
14 December 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

DepMiner 1.0

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

Leonardo D'ambrosi home page:http://www.leodambrosi.it/depminer/

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/75802 since



DepMiner: A software prototype for the extraction of
significant dependencies

Rosa Meo and Leonardo D’Ambrosi

University of Torino, Italy

Abstract. We proposeDepMinera software prototype implementing a simple
but effective model for the evaluation of itemsets, and in general for the eval-
uation of the dependencies between the variables on a domainof finite values.
This method is based on∆, the departure of the observed probability of a set of
variables in a database and a referential probability, estimated in the condition
of maximum entropy. It is able to distinguish between dependencies intrinsic to
the itemset and dependencies “inherited” from the subsets:thus it is suitable to
evaluate the utility of an itemset w.r.t. its subsets and to reduce the volume of non
significant itemsets. The method is powerful: at the same time detects significant
positive dependencies as well as negative ones. Since∆ is anti-monotonic it can
be embedded efficiently in algorithms. The system returns itemsets ranked by a
normalized version of∆ and the histogram showing their distribution. It employs
a statistical method for setting a threshold for∆.

1 Introduction

In data mining there exist methods to discover significant dependencies and correlations
between the items of a frequent pattern with computationally efficient algorithms [2,
1, 9]. In order to determine the dependences ink-itemsets withk > 2, either they
make the multi-way independence assumption or they evaluate the contribution to the
overall itemset of each variable separately [4, 12, 13]. Thedifficulty stems from the fact
that there is not an easy way to determine a referential probability of a k-itemsetI
that represents a condition of independence among the subsets if we do not suppose
independence among all the single variables inI. But this latter simple, independence
condition gives a problem: according to this definition of independence, if a dependency
already exists in a subset ofI, this dependency is “inherited” from the subset toI and
to all the supersets ofI [2]. Thus we do not have a way to distinguish if an intrinsic
dependency exists in an itemsetI in addition to the dependencies inherited from its
subsets.

We proposed in [6] a solution based on the probabilityPE(I) thatI would have in
the condition of maximum entropy ofI. The interestingness measure that we proposed
for an itemsetI is:

∆(I) = P (I) − PE(I)
whereP (I) is the observed relative frequency ofI. A similar approach is proposed

in [10] based on K-L divergence.
PE(I) is not computed by assumption that singletons are independent. Instead it

takes in consideration the actual probability of occurrence of each subset ofI, as ob-
served from the database. Thus, if the dependency of an itemset I is intrinsic, due to



the synergy between all its items, then its probabilityP (I) departs with respect to its
estimatePE(I).

∆(I) decreases with the increase in the cardinality of itemsets.As a consequence,
∆ is not a suitable measure to compare itemsets of different cardinality. For this purpose
we employ∆n, a version of∆ normalized w.r.t. the probability of the itemset:

∆n(I) =
P (I) − PE(I)

P (I)

Thus with∆n(I) we make emerge the intrinsic, actual dependencies, existing among all
the items inI. In the system prototype we employ∆n as a measure to rank the itemsets
and present the resulting ranking in an interactive dashboard. Figure 1 shows a screen-
shot of the dashboard with the itemsets ranking fromMushroom(UCI Repository).
At the top of the ranking there are itemsets with a positive value of ∆n: they are the
itemsets whose frequency is higher than expected. On the contrary a negative value of
∆n occurs when their frequency is lower than expected.

2 Setting a threshold for∆

Another problem that we have to solve is how large must be∆n such that an itemset is
deemed significant. In order to determine the range of valuesof ∆n that correspond to
significant dependencies we use a randomized version of the dataset [5]. In a random-
ized dataset there are not dependencies between the variables by definition (because
variables values are located randomly).

At a successive step, we extract itemsets from the randomized dataset and later
compute∆n from them. Finally we compare∆n extracted in the real data and∆n in
the randomized data. We run a statistical test on∆n and accept as dependent an itemset
if its ∆n is higher than the maximum∆n of the itemsets extracted from the randomized
data. Thus the maximum value of∆n observed in randomized data constitutes a lower
bound of accepted values in real data. Similarly, for the minimum (negative) value.

Consider the datasetMushroom. After randomization, we observed the maximum
value of∆n = 0.04 while the minimum value is∆n = −0.03. In real data, the max-
imum is ∆n = 0.85 and the minimum is∆n = −0.45. Thus it is evident that in
Mushroomthe positive dependencies are more abundant and more markedwhile the
negative dependencies are few and less evident. In Figure 1 we show one screen-shot
of our system prototype,DepMiner, with the list of itemsets extracted fromMushroom.
The itemsets with a significant dependency are shown over a green background while
non significant ones are shown over a yellow background.

In Figure 2 we show another screen-shot that presents in different colors the his-
tograms of the extracted itemsets. In red we show the itemsets extracted from real data;
in blue the itemsets from randomized data. Each bin represents the number of obtained
itemsets (shown at the Y-axis) with a value of dependency equal to ∆n (shown at the
X-axis). The bins with a positive value of∆n represent a positive dependency. If their
position in the distribution is at the right of the extreme position of the blue bins they
represent itemsets with a significant positive dependency because a value of∆n such
extreme has never been observed in random data. Similarly for the red bins on the left of



the minimum position of the blue bins: they are the itemsets with a significant negative
dependency.

Fig. 1. Screen-shot: ranking of itemsets (Mush-
room).

Fig. 2. Histograms of Delta onMushroom(in
red) and on its randomization (in blue).

3 Prototype description

DepMineris implemented in java (1.6.0.12) and runs on a laptop. It uses Apache POI
HSSF library for I/O. The core of the algorithm for frequent itemsets extraction is LCM
FIMI algorithm (4.0) [11], the winner of the FIMI’04 competition. This algorithm is
treated as a black-box and could be substituted by any other algorithm supporting the
same I/O format. The system performs the following tasks:

1. presents an input form in which the user selects the dataset variables;
2. helps to user in the setting of the FIMI parameters values (minsup);
3. run the FIMI algorithm and builds the item-trie from its result;
4. explores the item-trie depth-first by enforcing anti-monotonicity of∆n (see [8]);
5. computes∆ by the algorithm described in [7];
6. computes∆n and generates the itemsets ranking on its basis;
7. randomization of the dataset;
8. repeats steps 1-4 on the randomized dataset;



9. finds the significant range of values of∆n in real data by comparison with random-
ized data;

10. plots the ranking and the histogram on both the datasets.

The output of the itemsets ranking is implemented as a web page in HTML. An ex-
ample is shown in Figure 1. GUI is implemented on JFreeChart,an open source library
in java for the rendering of graphics and diagrams. It allowsto explore the itemsets rank-
ing by changing the criteria of ordering (by items, or by ascending/descending values
of ∆n).

Figure 2 shows another screen-shot ofDepMiner. The user can zoom on specific
areas of the histogram and observe in more detail the distribution of∆n. It is instructive
to observe the different distributions obtained in sparse and dense data. Usually dense
data have higher bins, located at more extreme positions. Onthe contrary, in sparse data
∆n values are lower and more scattered.

4 Concluding Information

We have presentedDepMinersystem, implementing a method for the extraction of sig-
nificant dependencies between the values assumed by database variables. We quantify
the volume of these dependencies by the histogram of∆. In [8] we have conducted
an extensive experimental session in which we compared the rankings of the itemsets
obtained from DepMiner and from MINI [4]. DepMiner gave goodresults by compari-
son of the rankings byγ. Furthermore, itemsets with a significant dependency provide
a better capability to compress results in comparison with Non Derivable Itemsets [3].

In DepMiner the user can set the parameter values guided by the system, explore the
results in an interactive way, change the itemsets ranking criteria and zoom details in
the statistical reports. From DepMiner web site (http://www.leodambrosi.it/depminer/)
it is possible to download a video.

References

1. C. C. Aggarwal and P. S. Yu. A new framework for itemset generation. In Proc. PODS,
1998.

2. S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association
rules to correlations. InProc. SIGMOD, 1997.

3. T. Calders and B. Goethals. Non-derivable itemset mining. Data Min. Knowl. Discov., 14(1),
2007.

4. A. Gallo, T. D. Bie, and N. Cristianini. Mini: Mining informative non-redundant itemsets.
In PKDD, 2007.

5. A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining results via
swap randomization. InProc. KDD, 2006.

6. R. Meo. Theory of dependence values.TODS, 45(3), 2000.
7. R. Meo. Maximum independence and mutual information.TOIT, 48(1), January 2002.
8. R. Meo and L. D’Ambrosi. Depminer: A software prototype for the extraction of dependen-

cies.Technical Report, University of Torino, http://www.di.unito.it/˜ meo, May 2009.
9. E. Omiecinski. Alternative interest measures for miningassociations in databases.TKDE,

15(1), 2003.
10. N. Tatti. Maximum entropy based significance of itemsets. In Proc. ICDM, 2007.
11. T. Uno, T. Asai, Y. Uchida, and H. Arimura. Lcm v2. InFIMI’04 .
12. D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy-aware top-k patterns. InKDD,

2006.
13. X. Zhang, F. Pan, W. Wang, and A. B. Nobel. Mining non-redundant high order correlations

in binary data.PVLDB, 1(1), 2008.


