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Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling 

platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor 

receptor activation. The understanding of the biological effects regulated by these adaptors in 

tumours might be crucial for the identification of novel targets and the development of innovative 

therapeutic strategies for human cancer. In this review we will discuss the relevance of adaptor 

proteins in signalling originating from integrin-mediated cell-extracellular matrix (ECM) adhesion 

and growth factor stimulation within the context of cell transformation and tumour progression. 

Herein, we will specifically underline the contribution of p130CAS, NEDD9, CRK, and the IPP 

complex (ILK, PINCH and PARVIN) to cancer, along with the more recently identified p140CAP.  

 

Introduction 

In the last fifteen years integrin signalling has been profoundly implicated in cancer cell 

proliferation, survival and invasion
1
. Current knowledge implies that in cancer cells integrins, 

receptor tyrosine kinases (RTKs) and cytokine receptors constitute joint modules in which 

attachment to the ECM confers positional control to the activated signalling pathways allowing 

cells to respond to soluble growth factors, which thereby determine the nature and the extent of the 

response
1,2

. This control mainly resides on the recruitment of adaptor proteins that behave as 

molecular hubs for intracellular signalling and organise complex signalling networks in time and 

space
3-6

. The biological effects regulated by integrin and RTK signalling adaptors are dependent on 

their expression levels and on their phosphorylation status, which determines the association with 

binding effectors. 

The integrin signalling adaptors represent crucial players in cell transformation and 

invasion, mostly by regulating basic processes such as cell cycle control, survival, cytoskeletal re-

organisation and migration. Recent studies highlight the relevance of specific families of these 

scaffold molecules in many human cancers and show that interfering with their expression and/or 
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with their ability to bind effector proteins is therapeutically efficacious to inhibit tumorigenesis 

sustained by integrin and growth factor receptor co-operation. This Review will discuss how the 

expression of integrin adaptors is related to human cancer, their relevance in animal models of 

tumorigenesis and their role in cancer cell biology. 

 

Integrin adaptors in cancer  

In the following paragraphs we will review recent data that highlight how the altered expression of 

the integrin adaptors is related to tumorigenesis. p130CAS, NEDD9, CRK, the IPP complex (ILK, 

PINCH and PARVIN) and p140CAP adaptors are crucial effectors of integrin and RTKs signalling, 

acting as multi-site scaffolds that integrate and propagate signals from ECM and soluble ligands to 

intracellular signalling pathways, promoting cell proliferation, survival and motility.  

 

The CAS family. The CAS family comprises four members: p130CAS (also known as breast cancer 

anti-oestrogen resistance 1 (BCAR1)), NEDD9 (also known as HEF1 or CAS-L), embryonal Fyn-

associated substrate (EFS, also known as SIN) and CAS scaffolding protein family member 4 

(CASS4, also known as HEPL). They are characterized by the presence of multiple conserved 

sequence motifs, such as SH3 and proline-rich domains and extensive post-translational 

modifications, mainly consisting of tyrosine and serine phosphorylation
3,4

 (Figure 1). CAS proteins 

differ in patterns of expression, for esample in normal tissues, whilst p130CAS is ubiquitously 

expressed, NEDD9 expression is confined to the lungs and kidneys
3,4

. CASS4
7
 and EFS

8
 are less 

abundant and specifically expressed in spleen and lung (CASS4) and T- lymphocytes, thymus, brain 

and skeletal tissue (EFS), making their functions limited to specific context.  

 Overexpression of CAS proteins contributes to the development of human cancer. p130CAS 

is necessary for transformation by several oncogenes, such as SRC, ERBB2 (also known as HER2) 

and nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) fusion protein
9-11

. Recently, 

p130CAS has been shown to be required for KRAS, BRAF, PTEN and PIK3CA oncogene-dependent 

proliferation
12

. Nevertheless, investigation of its expression in biopsies of different human 

malignancies using immunohistochemistry is still limited to breast cancer and haematological 

malignancies (Table I). Recently it has been reported that in human breast cancers overexpression 

of both ERBB2 and p130CAS is associated with increased proliferation, metastasis formation and 

poor prognosis
13,14

(Table I). Consistently, double transgenic mice overexpressing both p130CAS 

and ERBB2 in the mammary gland show an accelerated onset of tumour formation, providing 

evidence that p130CAS and the ERBB2 oncogene synergise in vivo to transform the mammary 

epithelium
13

 (Table II). Indeed p130CAS silencing in ERBB2 transformed breast cancer cells is 
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sufficient to inhibit tumour growth in vivo, and correlates with downregulation of proliferative and 

survival pathways, such as SRC and AKT activation, focal adhesion kinase (FAK) phosphorylation 

and CYCLIN D1 expression
11

. In oestrogen receptor (ER)-positive human breast tumours, 

overexpression of p130CAS correlates with intrinsic resistance to tamoxifen treatment in a large 

subset of human breast cancer samples
15-17

. 

The second member of the family, NEDD9, has been identified as a metastasis gene in 

melanoma and in head and neck squamous cell carcinoma (HNSCC). Indeed its expression levels is 

elevated in human metastatic melanoma compared with primary melanoma
18,19

 and in invasive 

HNSCC
20

. Recently, a role in mammary tumorigenesis has also been proposed for NEDD9, whose 

absence significantly impairs tumour formation induced by the polyoma virus middle T oncogene 

(PyMT)
21

 (Table II).  

Overall, p130CAS and NEDD9 expression levels are critical for onset and progression of 

many aggressive cancers, highlighting their importance as new unfavourable prognostic markers. 

 

The CRK family. The CRK family consists of three members: CRK-I, CRK-II
22

, alternative 

transcripts of the same gene, and CRKL
23

 (Figure 1). The CRK family SH2 domains can bind to a 

variety of key signalling molecules including p130CAS. 

The CRK family has been shown to be overexpressed in lung adenocarcinoma
24

, human 

colon cancers
25

 and malignant glioblastoma
26,27

. High levels of CRK mRNA and protein expression 

correlate with increased tumour aggressiveness in lung, contributing to poor prognosis and shorter 

survival
24

. Recently, it was shown that CRK is a key regulator of mammary gland tumorigenesis. A 

subset of mouse mammary tumour virus (MMTV)-CRK transgenic mice develop focal mammary 

tumours with a latency of 15 months, suggesting a potential role of CRK in integrating signals for 

breast cancer progression in vivo28
 (Table II). 

 

The IPP complex. The IPP adaptor complex comprises the integrin-linked kinase (ILK), PINCH1 

(also known as LIM and senescent cell antigen-like domains 1 (LIMS1)) and PINCH2 (also known 

as LIMS2) and PARVIN   and (Figure 1).  

The expression of ILK has been analysed in a large number of human malignancies
29-31

 and 

is often found to be elevated and associated with tumour progression and shortened survival (Table 

1). Increased ILK expression has been associated with more differentiated areas of malignant 

gastrointestinal, renal, neural and bone marrow tumours, suggesting that ILK might be also an 

indicator of differentiation
29,32

.  
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Evidence for the role of ILK in breast cancer development derives from the generation of 

transgenic mice overexpressing ILK in the mammary gland epithelium, where ILK overexpression 

leads to mammary gland hyperplasia and breast tumours of diverse phenotypes
33

. Moreover, 

targeted ablation of ILK in the mammary gland provides a direct demonstration that this molecule is 

required in the initiation phase of ERBB2-induced tumours, resulting in delayed tumour growth in 

vivo and a profound block of invasive properties in vitro due to the induction of apoptotic cell 

death
34

. Recently, it has been described that transgenic MMTV-Wnt/ILK mice show lobuloalveolar 

hyperplasia and significant acceleration in mammary tumour incidence and growth
35

 (Table II).  

Less is known about the expression of the other members of the IPP complex in cancer 

tissues. PARVB (which encodes PARVIN ) mRNA and protein levels are markedly down-

regulated in a number of advanced breast tumours
36

 and its expression is inversely correlated with 

ILK protein and kinase activity levels, suggesting that down-regulation of PARVB expression 

upregulates ILK activity in human tumours (Table 1). Regarding PINCH1/2 expression in samples 

of breast, prostate, lung, colon, and skin carcinomas, both proteins have been found to be up-

regulated in tumour-associated stromal cells, especially at the tumour invasive edges
37

. In 

particular, in a large series of colon cancers, strong PINCH1/2 stromal expression was associated 

with a lower patient survival, placing these molecules as independent prognostic indicators of colon 

cancer
38

(Table 1). 

 

The CAP family. The CAS-associated protein (Cap) family consists of two members, p140CAP 

(also known as SRC kinase signalling inhibitor 1 (SRCIN1) or SNIP) and SICKLE TAIL (SKT, 

also known as KIAA1217). p140CAP has been shown to down-regulate integrin and growth factor-

dependent signalling
39,40

. p140CAP
41,42 

and SKT
43,44

 are multisite docking proteins, characterized 

by conserved sequence motifs that can associate with multiple effectors (Figure 1).  

p140CAP is mainly expressed in brain, testes and epithelial-rich tissues such as mammary 

glands, lungs, colon and kidneys
41,45,46

 and is phosphorylated on serine and tyrosine residues
41,46,47

, 

whose relevance in downstream signalling needs to be assessed. p140CAP behaves as a tumour 

suppressor protein, since its silencing favours anchorage-independent growth and in vivo tumour 

growth
39,40

. Although few data are available on p140CAP expression in human tumours, a recent 

screening of mammary breast cancers revealed that p140CAP is not expressed in 70% of tumour 

specimens characterised by G3 index, node positivity and a high proliferation index, thus indicating 

an inverse correlation with the state of malignancy
39

. By contrast, an additional report shows that 

SRCIN1 mRNA expression positively correlates with unfavourable prognostic factors in breast 

cancer
48

. These apparently conflicting results suggest the existence of DNA mutations or 
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chromosomal rearrangements that affect protein translation, resulting in reduced levels of p140CAP 

expression in tumours. Indeed, SRCIN1 is located on human chromosome 17q12 and its flanking 

regions contain several genes involved in tumour initiation and progression such as ERBB2 

(17q12), BRCA1 (17q21), retinoic acid receptor  (RARA, 17q21) and signal transducer and 

activator of transcription 3 (STAT3, 17q21), which are often translocated as fusion partners of the 

mixed-lineage leukaemia (MLL) gene in haematological malignancies, or amplified in human 

tumours, suggesting that SRCIN1 may also be subjected to such chromosomal rearrangements
49

.  

 

Integrin adaptors in cancer biology  

The data summarised above clearly point out that the expression of integrin adaptors is deregulated 

in a variety of human cancers. Although the precise molecular mechanisms implicated in this 

altered expression are currently not understood, extensive work on cancer cell models show that 

these scaffold proteins are involved in cancer initiation, progression and metastasis formation. Thus, 

their involvement in these three fundamental steps of tumorigenesis, makes them attractive targets 

for prognostic and therapeutic purposes. 

 

The CAS family in cancer biology  

The CAS family represents a nodal signalling platform on which integrin and growth factor 

receptor signalling convey. As a consequence, they are implicated in key events in cancer cell 

biology such as the acquirement of pro-survival and pro-invasive phenotypes. The molecular 

mechanisms underlining these events will be discussed in this section.  

 

Migration and invasion. In cancer progression, cell-cell detachment from the primary tumour and 

the acquirement of a motile phenotype are required for cells to become invasive and colonise distant 

organs to generate metastasis. Growing evidence shows that CAS family proteins are major players 

in migration, invasion and metastasis formation, mainly by undergoing phosphorylation, activating 

RHO family GTPases and inducing metalloproteinase gene expression.  

Tyrosine phosphorylation of the p130CAS substrate domain (SD) mainly by SRC and 

FAK
50

 allows the assembly of the p130CAS-CRK- DOCK1 (dedicator of cytokinesis 1, also known 

as DOCK180) complex and efficient localized activation of the small GTPase RAC1 at the cell 

membrane. These events induce cell migration through actin cytoskeleton remodelling, 

pseudopodia extension and focal adhesion turnover
51-53

. Uncoupling of p130CAS-CRK negatively 

regulates cell migration. Indeed, the non-receptor tyrosine kinase ABL1 phosphorylates CRK-II on 

tyrosine 221 (Figure 1), inducing intramolecular folding that prevents binding of the C-terminal 
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CRK-II SH2 domain to the phosphorylated SD of p130CAS, leading to decreased cell 

movement
54,55

.  

p130CAS has also emerged as a pro-invasive molecule. To regulate invasion p130CAS 

associates with the ZYXIN family members (ZYXIN, AJUBA, also known as JUB, and thyroid 

hormone receptor interactor 6 (TRIP6)
56-58

 and the transcription factor zinc finger protein 384 

(ZNF384, also known as CIZ or NMP4)
56

. These interactions lead to transcription of matrix 

metalloproteinase genes required for the invasive program
59

. 

In the context of SRC transformation, SRC requires p130CAS for organization of actin into 

podosomes, activation of matrix metalloproteinase 2 (MMP2), and the formation of lung metastases 

in vivo60
. Moreover, bosutinib, a novel SRC kinase inhibitor, has been reported to inhibit breast 

cancer cell migration and invasion by affecting the SRC-FAK-p130CAS signalling pathway
61

.  

In ERBB2-transformed cells, p130CAS overexpression confers invasive properties in 3D 

cultures, sustaining and strengthening PI3K/AKT and ERK1/2/p70S6K signalling downstream of 

ERBB2, which led to RAC1 activation and MMP9 secretion
11

, respectively
14. Consistently, 

p130CAS silencing in ERBB2-dependent breast carcinoma impairs migration and invasion in vitro 

as well as the formation of lung metastases in vivo11
.  

It has been recently proposed that ECM stiffness modifies the context of signaling and 

promote invasion of oncogene-transformed pre-malignant mammary cells
62

 and that integrins are 

mechanosensors for matrix and tissue rigidity
63

. Interestingly, p130CAS has been described as a 

major mechanotransduction protein, that undergoes phosphorylation upon force-mediated 

conformational changes
64

 and senses fibronectin, but not collagen, rigidity
65

. These data suggest 

that p130CAS may strenghten the intracellular signalling cascades activated by tumour-enhanced 

ECM stiffness. 

The role of NEDD9 as a pro-migratory gene has been determined based on its ability to 

activate RAC1 in highly metastatic melanomas, by forming a complex with DOCK3, a RAC1 GEF. 

RAC1 activation results in switching from amoeboid to mesenchymal movement, suppression of 

Rho GTPase activation and loss of actomyosin contractility and motility
66

. Also in glioblastoma 

cells, NEDD9 is pro-migratory upon platelet-derived growth factor (PDGF)-stimulation
67

. Opposite 

effects have been reported in a recent siRNA screen of human mammary epithelial cells. In this 

report, NEDD9 has been classified as anti-migratory, probably through its ability to polarize the 

microtubule network, suggesting a role for NEDD9 in MTOC (Microtubule-Organising Center) 

polarization
68

. Further investigations are required to reconcile these opposite data, that might be 

explained by the different cellular context analysed.  
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TGFsignalling and cancer progression A role for p130CAS and NEDD9 in transforming 

growth factor- (TGF signalling has recently been proposed. This regulatory cytokine exerts 

tumour-suppressive effects that cancer cells must elude for malignant evolution. Yet, paradoxically, 

cancer cells elicit mechanisms that subvert the tumour suppressing functions of TGF-β, and in 

doing so, confer oncogenic and metastatic activities upon this multifunctional cytokine
69,70

. In 

epithelial cells, integrin 1 suppresses apoptosis and growth inhibition induced by TGF
71

. In this 

context p130CAS has been shown to be a crucial player by binding to SMAD3, and preventing its 

phosphorylation by TGF receptor. As a consequence, the transcription of the cyclin-dependent 

kinase inhibitors p15 and p21 is inhibited, resulting in cell cycle progression
72

. Recently, it has been 

reported that p130CAS over-expression in mammary epithelial cells (MECs) shifts TGF signalling 

from SMAD2/SMAD3 phosphorylation to p38 MAPK activation, rendering MECs resistant to 

TGF-induced growth arrest and enhancing their metastatic potential
73

. Notably, NEDD9 was 

found to be a new transcriptional target of TGF signalling in highly metastatic mammary 

adenocarcinoma cells that switch from collective motility to single cell motility, and its silencing 

results in inhibition of amoeboid motility in response to TGF
74

. Overall, CAS family can act as a 

molecular rheostat that switches the tumour suppressor function of TGF to a pro-metastatic role 

during breast cancer progression.  

Epithelial-Mesenchymal transition (EMT) is a known mechanism through which epithelial 

cells lose their epithelial cell characteristics to acquire a mesenchymal phenotype and become 

migratory and invasive
68

. ECM molecules such as collagen I have been shown to induce EMT 

transition in transformed epithelial cells
75

. Highly invasive pancreatic cancer cells bind to collagen I 

through integrin 1 and discoidin receptors, and up-regulate N-cadherin on the cell surface, which 

leads to increased cell motility
76,77

. In this model, p130CAS plays a crucial role in collagen I–

mediated cell movement as well as in the up-regulation of N-cadherin, by acting as a scaffold, 

integrating integrin 1 and discoidin receptors in the plasma membrane
78

. These findings place the 

CAS family as potential modulators of cell matrix-dependent EMT for the acquirement of 

aggressive cancer properties. 

 

Apoptosis. Cell death by apoptosis serves as a protective mechanism to maintain cell homeostasis in 

the adult organism and its inhibition contributes to transformation. p130CAS and NEDD9 are both 

targets of apoptotic pathways, undergoing proteolytic cleavage and generating fragments that 

directly participate in the disruption of focal adhesions and cell death. Caspase 3 -dependent 

cleavage of p130CAS releases a 31kDa fragment that has pro-apoptotic activities. This fragment 

translocates to the nucleus and heterodimerises with the transcription factors E2A (also known as 
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TCF3) or E47, thereby repressing p21transcription, promoting loss of focal adhesions and inducing 

cell rounding and cell death
79,80

. Similarly, the proteolytic cleavage of NEDD9 by caspases 3 and/or 

7 releases a C-terminal p28 fragment, that in MCF-7 and HeLa cells induces focal adhesion 

disassembly, cell detachment and apoptosis
81

, in a mechanism similar to that described for 

p130CAS, implicating binding to E2A and transcriptional repression of p21. 

In tumours, p130CAS cleavage might represent a mechanism to interfere with cancer cell 

survival. It has been observed that silencing of the protein tyrosine phosphatase regenerating liver 

(PRL-3) leads to induction of p130CAS cleavage and anoikis, preventing anchorage-independent 

growth of colon carcinoma cell lines
82

. Interestingly, upon PRL family knock-down in colon and 

lung cancer cells
82,83

, p130CAS expression is reduced, indicating that these phosphatases are crucial 

regulators of p130CAS protein levels. In addition, it has been described that p130CAS cleavage 

may result from over-expression of the chemokine CXCL12
84

 and also from the inhibition of 

activity of cyclooxygenase 2 (COX2), a key enzyme in prostaglandin synthesis that promotes 

tumour progression and angiogenesis
85

. Treatment of colon cancer cells with the COX2 inhibitor 

celecoxib induces proteolysis of p130CAS and nuclear translocation of the 31 kDa fragment, which 

leads to apoptosis
86

. Moreover, in a panel of human acute myeloid leukemia cell lines, the anti-

tumour effect observed upon treatment with celecoxib is due to the inhibition of p130CAS 

signalling leading to apoptosis
87

.  

In conclusion, CAS family behaves as crucial scaffolds to modulate cell survival of a variety 

of cancer cells. Therefore, interfering with the pro-survival properties of the CAS adaptors might 

represent an important mechanism to trigger cancer cell death.  

 

The CRK family in cancer biology 

The ability of the CRK family of adaptor proteins to induce cell transformation, migration and 

invasion mainly relies on the p130CAS-NEDD9 and the FAK-SRC pathways, making CRK 

proteins an attractive target due to its central integrative downstream role in signalling by these 

molecules
5
. v-CRK-mediated transformation induces elevation of a p130CAS-associated activity of 

a SRC family kinase member (SFK)
88

, FAK phosphorylation by SFK and the recruitment of PI3K 

to FAK
89,90

. Overexpression of CRK in tumour cells leads to an increase in p130CAS tyrosine 

phosphorylation and the activation of an intracellular feedback loop that further increases CRK 

activity and induces motility and the aggressive potential of cancer cells. Therefore, CRK family 

proteins are not simply conduits for intracellular signal transduction but can also control the 

amplitude of signalling.  
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Migration and invasion. In addition to the role of CRK in CAS family-mediated migration and 

invasion, in synovial sarcoma cells lines CRK has a crucial role in response to hepatocyte growth 

factor (HGF) by leading to activation of RAC1 through the sustained binding of CRK to GRB2-

associated binding protein 1 (GAB1), a docking protein that upon c-Met phosphorylation recruits 

CRK proteins. CRK silencing remarkably suppresses tumour formation in human synovial sarcoma 

cell xenografts and invasive growth in vivo91,92
. In glioblastoma cells, CRK over-expression 

increases cell migration and invasion, likely through an association with DOCK180
26

 and its 

silencing suppresses early attachment to laminin, cell motility and growth
27

. Recent studies show 

that CRK is down-regulated by miR-126 microRNA in lung cancer cells resulting in impaired cell 

adhesion, migration and invasion
93

. It is still an open issue as to what regulates the assembly of 

specific CRK complexes in different tumour cells.  

 

The IPP complex (ILK/PINCH and PARVIN) and cancer biology 

The IPP complex has emerged as an essential constituent of integrin containing adhesion sites and it 

can function both as a structural module that connects integrins to actin cytoskeleton and as a 

signalling platform that modulates a variety of cellular processes. It is known that IPP members 

expression in physiological conditions controls normal development and tissue homeostasis. On the 

other hand, correlative studies of the three IPP members in cancer biology are still lacking and only 

the single components have been analysed
6,94

.  

The ILK protein is a central component for the assembly of the IPP complex, where it contributes 

both with its kinase activity and its adaptor features
95-98

. Indeed, ILK adaptor function is required 

for binding to PARVIN  and PARVIN , but while PARVIN  inhibits ILK kinase activity
99

, 

PARVIN  association results in induction of ILK kinase activity
98

. Therefore, the degree of ILK 

kinase activity within the IPP complex might be modulated by its association with different binding 

partners depending on specific cellular cues. The regulation of the kinase activity by the assembly 

of different complexes might also explain the observed role of ILK as an oncogene or a tumor 

suppressor as outlined in the sections below. 

ILK as on oncogene. ILK has been described to be involved in all aspects of cancer cell 

progression. ILK overexpression in epithelial cells leads to cell transformation, invasion, and 

acquisition of survival and mesenchymal properties, supporting a role for ILK as an oncogene
31

. In 

mammary epithelial cells, ILK overexpression triggers EMT, characterized by loss of E-

CADHERIN and -CATENIN in adherence junctions and -CATENIN accumulation in the 

nucleus, leading to increased synthesis and deposition of fibronectin, further supporting the ILK-

dependent EMT
100

. ILK transformed cells undergoing EMT are characterized by increased 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=999
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migration through activation of small GTPases RAC and CDC42 whose activity is inhibited by ILK 

knockdown or suppression of its kinase activity
101

. It has also been observed that ILK over-

expression in intestinal and mammary epithelial cells leads to a highly invasive phenotype resulting 

from MMP9 up-regulation and activation
102

.  

Recently, a new function of ILK in the regulation of the microtubule cytoskeleton and mitotic 

spindle organization has been proposed
103

. Inhibition of ILK expression or activity impairs 

centrosome clustering in several breast and prostate cancer cell lines with centrosome amplification 

and induces mitotic arrest and cell death, demonstrating that inhibiting ILK offers a selective means 

of targeting cancer cells
104

. 

ILK as a tumor suppressor. ILK has also been described as a tumour suppressor in cancer cells. For 

example, ILK expression levels are higher in MCF10A breast epithelial cells compared to breast 

carcinoma cell lines, suggesting that ILK is lost during breast epithelial cell transformation
105,106

. A 

rational for explaining ILK oncogenic and tumour suppressing functions in tumour models has been 

recently established in aggressive paediatric rhabdomyosarcoma (RMS) tumours
107

. RMS tumours 

largely belong either to embryonic RMS (ERMS), or alveolar RMS (ARMS) histology
108

. Herein, 

in vivo and in vitro studies indicate that in ERMS, endogenous ILK suppresses phosphorylation and 

activation of JNK1/c-JUN signalling, causing growth reduction and induction of apoptosis. On the 

other hand, in ARMS, endogenous ILK induces JNK phosphorylation, resulting in enhanced 

growth. Therefore, this work might provide a mechanistic insight into the role of ILK in RMS, as 

well as in other tumours, suggesting that patients should be stratified on the basis of ILK activity 

and JNK1 expression, in order to determine which patients may benefit from ILK inhibition as a 

form of targeted anti-tumour therapy
107

. 

PARVINS and PINCH in cancer biology. While PARVIN  has been shown to promote anti-

apoptotic signalling as a downstream element in ILK signalling,
95,109

, PARVIN behaves as a 

tumour suppressor, by inhibition of ILK signalling. Consistently, in breast cancer cells, PARVIN 

mRNA and protein levels are markedly down-regulated in a number of advanced tumours, and 

also in certain cancer cell lines, together with increases in ILK protein and kinase level activity
36

. 

High levels of PARVIN correlate with increased cell adhesion, induce reversal of anchorage-

independent growth
36

, and attenuation of tumour growth in nude mice
110

. The latter tumour-

suppressive role of PARVIN is consistent with deletions observed in its locus (22q13.21) in some 

colon and breast cancer cells
111

. Consistently, several lines of evidence have implicated PINCH1/2 

as suppressors of apoptosis. For example, in vitro inhibition of PINCH1 expression in HeLa 

cervical, fibrosarcoma, breast, prostate, hepatocellular, lung, and colon carcinomas leads to 

apoptosis
109,112

. In vivo, knockout of PINCH1 in embryonic neural crest cells caused enhanced 
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apoptosis
113

.  

 

The Cap family in cancer biology 

The major function of the p140CAP adaptor in tumour cells is to regulate SRC kinase 

activation
39,40

. In particular, in breast cancer cells, upon cell-ECM adhesion or epidermal growth 

factor (EGF) stimulation, p140CAP activates CSK kinase
40

, which by phosphorylating the 

inhibitory tyrosine on the C-terminal domain of SRC, allows the closure of SRC in an inactive 

conformation
114

 (Figure 4a). Therefore p140CAP represents a new potent regulator of the proto-

oncogene SRC that is able to shift the balance between active or inactive SRC. Consequently, 

integrin signalling dependent on SRC, such as tyrosine phosphorylation of FAK and p130CAS and 

RAC1 activation are impaired in cells expressing high levels of p140CAP 
40

.  

In tumour cells p140CAP also regulates E-CADHERIN-dependent cell-cell adhesion. 

p140CAP regulates cell-cell contact dynamics by increasing the amount of immobilized E-

CADHERIN at the cell surface, thereby regulating the strength of cell-cell adhesion. This 

mechanism also depends on the inhibition of SRC kinase activity
39

. E-CADHERIN is known to 

inhibit EGF receptor (EGFR) signalling, either by interaction through the extracellular domains or 

by a -CATENIN-dependent mechanism
115-117

. Indeed EGFR, RAS and ERK1/2-MAPK activities 

are profoundly impaired when p140CAP is overexpressed and enhanced when it is silenced
39

. 

p140CAP also regulates the RAS pathway through an additional unknown mechanism
39

. Therefore, 

in cancer cells, p140CAP regulates EGFR signalling through a dual mechanism, involving E-

CADHERIN-dependent inactivation of EGFR and a RAS-dependent inhibition of ERK1/2-MAPK 

activity.  

 For the second member of the family, SKT, one report in prostate cancer cells shows that 

KIAA1217 (which encodes SKT) expression is repressed by the androgen receptor, suggesting a 

potential role for SKT as a tumour-suppressor gene whose loss may contribute to prostate 

carcinoma
118

. 

 

Migration and invasion. p140CAP decreases the ability of breast cancer cells to spread on ECM 

proteins and to migrate and invade in in vitro assays. Consistently, p140CAP silencing accelerates 

the early phases of cell spreading on ECM, induces a fibroblastic-like morphology and increases 

motility and invasion
40

. In addition, p140CAP specifically interferes with the ability of both breast 

and colon cancer cells to scatter from a compact colony in response to EGF
39

. The mechanism by 

which p140CAP interferes with cell scatter is based on its ability of p140CAP to immobilize E-

CADHERIN at the cell membrane as described above.  
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Actin cytoskeleton remodelling is a crucial requirement for cell scatter and motility. 

p140CAP has been shown to co-localize with actin stress fibres and cortical actin and to associate 

with proteins involved in actin cytoskeleton dynamics, such as p130CAS, SRC, VINEXIN and 

CORTACTIN
41,42,119

. These findings along with the presence of a putative actin-binding domain in 

p140CAP (Figure 1), suggest that this adaptor could be directly or indirectly involved in actin 

filaments assembly. Whether other p140CAP-binding proteins are also involved in regulating actin 

cytoskeleton organisation and cell motility remains to be investigated. 

 

Proliferation. In addition to cell motility and invasion, the ability of p140CAP to regulate SRC and 

RAS pathways also profoundly affects cell proliferation. Elevated expression of p140CAP in both 

breast and colon cancer cells inhibits proliferation in vitro, but does not affect cell survival
39,40

. 

Interestingly, in breast cancer cells, p140CAP expression controls anchorage-independent growth, 

probably by inhibiting downstream integrin signalling, such as SRC and RAC1 activation
40

. 

Moreover, in breast and colon cancer cell xenografts high levels of p140CAP impair tumour 

formation
39,40

. Consistently, xenografts of p140CAP silenced carcinoma cells dramatically increases 

tumour formation in vivo39,40
. Strikingly, p140CAP knock-down is sufficient for in vivo growth of 

oestrogen-dependent MCF7 breast cancer cells even in the absence of oestrogen pellets, a condition 

in which control cells are unable to grow. These last findings also raise the possibility that 

p140CAP may regulate oestrogen receptor signalling, contributing to breast cancer resistance to 

hormonal therapies. In conclusion, p140CAP behaves as a tumour suppressor protein in breast and 

colon cancer cells, with a broad effect on cell proliferation and tumour growth. 

 

Clinical implications of integrin adaptors  

Growing evidence supports a central role for p130CAS in the acquirement of resistance to breast 

cancer therapy. In oestrogen receptor positive breast cancer cells, p130CAS enhances oestrogen-

dependent cell cycle progression, by associating with oestrogen receptor , SRC kinase and the p85 

subunit of PI3K
120

. BCAR1, which encodes p130CAS, is upregulated in breast tumours resistant to 

tamoxifen
121,122

. Consistently, the over-expression of p130CAS in breast cancer cells induces 

proliferative signals that are not sensitive to treatment with either tamoxifen or oestrogen receptor 

antagonist fulvestrant
121,123

. Although it has been reported that a possible mechanism through which 

p130CAS induces tamoxifen resistance is its binding to BCAR3/AND34, a putative GEF for 

RALA, RAP, and RRAS GTPases
124

, the exact mechanism by which p130CAS and BCAR3 induce 

anti-oestrogen resistance remains unclear. In addition, it has been suggested that both serine and 

tyrosine phosphorylation of p130CAS are required for mediating oestrogen resistance
125,126

.  
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Recently, high levels of p130CAS in human breast cancer have also been associated with 

resistance to the cytotoxic agent doxorubicin. In particular, p130CAS-dependent SRC, AKT, 

ERK1/2-MAPK activation and inhibition of apoptosis are thought to be crucial to confer resistance 

to this cytotoxic agent
127

.  

Although displaying highly conserved structural features with p130CAS, NEDD9 does not 

correlate with oestrogen resistance in breast cancer
126

. However, NEDD9 is overexpressed in 

imatinib-resistant gastrointestinal stromal tumour cells
128

, suggesting that over-expression of a 

specific CAS family adaptor is selective for the acquirement of resistance to therapy in different 

cancer subtypes.  

We can argue that p130CAS and NEDD9 confer resistance to cancer therapy by clustering 

and simultaneously amplifying several signalling pathways involved in cell proliferation and 

survival, thus rendering cancer therapy not effective. It is possible that also the other integrin 

adaptors might mediate resistance to therapy through similar mechanisms. 

The involvement of integrin adaptors in tumour initiation and progression and the 

association with acquired resistance make them suitable targets for cancer therapy. Strategies for 

targeting these adaptors may represent a novel and intriguing approach to interfere with 

tumorigenesis. Silencing of p130CAS, NEDD9, CRK and ILK has provided new insights for the 

therapeutical use of these adaptors molecules. Interestingly, injection of BCAR1-specific siRNAs in 

the mammary gland of transgenic mice harbouring ERBB2-dependent spontaneous adenocarcinoma 

was sufficient to inhibit signalling and to reduce tumour initiation 
11

. This study represents the first 

example of a preclinical study using BCAR1 siRNA in the treatment of ERBB2-dependent breast 

tumours and indicates that p130CAS might be a potential therapeutic target for ERBB2-dependent 

tumours.  

There is now considerable evidence that ILK can be successfully targeted to inhibit tumour 

progression in clinically relevant models of cancer. The use of RNAi and antisense oligonucleotides 

to downregulate ILK expression and small molecule inhibitors to abrogate its kinase activity, has 

been shown to reverse ILK oncogenic effects in a variety of cancers. Indeed inhibition of either ILK 

expression or its activity results in decreased cell migration and invasion, metastasis formation, 

induction of apoptosis in vitro30,129,130
 and in vivo131-133

. In addition, on the basis of the new role of 

ILK in mitosis
103,104

, the potential targeting of ILK as an anti-mitotic chemotherapeutic might 

provide a promising alternative to the chemotherapeutics avoiding severe toxic side effects and drug 

resistance.  

Regarding p140CAP and its potential role as tumour suppressor, the generation of decoy 

proteins that could function as the intact protein into cancer cells, may have significant potential 
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therapeutic applications. Moreover, human breast cancer analysis shows that p140Cap expression is 

inversely correlated with the aggressiveness of malignancy, suggesting that p140Cap can be applied 

in routine diagnosis as a new prognostic factor recognizing low aggressive breast tumours.  

Structure-based design of inhibitors should also be developed to target specific domains of 

these adaptor proteins, in particular regions containing tyrosine or serine residues, or involved in 

binding with specific signalling effectors, such as PI3K, SRC, FAK and AKT. So far, only the 

crystal structure of the p130CAS SH3 domain has been resolved
134

, enabling the search for 

competitors and specific inhibitors of p130CAS-FAK interaction.  

 

Conclusions 

As discussed in this Review, the adaptor proteins of the CAS family, CRK, p140CAP and the IPP 

complex are crucial mediators of strictly interdependent cellular functions, such as survival, 

proliferation and migration, which play a key role in transformation and tumour progression. High 

expression levels of the members of the CAS family, CRK and the IPP complex components 

mainly drive tumorigenesis by enhancing oncogene signalling, sustaining the ability of cells to 

grow in anchorage-independent conditions, and to migrate on and invade the ECM. On the contrary, 

high levels of the p140CAP adaptor negatively regulates tumour phenotype such as cell motility 

and proliferation, thus possessing tumour suppressive activities.  

Since the expression level of these adaptors is crucial for their functions in transformed 

cells, along with extensive immunohistochemistry studies of human cancers, a detailed screening of 

gene or chromosome abnormalities in specific cancer types should be undertaken. Moreover, for all 

of these genes, a deep analysis of the mechanisms that control gene expression, such as promoter 

structure for transcriptional control, miRNA-based regulation of gene expression and epigenetic 

modifications, is needed. Identification of exogenous factors such as growth factors, cytokines and 

chemokines, able to finely tune their relative expression, would also be very important. 

Interestingly, p130CAS and p140CAP behave as opposing regulators of SRC activity in tumour 

cells, suggesting the existence of molecular mechanisms that regulate their expression levels, their 

interaction and the final outcome mediated by the pathway.  

As an additional field of investigation, proteomic analysis should clarify the crucial post-

translational modifications, such as the presence of phosphorylated residues that can contribute to 

the activation of specific signalling pathways by recruiting signalling molecules. Silencing of these 

proteins in different cancer models has been shown to be effective in downregulating or enhancing 

tumour properties, thus emphasising the importance of these adaptor molecules not only as 

prognostic markers but also as potential therapeutic targets. 
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Box1: Integrin signalling and cancer 

 

Integrins are enzymatically inactive receptors, which upon binding to the extracellular matrix 

(ECM) undergo a conformational change that consequently connects extracellular signals to the 

intracellular adaptors molecules, such as those discussed in this review, that elicit signal 

transduction, so-called “outside-in signalling”. Integrins have been profoundly implicated in cancer 

cell proliferation, survival and invasion
1,135,136

. In cancer, integrins are generally aberrantly 

expressed, rather than present as dominant genetic variants. This aberrant integrin expression can 

sustain tumours by activating signalling pathways that lead to inhibition of apoptosis, induction of 

cell proliferation, ECM remodelling, migration and angiogenesis. Integrins are also expressed on 

tumour-associated cells, such as stromal fibroblasts, endothelial and perivascular cells, bone 

marrow-derived cells and platelets. The contribution of these cells to cancer progression is highly 

controlled by integrin signalling
137

. Integrins are also required for metastatic dissemination, 

including tumour cell migration, invasion and colonization of target tissues
138,139

. Integrin-

stimulated pathways are also implicated in the induction of resistance to chemotherapy and ionizing 

radiation in vitro140
. 

One mechanism through which integrins are involved in tumour initiation and progression 

consists of the co-operation between integrins, receptor tyrosine kinases (RTKs) and cytokine 

receptors. Integrins are required for full tyrosine phosphorylation of the receptors, their binding to 

signalling molecules and activation of downstream pathways. These signalling cascades generate 

crucial functional platforms that are important for tumorigenesis, angiogenesis and metastasis 

1,2,141,142
.  

New findings indicate that integrins exert control over the endosomal trafficking of other RTKs, 

such as epidermal growth factor receptor (EGFR), to regulate cell migration and invasion
143

. 

Moreover, enhanced integrin-EGFR trafficking is a key mechanism by which the mutant form of 

tumour suppressor protein p53 can trigger metastasis formation of cancer cells
144

. Therefore, cancer 

cells are strictly dependent on integrin signalling making the unravelling of the role and functions of 

integrin signalling effectors of crucial importance to impact on tumour cell biology.  
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Figure Legends 

Figure 1: Main structural features and interactors of integrin adaptors.  

A) p130CAS consists of an N-terminal SH3 domain, a substrate domain (SD), a serine rich region 

(SRR), and a C-terminal domain (CT). The main interactors are indicated. In particular, SRC family 

kinases (SFKs) bind the CT domain, while the 15 YxxP motifs are phosphorylated by SFK to 

mediate CRK binding. 

B) CRK proteins consist of an N-terminal SH2 domain that binds the phosphorylated SD of 

p130CAS and of two SH3 domains. The first one interacts with C3G, DOCK180 and ABL1. The 

second SH3 domain (not present in CRKI) harbours a crucial tyrosine residue (Y221) that is 

phosphorylated by ARG and ABL1. 

C) A schematic representation of the ILK, PINCH, PARVIN (IPP) complex is shown. Integrin-

linked kinase (ILK) consists of an N-terminal ankyrin repeat (ANK), a plekstrin homology (PH) 

and a C-terminal kinase domain. ILK binds to the LIM1 domain of PARVIN and to the second 

charged amino acid rich domain (CH2) of PINCH. The main interactors of the IPP complex are 

indicated.  

D) p140CAP consists of an N-terminal tyrosine–rich region (Tyr-rich), an actin binding domain 

(ABD), a proline rich domain (Pro1), a coil-coiled region (C1-C2), two domains rich in charged 

amino acids (CH1, CH2) and a C-terminal proline rich domain (Pro2). SRC, p130CAS, EB3 and 

VINEXIN bind to the Pro2 domain of p140CAP. The binding regions of CORTACTIN and CSK 

have yet to be defined.  

 

Figure 2: p130CAS and NEDD9 signalling 

(A) Integrins, receptor tyrosine kinases (RTKs) and oestrogen receptor (ER) are major upstream 

regulators of p130CAS and NEDD9, mainly through the activation of SRC and focal adhesion 

kinase (FAK) kinases, which phosphorylate p130CAS and NEDD9 and form a CAS-SRC-FAK 

complex. Tyrosine phosphorylated CAS proteins recruit the adaptor CRK, which in turn binds to 

several guanine nucleotide exchange factors (GEFS) that switch small GTPases from a GDP-bound 

inactive to a GTP-bound active state, promoting cell migration. Growth factor receptor-bound 

protein 2 (GRB2) binding leads to ERK1-ERK2 and PI3K-AKT activation, which sustains cell 

survival. p130CAS also regulates the invasive program through its interaction with the transcription 

factor CIZ that acts on metalloproteinases (MMPs) promoter.  

(B) In transforming growth factor- (TGF) signalling, p130CAS mediates integrin-dependent 

suppression of TGF–induced apoptosis and growth inhibition. p130CAS binding to SMAD3 

reduces TGF–dependent SMAD3 phosphorylation leading to growth arrest. p130CAS over-
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expression increases SMAD3 coupling to p38 MAPK thus inhibiting TGF-induced growth arrest 

and enhancing the metastatic potential. NEDD9 has been reported as a transcriptional target of 

TGF signalling and enhances cell motility in response to TGF. 

(C) Upon pro-apoptotic stimuli, CAS proteins undergo dephosphorylation by protein tyrosine 

phosphatase-PEST (PTP-PEST, also known as PTPN12) and PTPN1 phosphatases resulting in the 

disassembly of CAS-dependent signalling complexes. Moreover, p130CAS and NEDD9 

dephosphorylation favours caspase-dependent cleavage with the production of smaller fragments 

that bind to E2A and enter the nucleus, contributing to cell death by transcriptional repression of 

CDKN1A (which encodes p21). NEDD9 association with AURORA kinase leads to cell cycle arrest 

due to inhibition of cytokinesis induced by centrosome amplification and multipolar spindles.  

 

Figure 3. The signalling platform formed by the IPP complex.  

The IPP complex is formed by integrin-linked kinase (ILK), PINCH (1 and 2) and PARVIN (  

and ). ILK also associates with the cytoplasmic tails of integrin 1. PINCH isoforms bind to 

receptor tyrosine kinases (RTKs) through the SH2–SH3 adaptor NCK2, thereby coupling growth-

factor signalling to integrin signalling. PINCH1 binds to RAS suppressor protein 1 (RSU1) and 

thymosin-β4 (Tβ4) to influence JUN N-terminal kinase (JNK) signalling and cell migration and 

survival, respectively. PARVIN  and PARVIN  can bind to F-actin directly, as well as indirectly 

through binding to paxillin, HIC5 or -actinin.  

 

Figure 4: p140CAP regulation of intracellular signalling 

A) p140CAP binds directly to the SH3 domain of the SRC and CSK kinases. The formation of this 

molecular complex leads to the activation of CSK, which phosphorylates the inhibitory tyrosine 530 

on SRC. The phosphorylation of this site results in a closed inactive SRC conformation.  

B) Upon cell matrix adhesion or mitogen stimulus, p140CAP inhibits SRC kinase activity and 

downstream signalling, inhibiting the SRC-dependent phosphorylation of tyrosine 925 on Focal 

Adhesion Kinase (FAK) and p130CAS tyrosine phosphorylation. As a consequence, in cells 

expressing high levels of p140CAP, upon integrin-mediated adhesion, the association between SRC 

and FAK is impaired. p130CAS phosphorylation leads to the assembly of a p130CAS-CRK 

signalling complex that drives RAC activation. Consistently, elevated levels of p140CAP severely 

impair integrin-dependent RAC activity, while its down-regulation induces sustained RAC 

activation. Moreover, by inactivating SRC, p140CAP also regulates the EGFR pathway through E-

CADHERIN-dependent inactivation of EGFR signalling. p140CAP functionally interacts with E-

CADHERIN and EGFR at the cell membrane, immobilizes E- CADHERIN at the cell membrane 
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and increases the interaction between E- CADHERIN and EGFR. As an alternative mechanism, 

p140CAP also impairs the RAS pathway. 
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Table I: The expression of integrin adaptors in human tumour malignancies  

Integrin 

adaptor 

Type of malignancy Comments Reference 

p130CAS 

(BCAR1) 

Breast cancer  

 

 

 

ER positive: Resistance to 

tamoxifen treatment, high risk of 

relapse and loss of ER 

expression  

 

ERBB2 positive: Increased 

proliferation and low prognosis 

13,15-17,123 
 

Chronic myelogenous 

leukaemia and acute 

lymphoblastic 

leukaemia 

High levels of expression 
145

 

NEDD9 Melanoma High level of expression in 

metastatic melanoma  

19
 

T-cell leukaemias and 

virally-induced 

leukaemias 

High levels of expression and 

hyperphosphorylation  

146
 

Head and neck 

squamous cell 

carcinoma (HNSCC) 

High level of expression in 

metastatic HNSCC 

20
 

CRK Lung adenocarcinoma, 

colon cancer and 

glioblastoma 

High levels of expression 

correlate with tumour 

aggressiveness, poor prognosis 

and shorter survival  

24-26
 

p140CAP 

(SRCIN1) 

Breast cancer Decreased protein expression 

correlates with increased 

malignancy. 

mRNA expression positively 

correlates with unfavourable 

prognostic factors  

39
 

48
 

ILK Colon cancer, 

melanoma, non-small-

cell lung cancer, gastric 

cancer, pancreatic 

cancer, prostate cancer 

High levels of expression 

correlates with tumour 

progression, metastasis and/or 

poor prognosis 

 

 

45,147-151
 

 

Colorectal cancer, 

ovarian Cancer, 

mesothelioma, Ewing 

sarcoma, primitive 

neuroectodermal 

tumour, 

medulloblastoma 

High levels of expression 

 

152-155
 

PINCH Oesophageal cancer, 

gliomas, oral squamous 

cell carcinoma, 

colorectal cancer, 

Increased protein expression 

correlates with tumour 

aggressiveness  

37,38,156-159 
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ductal and lobular 

breast cancer, prostate 

cancer, lung 

adenocarcinoma, 

squamous and basal 

skin carcinomas, 

melanoma 

PARVIN- Breast cancer  Low expression levels in 

advanced tumors 

36
 

BCAR1, breast cancer anti-estrogen resistance 1; ER, oestrogen receptor; ILK, integrin-linked 

kinase; SRCIN1, SRC kinase signalling inhibitor 1.  
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Table II: Mouse models of integrin adaptors in cancer. 

 

Adaptor Mouse model Phenotype Refs 

p130CAS 

(Bcar1) 

MMTV-Bcar1 Mammary gland hyperplasia during pregnancy 

and delayed involution  

13
 

MMTV-Bcar1;NeuT  Accelerated onset of focal mammary tumours, 

characterized by upregulation of downstream 

signalling pathways, leading to cell survival and 

proliferation  

13
 

NEDD9 MMTVPyMT; Nedd9
-/-

 Delayed mammary tumour onset,
 

reduced 

tumour size and number.  

21
 

CRK MMTV-CRK Alteration of mammary epithelium with low 

incidence of spontaneous mammary epithelial 

tumours 

28
 

ILK MMTV-Ilk  

 

Mammary gland hyperplasia with low frequency 

of tumour formation  

33
 

MMTV-Ilk-wnt1 Acceleration of mammary tumour incidence and 

growth 

35
 

Ilkfl/fl 
; MMTV-Erbb2-

IRES-Cre 

Delayed tumour growth in vivo and inhibition of 

invasive properties in vitro 

34
 

 

Bcar1, breast cancer anti-estrogen resistance 1; ILK, integrin-linked kinase; IRES, internal 

ribosome entry site; MMTV, mouse mammary tumour virus; PyMT, polyoma middle T.  
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Glossary 

 

G3 index: In the classification of human breast cancer, grade 3 (G3) indicates that the cancer has 

spread to lymph nodes, regardless of its size. 

 

Podosomes: A type of ECM contact that is different from focal complexes and focal adhesions. 

They are built around an actin filament core, surrounded by a ring structure of integrin adhesive 

complexes. 

 

Mesenchymal movement: Movement of cells with elongated morphology and a front-back 

polarity, with traction generated through integrin-dependent adhesion. This type of motility requires 

extracellular proteolysis for cell invasion and is thought to depend on RAC1. 

 

Amoeboid motility: This movement is characterized by high speeds, lack of stable polarity and a 

relatively amorphous cell shape and is frequently exhibited by cancer cells. It does not require 

stable integrin-dependent adhesion for traction but depends on RHOA to increase actomyosin 

contractility and allow invasion in the absence of extracellular proteolysis. 

 

Collective motility: Migration of cells as a cohesive group as a hallmark of tissue remodelling 

during wound repair and cancer invasion. It is characterised by cells moving as sheets, strands, 

clusters or ducts rather than individually. 

 

Actin stress fibres: They are a self-assembling, structural component of the cytoskeleton, that 

typically appear as long thick actin bundles that span across the cell body and lie along the ventral 

surface. By binding to myosin, they produce traction forces and resting tension. 

 

Cortical actin: A concentrated layer of actin filaments that lie longitudinally and roughly parallel to 

each other just beneath the plasma membrane. 

 

 

 

http://manual.blueprint.org/Home/glossary-of-terms/mechano-glossary--a/mechano-glossary-actin-filament
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At-a-glance summary 

 

In cancer cells, integrin and growth factor receptor cross-talk leads to the recruitment of integrins 

signalling adaptors to assemble intracellular signalling platforms that result in cellular 

transformation and control of migration and invasion. The biological effects regulated by integrin 

adaptors are dependent on their expression levels and on their phosphorylation status, which 

determine the association with binding effectors. 

 

p130CAS, NEDD9, CRK, the IPP complex (ILK, PINCH and PARVIN), and p140CAP integrin 

adaptors have a profound influence on all aspects of cancer progression, including initiation, 

progression and metastasis. Transgenic and xenograft animal models support the crucial role of 

these integrin adaptors in tumorigenesis. 

 

In several human tumours, high expression of p130CAS, NEDD9, CRK, ILK and PINCH correlates 

with increased disease progression, while the levels of PARVIN  and p140CAP proteins are 

inversely correlated with malignancy. Current knowledge also implicates integrin adaptors in 

acquired resistance to cancer treatment. 

 

In cancer cells, at the molecular level, these adaptors regulate signalling pathways required for the 

control of cell proliferation, survival and for actin cytoskeleton organisation and extracellular 

matrix degradation. These events are fundamental for transformation and cancer progression, 

highlighting the integrin adaptors as key players in the onset of tumorigenesis. 

 

Targeting integrin adaptors by modulating their expression levels or their activity in different types 

of cancer, has been proven to be effective for interfering with malignancy, making the integrin 

adaptors suitable targets for cancer therapy. 

 

 

 

 

 

 


