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Abstract

In recent years and with the significant advancements in instrumentation
for molecular biology methods, the focus of food microbiologists, dealing
with pathogenic microorganisms in foods, is shifting. Scientists specifically
aim at elucidating the effect that the food composition, as well as the
commonly employed preservation/storage techniques throughout the
food chain, have on the virulence of pathogens. Quantitative PCR and
microarrays are, nowadays, powerful tools used for such determinations.
The application of these approaches for the determination of the gene
expression in situ, is a new field of research for food microbiologists and
provides new information regarding virulence potential of foodborne

pathogens.

Introduction

Despite significant knowledge acquisition regarding food safety, control of
foodborne pathogens throughout the food chain remains a challenge for
food producers, authorities and consumers. World-wide, various important
efforts have been undertaken in order to reduce the incidence of diseases
related to the consumption of food, however, so far limited success has
been obtained (Skovgaard, 2007). Food production is a dynamic sector,
where the consumer’s needs are of primary importance. For this reason,
the scenario in which food safety has to be guaranteed is often subjected
to changes, which affect also the fitness and the behavior of the
pathogenic microorganisms. A relevant example is the case of Listeria

monocytogenes, a psycrotrophic bacterium that emerged as a foodborne
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pathogen after establishment of refrigeration throughout the food chain,
in order to prolong the shelf-life of foodstuffs maintaining the aspect of
freshness requested by the consumers.

Authorities have addressed the issue of pathogenic microorganisms
in foods by imposing legislations that either consider limits for their
presence or do not tolerate the presence of even one pathogenic cell in
the foodstuff analyzed. Thereby it is evident how the food safety aspect is
nowadays addressed by the means of numbers. Official analysis is done by
traditional microbiological testing, approaches able to enumerate the
microorganisms in food, even if it has been repeatedly demonstrated that
methods that rely on cultivation of the cells, often fail detection, especially
if the pathogen is present in a stressed or injured state. Moreover, the
time needed to retrieve the results on the presence/absence of a
foodborne pathogen is not appropriate to the time constraints of the
modern food industry. Also, the recent risk analysis approaches introduced
in the food sector, suffer from the limitation of only considering numbers
of viable microorganisms. Based on these considerations there is the need
for alternative ways to ensure consumer’s health protection.

Nowadays, the field of biotechnology, with the recent advancements in the
nucleic acid analyses, is offering a number of choices that can be used.
Considering food safety and foodborne pathogens, one aspect that can be
explored is the behavior of the microorganisms in the food matrices. This
approach takes into consideration the expression of specific traits, namely
virulence and stress responses, in situ. From studies conducted so far, it

has been shown that within species of pathogenic bacteria, strain



heterogeneity in virulence potential exists. Furthermore, environmental
conditions that pathogenic microorganisms encounter in foods
influence their stress response capabilities, enhance survival and
possibly overall virulence potential. The application of omics disciplines
such as genomics, transcriptomics, proteomics and metabolomics offer
significant potential for advancements by improving the understanding of
the virulence determinants of pathogenic bacteria (Yoshida et al. 2001).
The outcome of studies targeting gene expression to clarify foodborne
pathogen behavior will be useful for risk assessment in order to improve

food safety (Figure 1) (Brul 2007).

Methodology

Technological advancements in molecular biology methods have over the
last 15 years shifted the interest of microbiologists from the study of a
single gene and its products, to more global approaches that produce
significant amount of biological data in a single experiment. These
technological advancements have resulted in a wealth of publically
available genomic data through full genome sequencing projects for
different microorganisms of interest to food microbiologists, mainly
foodborne pathogens and technologically important species. Genomic data
give only indications of the potential of a given microorganism in terms of
metabolic activities, survival in different conditions, virulence, stress
response, which however may never be expressed. For this reason,
scientists nowadays are focusing not only on the generation of new

genomic data but also on their exploitation for the understanding of the
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true capabilities (for example metabolic activities or virulence expression)
of microorganisms in different environmental conditions through the
application of transcriptomics.

Transcriptomics enable the analysis of the RNA transcripts produced by the
genotype at a given time and provide a link between the genome, the
proteome and the cellular phenotype. Through this approach, a better
understanding of the molecular basis of virulence could be gained and a
further insight into the complex expression events involved could be
achieved. Technologies that are used in transcriptomics are the following:
i) Microarrays in order to evaluate the gene expression events providing
information on the differentially expressed genes (global) and ii) Reverse
Transcriptional Quantitative Polymerase Chain Reaction (RT-gPCR) in order
to quantify (and confirm) the differential expression of most important
genes (Figure 2).

Both approaches can be used in order to determine the amount of cDNA,
deriving from a specific mRNA molecule and therefore can give
information regarding gene expression. In food microbiology, this
approach can be employed to study expression of genes that are involved
in the survival, stress response and virulence of pathogenic
microorganisms and how it is influenced by environmental conditions in
the food chain, the food matrix in which microorganisms are found or by
changes in common production or preservation techniques.

Analysis of transcriptional data can be divided into two stages (Livak and
Schmittgen 2001; Pfaffl 2001; Quackenbush 2002; Causton, Quackenbush

& Brazma, 2003; Wilson, Tsykin, Wilkinson & Abbott, 2006): i)
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Transformation of the raw data into a gene expression matrix (e.g. data
normalization to account for non-biological variability between samples)
and ii) Analysis of the gene expression matrix (e.g. Analysis of Variance —
ANOVA, clustering, principal component analysis, multidimensional scaling
and classification methods for class prediction). During data analysis no
means or median values should be used but all replicate measurements
should be included in the matrix as separate columns in order to take into
consideration information about the variance. The application of these
analytical techniques produces multivariate information and leads to an
enormous amount of data raising questions such as ‘how someone could
get relevant information out of the measured data?’, ‘how someone could
represent and display this information?” and ‘how someone could get such
information into data?’ (Forina, Lanteri & Casolino, 2004).

Quantitative PCR, first described in 1992 (Higuchi, Dollinger, Walsh &
Griffith, 1992; Higuchi, Fockler, Dollinger & Watson, 1993) is considered as
the next generation of PCR techniques, proposed in 1986 by Mullis,
Faloona, Scharf, Saiki, Horn and Erlich (1986), the method that
revolutionized research at the molecular level for different scientific fields,
including food microbiology. While PCR can be used in food microbiology
to give a yes or no answer, qPCR allows the monitoring, in real time, of the
synthesis of an amplicon and therefore can be used to quantify the amount
of a target DNA molecule present in the initial amplification mix. This
method can be used in food microbiology, to indirectly determine, through
construction of appropriate calibration curves, the concentration (in terms

of colony forming units [CFU]/ml or g) of a specific organism in a given
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food. Such applications have been recently proposed for foodborne
pathogens such as Listeria monocytogenes and Campylobacter jejuni
(Rantsiou, Alessandria, Urso, Dolci & Cocolin, 2008; Rantsiou, Lamberti &
Cocolin, 2010). Most importantly however, gPCR can be used to quantify
expression of a target gene. Gene expression can be reported as
comparative or absolute. In the comparative expression case, the
expression of a gene is monitored in two different conditions, for example
when the microorganism is grown in a synthetic medium and in a real food
sample, or is grown at two different temperature conditions. The result is
then reported as a ratio and fold change of expression (increase or
decrease) between a standard condition (i.e. synthetic medium or high
temperature) and an experimental condition (i.e. food matrix or low
temperature). To calculate this ratio, it is first necessary to normalize the
data, using one or more appropriately chosen, constitutively expressed
gene(s) [usually termed housekeeping gene(s)], in order to compensate for
potential differences attributed to the preparative steps, mainly the RNA
extraction, prior to the gPCR. The selection of genes to be used for
normalization is an important aspect of the experimental design and
requires validation. This validation entails testing of the expression level,
which has to give consistent results, in the different conditions to be
analyzed. For absolute quantification, the C; (threshold cycle) value
obtained for the target and normalization genes are transformed into a
transcript copy number through calibration curves. In this case, the
calibration curves are constructed by plotting Cr values against gene copy

numbers, usually obtained by cloning the gene of interest into plasmids
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and performing the amplifications with a known quantity (copies) of the
plasmid.

Gene expression studies conducted by gPCR so far have proven the
versatility of the method (i.e. application in different matrices, use of
different primers to study different genes), ease of application (once good
quality RNA is extracted from a given matrix, the steps of amplification and
data analysis are straightforward) and its capacity for good quality,
guantitative data generation. Generally, it is recognized that gPCR is the
appropriate method when one needs to study a moderate number of
genes in a number of samples that ranges from small to hundreds. On the
contrary, microarrays offer the possibility for whole genome discovery
experiments in small number of samples (VanGuilder, Vrana & Freeman,
2008). Furthermore, recently, a trend is being developed towards more
function-focused sub-arrays that target specific cellular functions, for
example virulence regulons for pathogens or metabolic regulons of
interest for technologically important microorganisms. This trend allows
application in a larger number of samples and facilitates interpretation of
the data obtained. It is important to always keep in mind that data
obtained by microarrays, or subarrays (that can be considered of

qualitative nature) need to be validated by RT-qPCR.

Statistical treatment of the data and prediction of behavior
Bioinformatics on transcriptomics (and genomics) and chemometrics on
metabolomics are applied to take information out of the high-dimensional

data produced by the omics disciplines. The data may be analyzed by both
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unsupervised (use only of X-data; see explanation below) such as
Hierarchical Clustering (HCA), Principal Component Analysis (PCA), Self-
Organizing Maps and Kohonen Neural Networks and supervised methods
(use of both X- and Y-data) such as back-propagation Neural Networks, k-
nearest neighbors, Discriminant Analysis (DA), Partial Least Square Analysis
(PLSA), Partial Least Square Regression (PLSR) and Support Vector
Machines. Also, there are special types of supervised methods such as
evolutionary-based algorithms, classification and regression trees (CART)
and inductive logic programming termed as explanatory or inductive
methods (use also of both X- and Y-data) (Figure 3) (Forina et al., 2004;
Tjaden & Cohen, 2006). When learning is unsupervised, the system is
shown a set of inputs (X-data) and then left to cluster the data into groups.
For multivariate analysis this procedure is known as dimensionality
reduction. That is, a large amount of data is summarized by fewer
parameters with minimal loss of information. When learning is supervised,
the desired responses (Y-data), associated with each of the inputs (X-data),
are known. The aim is to find a mathematical transformation (i.e. model)
that will correctly associate all or some of the inputs with the target traits.
Therefore, the mathematical transformation from input to output data is
transparent. Finally, the inductive methods allow the discovery of key

inputs for the separation of the traits to be predicted (Forina et al., 2004).

Preliminary statistical analysis of the gene expression matrix
Raw data are usually transformed in expression ratio and fold change.

Expression ratio (treated group/control group) constitutes an intuitive
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measure of expression changes. Genes without change in their expression
have an expression ratio equal to 1. However expression ratio displays
some disadvantages relative to up- and down-regulated genes. Expression
ratio equal to +2 indicates a change (up-regulation) in the gene expression
by a factor of 2 whereas down-regulated genes by the same factor have an
expression ratio equal to 0.5. As a consequence, the region of the
expression ratios in which the down-regulated genes lie is limited
(between 1 and 0) compared to up-regulated genes (between 1 and
+infinity). For this reason, the fold change is used instead of expression
ratio, which is the reciprocal or the inverse transformation of the
expression ratio (when expression ratio 21, then fold change = expression
ratio; when expression ratio < 1, then fold change = -1 / expression ratio).
In this way, a similar representation for the differentially expressed genes
is achieved, whether the genes are up- or down- regulated. Therefore, a
gene with an increase in its expression by a factor of 2 will have a fold
change equal to +2 while a gene with a decrease in its expression by the
same factor will have a fold change equal to -2. The use of fold change in
the various statistical analyses is problematical only because it is
discontinuous between -1 and +1. The best alternative is to apply a
logarithmic transformation, generally using the logarithm base 2. The
advantage is that it produces a continuous spectrum of values for
differentially expressed genes and at the same time treats up- and down-
regulated genes equivalently (Causton et al., 2003).

Ratios are good means of comparing levels of gene expression between a

treated group and a control group. However, in order to reliably identify
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genuine differentially expressed genes an accurate method for comparing
the measured expression levels between states should be used. This
method is known as normalization, which removes any non-biological
variation (artifacts) within the data and allows the data from two samples
or states to be appropriately compared. Before proceeding to
normalization the data are transformed into log; (ratio) values. There are
various normalization methods, but the objective of all these methods is all
log, (ratio) values to be, on average, equal to 0 (Vandesompele et al., 2002;

Quackenbush, 2002; Causton et al., 2003; Tjaden & Cohen, 2006).

Advanced statistical analysis of the gene expression matrix

The main goal in such experiments (microarrays and RT-qPCR) is to find
genes that are differentially expressed between two states and quantify
their expression. However, the appropriate statistical treatment should be
applied to the transcriptional data in order to avoid possible errors, which
could lead to erroneous conclusions (Yuan, Reed, Chen, & Stewart Jr.,
2006; Rebrikov & Trofimov, 2006). After normalizing the data, genes with
expression ratios that are significantly different from 1 [or those with
values for the log, (ratio) that differ from 0] should be identified. The
objective of the Analysis of Variance (ANOVA) is to test for significant
differences between means by comparing variances. Hence, the variance
due to the between-groups (or treatments) variability with that due to the
within-group (treatment) variability can be compared (Causton et al., 2003;

Tjaden & Cohen, 2006).
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The objective of gene clustering is to group together genes that have
similar expression profiles. It can be useful for discovering types of
behavior or for reducing the dimensionality of the data (e.g. group of
genes that behave similarly). Also, clustering helps to identify genes that
are co-regulated or that participate in similar biological processes. PCA is
one of the most frequently used methods to reduce the dimensionality of
data and to find combinations of variables that jointly contribute most to
variability in the data. Usually, most of the variability can be accounted for
by a small number of principal components (PCs) (two or three). By taking
only two or three most important PCs one can visualize the data in two or
three dimensions without losing much information (Causton et al., 2003;
Tjaden & Cohen, 2006).

The previous two methods (clustering and PCA) try to find structure in the
data without using any external information. Classification methods use
external information such as annotation and try to find properties in the
data that support this information. Therefore, given a gene expression data
matrix with samples annotated as ‘neutral’, ‘osmotic’ and ‘acidic’, the
classification method will seek for combinations of genes that are
expressed in all states. If such genes are found, the knowledge can be used
to classify or predict the state of a new unknown sample (Causton et al.,
2003). For instance, the objective of the CART analysis shown in Figure 4 is
to test if the eighteen initial distinct variables (i.e. genes) of Listeria
monocytogenes grown under stress (acidic and osmotic) and non stress
conditions would allow efficient prediction of the state the stressed cells

correspond to and to identify rules that would help classify the stressed
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cells on the basis of the measured variables. The classification tree displays
the successive steps during which the algorithm identifies the variables
that allow the best split of the categories of the dependent variable (Fig.
4). Thus, it can be seen that using the genes fbpA, iap and actA, the
algorithm has found rules that allow perfect separation (100% of purity)
the various cell states (nodes 4-7). The rules related to ‘acidic’ and ‘neutral’
states are verified by all cases (frequency = 9) but for ‘osmotic’ state there
are two different rules to separate all cases indicating potential high
variability of gene expression in osmotic condition. The rules that
correspond to the leaves of the tree (the terminal nodes) allow for
predictions for each observation, with a probability that depends on the
distribution of the categories at the leaf level.

The significance of transcriptomics lies in the potential of linking specific
changes in gene expression with a phenotype of interest (e.g. stress
response). In other words, how expression controls protein production and
ultimately the phenotypic characteristics (Yoshida et al. 2001). This will
provide insight into the function of various cellular activities of pathogenic
bacterial cells at the genetic and transcriptional level. The importance of
statistical analysis is to retrieve useful information out of the multivariate

data in order to achieve the above objectives.

In situ application of RT-qPCR and microarrays for virulence and stress
response determination
The first applications of RT-gPCR and microarrays in the field of food safety

and microbiology concerned the study of genes that may play a role in
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pathogenicity of microorganisms, in vitro. Listeria monocytogenes is a
foodborne pathogen that currently causes great concern to food industry,
authorities and consumers alike, mainly due to its ubiquitous nature, the
severe disease it causes and its mechanisms of virulence and adaptation to
modern food preservation strategies. As a consequence, L. monocytogenes
has become one of the first model organisms to study virulence and stress
response gene expression (Cossart & Archambaud, 2009), but also others,
such as Escherichia coli have been investigated (Olesen & Jespersen, 2010).
RT-qPCR and to a lesser extent microarrays have been employed in studies
in vitro (i.e. in laboratory media and under conditions that may influence
gene expression) and in vivo (i.e. using animals, nematodes or mammalian
cell lines to understand the response to eukaryotic intracellular
environment). However, only recently the missing link of in situ analysis
(i.e. analysis of expression in real foods and under common conditions of
storage or consumption), is being taken into consideration by food
microbiologists. Also in this case, L. monocytogenes is among the first
foodborne pathogens to be considered. Food is the vehicle through which
L. monocytogenes enters the human body where, under certain
circumstances, it elicits disease. Recent findings have shown that the
‘history’ of L. monocytogenes cells, may influence their virulence potential.
It was shown that long-term adaptation to acidic and NaCl stress (such as
the ones commonly encountered in foods) increased expression of
virulence genes and improved adhesion and invasion to Caco-2 cells
(Olesen, Vogensen & Jespersen, 2009). These findings suggest that

environmental conditions that L. monocytogenes may encounter in foods
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could influence its virulence potential. Furthermore, it is expected that
modulation of expression of stress response genes, under certain food
conditions, may enhance survival and directly or indirectly virulence. In situ
studies provide valuable data and will complement available information
regarding virulence and survival potential leading to an integrated risk
assessment analysis.

Liu and Ream (2008) conducted the first in situ studies using whole
genome microarrays and one strain of L. monocytogenes which was
implicated in an outbreak of listeriosis and for which the genome sequence
was available, thus facilitating analysis of the data. The food taken into
consideration was ultrahigh-temperature-processed (UHT) skim milk and
the objective was to identify genes whose expression patterns were
altered in this matrix. After 24 h incubation at 4 °C, 26 genes were up-
regulated in UHT milk compared to Brain Heart Infusion (BHI) broth and 14
were down-regulated. Two genes encoding for proteins involved in
oligopeptide uptake by the cell were significantly up-regulated, indicating a
possible mechanism for acquisition of essential amino acids. The authors
hypothesize that the elevated level of an oligopeptide transport system
may result in growth of L. monocytogenes in milk. Genes involved in
manganese-transport, shown to be related to oxidative stress, were also
up-regulated. Also the ¢® encoding gene, playing an important role in both
stress response and virulence of L. monocytogenes was up-regulated, while
expression of other virulence genes was not appreciably altered in UHT

milk.
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In a more focused study, regarding survival of L. monocytogenes on parsley
leaves, RT-qPCR was employed to determine expression of 6 genes
involved in stress response (groEL and clpC) and virulence (bsh, opuC, inlA
and prfA) (Rieu, Guzzo & Piveteau, 2009). In this case, L. monocytogenes
EGDe was inoculated on parsley leaves and incubated 5 hours at 25 °C.
Apart for bsh, for which no significant difference in expression was
observed, all other genes were down regulated between the time of
inoculation and the 5 h incubation on parsley leaves. In this study, in vitro
assessment of the virulence potential, confirmed the down-regulation of
inlA after the 5 h survival of L. monocytogenes on parsley leaves, since a
dramatic reduction of adhesion and entry into Caco-2 cells was recorded.
However, by in vivo experiments using chick embryos, it was shown that
the virulence potential of L. monocytogenes was recovered.

RT-gPCR was also used to determine the incubation temperature effect on
the expression of 4 virulence genes (hlyA, actA, inlA and prfA), for two L.
monocyotogenes strains inoculated in salmon (Duodu, Holst-Jensen,
Skjerdal, Cappelier, Pilet & Loncarevic, 2010). Temperatures tested were 4
°C (correct storage temperature) and 20 °C (temperature abuse) while the
two strains were chosen based on their virulence (low and high).
Significant up-regulation was detected for hlyA and inlA genes only for the
low virulence strain, when incubated at 20 °C. Also in this case, the RT-
gPCR data were coupled with experiments of invasion into Caco-2 cells and
mouse infection. Overall, authors observed that virulence gene expression,
invasion and in vivo virulence were not significantly altered under the

experimental conditions tested for the highly virulent strain. On the other
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hand, up-regulation of 2 out of 4 virulence genes at 20 °C for the low
virulence strain was coupled with increased invasion and in vivo virulence
under the same condition, suggesting an overall increase of its virulence
potential at the abuse temperature.

Lastly, the relative transcription of 2 virulence (prfA and inlA) and 2 stress
response (clpC and sigB) genes was determined in liver patés with varying
NaCl content (Olesen, Thorsen & lJespersen, 2010). Three different L.
monocytogenes strains (EGDe, a salt sensitive and a salt resistant strain)
were inoculated in liver patés with 4 different NaCl concentrations varying
from 1.39 to 3.66 % (w/v) NaCl in the water phase (one standard and three
reduced) and incubated at 7 °C for 48 h. The liver paté with the lowest
NaCl concentration (i.e. 1.39 % [w/v]) was additionally supplemented with
Ca-acetate (0.24 % [w/v]) and Ca-lactate (1.46 % [w/V]) as preservatives.
When the standard liver paté was compared to BHI, no significant
differences were observed in the transcription levels for the EGDe strain.
On the contrary, prfA (for the salt sensitive), inlA and sigB (for both salt
sensitive and resistant) were down-regulated in the liver paté with respect
to the BHI under identical temperature and time conditions. Comparing
the standard paté with the reduced salt patés, the differences observed
were significant in the case of the cIpC gene for the EGDe and the salt
resistant strain with a significant up-regulation in the paté with the lowest
NaCl concentration, which was also supplemented with Ca-acetate and Ca-
lactate. Additionally, significant increase in the transcription was observed
for sigB when the salt resistant strain was inoculated in paté with an

intermediate NaCl concentration and with low NaCl and Ca-acetate and
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Na-acetate. Furthermore, prfA showed increased transcription in the paté
with intermediate salt content for the salt sensitive strain. In conclusion,
the study showed significant strain variations at the transcriptional level
for both stress and virulence genes. Additionally, it was shown that a
change in preservation strategy, including lower NaCl content and addition
of organic acids as preservatives, can change the transcriptional level of
genes related to stress as well as genes controlling the expression of

virulence genes.

Experimental challenges

Comparison of the results obtained by the different experimental
approaches followed by the authors has revealed some discrepancies.
Gene expression studies were coupled to in vitro adhesion and invasion
studies and in vivo virulence determination, using animal models, and the
results obtained did not always correlate well. Such differences could
partly be expected since the biological basis underlying these experimental
approaches is different. An important question though is raised: which
approach or combination of approaches is appropriate in order to gather
information regarding virulence, potentially to employ in risk assessment?
In answering this question, one has to take into consideration also aspects
related to the ‘applicability’ of a certain experimental approach (for
example, ethical issues in using animal models, cost of equipment or
material).

Challenges still remain in the in situ determination of survival and virulence

potential. Regarding the methodology, maybe the most critical parameter
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still necessitating improvement is the extraction of high quality RNA. This
issue is being addressed by different scientists (Monnet, Ulvé, Sarthou &
Irlinger, 2008, Ulvé, Monnet, Valence, Fauquant, Falentin & Lortal, 2008,
Olesen et al, 2010) and what can be said is that RNA extraction requires
optimization, based on the combination of food matrix and microorganism
to be studied: no ‘universal’ protocol exists. Otherwise, technological
advancements are constantly improving the quality of the data obtained by
both RT-qPCR and microarrays. Concerning the interpretation of the results
obtained, as discussed above, there is a need to correlate the gene
expression data with valid indicators of survival (i.e. internal pH,
membrane integrity) and virulence (i.e. adhesion, invasion) in order to
apply more widely such approaches for the determination of these
physiological characteristics of foodborne pathogens. Finally, in order to
further improve food safety, the perspective use of RT-qPCR and
microarrays in conditions that resemble the human gastrointestinal track
will fill the scientific information gap regarding the physiology of
foodborne pathogens that exists between consumption of contaminated
food and disease manifestation. First reports concerning this aspect are

available (Jiang, Olesen, Andersen, Weihuan & Jespersen, 2010).

Conclusions and future perspectives

Microbial examination of food products is approaching a new era where
additional focus has to be placed on intra-species variations and
transcriptional profiling of genes related to the Ilater ability of the

pathogens to cause human infections. Based on the knowledge we have
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today, plate counting based determination of viable microbial counts is
simply not sufficient for proper risk assessment.

The first in situ applications of transcriptomics have proven the importance
of undertaking approaches that may supply information regarding the
potential of foodborne pathogens to survive during food processing and
storage, through the passage of the gastrointestinal tract and eventually to
cause infection. From results of the studies reported above, two important
observations can be made. First, there seems to be significant intra-species
heterogeneity concerning stress response and virulence gene expression. It
is not yet clear if this heterogeneity is linked to the species of L.
monocytogenes, but most likely it is valid for other pathogens too. This
heterogeneity, furthermore stresses the necessity to move from the
determination of numbers of pathogens in a food to the determination of
their behavior. Introduction of information regarding the survival and/or
virulence potential in the risk assessment evaluation process should be
considered. The second observation that can be made relates to the fact
that environmental conditions encountered by pathogens during food
production, influence gene expression. These two factors (strain and
provenience and/or its history during production) need to be taken into
consideration in risk assessment, since they influence stress response and
virulence potential. Application of methods that allow gene expression
determination in situ will provide necessary information for risk
assessment that considers not only numbers of microorganisms but also
their behavior.
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Legends to Figures

Figure 1. Work-flow of the application of omics disciplines. Omics, for
example, may provide information relative to genes being regulated during
microorganisms resistance against the antimicrobial agents that are used
in the food industry. This could lead to new hypothesis regarding the
microorganisms behavior in a food product; however validation
experiments to investigate the interactions between microorganisms and

food matrix should be performed to validate the hypothesis made.

Figure 2. Graphical representation of the molecular approach to study the

expression profile of genes of pathogenic bacteria isolated from foods.

Figure 3. Analysis of high-dimensional data produced by omics disciplines.

Figure 4. Classification tree diagram. Rules found by the algorithm to
differentiate the various states of the cell. For instance, if iap in [-0.944, -
0.228] and fbpA in [-1.06, -0.22] then condition = acidic in 100% of cases or
if actA in [-1.244, 1.947] and fbpA in [-0.22, 1.282] then condition = neutral

in 100% of cases.
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Figure 3
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Unsupervised methods (use of X-data only):

- Hierarchical Clustering (HCA)
- Principal Component Analysis (PCA)
- Self-Organizing Maps

!

- Kohonen Neural Networks ¢

Special types of supervised methods (use of X- and Y-
data):

- Evolutionary-based algorithms
- Classification and Regression Trees (CART)
- Inductive logic programming

Supervised methods (use of X- and Y-data):

- Back-propagation Neural Networks

- k-nearest neighbors

- Discriminant Analysis (DA)

- Partial Least Square Analysis (PLSA)

- Partial Least Square Regression (PLSR)
- Support Vector Machines
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Figure 4

osn:[ol:c — — o
acidic Size 27 neutral 9
%: 100 wido
Purity(%): 33.3
/ ‘;
[-1.06, -0.22] [-0.22,1.282]
losmotic 4 losmotic
Node: 2 Node: 3
Size: 13 el |0 Size: 14 e
%481 sido %:51.9 o |0
Purity(%): 69.2 Purity(%): 64.3
[-0.944, -0.228] [-0.228, 0.503] [-2.505, -1.244] [-1.244,1.947]
osmotic |0 losmotic 4 losmotic 5 osmotic |0
Node: 4 Node: 5 Node: 6 Node: 7
Size:9 el 10 Size: 4 vkt 0 Size: 5 el |0 Size: 9 s
% 33'3 acidic g %148 acidic |0 % 185 acidic |0 % ?3‘3 acide |0
Purity(%): 100 Purity(%): 100 Purity(%): 100 Purity(%): 100

30




