 
chromaffin cells (RCCs) using MEAs. Note the μV vertical scale and the 
different firing modes: tonic (top trace) and bursting (bottom trace). 
To the right are shown single AP events. RCCs were bathed in Tyrode 
solution (2 mM Ca2+).
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CaV1-BK Crosstalk Affects  
Cell Firing and AP Shape

RCCs and MCCs are shown to express 
two different BK channel subtypes 
that can be distinguished according 
to their inactivation kinetics: a fast 
inactivating and a slowly inactivating 
subtype.58 The fast inactivating BK 
channel is typically expressed in chro-
maffin cells and is involved in tonic 
cell firing. The slowly inactivating BK 
channel has gating properties similar 
to central neurons and smooth muscle 
BK channels59 and gives rise to phasic 
firings.58 Chromaffin cells expressing 
fast inactivating BK channels are fur-
ther characterized by deeper AHPs and 
higher charybdotoxin-sensitivity.58 
Fast inactivating BK channels possess 
slower deactivation kinetics that might 
contribute to long lasting AHP, neces-
sary for recovering voltage-gated Na+ 
and Ca2+ channels to initiate the fol-
lowing AP during sustained firing.58

In MCCs we have recently shown 
that the AP repolarization phase could 
be delayed by either blocking BK 
channels with paxilline, or LTCCs 
with nifedipine, proving the existence 
of a tight coupling between L-type 
and BK channels.6 The main differ-

ence between the two blockers is that paxilline increases 
the firing frequency while nifedipine decreases or blocks 
the firing.6 A similar selective coupling is reported in 
RCCs.45 In MCCs there is also evidence that the coupling 
involves specifically Ca

V
1.3. Deletion of Ca

V
1.3 channels 

in Ca
V
1.3-/- KO MCCs causes more depolarized inter-

spike (resting) potentials and produces prolonged plateau 
depolarizations in response to BayK 8644.6 Two proper-
ties that cannot be explained by simply silencing Ca

V
1.3, 

but rather by assuming that Ca
V
1.3 is effectively coupled 

Figure 3. (A and B) Pacemaker Ca2+ currents in WT and CaV1.3 
KO MCCs before (control) and during application of 3 μM 
nifedipine (nife). In (A) is shown also the Ca2+ current after 
washing nifedipine (recovery). In (B) 1 μM BayK 8644 was 
applied to test the presence of CaV1.2 channels. On the top is 
shown the AP train stimulus used for the AP-clamp recording. 
K+ and Na+ currents were blocked by adding 135 mM TEA and 
0.3 μM TTX to the bath containing 2 mM Ca2+. Both parts are 
adapted from Marcantoni et al.6 (C) Comparison of Na+ and Ca2+ 
+ K+

Ca currents in a WT MCC. TTX-sensitive Na+ currents (red 
trace) were obtained by subtracting TTX-resistant (0.3 μM TTX) 
from control currents. The Ca2+ + K+

Ca current (blue trace) was 
obtained by adding 200 μM Cd2+ to the TTX-resistant currents 
and subtracting the remaining component.

Figure 2. Spontaneous firing in MCCs persists in the presence of TTX (0.3 μM). AP firing is blocked by 
both Cd2+ (200 μM) and nifedipine (3 μM). BayK 8644 (1 μM) increases the firing rate and the after-
hyperpolarization amplitude. Recording conditions are those described in Marcantoni et al.6
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large driving forces for K+ ions. In this way, the voltage‑gated K+ 
channels (K

V
) are fully activated for the entire duration of the 

pulse. During the second pulse the cell is first stimulated by a Ca2+ 
preloading step to +10 mV for 90 ms to achieve maximal Ca2+ 
entry and then stepped to the positive test potential. The resulting 
current is a mixture of transient BK and sustained K

V 
currents and 

the difference between the two K+ currents with and without Ca2+ 
preloading represents the BK portion.58,61

In the case of MCCs, prolongation of the Ca2+ preload-
ing step has different effects on WT and Ca

V
1.3 KO MCCs 

(Fig.  5). WT MCCs possess BK currents with relatively fast 
inactivating kinetics that increase in amplitude with increasing 
preloading steps.6 In contrast, KO MCCs mainly show slowly 
inactivating BK currents which turn on with long preloading 
steps.6 When the same experiment is repeated in the presence of 

to Ca2+-activated BK channels. This also suggests that Ca
V
1.3 

sustains the subthreshold pacemaker current in MCCs (and pos-
sibly in RCCs) and that the highly expressed BK channels coun-
terbalance the inward Ca2+ current with an outward K+ current 
component that decelerates the firing.6

Functional Coupling of CaV1.3  
to Fast Inactivating BK Channels in MCCs

In line with the above arguments, it is evident that the BK 
channels contributing to the repolarization phase of the AP are 
mostly activated by the Ca2+ entering the cell during the inter-
spike. Since this current is mainly carried by Ca

V
1.3, this explains 

why nifedipine can effectively control both the frequency and the 
shape of the AP in spontaneously firing chromaffin cells. A better 
view to this functional coupling is obtained by directly measur-
ing the K+ currents flowing during an AP and testing their block 
by nifedipine (Fig. 4). The K+ current rises and falls very quickly 
during the AP. The majority of this current is carried by voltage-
gated K+ channels and the BK channels activated by the Ca2+ 
entering the cytoplasm during the interspike. This Ca2+ is mainly 
carried by Ca

V
1.3 in WT cells and by the other Ca2+ channels 

in Ca
V
1.3-/- cells. Thus, the percentage of K+ current blocked by 

nifedipine furnishes a direct estimate of the effective coupling 
between Ca

V
1.3 and BK channels. Figure 4 shows that in the case 

of WT MCCs, nifedipine blocks more than 60% of the outward 
K+ currents while in Ca

V
1.3-/- MCCs the DHP blocks only a small 

fraction in spite of the large inward Ca2+ current (blue trace).
Given the strong coupling between Ca

V
1.3 and BK channels, 

a second interesting issue to solve is how close the two channel 
subunits are. This can be done using well calibrated Ca2+ buffers 
that limit the diffusion of Ca2+ ions beyond membrane nano- 
or microdomains in which voltage-gated Ca2+ channels and BK 
channels operate. Marty and Neher60 were the first to use this 
approach in bovine chromaffin cells. They found that internal 
solutions containing BAPTA were more effective in blocking the 
Ca2+-dependent K+ currents than EGTA containing solutions. 
Following the same approach and using a double-pulse protocol 
to quantify the amount and type of BK currents, Chris Lingle 
and coworkers could formulate a quite realistic picture of how 
L-type and BK channels are coupled in RCCs.61,62 The experi-
mental data are consistent with a model in which BK channels 
are located between 160 and 50 nm from the Ca2+ channels that 
fuel them.63 More precisely, 30 to 40% of fast inactivating BK 
channels in RCCs are insensitive to EGTA buffers and are there-
fore positioned sufficiently close to LTCCs (between 50 and 160 
nm) to be influenced by the Ca2+ influx through these channels 
during brief depolarization steps.63 The remaining channels are 
far apart (>160 nm) and their activation is fully prevented by 
saturating EGTA.

We followed a similar approach to evaluate the coupling between 
Ca

V
1.3 and BK channels in MCCs, measuring the BK currents 

by using a voltage-clamp protocol consisting of two consecutive 
pulses. During the first pulse of 400 ms the cell is stepped from 
a negative holding potential (-70 mV) to a positive test potential 
(+80 mV) that overrates the Ca2+ reversal potential and produces 

Figure 4. Different block induced by nifedipine on BK currents 
activated during an action potential in WT and CaV1.3 KO MCCs. The 
two MCCs were voltage-clamped using the same AP waveform (top 
trace) in the presence of 300 nM TTX. In WT MCCs 3 μM nifedipine 
blocks most of the K+ outward current while in CaV1.3 KO the block is 
strongly attenuated (red trace). Blue traces are Ca2+ currents measured 
in 135 mM TEA and 0.3 μM TTX (adapted from Marcantoni et al.6
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intracellularly PKA and PKG26 
or PDE type-4.20 In principle, by 
acting on LTCCs, any of these 
signaling loops can exert a potent 
modulatory effect also on the 
exocytotic response. In fact, the 
L-type current increase induced 
by prolonged cAMP stimulation 
only accounts for 20% of the total 
secretory response, suggesting an 
additional down-stream effect 
on the secretory machinery.12 It 
is also interesting to notice that, 
due to their slower and less com-
plete time-dependent inactivation, 
LTCCs are favored in triggering 
exocytosis with respect to other 
HVA Ca2+ channels during sus-
tained stimuli. Nevertheless, the 
contribution of LTCCs to exo-
cytosis remains proportional to 
the quantity of Ca2+ ions enter-
ing the cell, suggesting that there 
is no preferential co-localization 
of Ca

V
1 channels to secretory 

granules.15

Although the critical role of 
LTCCs in triggering exocytosis is well established,12,13,71,72 there 
are no clear indications of a possible distinct role of Ca

V
1.2 and 

Ca
V
1.3 to exocytosis, despite the different inactivation kinetics 

and voltage range of activation of the two isoforms.2 Preliminary 
observations show that deletion of Ca

V
1.3 subunit in MCCs low-

ers the amount of exocytosis at very negative potentials (-50 to 
-30 mV in 10 mM Ca2+) (Navarro V, Striessnig J, Carbone E, 
Carabelli V, unpublished data), indicating that besides sustaining 
action potential firing, Ca

V
1.3 preferentially contributes to exocy-

tosis at low membrane potentials. In this way, Ca
V
1.3 contributes 

to the low-threshold exocytosis similarly to the T-type Ca
V
3.2 

channel.14,67,70

LTCC-Mediated Endocytosis in Chromaffin Cells:  
A Specific Role for CaV1.3?

Another open question to solve concerns the role of Ca2+ and 
Ca2+ channels in the retrieval of synaptic vesicles during endo-
cytosis. Neuroendocrine chromaffin cells exhibit different types 
of endocytosis, according to cell activity and stimulation pro-
tocols. Square pulse depolarizations cause exocytosis followed 
by a decline in membrane capacitance, which can reach the 
pre-stimulus level (compensatory endocytosis) or fall even below 
(excess endocytosis).73,74 Transition between these two modes 
appears to be regulated by intracellular Ca2+: the retrieval 
being accelerated and potentiated by increasing Ca2+ levels. It 
is interesting that in chromaffin cells endocytosis is also sup-
ported by barium,75 by the activation of kinase/phosphatase-
mediated pathways73,76 and by additional pathways of vesicle 

20 μM EGTA-AM, WT MCCs display their fast inactivating 
BK currents while the slowly inactivating channels are apparently 
lost.6 These data suggest that, in agreement with the Prakriya and 
Lingle’s model, fast inactivating BK channels are preferentially 
coupled to Ca

V
1.3 (between 50 and 160 nm) while slow inac-

tivating BK channels are more distant6 (>160 nm). Incubating 
WT and KO MCCs with 20 μM of BAPTA-AM the BK cur-
rents are functionally abolished indicating that the fast inactivat-
ing BK channels are close but not physically coupled to Ca

V
1.3,6 

(Fig. 5, bottom left). On the other hand, Ca
V
1.2 is likely to be 

significantly distant from slowly inactivating BK channels in 
Ca

V
1.3-/- MCCs.

LTCC-Secretion Coupling  
in Adrenal Chromaffin Cells

In chromaffin cells, the different Ca2+ channel subtypes (L, N, 
P/Q, R) contribute to exocytosis proportionally to their density 
of expression and gating properties.12,17-19,64-68 Secretion is not par-
ticularly linked to a specific Ca2+ channel type and either dele-
tion or upregulation of one of them causes a proportional change 
to secretion. For instance, Ca

V
2.1 deletion causes a loss of the 

P/Q-type currents with a compensatory increase of L-type cur-
rents and secretion.69 Similarly, when upregulated by cAMP14 or 
chronic hypoxia,70 T-type channels contribute to low-threshold 
exocytosis with the same Ca2+-dependence of L-type channels.

In RCCs and MCCs, LTTCs represent the final target of 
different modulatory pathways mediated by the activation of 
either G protein-coupled membrane autoreceptors23-25,27 and 

Figure 5. BK currents are mainly fast inactivating in WT MCCs and slowly inactivating CaV1.3 KO MCCs 
coupling. The inset shows the pulse protocol used to measure the currents (adapted from Marcantoni et 
al.6). To the bottom are illustrated the main conclusions of the experiments, i.e., CaV1.3 is closely coupled 
to fast inactivating BK channels while CaV1.2 and the other CaV channels are weakly coupled to the slowly 
inactivating BK channels.
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