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Abstract 

Importance of the field: ‘Invasive growth’ is a genetic program involved in embryonic development and adult organ 
regeneration and usurped by cancer cells. Although its control is complex, tumor- and context-specific and regulated by 
several cytokines and growth factors, the role played by the MET oncogene is well documented. In human cancers the 
contribution of MET to invasive growth is mainly through overexpression, driven by unfavorable microenvironmental 
conditions. MET activation confers a selective advantage to neoplastic cells in tumor progression and drug resistance. A 
subset of tumors feature alterations of the MET gene and a consequent MET-addicted phenotype. 
Areas covered in this review: The molecular basis and rationale of MET inhibition in cancer and metastases are 
discussed. A number of molecules designed to block MET signaling are under development and several Phase II trials 
are ongoing. 
What the reader will gain: Knowledge of the state of the art of anti-MET targeted approaches and the molecular basis 
and strategies to select patients eligible for treatment with MET inhibitors. 
Take home message: Due to its versatile functions MET is a promising candidate for cancer therapy. Understanding 
molecular mechanisms of sensitization and resistance to MET inhibitors is a priority to guide tailored therapies and select 
patients that are most likely to achieve a clinical benefit. 

Keywords: gene amplification, ligand antagonists, neutralizing antibodies, oncogene addiction, small-molecule inhibitors, 
somatic mutation 

1. Introduction 

1.1 ‘Invasive growth’: a genetic program 

Cancer is a progressive process through which cells accumulate genetic lesions that are responsible either for 
oncogenic activation or inactivation of tumor suppressor genes [1]. These events lead to transformation of a normal cell 
into a malignant clone. Indeed a growing tumor is defined as malignant when transformed cells acquire the capability to 
disseminate from their primary context and to colonize other tissues and organs. Through tumor progression cells 
proliferate without control, loose contact-inhibition, detach from their primitive site and give rise to secondary 
macroscopic lesions. Metastases are generally poorly treatable and eventually lead to patient's death. The ability of 
neoplastic cells to spread involves the execution of a complex genetic program named ‘invasive growth’ [2]. This process 
involves integration of different biological activities: cellular proliferation, cell–cell dissociation (‘scattering’), migration, 
invasion and avoidance of apoptosis induced by inadequate or inappropriate cell-matrix interactions (anoikis). Indeed 
invasive growth does not only occur in cancer cells. It is essential in a wide variety of physiological and pathological 
settings. During embryogenesis it drives key events, such as gastrulation and nervous system development; in post-
natal life it is involved in inflammatory response and tissue regeneration after injuries. The aberrant execution of the 



invasive growth program is otherwise responsible of aggressive phenotype that defines malignant behavior and leads to 
metastatic progression. 

Several cytokines and growth factors are involved in promoting proliferation, chemotaxis, migration and protection from 
apoptosis: among them are EGF, IGF-1, fibroblast growth factor (FGF) and TGF-beta. However, there is now firm 
evidence that the invasive growth program, as a whole, is controlled by a discrete family of soluble factors known as 
scatter factors [3], represented by hepatocyte growth factor (HGF) and Macrophage Stimulating Protein (MSP). Their 
receptors are the tyrosine-kinases encoded by MET and RON oncogenes. Moreover, two other families of molecules 
structurally related to MET are likely to be involved in this program: semaphorins, that act as ligands, and plexins that act 
as receptors [2]. 

The signaling pathway of HGF is mediated by its receptor encoded by the MET proto-oncogene [4,5], located on 
chromosome 7q31.1. It is constituted of 21 exons encoding a transmembrane tyrosine kinase made of a disulphide-
linked heterodimer, which originates from the proteolytic cleavage of a single-chain precursor. The heterodimer is formed 
by a single-pass transmembrane 145 kDa β-chain and an extracellular 50 kDa α-chain. The extracellular region contains 
a conserved region of 500 aminoacids, named the semaphorin (SEMA) domain, involved in ligand-receptor interaction; a 
cysteine-rich domain made of 80 amino acids known as MET-related sequence (MRS) and a protein-protein interaction 
domain made of four immunoglobulin-like structures (integrin, plexin, transcrption factor (IPT) domain). In the intracellular 
portion the juxtamembrane region contains the residue Ser 985 which is essential for receptor downregulation and a 
tyrosine (Tyr 1003) that, upon phosphorylation, binds the E3-ubiquitin ligase Cbl, which finally promotes receptor 
ubiquitinization and degradation. The catalytic site of MET contains two tyrosines (Tyr 1234 and Tyr 1235), regulating 
the enzymatic activity. Finally, in the C-terminal regulatory tail are located two tyrosine residues (Tyr 1349 and Tyr 356) 
that, when phosphorylated, create a unique docking site which is responsible for the recruitment of a large-spectrum of 
downstream signal transducers, such as the cytosolyc tyrosine kinase SRC, the lipid kinase PI3K, the transcription factor 
signal transducer and activator of transcription3 (STAT3) and the adaptor proteins growth factor receptor bound protein 2 
(GRB2), Src homology 2 domain containing) transforming protein (SHC) and GRB2-associated binder 1 (Gab1) (Figure 
1) [2]. 

Figure 1. The MET receptor structure and signalling pathway. A. MET receptor schematic functional structure. MET is a 
single-pass disulphide-linked α/β heterodimer that is formed through a proteolyitic processing of a common precursor in 
the post-Golgi compartment. The extracellular portion of the receptor is composed of three domains. The semaphorin 
(SEMA) domain encompasses the whole α-chain and a part of the β-subunit; a homologous region is present in plexins 
and semaphorins. The SEMA domain is followed by a PSI domain – also found in plexins, semaphorins and integrins – 
that spans 50 residues and contains four disulphide bonds. The following four integrin, plexin, transcrption factor (IPT) 
domains display a immunoglobulin-like structure that is detectable also in the structure of plexins and growth factors. The 
intracellular region includes – in the juxtamembrane portion – the serine 975 which down-regulates the kinase activity. 
Indeed phosphorylation of the two tyrosines (Tyr 1234–Tyr1235) located in the tyrosine kinase site activates the 
enzymatic function of the receptor. The carboxy-terminal tails includes two critical tyrosine residues (Tyr 129 and 
Tyr1256) that upon phosphorylation induce the recruitment of several transducers. B. MET signaling pathway. Through 
the activation multifunctional docking site – located at the C-terminal tail – and the association with the multi-adaptor 
growth factor receptor bound protein 2-associated protein 1 (GAB1), MET phosphorylation induces recruitment of 
several SH2-domain containing transducers: growth factor receptor bound protein 2 (GRB 2)–son of sevenless (SOS)–
RAS-RAF–MAP kinse-ERK kinase (MEK)–extracellular signal regulated kinase (ERK) pathway as well as the PIK3CA–
AKT axis and the SCR, signal transducer and activator of transcription 3 (STAT3) cascade. Overall these transducers 
amplify the MET-driven intracellular signal leading to enhancement of cell proliferation, survival and motility. 
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Table 1. MET and HGF inhibitors. 

Class of 
compounds 

Mechanism of action Molecular targets Molecule (Company)

MET inhibitors 

Small molecules MET ATP-binding site competitors MET ARQ197 (ArQule) 
PHA665752 (Pfizer) 
SU11274 (Pfizer) 
JNJ-38877605 (Johnson & 
Johnson) 
SGH523 (SGX Pharmaceuticals) 
AMG 208 (Amgen) 
MK2461 (Merck) 
BMS777607 (BMS) 
INCB28060 (Incyte) 
EMD1214063 (EMD Serono) 

Multikinase inhibition MET, VEGFR, TIE XL880, XL184 (Exelixis) 
MGCD265 (Methylgene) 
E7050 (Eisai) 

MET, PDGFR, c-KIT, 
RET 

MP470 (Supergene) 

MET, RON, RET (Amgen) 

MET, ALK PF-2341066 (Pfizer) 

Antibodies MET-specific  OA5D5 (Genentech) DN30 

HGF-Specific  AMG 102 (Amgen) 
L2G7 (Galaxy) 
SCH 900105 (Aveo/Schering) 

Biological antagonists Inhibits HGF binding to MET  NK4 

Inhibits proteolytic HGF activation  Uncleavable HGF 

Inhibits HGF bindingand MET 
dimerization 

 Decoy MET and SEMA 

Data from [10,40,41]. 

ALK: Anaplastic lymphoma kinase; HGF: Hepatocyte growth factor; PDGFR: Platelet-derived growth factor receptor; 
SEMA: Semaphorin domain; TIE: Tunica interna endothelial cell kinase. 

2.3.1 Targeting HGF–MET interaction 

HGF–MET interaction might be blocked using HGF antagonists, molecules that bind with high affinity the receptor 
without activating the downstream signal transducers. The precursor, inactive form, of HGF (pro-HGF) is present in 
almost all tissues, where it is retained in the extracellular matrix. Many molecules that are present in stroma that 
surrounds cancer cells display the enzymatic activity necessary to activate pro-HGF. This mechanism of activation has 
been described in different human tumors [42,43]. HGF contains two binding sites with different affinity for the MET 
receptor: a high-affinity site located within the α-chain and a low-affinity site in the β-chain [44,45], which becomes 
accessible only after pro-HGF activation and which is essential for receptor dimerization and specifically interacts with 
the SEMA and the IPT domains, respectively [46-48]. Several molecules have been validated as MET antagonists. HGF 
has two natural splice variants, NK1 and NK2, which contain the N-terminal domain and the first two kringle domains of 
HGF. NK1 is a MET agonist, which is able to form a head-to-tail dimmer complex in crystal structures; mutations in the 
NK1 interface convert NK1 to a MET antagonist. NK2, is a MET antagonist capable of inhibiting HGF's activity in cell 
proliferation without a clear mechanism. This HGF fragment has been shown to inhibit HGF-induced epithelial 
mitogenesis and morphogenesis in vitro [49]. Mutations that were designed to open up the NK2 closed conformation by 
disrupting the N/K2 interface convert NK2 into a MET agonist. [50]. It should be noted that, under certain conditions, 
these HGF fragments might behave as partial MET agonists, a property that may limit their therapeutic utility. NK4, a 
synthetic truncated form of HGF that contains only the α-chain, can inhibit a number of MET-dependent responses [51]. 
Independent of its inhibition of HGF–MET, NK4 acts as an angiogenesis inhibitor. Uncleavable pro-HGF, structurally 



designed to lock the molecule in its inactive conformation, is able to compete with active HGF for MET binding, thus 
inhibiting catalytic activity [52]. 

The silencing of MET expression might be also achieved by using antisense and ribozyme techniques, delivered in vivo 
through liposomes. The chimeric U1snRNA/rybozyme transgene, designed to inhibit HGF-MET expression, has shown 
successful results when admistered subcutaneously in glioma xenografts [53]. 

Decoy MET is the soluble and enzymatically inactive extracellular domain of the receptor that can interact with both HGF 
and full-size MET, thus sequestering the ligand and making inactive dimmers with the native receptor [54]. Notably the 
isolated SEMA domain retains the ligand-binding properties, interfering with HGF and blocking receptor dimerization 
[55]. 

As described above, phosphorylation of MET catalytic domain induces activation of the multifunctional docking site and 
the subsequent recruitment of several SH2-containing transducers [56]. MET signalling inhibition can be reached 
through peptides that compete – mimicking their SH2 domain – with MET-related mediators for the binding to the 
docking site at the C-terminal tail of the receptor. 

2.3.2 Antibodies 

Several monoclonal antibodies against HGF are currently in human clinical trials for various cancers. Amgen reported 
the generation of some fully human monoclonal antibodies against HGF that exhibit therapeutic potential in xenografts of 
human glioma featuring an HGF-dependent autocrine loop [57]. Systemic administration of another anti-HGF antibody, 
L2G7 (Galaxy Biotech), proved to be particularly effective in inducing regression of both subcutaneous and intracranial 
glioma xenografts, suggesting that the blood–brain barrier does not block its efficacy [58,59]. Amgen has also performed 
clinical trials with AMG102 a fully human antibody (Ig2) recombinantly produced in mammalian cells [60]. This molecule 
has been tested in advanced glioblastomas and kidney carcinomas and clinical trials are now ongoing against malignant 
pleural mesotheliomas and ovarian and primary peritoneal cancers (www.clinicaltrials.gov; NCT01105390, 
NCT01039207 studies). 

It should be noted that the efforts to develop antibodies available for anti-MET therapy have been at the beginning 
largely unsuccessful due to their rather agonistic than antagonistic properties on receptor activation. This is mainly due 
to the bivalent structure of the immunoglobulins, which act as natural dimerizing agents for tyrosine kinase receptors. 

The first promising results were reached with the design of a one-armed antibody (OA-5D5) by Genentech which 
consists of a monovalent Fab with murine variable domains for the heavy and light chains fused to human IgG1 constant 
domain. In preclinical studies this antibody showed a strong growth inhibition of HGF-expressing glioblastoma cells when 
delivered locally and it is now in the early stages of clinical development [61]. DN30 is a monoclonal antibody raised 
against MET extracellular domain; it is able to reduce anchorage-independent growth and xenograft development of 
gastric carcinoma cells displaying MET amplification as well as metastases formation of melanoma cells [62]. DN-30 
works by inducing proteolytic cleavage of MET extracellular domain, thus decreasing on one side the number of 
receptors available for activation and, on the other generating a decoy effect, binding to HGF and preventing the 
interaction with the intact surface receptor [63,64]. Transfection of epithelial cancer cells with cDNA coding for the heavy 
and light DN-30 chains results in downregulation of MET receptor and inhibition of the invasive growth program. Transfer 
of the monoclonal antibody into live animals by systemic administration or local intratumor delivery results in significant 
reduction of tumor growth [60]. 

Very recently Aveo/Shering presented the SCH900195 molecule (AV-299), a highly potent monoclonal antibody 
featuring antagonistic properties against HGF. SCH900195 has been demonstrated to be efficacious in advanced solid 
cancers in a Phase I trial [65]. 

2.3.3 Targeting MET catalytic site: the role of small molecules 



Catalytic activity and transphosphorilation might be prevented through small molecules that compete with ATP in binding 
the active site of the receptor. The first studies directed to design ATP-competitive MET inhibitors lead to development of 
K252a, a wide-spectrum kinase inhibitor, able to block MET kinase at sub-micromolar concentration [66]. Further studies 
allowed the development of more selective inhibitors, all defined by the indolin-2-one core structure: all compounds 
share the indolinone motif sustituited at the 5-position of the indolinone core with 3-hlorobenzyl-sulphonamide groups 
(SU11274) or with 3,5-dimethyl pyrrole groups (PHA665752). In vitro assays assessed on various cancer cell lines 
showed that both compounds (from Pfizer) inhibit MET-dependent biochemical and biological responses, being 
PHA665752 at least tenfold more potent than SU11274 [67,68]. Interestingly, SU11274 displays a selective inhibition 
pattern towards the different MET mutants identified in papillary renal carcinomas [69], whereas PHA665752 is 
particularly effective in tumor cell lines and xenografts harboring amplification of the wild-type MET gene [13]. These 
molecules however do not show good pharmacokinetic properties and oral availability, so that their use is limited to 
studies in animal models. More recently a new molecule named PF-2341066 has been generated: it is structurally similar 
to PHA665752, it is orally available and selectively blocks MET and anaplastic lymphoma kinase (ALK). This molecule 
displays citoreductive and antiangiogenic properties; it is now under clinical evaluation and seems to be well tolerated at 
therapeutic doses [70]. Several other molecules have been developed and are now being tested. XL880 (Exelixis), one 
of the first orally bioavailable molecule, is a multikinase inhibitor targeting MET, VEGFR2 and to a lesser extent platelet-
derived growth factor receptor (PDGFR), RON, KIT and tunica interna endothelial cell kinase (TIE)-2. The MTD is 3.6 
mg/kg and common side effects include hypertension and fatigue. The agent is being evaluated in papillary renal cell 
carcinoma, gastric and head and neck cancers [71,72]. 

ARQ-197 (ArQule) is an analoguous MET inhibitor that is in early-phase trials. The molecule acts as a non-ATP-
competitive drug and has demonstrated clinical benefit (in terms of prolonged stable disease) in Phase II clinical testing 
among patients with several types of solid tumors, including NSCLC, sarcomas, pancreatic cancer, hepatocellular 
carcinoma, germ cell tumors and colorectal cancer (http://www.arqule.com/cli/). The recommended Phase II dose for 
ARQ-197 was determined to be 360 mg twice daily. Common side effects included fatigue, diarrhea and constipation. 
Grade 3 elevated liver enzymes were the more severe toxicity [73]. Main interest is now addressed towards association 
of selective MET inhibition through ARQ-197 and erlotinib in NSCLC: first reports demonstrate evaluable Response 
Evaluation Criteria In Solid Tumors (RECIST) responses in NSCLC patients treated with combinatorial approach versus 
those who received erlotinib alone [74]. In particular an improved benefit was seen among those patients with non-
squamous histology, KRAS mutations and EGFR wild-type status [75]. 

Based on unpublished data available online, several other compounds are now under design and preclinical evaluation. 
Merck is developing the MK2461 inhibitor, a small molecule which is now undergoing Phase II study in patients with 
advanced solid cancers. JNJ-38877605 (Johnson & Johnson) is an orally bioavailable, small-molecule receptor tyrosine 
kinase inhibitor with potential antineoplastic activity which selectively inhibits [76]. 

Also SGX Pharmaceuticals includes MET inhibitors in its pilot products pipeline. The SGX523 [77], a novel orally 
bioavailable ATP-competitive molecule, has been reported to be the most selective inhibitor of MET catalytic activity. 
This drug has shown an efficient antitumor activity in vivo at nanomolar concentrations with no effects on other signaling 
dependent kinases, such as RON. Importantly, SGX523 has been recently tested through in vitro and in vivo 
experiments on gliomas: the molecule was able to inhibit brain tumor cell and stem cell malignancy thus representing 
one of the most promising approach to brain cancer therapy [78]. 

3. Conclusions 

Tumorigenesis and neoplastic progression have multiple aetiology, associated with the combination of genetic and 
epigenetic lesions. The concept that cancer is essentially a genetic disease has now been (or will be) exploited by 
pathologists to set up a novel classification of tumors, based on the presence of defined genetic lesions. Classical 
histopatolgical diagnosis is (and will still be) important to evaluate the extent of malignant phenotype, but personalized 



molecular diagnosis is needed to understand which specific genetic lesion is responsible for the tumor of a single patient 
and could be successfully targeted. 

Furthermore the association of venous thrombosis and cancer is intriguing and has relevant clinical implications. Cancer 
cells interfere with blood clotting in three main ways: release of proteins directly involved in blood coagulation, release of 
cytokines modulating the activities of endothelial cells and monocytes, intravasation and endothelial injury and activation. 
It suggests that the ability to interfere with blood coagulation is an inherent property of cancer cells and/or their 
microenvironment, a property that can be functionally related to the onset of neoplastic transformation. Thus, even in the 
absence of overt coaugulation disorders, there might be abnormalities in laboratory coagulation tests that could be 
exploited for screening of early cancer. Moreover therapeutic implications of MET procoagulant effect need to be 
carefully considerated and pharmacological interference with haemostasis proteins may be useful for prevention or 
treatment of invasive cancer. 

In the vast majority of tumors MET activation is a late event that exacerbates the malignant propreties of transformed 
cells. In other words, complete neoplastic cells often usurp anti-apoptotic and pro-invasive activities of MET as an 
expedience [41] to gain a selective advantage and to become more proficient under adverse environmental conditions. 
Thus, due to its dual role as a necessary oncogene in some tumors and as adjuvant gene which facilitate metastatic 
process, MET is a versatile candidate in anticancer targeted therapy. Burgeoning evidence suggests cross-talk at a 
molecular level between MET and several receptor tyrosine kinases (RTKs) providing a rationale for combinatorial 
targeted therapies. This approach might be also useful in overcoming resistance phenomena. To decipher the identity of 
potentially responsive tumors the different roles that MET can play in neoplastic tumors should be considered before 
starting anti-MET therapy in order to avoid random selection of patients without prior genetic characterization. 

 

4. Expert opinion 

4.1 RTKs-based cancer therapies 

The MET gene encodes a protein that belongs to the RTK family. The latter represents a subfamily of transmembrane 
receptors with an intrinsic, ligand-controlled tyrosine-kinase activity. Phoshorylation is the biochemical process which 
regulates, in a reversible way, protein activation: protein kinases and protein phosphatases are the main mediators of 
these reactions and their appropriate activity is required for cellular homeostasis; in contrast their aberrant activation is 
crucial in oncogenesis [79]. Indeed firm evidence has shown that the vast majority of human cancers carry a genetic 
alteration in the kinase (kinome) and/or phosphatase (phosphatome) gene families [80]. The characterization of both 
molecular structure and functions of RTKs and their ligands has opened the door to a new era in anticancer drugs 
deveoplment. In resting cells, RTKs' activity is tightly controlled, but when mutated or overexpressed RTKs act as 
dominant oncogenes [81]. More than twenty-years ago the structure of a RTK, the EGFR, was elucidated. An important 
challenge after RTK structure definition was the identification of the molecular mechanisms through which these 
receptors regulate signal transduction across the plasma membrane. The idea that oncogenesis is sustained by signal 
generation through tyrosine phoshorylation paved the way to the development of several RTK inhibitors. The success of 
RTK-targeted therapies is based on the fact that the receptor targeted by the drug is active – as a result of a genetic 
lesion – only in the tumor and not in the surrounding healthy tissue. Consequently the identification of genetic alterations 
responsible for RTK activation is a priority for successful RTK targeted therapy. At the same time the targeted therapy 
concept has significantly modified the principles of anticancer treatment. Classical cancer chemotherapeutic agents are 
designed either to kill cancer cells (cytotoxic effect) or to halt proliferation (cytostatic effect). Most cancer chemotherapy 
has selective toxicity based on the concept that tumor cells are dividing more rapidly than non-malignant host cells [82]. 
On the other hand, biologically targeted therapies have different endpoints with respect to conventional chemotherapy. 
In the cytotoxic drug paradigm, toxicity defines the surrogate endpoint of drug anticancer activity, meaning that the more 
side effect are induced by the drug, the more the therapeutic efficacy [83]. In molecularly tailored therapy, target 
inhibition becomes the surrogate endpoint of the biological activity, which in turn is the surrogate for antitumor activity. 



The first successful employment of a tyrosine kinase inhibitor was reported with Imatinib mesilate (Gleevec) in chronic 
myeloid leukemia (CML) treatment. So far, small moleculaes (e.g., gefitinib, erlotinib) and monoclonal antibodies (e.g., 
trastuzumab, cetuximab, bevacizumab) have demonstrated the potential of molecularly targeted cancer therapeutics 
[84]. Several other RTK-based experimental anticancer strategies are now under preclinical and clinical evaluation. 
Among them MET, due to its versatile biological actions in cancers, is one of the most promising targets and anti-MET 
molecules are gaining growing interest in pharmacogenomics research and translational clinical trials. Importantly it 
should be noted that there is considerable experimental evidence suggesting that MET signaling activates pathways that 
make cancer cells resistant to cytotoxic agents such as chemotherapy and radiation therapy. This suggests that MET 
inhibitors may cooperate with cytotoxic therapies and should be kept in consideration in drug design and development. 

4.2 Rationale for targeting MET in cancer and metastases 

Experiences derived from EGFR-inhibition have indicated that the targeted treatment approach is really effective only in 
a small subset of tumors, that ultimately are those carrying genetic alterations (point mutations or gene amplification) of 
the targeted receptor [85]. The same results have been confirmed by in vitro, where it has been shown that cell lines 
yielding the EGFR genetic lesions found in human cancers undergo cell cycle arrest or apoptosis upon EGFR inhibition 
[86]. This phenomenon is named ‘oncogenic addiction’ [87] and identifies the dependence of neoplastic clone – for 
survival and proliferation – on continued expression of a single signaling molecule pathway, which is aberrantly activated 
in consequence to a genetic lesion. Therefore, switching off the oncogenic activity by specific inhibitors will trigger an 
‘oncogenic shock’ [75], which eventually will lead tumor cells to die. This model relies on the concept that the oncogenic 
pathway might induce both pro-apoptotic and proliferative signals [86] with an obvious prevalence of survival outputs. In 
contrast, acute inactivation of the oncogene (e.g., trough RTKs inhibitors) will result in an early reduction of proliferation, 
followed by a significant enhancement of apoptosis. The latter identifies a vulnerability period which represents the 
effective therapeutic window. The MET-addicted phenotype has been described in several cell lines derived from gastric 
carcinomas [13] and NSCLC [14]. In these settings, addiction is related to gene amplification. Therefore, identification of 
increased MET gene copy number will strongly predict response to anti-MET therapy. 

This result is coherent with previous experiences derived from anti-EGFR therapy in NSCLC [88] and sustains the 
rationale that only the subset of patients affected by tumors addicted to a specific gene could benefit from a specific 
targeted therapy. So far addiction to MET has been demonstrated in a restricted number of human tumors. This 
evidence theoretically justifies anti-MET therapy as front-line intervention in a limited subset of human cancers. However, 
experimental observations have demonstrated that many cell lines display a sensitivity to MET inhibition independently 
from the co-existence of a genetic lesion driving addiction. Thus in vast variety of tumors, MET is activated as a 
secondary event and exacerbates the malignant properties of already transformed cells [11,89]. These observations are 
strictly related to MET intrinsic biological properties. As discussed above, in the vast majority of cancers, invasive growth 
occurs as a late event in tumor progression and MET is activated in a context that is quite different from addiction. In 
these circumstances MET-driven invasive growth is rather the consequence than the cause of the transformed 
phenotype. In other words, activation of MET pathway facilitates cancer progression, conferring to cancer cells a 
powerful ‘expedience’ to sustain their metastatic potential [40]. This observation provides a strong rationale for anti MET 
therapy as combinatorial therapy to target progression of a wide spectrum of tumors. 

4.3 Cross-talk between MET and other receptor families 

The MET receptor interacts with other membrane recptors and many different molecules act as MET partners such as 
integrin α6β4, the adhesive molecule CD44, class B plexins, FAS and other RTKs such as RON, EGFR and ErbB2 
[2,9,41]. 

The RON gene displays 25% homology with MET in the extracellular region and 63% homology in the TK domain. The 
RON ligand MSP shares a 45% homology with HGF [90]. It is well demonstrated that ligand-activated MET results in 
RON transphosphorylation and vice-versa. Transphosphorylation occurs in a direct way and does not require the C-
terminal docking site of either receptor, whereas a TK inactive RON is sufficient to block MET transforming activity [91]. 



MET interacts with EGFR in several ways; which are discussed in the section below. 

The MET receptor can be also activated in response to G-protein coupled receptor (GPCR) agonists. Both EGFR and 
GPCR ligands are known to increase the intracellular level of reactive oxygen species that inhibit phosphatases, hence 
the activation of MET [92]. 

Although a direct physical interaction between MET and ErbB2 has never been documented, the synergistic activity of 
the two receptors ehnaces the malignant invasive phenotype, mainly in cancer cells that display overexpression of 
ErbB2 and where HGF is normally detectable in the surrounding stroma [93]. Also, breast cancer cells that overexpress 
ErbB2 and are treated with trastuzumab upregulate Met expression. It is coicevable that these cells develop secondary 
resistance to trastuzumab through cross-talk activation of ErbB3 and downstream transducers [94]. 

4.4 Combinatorial therapeutic strategies 

Signaling by growth factors interacting with RTKs is enourmously complex. Receptors activation involves different 
pathways that are part of complex and redundant molecular networks shared with other receptors. 

In consequence the downstream cascades can be controlled at multiple levels with relevant implications for targeted 
therapies. Using its multifunctional docking site MET activates a number of intracellular transducers such the RAS–RAF–
MEK and PI3K–AKT axis [95]. The combination of anti-MET therapeutic agents with either signal transduction inhibitors, 
or cytotoxic chemotherapy has been evaluated in preclinical models. An important example is the interactions between 
phosphatase and tensin homologue (PTEN) and MET in glioblastomas in which PTEN loss amplifies MET-induced 
malignancy. Deregulation of MET together with PTEN loss is a relatively common event in tumor such as malignant 
gliomas [31]. The loss of PTEN leads to transcriptional upregulation of an EGFR agonist (TGF-α) which, in turn, induces 
EGFR signaling in an autocrine manner [96]. It suggests that EGFR signaling activation contributes to exacerbate the 
malignant phenotype in cells dysplaying a constitutive activated form of MET, thus providing a strong rationale for an 
anti-EGFR and anti-MET combinatorial therapeutic approach whenever concomitant loss of PTEN is detected. Moreover 
inactivation of PTEN is usually associated with resistence to RTK inhibitors, but combined inhibition of MET and EGFR in 
a glioblastoma model in which both receptors are constitutively overactivated can avoid PTEN deficiency and restore 
therapeutic responsiveness [97]. 

 

This concept is further supported by experimental observations in glioblastomas where combined anti-EGFR and anti-
MET therapies overcome PTEN-loss associated resistance too. 

As many kinase inhibitors exert their cytotoxic effects primarly by inhibiting a specific kinase, there is a strong selective 
pressure for cells to acquire (secondary) resistance through genetic lesions that activate parallel signaling pathways. 
Understanding the molecular mechanisms of sensitization and resistance to a specific drug is clearly required for 
tailoring the therapeutic regimen to the patients that are most likely to achieve a clinical benefit. Many efforts are now 
directed to the identification of genetic markers that can predict potential response to a certain drug. From this 
perspective MET amplification in cancer is an interesting hit, since growing evidence demonstrates that increased MET 
gene copy number is associated with acquired gefitinib resistance. In NSCLCs MET amplification leads to resistance to 
EGFR small inhibitors by driving Erbb3-dependent activation of PI3K, a pathway that was thought to be specific to EGFR 
signaling [15]. These findings have several clinical implications. MET amplification might explain why some NSCLC 
carrying sensitizing EGFR mutations failed to respond to erlotinb. Combinatorial therapy with MET inhibitors and 
irreversible anti EGFR small molecules – which are now under development – might be considered for NSCLC patients 
whose tumors have became resistant to erlotinb and gefitinb [98]. These observations are likely to imply a prognostic 
value; it has been recently shown that identification of MET amplification is an independent negative prognostic factor in 
surgically resected NSCLCs- whereas EGFR gain does not affect survival [99]. 



In summary, targeted therapies against MET should be effective, as first line treatment, in a restricted subset of MET-
addicted cancers and, as a secondary approach, in a much wider spectrum of advanced tumors taking advantage 
(expedience) of MET for local invasion and distant spreading. Importantly MET inhibition is directed to block both the 
pro-invasive and the pro-angiogenic properties of this oncogene. Growing evidence suggests a relevant role of 
combinatorial multikinase inhibition. High-throughput molecular profiling and proteomincs represent now a required 
approach to translate all the pre-clinical evidences into a full therapeutic platform. 

Article highlights. 

Malignant disease occurs when neoplastic cells abandon their primary growth site, cross tissue boundaries and 
penetrate the vasculature to colonize distant sites. This process – metastic spreading – can be considered as the 
aberrant counterpart of a physiological programme for organ regeneration and maintenance. Scatter factors and 
semaphorins, together with their receptors, are involved in activating this programme. 

The MET oncogene encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF). 

MET aberrant activation in cancer is mainly related to overexpression, which is often a consequence of transcriptional 
upregulation induced by negative microenvironmental conditions; somatic mutations are rarely found; gene amplification 
has been reported in a number of human cancers among which are gastric and lung tumors. 

MET activation induces a pro-angiogenic effect which cooperates in sustaining tumor invasiveness and determines that 
coagulation cascade alteration that phenotypically defines the Trousseau syndrome. 

Therapeutic interference with MET activation is thus a new and challenging approach to hamper tumorigenic and 
metastatic processes. 

This box summarizes key points contained in the article. 
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