
A Prototypical Java-like Language with Records and Traits ∗

Lorenzo Bettini1 Ferruccio Damiani1 Ina Schaefer2 † Fabio Strocco1

1Dipartimento di Informatica, Università di Torino, C.so Svizzera, 185 - 10149 Torino, Italy
2Chalmers University of Technology, 421 96 Gothenburg, Sweden

Abstract
Traits have been designed as units of fine-grained behavior reuse in
the object-oriented paradigm. In this paper, we present the language
SUGARED WELTERWEIGHT RECORD-TRAIT JAVA (SWRTJ), a
JAVA dialect with records and traits. Records have been devised to
complement traits for fine-grained state reuse. Records and traits
can be composed by explicit linguistic operations, allowing code
manipulations to achieve fine-grained code reuse. Classes are as-
sembled from (composite) records and traits and instantiated to
generate objects. We present the prototypical implementation of
SWRTJ using XTEXT, an Eclipse framework for the development
of programming languages as well as other domain-specific lan-
guages. Our implementation comprises an Eclipse-based editor for
SWRTJ with typical IDE functionalities, and a stand-alone com-
piler, which translates SWRTJ programs into standard JAVA pro-
grams.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.2.6 [Programming En-
vironments]: Integrated environments; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; F.3.3 [Studies of Pro-
gram Constructs]: Type Structure

General Terms Design, Languages

Keywords Java, Trait, Type System, Implementation, Eclipse

1. Introduction
The term trait was used by Ungar et al. [51] in the dynamically-
typed prototype-based language SELF to denote a parent object
to which an object may delegate some of its behavior. Subse-
quently, traits have been introduced by Schärli et al. [23, 45] in the
dynamically-typed class-based language SQUEAK/SMALLTALK to
play the role of units for behavior fine-grained reuse, in order
to counter the problems of class-based inheritance with respect
to code reuse (see, e.g., [19, 23, 36] for discussions and exam-
ples). A trait is a set of methods, completely independent from

∗ Work partially supported by the German-Italian University Centre (Vigoni
program) and by MIUR (PRIN 2009 DISCO).
† This author has been supported by the Deutsche Forschungsgemeinschaft
(DFG).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’10, September 15–17, 2010, Vienna, Austria.
Copyright c© 2010 ACM 978-1-4503-0269-2. . . $10.00

any class hierarchy. The common behavior (i.e., the common meth-
ods) of a set of classes can be factored into a trait, and traits can
be composed to form other traits or classes. Two distinctive fea-
tures of traits are that traits can be composed in arbitrary order
and that composed traits or classes must resolve possible name
conflicts explicitly. These features make traits more flexible and
simpler than mixins [6, 17, 25, 28, 33]. Various formulations of
traits in a JAVA-like setting can be found in the literature (see,
e.g., [14, 15, 34, 37, 44, 46]). The recent programming language
FORTRESS [5] incorporates a form of trait construct, while the
“trait” construct incorporated in SCALA [38] is indeed a form of
mixin.

Records have been proposed in [14] as the counterpart of traits,
with respect to state, to play the role of units for state fine-grained
reuse. A record is a set of fields, completely independent from any
class hierarchy. The common state (i.e., the common fields) of a set
of classes can be factored into a record.

In this paper, we present the programming language SUGARED
WELTERWEIGHT RECORD-TRAIT JAVA (SWRTJ),1 a JAVA di-
alect using traits and records as composable units of behavior and
state reuse, respectively, and aiming at interface-based polymor-
phism. SWRTJ is based on the calculus presented in [11] whose
complete formalization and proof of type safety is available as a
technical report in [10]. In SWRTJ, the declarations of object type,
state, behavior and instance generation are completely separated.
SWRTJ considers:

• Interfaces, as pure types, defining only method signatures.
• Records, as pure units of state reuse, defining only fields.
• Traits, as pure units of behavior reuse, defining only methods.
• Classes, as pure generators of instances, implementing inter-

faces by using traits and records, and defining constructors.

In SWRTJ, like in FORTRESS, there is no class hierarchy and con-
sequently no class-based inheritance. Multiple inheritance with re-
spect to methods is obtained via the trait construct, and multiple
inheritance with respect to fields is obtained via the record con-
struct. Thus, multiple inheritance is subsumed by ensuring that, in
the spirit of the original trait proposal in SQUEAK/SMALLTALK,
the composite unit has complete control over the composition and
must resolve conflicts explicitly.

Although SWRTJ rules out class-based inheritance and relies
on traits and records as the reuse mechanisms, class-based inheri-
tance could be encoded with the existing concepts of SWRTJ as a
syntactic sugar construct, as we will explain in Section 5. However,
this “shortcut” might undermine the code reuse potential provided
by traits and records leading back to the pitfalls of standard class-

1 WELTERWEIGHT refers to fact that the “weight” of SWRTJ lies between
the weight of LIGHTWEIGHT JAVA [49] and MIDDLEWEIGHT JAVA [12],
while SUGARED describes that the implemented language contains syntac-
tic sugar not present in the underlying calculus [10, 11].

based inheritance. Furthermore, the introduction of class-based in-
heritance in SWRTJ is not necessary, since a SWRTJ program can
be used in conjunction with any standard JAVA program. SWRTJ is
a JAVA-dialect, and the SWRTJ compiler generates standard JAVA
classes that do not depend on a specific library. Thus, a JAVA pro-
gram can reuse SWRTJ interfaces and create standard JAVA objects
using the code generated by the SWRTJ compiler. This technique
can be used to combine code written in SWRTJ with JAVA libraries
whose sources cannot be changed. For instance, SWRTJ objects
can be passed to standard JAVA code provided the respective inter-
faces are compatible. The possibility of combining SWRTJ gener-
ated JAVA code with standard JAVA code can also be used to incre-
mentally refactor JAVA class hierarchies into trait and record-based
code. The refactoring can be done along the lines of [9], where we
present an approach for identifying the methods in a JAVA class
hierarchy that can be good candidates to be refactored in traits.

SWRTJ is equipped with a JAVA-like nominal type system
where the only user-defined types are interface names. This sup-
ports typechecking traits in isolation from traits and classes using
them. In SCALA [38] and FORTRESS [5], each trait, as well as each
class, also defines a type. But the role of unit of reuse and the role of
type are competing, as already pointed out by Snyder [47] and Cook
et al. [22]. In order be able to define the subtyping relation on traits
such that a trait is always a subtype of the component traits, both
SCALA and FORTRESS rule out the method exclusion operation.
(Method exclusion forms a new trait by removing a method from
an existing trait.) However, without method exclusion, the reuse
potential of traits is restricted. In SWRTJ, traits (as well as records
and classes) do not define types. Thus, in SWRTJ method exclu-
sion is supported and enhances the reuse potential of traits. This
will be illustrated in Example 1 of Section 2.

We present the implementation of SWRTJ using XTEXT [4], a
framework for the development of programming languages as well
as other domain-specific languages (DSLs). The syntax of SWRTJ
is defined in XTEXT using an EBNF grammar. The XTEXT gen-
erator creates a parser, an AST-meta model (implemented in EMF
[48]) as well as a full-featured Eclipse-based editor for SWRTJ.
Using the SWRTJ compiler, a SWRTJ program is translated into
a standard JAVA program. The SWRTJ compiler can also be used
as a command-line program, outside of the Eclipse IDE. The im-
plementation described in the paper is based on [50]. The imple-
mentation of SWRTJ is available as an open source project at
http://swrtj.sourceforge.net.

Organization of the Paper. In Section 2 we illustrate record
and traits as supported in SWRTJ. In Section 3 and Section 4 we
describe SWRTJ and its implementation. In Section 5 we discuss
the features of our language and its impact on programming, and
report on our experience with XTEXT. Related work is discussed in
Section 6. We conclude by outlining some future work.

2. Traits and Records in SWRTJ
In this section we illustrate record and traits as supported in
SWRTJ. We refer to Section 6 for a comparison of our features
with respect to other trait constructs present in the literature.

In SWRTJ, a trait consists of provided methods (i.e., methods
defined in the trait), of required methods which parametrize the be-
havior, and of required fields that can be directly accessed in the
body of the methods, along the lines of [11, 15]. Traits are build-
ing blocks to compose classes and other, more complex, traits.
A suite of trait composition operations allows the programmer to
build classes and composite traits. A distinguished characteristic of
traits is that the composite unit (class or trait) has complete control
over conflicts that may arise during composition and must solve
them explicitly. Traits do not specify any state. Therefore a class

composed by using traits has to provide the required fields through
records, as explained in the following. The trait composition oper-
ations considered in SWRTJ are as follows:

• A basic trait defines a set of methods and declares the required
fields and the required methods.

• The symmetric sum operation, +, merges two traits to form a
new trait. It requires that the summed traits must be disjoint
(that is, they must not provide identically named methods) and
have compatible requirements (two requirements on the same
method/field name are compatible if they are identical).

• The operation exclude forms a new trait by removing a method
from an existing trait.

• The operation aliasAs forms a new trait by giving a new name
to an existing method. When a recursive method is aliased, its
recursive invocation refers to the original method (as in [23]).

• The operation renameTo creates a new trait by renaming all the
occurrences of a required field name or of a required/provided
method name from an existing trait. Therefore, in SWRTJ, the
actual names of the methods defined in a trait (and also the
names of the required methods and fields) are irrelevant, since
they can be changed by the renameTo operation.

Records are building blocks to compose classes and other, more
complex, records by means of operations analogous to the ones de-
scribed above for traits. The record composition operations consid-
ered in SWRTJ are as follows:

• A basic record defines a set of fields.
• The symmetric sum operation, +, merges two disjoint records to

form a new record.
• The operation exclude forms a new record by removing a field

from a record.
• The operation renameTo creates a new record by renaming a

field in a record.

SWRTJ fosters the programming methodology based on design
by interface, starting from declaring the services (methods) that our
implementation components provide using a separate mechanism
(the interface) which has only that aim; this naturally turns the in-
terface in the only means to declare a type. The state and the imple-
mentations of such services are once again split into two different
entities which can be reused separately, i.e., records and traits, re-
spectively. Note that these blocks, records and traits, are pure units
of reuse, and cannot be instantiated directly (this would undermine
their usability). However, they can be used by the classes, which are
the only means to assemble records and traits in order to implement
interfaces and to instantiate objects.

In the following, we illustrate the record and traits constructs
of SWRTJ through examples (inspired by [15]) concerning the
implementation of simple data structures.

EXAMPLE 1. Consider the task of developing a class Stack that
implements the interface:

interface IStack { boolean isEmpty(); void push(Object o); Object pop(); }

In JAVA, the corresponding implementation would be a class as
follows:

class Stack implements IStack {
List l;
Stack() { l = new ArrayList(); }
boolean isEmpty() { return (l.size() == 0); }
void push(Object o) { l.addFirst(); }
Object pop() { Object o = l.getFirst(); l.removeFirst(); return o; }

}

Suppose that afterward a class implementing the following inter-
face should be developed:

interface ILifo {
boolean isNotEmpty();
void push(Object o);
void pop();
Object top();

}

In JAVA there is no straightforward way to reuse the code in class
Stack, as it would not be possible to override the pop method
changing the return type from Object to void.

In a language with traits and records, the fields and the methods
of the class can be defined independently from the class itself. If
the class Stack was originally developed in SWRTJ, it would
have been written as follows (the interface IList and the class
CArrayList, not shown here, have all the standard methods of
lists and are part of the library of the language; they correspond to
List and ArrayList in JAVA):

record RElements is { IList l; }

trait TStack is {
IList l; /∗ required field ∗/
boolean isEmpty() { return (l.size() == 0); }
void push(Object o) { l.addFirst(o); }
Object pop() { Object o = l.getFirst(); l.removeFirst(); return o; }

}

class Stack implements IStack by RElements and TStack {
Stack() { l = new CArrayList(); }

}

The record RElements and the trait TStack are completely in-
dependent from the code of class Stack. SWRTJ extends method
reusability of traits to state reusability of records and fosters a pro-
gramming style relying on small components that are easy to reuse.
Because of the trait and record operations to exclude and rename
methods and fields, they can be reused to develop completely un-
related classes. Based on this, a programmer would be able to
write a class Lifo implementing the interface ILifo by reusing
the record RElements and by defining a trait TLifo that reuses
the trait TStack by exploiting the method exclusion operation:

trait TLifo is (TStack[exclude pop])
+ { IList l; /∗ required field ∗/

boolean isEmpty(); /∗ required method ∗/
boolean isNotEmpty() { return !isEmpty(); }
void pop() { l.removeFirst(); }
Object top() { return l.getFirst(); }

}

class Lifo implements ILifo by RElements and TLifo {
Lifo() { l = new CArrayList(); }

}

The body of trait TLifo satisfies the requirements of trait sum
operation described at the beginning of the section: the method
pop is excluded thus it does not generate a conflict and the field
requirement is identical to the one of TStack.

This is a paradigmatic example of trait composition that does
not preserve structural subtyping. If traits were types and composed
traits were subtypes of the component traits (as in SCALA and
FORTRESS), then the declaration of the trait TLifo would not
typecheck, since:

• the trait TLifo should provide all the methods provided by
TStack, and

• a method with signature Object pop() and a method with
signature void pop() could not belong to the same trait/class.

EXAMPLE 2. A class Queue that implements the interface

interface IQueue {
boolean isNotEmpty();
void enqueue(Object o);
Object dequeue();

}

can be written by defining a trait TQueue that reuses the record
RElements and the trait TStack by renaming the method pop,
excluding the method push and providing the methods enqueue
and isNotEmpty:

trait TQueue is (TStack[pop renameTo dequeue, exclude push])
+ { IList l; /∗ required field ∗/

boolean isEmpty(); /∗ required method ∗/
boolean isNotEmpty() { return (! isEmpty()); }
void enqueue(Object o) { l.addLast(o); }

}

class Queue implements IQueue by RElements and TQueue {
Queue() { l = new CArrayList(); }

}

Again, if traits were types and composed traits were subtypes
of the component traits, then the declaration of the trait TQueue
would not typecheck.

SWRTJ traits and records satisfy the so called flattening prin-
ciple, that has been introduced in the original formulation of traits
in SQUEAK/SMALLTALK [23] (see also [30, 31, 37]) in order to
provide a canonical semantics for traits. According to the flattening
principle, the semantics of a method/field introduced in a class by
a trait/record is identical to the semantics of the same method/field
defined directly within the class. For instance, the semantics of the
class Queue of Example 2 is identical to the semantics of the JAVA
class:

class Queue implements IQueue {
List l;
Queue() { l = new CArrayList(); }
boolean isEmpty() { return (l.size() == 0); }
boolean isNotEmpty() { return (! isEmpty()); }
void enqueue(Object o) { l.addLast(o); } }
Object dequeue() { Object o = l.getFirst(); l.removeFirst(); return o; }

}

We conclude this Section showing some possible alternative
implementations of the data structures of Example 1.

EXAMPLE 3. The class TLifo could be implemented, in terms of
TStack also using renameTo:

trait TLifo is (TStack[pop renameTo old pop])
+ { IList l; /∗ required field ∗/

Object old pop(); /∗ required method ∗/
boolean isEmpty(); /∗ required method ∗/
boolean isNotEmpty() { return !isEmpty(); }
void pop() { old pop(); }
Object top() { return l.getFirst(); }

}

Alternatively, we could start by implementing TLifo and then
implement TStack in terms of TLifo:

trait TLifo is { IList l; /∗ required field ∗/
boolean isEmpty() { return (l.size() == 0); }
boolean isNotEmpty() { return !isEmpty(); }
void push(Object o) { l.addFirst(o); }
void pop() { l.removeFirst(); }
Object top() { return l.getFirst(); }

}

trait TStack is (TLifo[pop renameTo old pop]) + {
void old pop(); /∗ required method ∗/

Object top(); /∗ required method ∗/
Object pop() { Object o = top(); old pop(); return o; }

}

Note that this alternative implementation is smaller, reuses more
code, and makes the trait TStack independent from the actual
IList field.

3. The SWRTJ Programming Language
In this section we describe the syntax and semantics of the SWRTJ
programming language, and we sketch the main features of its type
system.

Syntax. The syntax of SWRTJ is illustrated in Table 1 (without
primitive types and file imports that are not relevant for this descrip-
tion). An interface can extend one or more interfaces. A class must
implement one or more interfaces. In the syntax, the overline bar in-
dicates a (possibly empty) list, as in FEATHERWEIGHT JAVA [29].
For instance, I = I1, ...,In, n ≥ 0. The parameter declarations
are denoted by I x to indicate I1 x1, ...,In xn. The same notation
can be applied to the other lists. In the syntax, m denotes a method
name, f a field name and x a local variable or parameter. Note that
the grammar contains only the field access this.f (even for field
assignment) because a field can be used only within a method (trait
method or constructor) due to its private visibility. Variables and
methods can only have an interface type. Trait expressions in trait
composition operations do not have to be names of already defined
traits: they can also be “anonymous” traits { F; S; M }. The same
holds for record expressions. This is in particular useful for traits,
when a trait expression has to define some “glue” code for other
traits used in a trait composition operation. In this way, there is no
need to define a trait with a name only for that. An example of such
usage is in the stream scenario, shown later, and in the examples of
Section 2.

The entry point of an SWRTJ program is specified by

program <name> {
<expression>

}

In the scope of the program, the implicit object args is the list
of the program’s command line arguments.

In SWRTJ traits, records and classes are not types in order to
subdivide the roles of the different constructs. Moreover, as illus-
trated in Example 1, traits and records support exclusion operations
that violate subtyping. Therefore, a type can be only an interface
or a primitive type (e.g., int, boolean etc.). For simplicity, method
overloading is not supported. Constructor overloading allows only
the definition of constructors with different numbers of parameters
within a class.

Visibility modifiers are ruled out since they are not necessary.
The traditional visibility modifiers are implied by the constructs
used in SWRTJ as follows:

• private: every instance variable is private. Since class is not a
type, fields can be accessed only from the this parameter. Every
provided method is private if it does not appear in the interfaces
implemented by a class. Interfaces are the only way to make a
method accessible from the outside.

• protected: is not necessary since inheritance is ruled out.
• public: every method declared in the interface implemented by

a class is public. Fields cannot be public in order to support
information hiding.

The system library of SWRTJ provides interfaces such as
IObject (implicitly extended by every interface), IInteger,
IString etc. Every interface has a corresponding class implement-
ing it, e.g., CObject, CInteger, etc. For synchronization mech-

anisms, we provide the interface ILock (and the corresponding
class CLock) with methods lock and unlock avoiding to intro-
duce specific concurrency features in the language. In order to deal
with collections, IList is an interface with typical list operations.
CArrayList is the corresponding implementation class. The inter-
faces IPrintStream and IScanner, and their implicit “global”
instances out and in can be used to perform basic operations such
as writing to standard output and reading from standard input, re-
spectively. Standard basic types, such as int, boolean, etc., are
also provided. Methods can be declared as void with the usual
meaning.

Semantics. The semantics of SWRTJ is specified through a flat-
tening function J·K, given in Table 2, that translates a SWRTJ class
declaration into a JAVA class declaration, a record expression into
a sequence of fields declarations, and a trait expression into a se-
quence of method declarations. The clauses in Table 2 are self-
explanatory. Note that, in the translation of trait expressions, the
clause for field renaming is simpler than the clause for method re-
naming (which uses the auxiliary function mR); this is due to the
fact that fields can be accessed only on this.

Type System. In this paper, we do not present the meta-theory
of SWRTJ. We refer to [10] for the formalization of the FRTJ
calculus on which SWRTJ is based. In this section, we provide an
introduction to the typing of SWRTJ intended for the programmer.
For simplicity, we will not consider void.

The SWRTJ type system supports type-checking records and
traits in isolation from classes that use them. Therefore, each trait
and record definition has to be typechecked only once, i.e., every
class can use a trait or a record without type-checking it again. This
is more efficient and convenient in practice, e.g., if the trait/record
source is not available. The basic idea of the type system is to col-
lect constraints when checking traits and records, and to establish
that these constraints hold when a class is declared, in order to en-
sure that the pseudo-variable this in all the methods of used traits
can be used safely.

In the SWRTJ type system, a nominal type is either a class
name or an interface name. Note that in SWRTJ classes are not
source types. Class names cannot be used as types in the code
written by the programmer, but are used only internally by the
compiler to type object creation expressions (new C(· · ·)). The type
of this is an inferred structural type. The syntax for expression
types is as follows θ ::= I | C | 〈F p σ〉 where I is an interface
name, C is a class name and the 〈F p σ〉 is the structural type for
this, which contains all the fields (F) and the signatures (σ) of
the methods that can be selected on this in the context where the
expression occurs. If the expression is a constructor call, such as
new C(), its type is the class C; if the expression is this, its type
is 〈F p σ〉; otherwise, the type of the method is an interface, for
instance, if the expression is a method call, such as x.m(), the type
is the interface that I declares as return type of the method m.

SWRTJ type system checks all requirements by inferring con-
straints. A constraint is a triple 〈F p S p I〉 consisting of required
fields, method signatures and interfaces collected while analyzing
an expression. The constraints contain the types of every field and
method selected on this and the name of every interface used, ei-
ther as type in the methods parameters to which this is passed
as argument or as return type in the methods in which this is re-
turned.

The subinterfacing relation is the reflexive and transitive closure
of the immediate subinterfacing relation declared by the extends
clauses in the interface definitions. The subtyping relation for nom-
inal types is the reflexive and transitive closure of the relation ob-
tained by extending subinterfacing with the interface implementa-

ID ::= interface I extends I { S;} interface definition
RD ::= record R is RE record definition
TD ::= trait T is TE trait definition
CD ::= class C implements I by RE and TE { K } class definition
RE ::= { F;} | R | RE+RE | RE[RO] record expression
TE ::= { F; S; M } | T | TE+TE | TE[TO] trait expression
RO ::= exclude f | f renameTo f record field operation
TO ::= exclude m | f renameFieldTo f | m renameTo m | m aliasAs m trait elements operation
F ::= I f field definition
S ::= I m(I x) method signature
M ::= S {I x = e; SE; return e; } method
K ::= C(I x) BE constructor
BE ::= {I x = e; SE;} block expression
SE ::= this.f = e | e.m(e) | if (e) BE else BE | while (e) BE statement expression
e ::= null | x | this | this.f | this.f = e | e.m(e) | new C(e) | (I)e expression

Table 1. SWRTJ syntax

Jclass C implements Ī by RE and TE { K }K =
class C implements Ī {JREK K JTEK }

J{ F̄; }K = F̄
JRK = JREK if RT(R) = record R is RE
JRE1 +RE2K = JRE1K · JRE2K
JRE[exclude f]K = exclude(JREK,f)
JRE[f renameTo f′]K = JREK[f′/f]

J{ F̄; S̄; M̄}K = M̄
JTK = JTEK if TT(T) = trait T is TE
JTE1 +TE2K = JTE1K · JTE2K
JTE[exclude m]K = exclude(JTEK,m)
JTE[m aliasAs m′]K = M̄ · (I m′(Ī x̄) MB)

if JTEK = M̄ and I m(Ī x̄) MB ∈ M̄

JTE[f renameFieldTo f′]K = JTEK[f′/f]
JTE[m renameTo m′]K = mR(JTEK,m,m′)

mR(I n(Ī x̄) MB,m,m′) =
I n[m′/m](Ī x̄) MB[this.m

′
/this.m]

mR(M1 · ... ·Mn,m,m
′) = (mR(M1,m,m

′)) · ... · (mR(Mn,m,m
′))

Table 2. Flattening SWRTJ to JAVA

tion relation declared by the implements clauses in the class defi-
nitions.

An Example. A classical example to show how traits can deal
with situations where other mechanisms such as class inheritance
do not fit well for code reuse, is the stream scenario, as in [23]. In
Listing 1, we show the interfaces, records and traits for implement-
ing a stream library, together with the corresponding classes and
the main program. Note that the TReadWriteStream reuses the
previously defined traits and resolves conflicts by method renam-
ing. Furthermore, it contains “glue” code (in an anonymous trait)
for the initialization of the fields of the composed traits. Similarly,
the record ReadWriteResource reuses the resources defined in the
records ReadResource and WriteResource by renaming the field
resource. Note that, to keep the example simple, in the implemen-
tation of init methods, we simply assigned the global instances in
and out for standard input and standard output, respectively.

4. Implementing SWRTJ
In this section, we describe the implementation of SWRTJ using
the XTEXT [4] framework for Eclipse. Although Eclipse itself pro-
vides a framework for implementing an IDE for programming lan-
guages, this procedure is still quite laborious and requires a lot of
manual programming. XTEXT eases this task by providing a high-

level framework that generates most of the typical and recurrent
artifacts necessary for a fully-fledged IDE on top of Eclipse.

The first task in XTEXT is to write the grammar of the language
using an EBNF-like syntax. Starting from this grammar, XTEXT
generates an ANTLR parser [39]. The generation of the abstract
syntax tree is handled by XTEXT as well. In particular, during
parsing, the AST is generated in the shape of an EMF model
(Eclipse Modeling Framework [48]). Thus, the manipulation of the
AST can use all mechanisms provided by EMF itself. There is a
direct correspondence between the names used in the rules of the
grammar and the generated EMF model JAVA classes. For instance,
if we have the following grammar snippet2

Message : MethodInvocation | FieldAccess;

MethodInvocation : method=ID
’(’ (argumentList+=Expression
(’,’ argumentList+=Expression)*)? ’)’;

the XTEXT framework generates the following EMF model JAVA
interface (and the corresponding implementation class):

public interface MethodInvocation extends Message
{

MethodName getMethod();
EList<Expression> getArgumentList();

}

Besides, XTEXT generates many other classes for the editor for
the language to be defined. The editor contains syntax highlighting,
background parsing with error markers, outline view, code comple-
tion. Further, XTEXT provides the infrastructure for code genera-
tion. Most of the code generated by XTEXT can already be used
off the shelf, but other parts can or have to be adapted by cus-
tomizing some classes used in the framework. The usage of the
customized classes is dealt with by relying on Google-Guice [1],
so that the programmer does not have to maintain customized ab-
stract factories [26]. In this way it is very easy to insert custom
implementations into the framework (“injected” in Google-Guice
terminology), with the guarantee that the custom classes will be
used consistently throughout the code of the framework.

The validation mechanisms for the language must be provided
by the language developer. In our case, this is the SWRTJ type sys-
tem. Implementing the validation mechanism in a compiler usually
requires to write specific visitors for the abstract syntax tree. EMF
already simplifies this task by providing a switch-like functionality
to efficiently execute methods with dynamic dispatch according to
the actual type of an AST node. Thus, there is no need to add code

2 The reader who is familiar with ANTLR will note that the syntax of
XTEXT grammars is very similar to ANTLR’s syntax.

interface IStream { void close(); }
interface IWriteStream extends IStream { void write(IString data); }
interface IReadStream extends IStream { IString read(); }
interface IReadWriteStream extends IWriteStream, IReadStream {}

record ReadResource is {IScanner resource;}
record WriteResource is {IPrintStream resource;}
record ReadWriteResource is

ReadResource[resource renameTo readResource] +
WriteResource[resource renameTo writeResource]

trait TReadStream is {
IScanner resource;
void init() { this.resource = in; }
IString read() { return this.resource.nextLine(); }
void close() { resource.close(); }

}
trait TWriteStream is {

IPrintStream resource;
void init() { this.resource = out; }
void write(IString data) { this.resource.println(data); }
void close() { resource.close(); }

}
trait TReadWriteStream is

TReadStream[init renameTo readInit,
resource renameFieldTo readResource,
close renameTo readClose] +

TWriteStream[init renameTo writeInit,
resource renameFieldTo writeResource,
close renameTo writeClose] +

{ // required methods
void readInit(); void writeInit(); void readClose(); void writeClose();
// provided methods

void init() { this.readInit(); this.writeInit(); }
void close() { this.readClose(); this.writeClose(); }

}

class CReadStream implements IReadStream
by ReadResource and TReadStream {

CReadStream() { this.init(); }
}
class CWriteStream implements IWriteStream

by WriteResource and TWriteStream {
CWriteStream() { this.init(); }

}
class CReadWriteStream implements IReadWriteStream

by ReadWriteResource and TReadWriteStream {
CReadWriteStream() { this.init(); }

}

program StreamExample {
IReadWriteStream stream = new CReadWriteStream();
stream.write("Please insert a string");
stream.write("You wrote: ".concat(stream.read()));
stream.close();

}

Listing 1: Stream implementation.

to implement a visitor structure [26]. XTEXT leverages this mech-
anism by only requiring methods with a @Check annotation, that
will be called automatically for validating the model according to
the type of the AST node being checked. The validation takes place
in the background, together with parsing, while the user is writing
a SWRTJ program, so that an immediate feedback is available, as
usually in IDEs.

For instance, the following method in the SwrtjJavaVali-
dator checks that the this variable is not used in the program
context (i.e., that this can be used only in method bodies):

@Check

public void thisCheck(This thisRule) {
if((lookup.getOwner(thisRule) instanceof Program)) {

showError(new ErrorMessage
("’this’ is not allowed in program context",
thisRule));

}
}

Note that the only important things in this method definition are
the @Check annotation and the parameter: the internal validator of
XTEXT will invoke this method when it needs to validate an AST
node representing an occurrence of this, which is declared in the
grammar as the This non-terminal symbol (remember that given a
grammar symbol, XTEXT will generate a corresponding class for
the AST with the same name).

Binding the symbols (e.g., the binding of a field reference to
its declaration) is important in compiler development. EMF uses
“proxies” to represent references. It can delay the resolution (bind-
ing) of references when they are accessed. XTEXT already provides
an implementation for binding references, which basically binds a
reference to a symbol n to the first element definition with name n
occurring in the model. This usually has to be adapted in order to
take the visibility of names in a program into account. For instance,
a field is visible only in the methods of a class, such that different
hierarchies can safely have fields with the same name. XTEXT sup-
ports the customization of binding in an elegant way with the ab-
stract concept of “scope”. The actual binding is still performed by
XTEXT, but it can be driven by providing the scope of a reference,
i.e., all declarations that are available in the current context of a
reference. Note that this also permits to filter out elements accord-
ing to their kind, e.g., in order not to mix field names with method
names if we need to resolve a reference to a field.

The programmer can provide a customized AbstractDecla-
rativeScopeProvider. XTEXT will search for methods to in-
voke, using reflection, according to a convention on method name
signatures. Suppose, we have a rule ContextRuleName with an at-
tribute ReferenceAttributeName assigned to a cross reference with
TypeToReturn type, that is used by the rule ContextType. You can
create one or both of the following two methods

IScope scope <ContextRuleName> <ReferenceAttributeName>
(<ContextType> ctx, EReference ref)

IScope scope <TypeToReturn>(<ContextType> ctx, EReference ref)

The XTEXT binding mechanism looks for the first method (by
reflection), if this does not exist, then it looks for the second. If
no such method exists, the default linking semantics (see above) is
used.

For instance, if we consider the grammar rule for method invo-
cation illustrated at the beginning of this section, we can drive the
resolution of the method name in a method invocation statement
in any expression where such statement can occur by defining the
following method (The code should be understandable without the
knowledge of XTEXT):

public IScope scope MethodInvocation method(Expression context,
EReference ref) {

ExpressionType expressionType =
ExpressionType.createInstance(context.getReceiver());

Collection<MethodName> methodList = null;
if (expressionType != null)

methodList = expressionType.getInvokableMethods();
else

methodList = new LinkedList<MethodName>();
return Scopes.scopeFor(methodList);

}

The scope provider will be used by XTEXT not only to solve
references, but also to implement code completion. Thus, a pro-
grammer achieves two goals by implementing the abstract concept

of scope. Note that the code above can also return an empty scope,
e.g., if the receiver expression in a method call cannot be typed.
In that case, the XTEXT framework generates an error due to an
unresolvable method name during validation, and an empty code
completion list in case the programmer requests content assistance
when writing the method name of a method invocation expression.
This mechanism is handled by the framework itself, so that the pro-
grammer is completely relieved from these issues, once the correct
scope provider is implemented.

XTEXT provides a (mostly) automatic support for file import/in-
clusion in the developed language by using grammar rules like the
following

Import : ’import’ importURI=STRING;

SWRTJ programs can be split into separate files, and include
other SWRTJ files using the import keyword. The corresponding
dependencies among source files are handled by XTEXT itself.
Thus, the EMF model for the AST corresponding to an included file
is available automatically in the current edited source. Moreover,
the modification of an included file f automatically triggers the re-
validation of all the files including f .

Finally, the code generation phase is dealt with in XTEXT by
relying on XPAND [3], a code generation framework based on
“templates”, specialized for code generation based on EMF mod-
els. This generation phase reuses the lookup functions and the type
system functions used during validation. In our implementation of
SWRTJ, code generation produces standard JAVA programs, which
do not need any additional libraries to be compiled and executed.
Our code generation phase implements the flattening procedure
sketched in Section 2. However, by providing different templates,
we could also generate C++ code (this is subject of future work),
or code in another (possibly class-based) existing language.

The following code is the main XPAND template for generating
the JAVA code corresponding to a SWRTJ class:

«DEFINE class FOR Class−»
«FILE this.uriToPackage() + "/" + this.name + ".java"−»
package «this.uriToName()»;

«EXPAND Commons::import FOREACH this.urisToNames()»

public class «this.name»«IF !this.implementsList.isEmpty»
implements
«EXPAND implements
FOREACH this.implementsList SEPARATOR ","»

«ENDIF»
{
«EXPAND Record::recordExpression FOR this.recordExpression−»
«EXPAND constructorList FOR this.constructorList−»
«EXPAND Trait::traitExpression FOR this.traitExpression−»
}
«ENDFILE»

An XPAND template consists of verbatim parts which will be out-
put as they are and of parts to be expanded, enclosed in the spe-
cial characters « and ». These parts can refer to other template files.
Without getting into details of XPAND, it should be quite clear from
the above code how the generation of a standard JAVA class is car-
ried out, i.e., by copying the fields and methods of the records and
traits, respectively, used by a SWRTJ class (with further adjust-
ments not explained here).

XTEXT generates three plugin projects: one for the language
parser and corresponding validators, one for the code generator,
and one for the user interface IDE parts. The first two plugins do
not depend on the third. Thus, it is straightforward to build a stand-
alone compiler for SWRTJ to be executed outside Eclipse on the
command line, which we also provide. Figure 1 shows a screenshot
of the SWRTJ editor. Note the code completion functionalities,

the outline, and the error markers. The project view also shows the
generated JAVA files.

Our experience with XTEXT was in general quite positive. As
usual, some time is required to get acquainted with the concepts
of the framework. In particular, XTEXT relies on EMF. Thus, one
should be familiar with EMF concepts as well, especially, when
it comes to analyze the model for validation and code generation.
However, after this knowledge is achieved, developing a language
compiler and an IDE using XTEXT is extremely fast. XTEXT seems
to be the right tool to experiment with language design and to de-
velop implementations of languages. Furthermore, experimenting
with new constructs in the language being developed can be han-
dled straightforwardly. It requires to modify the grammar, regen-
erate XTEXT artifacts and to deal with the cases for the new con-
structs. Finally, XTEXT leaves the programmer with the possibility
of customizing every aspect of the developed language implemen-
tation by specialized code (which is flexibly “injected” in XTEXT
using Google Guice), even though XTEXT hides many internal de-
tails of IDE development with Eclipse. Even, EMF mechanisms are
still open to adaptation. For instance, we developed a customized
EMF resource factory for synthesizing the interfaces and classed of
the internal library described in Section 3. This facilitates making
interfaces and classes such as IList and CArrayList transpar-
ently available in every program (represented as an EMF model),
without having to treat them differently in program validation.

Concerning the performance of the generated JAVA code we did
not experience any difference with respect to a possible manually
implemented version. Indeed traits and records (and the SWRTJ
versions of classes and interfaces) are static constructs which do
not have any overhead in the generated JAVA code.

With respect to XTEXT, there are other tools for implement-
ing text editors (and IDE functionalities) in Eclipse. Tools like
IMP (The IDE Meta-Tooling Platform) [2] and DLTK (Dynamic
Languages Toolkit) [20] only deal with IDE functionalities and
leave the parsing mechanism completely to the programmer, while
XTEXT starts the development cycle right from the grammar itself.
Another framework, closer to XTEXT is EMFText [27]. EMFText
basically provides the same functionalities. But, instead of deriv-
ing a meta-model from the grammar, it does the opposite, i.e., the
language to be implemented must be defined in an abstract way
using an EMF meta model. (A meta model is a model describing
a model, e.g., an UML class diagram describing the classes of a
model). Note that XTEXT can also connect the grammar rules to
an existing EMF meta model, instead of generating an EMF meta
model starting from the grammar. XTEXT seems to be better doc-
umented than EMFText (indeed, both projects are still young and
always under intense development), and more flexible, especially
since it relies on Google Guice. On the other hand, EMFText offers
a “language zoo” with many examples that can be used to start the
development of another language. In this respect, the examples of
languages implemented using XTEXT, that we found on the web,
are simpler DSLs, and not programming languages like SWRTJ.
Thus, this paper can also be seen as a report of effective usage of
XTEXT for implementing more complex programming languages.

5. Discussion
SWRTJ programs may look more verbose than standard class-
based programs. However, the degree of reuse provided by records
and traits is higher than the reuse potential of standard static class-
based hierarchies. The distinction of each programming concept in
a separate entity pays off in the long run, since each component
is reusable in different contexts, in an unanticipated way. This
does not happen so easily with standard class-based OO linguistic
constructs. Class hierarchies need to be designed from the start
with a specific reuse scenario in mind. In particular, for single

Figure 1. A screenshot of the SWRTJ IDE.

inheritance, precise design decisions should be made from the very
beginning. This design might be hard to change, if not impossible,
forcing either to refactoring or to code duplication [36].

Our linguistic constructs are lower-level than standard OO
mechanisms. However, some syntactic sugar can be added to re-
duce the amount of code to write in some situations. For instance:
fields might also be declared directly in classes (thus encompass-
ing the JAVA-like calculus proposed in [15]), class names might
be used as types, etc. Along the same lines, we can simulate class
inheritance with our linguistic constructs (thus encoding JAVA di-
alects, like [46], and programming environments, like [41], where
traits coexist with class inheritance). This can be easily achieved
by inverting the “flattening” concept. For instance, if we start from
the JAVA-style class Stack given at the beginning of Example 1 in
Section 2, we can easily separate fields and methods into automat-
ically generated records and traits, and generate the corresponding
SWRTJ class declaration. Similarly, inheritance and method over-
riding can be simulated with inherited interfaces and trait method
renaming, respectively. The super call can be simulated with a
call to the renamed version of the method. However, this would
decrease the level of reuse for such components.

This issue of having these additional constructs in the language
is related to the debate of whether it is better to have a pure or
hybrid programming language. In this respect, the purity of a lan-
guage usually imposes more verbose solutions than a hybrid lan-
guage. For instance, consider the amount of code for writing the

main static public method of a public class in JAVA, and compare it
to the simple form of the corresponding function in C++ which also
provides functions besides classes and methods. The goal of re-
ducing verbosity often led to additional language constructs which
may break the pure linguistic features, e.g., the addition of imper-
ative features to a purely functional language (see, e.g., OBJEC-
TIVE CAML [42]). The general debate between pure and hybrid
languages is out of the scope of the present paper. Nonetheless, we
argue that having linguistic constructs for reusable code develop-
ment eases adding other high-level linguistic constructs which oth-
erwise may often only be possible at the cost of code duplication
and of the resulting complexity of code maintenance.

We might also introduce other syntactic sugar constructs to
ease the programming with our language; for instance, instead of
writing the required methods in a trait, we could group the required
methods in a specific interface and let the trait “implement” that
interface meaning that the trait requires all the methods specified in
the interface. However, this would not make traits types, since as we
stressed throughout the paper, not having traits as types enhances
their reuse potential.

6. Related Work
Traits are well suited for designing libraries and enable clean de-
sign and reuse which has been shown using SMALLTALK/SQUEAK
e.g., [13, 18]. Recently, [8] pointed out limitations of the trait

model caused by the fact that methods provided by a trait can
only access state by accessor methods (which become required
methods of the trait). To avoid this, traits are made stateful (in a
SMALLTALK/SQUEAK-like setting) by adding private fields that
can be accessed from the clients possibly under a new name or
merged with other variables. In SWRTJ traits are stateless. By
their required fields, however, it is possible to directly access state
within the methods provided by a trait. Moreover, the names of
required fields (in traits) and provided fields (in records) are unim-
portant because of the field rename operation. Since field renam-
ing works synergically with method renaming, exclusion and alias-
ing, SWRTJ has more reuse potential. Concerning field require-
ments, they are not present in most formulation of traits in the
SMALLTALK/SQUEAK-like and JAVA-like settings. They were in-
troduced in the formulation of traits in a structurally typed setting
by Fisher and Reppy [24].

SWRTJ requires that the summed traits must be disjoint. The
disjoint requirement for composed traits was proposed by Sny-
der [47] for multiple class-based inheritance (see also the JIG-
SAW framework [16]). According to other proposals, two meth-
ods with the same name do not conflict if they are syntactically
equal [23, 37] or if they originate from the same subtrait [34]. When
a recursive method is aliased in our language, its recursive invoca-
tion refers to the original method (as in [23]). The variant of alias-
ing proposed in [34] (where, when a recursive method is aliased, its
recursive invocation refers to the new method) can be straightfor-
wardly encoded by exclusion, renaming and symmetric sum. Con-
cerning method renaming and required field renaming, they are not
present in most formulation of traits in the SMALLTALK/SQUEAK-
like and JAVA-like settings. Method renaming has been introduced
in the formulation of traits in a structurally typed setting by Reppy
and Turon [43]. Renaming operations were already present in the
JIGSAW framework [16] in connection with module composition
and in the EIFFEL language [35] in connection with multiple class-
based inheritance.

In [44], a variant of traits that can be parametrized by member
names (field and methods), types and values is proposed. Thus, the
programmer can write trait functions that can be seen as code tem-
plates to be instantiated with different parameters. This enhances
the code reuse provided by traits already. It could be interesting to
adapt this approach to our context and to extend the parametriza-
tion functionalities also to interfaces, records and classes. This will
be the subject of future work. However, an important difference be-
tween our proposal and the one in [44] is that, in the latter, traits
play also the competing role of type, which is avoided in SWRTJ.
Another feature of SWRTJ is that structural types are used only
“internally” on this, i.e., the programmer works with nominal
types (interfaces) alone. We believe this is an important feature
from a practical point of view, as it reduces the distance between the
classical JAVA-like languages and our linguistic constructs, from
the perspective of the programmer.

In [41] an Eclipse plugin is presented that supports JAVA pro-
grammers with using trait-like mechanisms for JAVA classes. JAVA
is not extended: traits are modeled as (possibly) abstract classes
and trait method requirements as abstract methods. The plugin also
aims at helping the programmer to refactor JAVA hierarchies with
traits: the programmer can select a set of methods to be extracted
into stateless classes that play the role of traits. When a class uses a
trait, the methods provided by the trait are copied into that class; the
programmer then has to use this plugin to keep track of the actual
source of a method, in order not to accidentally change the copy
of a method and to be aware of what to change: either the copy of
the class or the original method in the trait. Thus the programmer
has to rely on this plugin completely, while in our case the SWRTJ
compiler can be used also outside from Eclipse.

The work of [41] starts from the one in [40] where traits are
implemented directly as an extension of a subset of the JAVA lan-
guage, and a compiler translates such programs into standard JAVA
programs. The authors, however, state that such approach requires a
strong effort to be conservative with respect to JAVA since, in order
to generate well typed JAVA code, many type checking functional-
ities for JAVA related code must be implemented in their compiler.
Such extension, moreover, lacks a formalization, thus no property
of type safety for such language extension is available.

In our approach, since we deal with a JAVA dialect, we can con-
centrate on the linguistic parts that are characteristic of our own lan-
guage, without re-implementing JAVA checks. However, the code
generated by our compiler is standard JAVA code, and our formal-
ization [10] guarantees that such code will be type correct with
respect to the JAVA compiler (starting from a well-typed SWRTJ
program).

7. Conclusions and Future Work
In this paper, we presented the programming language SWRTJ
and its implementation. SWRTJ is based on the calculus presented
in [11]. In that paper, we considered mechanisms for code reuse
for implementing Software Product Lines (a set of software sys-
tems with well-defined commonalities and variabilities [21]). We
explored a novel approach to the development of SPL, which pro-
vides flexible code reuse with static guarantees. In order to be of
effective use for SPL, the type-checking has to facilitate the analy-
sis of newly added parts without re-checking already existing prod-
ucts. The SWRTJ type system (Section 3) satisfies this requirement
since it supports type-checking records and traits in isolation from
classes that use them.

A special form of reuse is at the base of the contemporary agile
software development methodologies, which are based on an iter-
ative approach, where each iteration may include all of the phases
necessary to release a small increment of a new functionality: plan-
ning, requirements analysis, design, coding, testing, and documen-
tation. Another example is the use of Extreme Programming [7],
where team members work on activities simultaneously. While an
iteration may not add enough functionality to guarantee the release
of a final product, an agile software project intends to be capable
of releasing new software at the end of every iteration. However,
this means that the next iteration will reuse the software produced
in the previous ones. We believe that an interesting future research
direction is to investigate whether the programming language fea-
tures proposed in this paper may help in writing software following
an agile methodology.

In [9], we presented a tool for identifying the methods in a
JAVA class hierarchy that could be good candidates to be refactored
in traits (by adapting the SMALLTALK analysis tool of [32] to a
JAVA setting). It will be interesting to investigate the application of
this approach also for detecting possible candidates for records and
traits in the context of porting existing JAVA code to SWRTJ code.

Acknowledgments. We are grateful to the developers of XTEXT,
in particular, Sven Efftinge and Sebastian Zarnekow, for their
prompt help and support during the development of SWRTJ. We
thank Viviana Bono for many discussions on the subject of this
paper, Stéphane Ducasse for interesting discussions about traits,
and Alexandre Bergel for insightful comments on the technical
report [10].

References
[1] Google guice. http://code.google.com/p/google-guice.
[2] Imp (the ide meta-tooling platform).

http://www.eclipse.org/imp.
[3] Xpand. http://www.eclipse.org/modeling/m2t/?project=xpand.

[4] Xtext – a programming language framework.
http://www.eclipse.org/Xtext.

[5] E. Allen, D. Chase, J. Hallett, V. Luchangco, G.-W.Maessen, S. Ryu,
G. Steele, and S. Tobin-Hochstad. The Fortress Language Specifica-
tion, V. 1.0, 2008.

[6] D. Ancona, G. Lagorio, and E. Zucca. Jam—designing a Java exten-
sion with mixins. ACM TOPLAS, 25(5):641–712, September 2003.

[7] K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[8] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traits
and their formalization. Computer Languages, Systems & Structures,
34(2-3):83–108, 2008.

[9] L. Bettini, V. Bono, and M. Naddeo. A trait based re-engineering
technique for Java hierarchies. In Proc. of PPPJ, pages 149–158.
ACM, 2008.

[10] L. Bettini, F. Damiani, and I. Schaefer. Implement-
ing SPL using Traits. Technical report, Dipartimento
di Informatica, Università di Torino, 2009. Available at
http://www.di.unito.it/~damiani/papers/isplurat.pdf.

[11] L. Bettini, F. Damiani, and I. Schaefer. Implementing Software Prod-
uct Lines using Traits. In Proc. of OOPS, Track of SAC, pages 2096
–2102. ACM, 2010.

[12] G. Bierman, M. Parkinson, and A. Pitts. MJ: An imperative core cal-
culus for Java and Java with effects. Technical Report 563, University
of Cambridge, Computer Laboratory, April 2003.

[13] A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the
Smalltalk collection classes. In Proc. of OOPSLA, pages 47–64. ACM,
2003.

[14] V. Bono, F. Damiani, and E. Giachino. Separating Type, Behavior, and
State to Achieve Very Fine-grained Reuse. In Electronic proceedings
of FTfJP, 2007.

[15] V. Bono, F. Damiani, and E. Giachino. On Traits and Types in a Java-
like setting. In TCS (Track B), volume 273 of IFIP, pages 367–382.
Springer, 2008.

[16] G. Bracha. The Programming Language JIGSAW: Mixins, Modularity
and Multiple Inheritance. PhD thesis, 1992.

[17] G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA,
volume 25(10), pages 303–311. ACM, 1990.

[18] D. Cassou, S. Ducasse, and R. Wuyts. Redesigning with traits: the nile
stream trait-based library. In Proc. of ICDL ’07, pages 50–75. ACM,
2007.

[19] D. Cassou, S. Ducasse, and R. Wuyts. Traits at work: The design of a
new trait-based stream library. Comput. Lang. Syst. Struct., 35(1):2–
20, 2009.

[20] P. Charles, R. M. Fuhrer, S. M. S. Jr., E. Duesterwald, and J. Vinju.
Accelerating the creation of customized, language-Specific IDEs in
Eclipse. In OOPSLA, pages 191–206. ACM, 2009.

[21] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison Wesley Longman, 2001.

[22] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In
POPL, pages 125–135. ACM, 1990.

[23] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits:
A mechanism for fine-grained reuse. ACM TOPLAS, 28(2):331–388,
2006.

[24] K. Fisher and J. Reppy. A typed calculus of traits. In FOOL, 2004.
[25] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In

Proc. POPL ’98, pages 171–183, 1998.
[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[27] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende.
Derivation and Refinement of Textual Syntax for Models. In ECMDA-
FA, volume 5562 of LNCS, pages 114–129. Springer, 2009.

[28] J. Hendler. Enhancement for multiple-inheritance. In Proc. SIGPLAN
workshop on Object-oriented programming, pages 98–106. ACM,
1986.

[29] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[30] G. Lagorio, M. Servetto, and E. Zucca. Featherweight Jigsaw - A
minimal core calculus for modular composition of classes. In ECOOP,
LNCS 5653, pages 244–268. Springer, 2009.

[31] G. Lagorio, M. Servetto, and E. Zucca. Flattening versus direct
semantics for Featherweight Jigsaw. In Proc. of FOOL, 2009.

[32] A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with
formal concept analysis. In ASE, pages 66–75. IEEE, 2005.

[33] M. Limberghen and T. Mens. Encapsulation and composition as
orthogonal operators on mixins: A solution to multiple inheritance
problems. 3(1):1–30, 1996.

[34] L. Liquori and A. Spiwack. FeatherTrait: A Modest Extension of
Featherweight Java. ACM TOPLAS, 30(2), 2008.

[35] B. Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[36] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black. Removing
duplication from java.io: a case study using traits. In OOPSLA, pages
282–291. ACM, 2005.

[37] O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening traits. JOT,
5(4):129–148, 2006.

[38] M. Odersky. The Scala Language Specification, version 2.4. Technical
report, Programming Methods Laboratory, EPFL, 2007.

[39] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers, May 2007.

[40] P. J. Quitslund. Java Traits — Improving Opportunities for Reuse.
Technical Report CSE-04-005, OGI School of Science & Engineering,
Beaverton, Oregon, USA, Sept. 2004.

[41] P. J. Quitslund, R. Murphy-Hill, and A. P. Black. Supporting Java traits
in Eclipse. In ETX, pages 37–41. ACM, 2004.

[42] D. Remy and J. Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory and Practice of Object Systems, 4(1):27–50,
1998.

[43] J. Reppy and A. Turon. A Foundation for Trait-based Metaprogram-
ming. In FOOL/WOOD, 2006.

[44] J. Reppy and A. Turon. Metaprogramming with traits. In ECOOP,
volume 4609 of LNCS, pages 373–398. Springer, 2007.

[45] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Com-
posable units of behavior. In ECOOP, volume 2743 of LNCS, pages
248–274. Springer, 2003.

[46] C. Smith and S. Drossopoulou. Chai: Traits for Java-like languages.
In ECOOP, LNCS 3586, pages 453–478. Springer, 2005.

[47] A. Snyder. Encapsulation and inheritance in object-oriented program-
ming languages. In OOPSLA, volume 21(11), pages 38–45. ACM,
1986.

[48] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:
Eclipse Modeling Framework. Addison Wesley Professional, 2nd
edition, 2008.

[49] R. Strniša, P. Sewell, and M. Parkinson. The Java module system: core
design and semantic definition. In proc. of OOPSLA, pages 499–514.
ACM, 2007.

[50] F. Strocco. A Java dialect oriented to fine-grained software reuse.
Bachelor thesis, Dip. di Informatica, Università di Torino, 2009.

[51] D. Ungar, C. Chambers, B.-W. Chang, and U. Hölzle. Organizing Pro-
grams Without Classes. Lisp and Symbolic Computation, 4(3):223–
242, July 1991.

