
  

 

Abstract— Sleep is a dynamic process aimed at obtaining the 

required neurophysiological states at certain times, according to 

circadian and homeostatic needs and despite external or 

internal interfering stimuli.  In this context, peculiar transient 

synchronized EEG patterns (TSEP) are supposed to play the 

main role in the building up of EEG synchronization and in the 

flexible adaptation against perturbations Our study aimed at 

disclosing and quantifying attractor driven, hidden periodicity 

or, conversely, chaotic oscillation patterns in the series of these 

TSEP related to sleep stage transitions and sleep maintenance. 

At first we devised a multistep algorithm, able to capture TSEP 

from EEG during sleep in 10 healthy volunteers. The time series 

of TSEP were then  analyzed according to the Recurrence Plot 

(RP). TSEP series showed to form a pseudo-periodic series 

which becomes progressively denser and more stable until 

steady slow wave NREM sleep is reached, but looses stability 

just before REM sleep starts. This suggests that deterministic 

oscillatory patterns maybe adequate descriptors of the balance 

between homeostatic needs for NREM sleep and REM sleep 

pressure, supported by different cortical neuronal populations 

interactions.  

I. INTRODUCTION 

INCE more than forty years [1] sleep is considered as 

composed by a macrostructural organization (cyclic 

alternation of NREM sleep stages and REM sleep) of regular 

and predictable events.  

Actually, this macrostructure of sleep may be considered 

the result of finer graduations of transient EEG activities 

(microstructure of sleep). Among these EEG activities, 

peculiar transient synchronized EEG patterns (TSEP) are 

supposed to be the expression of EEG synchronizing 

mechanisms accompanying the dynamic organization and 

stabilization of NREM sleep, ensuring flexible adaptation 

against perturbations. TSEP include: a) high voltage, low 

frequency component of K-complexes; b) transient delta 

bursts; c) high voltage, low frequency components of the 

Cycling Alternating Pattern (CAP) described by Terzano et 

al [2-4].  During normal sleep K-complexes, delta bursts and 

CAP progressively are grouping in recurring clusters, until 

steady slow wave sleep (SWS), expression of maximal EEG 

synchrony and deep sleep, is reached.  

Unfortunately, sleep microstructure scoring is difficult and 

rather time-consuming, due to the variability of event 

parameters  and the complexity of classifications. Automatic 

detection methods of specific EEG events are therefore very 

advisable. Up to now some methods based on signal 

amplitude and typical frequency content [5-6] or on 

feature-based detection, also using neural networks [7-8] 

have already been proposed. They are however not very 

satisfactory because, being based on the detection of fixed 

amplitude thresholds, they are not very robust with respect to 

inter- and intra-subject analysis. The method developed and 

tested by our group [9], on the contrary, is based on an 

adaptive threshold depending on the intrinsic variability of 

each EEG recording and TSEP scoring relies on the temporal 

coincidences between ‘candidate TSEP’ detected in multiple 

EEG registration channels. It proved to be able to capture 

most of the TSEP manually scored by experts. Such 

automatic tool makes then possible to provide complete time 

series of TSEP for further analysis. 

As normally occurs in biological systems, such series are 

normally non-stationary, requiring non-linear dynamics 

techniques, as for instance the use of the Recurrence Plot 

(RP) and the Recurrence Quantitative Analysis (RQA). The 

above techniques  have already been proposed to analyze 

EEG signals [10-11] in both the awake and the sleep states, 

and also in pathological situations, but have never been so 

far used to evaluate sleep microstructure, i.e. TSEP time 

series.  

 

II. MATERIAL AND METHODS 

A. TSEP detection 

Sleep recordings from 10 healthy subjects (5 males, 5 

females; mean age 28.5 ± 4.8 years, with normal Body Mass 

Index (BMI: kg/m2), absence of  known sleep disorders and 

of diseases involving central nervous system or endocrine 

system; without medication treatment from at least one 

month before the study) were considered. After an adaptation 

night, a full-night polysomnography (PSG) in the sleep 

laboratory was performed, providing measurements of  EEG 

using C3-A2 (Ch1), C4-A1 (Ch2), O1-A2 (Ch3), O2-A1 

(Ch4) derivations according the 10-20 international 

placement system; electrooculogram, electrocardiogram; 

respiratory effort by thoracic and abdominal strain gauges, 

air-flow by thermistor, snoring nose by a microphone, 

arterial oxyhaemoglobin (SaO2) using a pulse oximeter with 
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finger probe; submental and tibialis anterior muscles 

elecromyogram.  

The EEG signal sampling rate was 256 Hz ,A/D 

conversion (10 bit)  and filtering  were performed (high-pass 

f=0.6 Hz, low-pass f=15 Hz and notch f=50 Hz). 

According to the procedure described in [9], rough data of 

all EEG signals were exported into a MATLAB program 

specifically written to detect  TSEP by  the presence of 

negative peaks (of amplitude larger than a threshold value, 

corresponding to 3 time the SD of the recorded signal) 

preceded by a  zero-crossing point ZCP. By sampling the 

average amplitude of the signal both  before and after  the 

ZCP, the ‘candidate TSEP’ were selected for each EEG 

channel. Then coincidence between channels were 

investigated for all possible combinations of channels pairs. 

Finally the ‘candidate TSEP’ were verified by visual 

inspection and the program provided the values for all onset-

onset intervals (inter-TSEP interval) to form the TSEP time 

series for each sleep. Series were then supervised, excluding 

stage 1 sleep, which does not present events as described 

above, while the onset of steady SWS characterized by an 

uniform pattern of high amplitude slow frequency waves 

lasting more than 60 s was considered as the terminal point 

of the previous inter-TSEP series. Similarly, REM periods 

were not included in the analysis as there is no agreement for 

the existence of oscillating events during them. As a 

consequence, for each sleep we obtained a time series whose 

data were formed by sequences of consecutive inter-TSEP 

intervals, throughout sleep cycles, with points of 

discontinuity between sequences when awakenings, stage 1 

sleep, steady SWS or REM sleep occurred  ( Fig. 1) . 

 

 
Figure 1. Schematic representation of the experimental procedure: EEG 

signals were collected from sleep recordings obtained from 10 healthy 

volunteers, TSEP were detected and the time series of the intervals between 

two consecutive TSEP were computed. The number of TSEP extracted per 

sleep  (mean ± SD) was 645 ± 124, the inter-TSEP interval duration (mean 

± SD) was : 33 ± 28 s, the TSEP duration (mean ± SD) was: 18 ± 15 s. 

Datasets were then evaluated using the Recurrence Analysis. 

 

 

B. TSEP analysis  

Each time series (TSEP intervals evolving over time), 

containing approximately 500-700 points, was described as a 

trajectory in a 2-dimensional phase space with time axes, and 

visually inspected in order to detect the occurrence of closed 

loops and basin of attraction. Then the unthresholded 

Recurrence Plot RP, was produced using the freely-

downloadable program Visual Recurrence Analysis (VRA) 

created by E.Kononov [12]. RP were obtained after 

expanding the series into a higher m-dimensional space using 

the “delayed coordinate embedding” technique ( that requires 

as input parameters:  the delay interval τ  calculated using 

the “minimal mutual information” technique [13], and the 

embedding  dimension m, chosen according to the method of 

“false nearest neighbours”, as described in [14]. Then the 

phase space was  reconstructed  
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The recurrences of a trajectory   in phase space 

were investigated by computing  and plotting the distances 
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obtaining the so-called unthresholded recurrence plot [15]. 

A representation of colored dots (i;j), where  “hot” colors 

(yellow, red, and orange) marked recurrence points 

associated with small distances (i.e. a j-th point p(j) of the 

trajectory falls into the neighbourhood of a given i-th point 

p(i)), while “cold” colors (blue, violet) are used to show 

larger distances was selected. Each point is plotted against 

itself along the x=y axis so RP is symmetrical along this 

diagonal. Based on this representation, two characteristics of  

RPs are analyzed: a) the Typology, that offers a global 

impression of the large scale evolution of  the events and 

may distinguish between random data series  (homogeneous 

pattern of RP) or oscillating, periodic recurrent events 

(diagonal oriented pattern of RP); b) the Texture, that refers 

to the small scale structure of the plot and is able to disclose 

periodicities or randomness of the time series at the smallest 

intervals.   

 

III. RESULTS 

Fig 2 shows  the diagram in the phase-space obtained by 

plotting a TSEP time series (different colours refer to the 4 

different time periods between successive REM phases. The 

plot evidences that closed loops of different extension occurs 

for each NREM sleep period, as if attractors towards stable 

sleep , of different ‘strength’ were present .  



  

 

Figure 2. 2D phase-space portrait of a ‘reference’ sleep (patient AC).  

 

After proper selection of the embedding parameters m 

(between 6 and 12) and τ (between 1 and 2) the 

unthresholded  RPs were obtained ( see Fig. 3a). In order to 

facilitate the interpretation, Fig 3b is reported aswell, 

representing the hypnograms from the same subject.  

 

 

Figure 3a. Recurrence plots obtained by VRA for a reference sleep 

(patient CA), corresponding to a two dimensional colored 

representation of recurrences in the original time series of inter-TSEP-

intervals. “Hot” colors (yellow, red, and orange) marked recurrence 

points associated with small distances; “cold” colors (blue, violet) were 

used to show larger distances. Dots color ranges from red for smallest 

inter-point distances to violet for largest spacing. 

Diagonal black lines in the recurrence plot correspond to TSEP series 

occurring during stage 3 or 4 sleep, with arrows when the sequence 

terminates with steady SWS lasting more than 60 s. The portions of 

diagonal without black line correspond to the TSEP series occurring 

during stage 2 sleep. The marker “R” corresponds to the occurrence of 

a REM period between two TSEP series.  

 

 

 

Figure 3b  Sleep hypnograms and spectral analysis of the sleep 

analyzed in Fig. 3a 

 

Three peculiar features are recognizable from the inspection 

of RP and hypnograms: 

I. NREM sleep corresponded to a Texture  characterized by 

yellow scattered dots which were progressively replaced 

by longer diagonals of red dots, in correspondence with 

unstable SWS (thick black lines in Fig. 3a) or steady 

SWS (thick black lines terminating with an arrow, in Fig. 

3a). Mean inter-TSEP interval preceding steady SWS, 

considering the first two cycles for all sleeps, was 8.9 ± 

7.5 seconds, while higher variability was found in the last 

sleep cycles (25 ± 28 sec). 

II. The descending branches of sleep cycles of in 

hypnograms (NREM sleep deepening) corresponded to a 

RP Typology characterized by colored blocks of “hot” 

dots and diagonal oriented patterns, peculiar of periodic 

and deterministic origin of data, while, on the contrary, 

the ascending branches of sleep cycles (exit from deep 

NREM sleep) corresponded to more complex patterns, 

typical of more random data series. 

III. Points in the RP corresponding to REM sleeps (indicated 

with “R” in Fig. 3a) were always preceded by complex 

and unstructured RP Texture (mixed “hot” and “cold” 

dots), indicating random data series, random inter-TSEP 

intervals and no evidence of periodic oscillatory system 

(lowest level of the oscillatory system to maintain NREM 

sleep). 

 

IV. CONCLUSIONS 

 

Our study proves that using RP techniques for the analysis 

of the sleep microstructure is very effective (and provides 

much more intuitively understandable plots in comparison 

with traditional ‘phase space’ trajectories, see Figs 1 and 2a. 

It also suggests a novel mathematical framework able to 

disclose, describe and quantify the underlying oscillating 

neurophysiological synchronizing processes of transient 

activities during sleep deepening, revealed by EEG. We only 

describe the behaviour of the dynamical system involved 

with NREM sleep, and is based on various reasonable 

hypotheses which can be made about neurological structures 

and pathways responsible for NREM sleep itself.  

In particular, our analysis suggests that “spontaneous” 



  

TSEP may be considered as the cortical expression of an 

endogenous pre-determined dynamic process, possibly 

depending from thalamo-cortical loops, that is activated  

according to the homeostatic needs of NREM sleep, tends to 

an equilibrium point (attractor) corresponding to steady 

SWS, and periodically vanishes concomitantly with REM 

pressure raises. During the construction of EEG synchrony, 

corresponding to the descending branch of each sleep cycle, 

TSEP  form a deterministic pseudo-periodic series  (with an 

oscillating period (inter-TSEP interval) of about 9 seconds), 

which becomes progressively shorter and finally stabilizes its 

recurrence rate (attractor) until steady SWS  is reached. After 

translating this qualitative description in quantitative 

parameters using RQA, the pseudo-periodical structure of 

TSEP will be possibly described by a model with two or 

more interacting cortical and subcortical neuronal 

populations. 
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