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ABSTRACT  24 

The age of high-pressure metamorphism is crucial to identify a suitable tectonic 25 

model for the vast Variscan orogeny. Banded HP granulites from the Gesso-Stura 26 

Terrain in the Argentera Massif, Italy, have been recently described (Ferrando et al., 27 

2008) as relict of high-pressure metamorphism in the western part of the Variscan 28 

orogen. Bulk rock chemistry of representative lithologies reveals intermediate silica 29 

contents and calc-alkaline affinity of the various cumulate layers. Enrichment in 30 

incompatible elements denotes a significant crustal component in line with intrusion 31 

during Ordovician rifting. Magmatic zircon cores from a Pl-rich layer yield scattered 32 

ages indicating a minimum protolith age of 486±7 Ma. Carboniferous zircons 33 

(340.7±4.2 and 336.3±4.1 Ma) are found in a Pl-rich and a Pl-poor layer, 34 

respectively. Their zoning, chemical composition (low Th/U, flat HREE pattern and Ti-35 

in-zircon temperature) and deformation indicate that they formed during the high-36 

pressure event before decompression and mylonitisation. The proposed age for high-37 

pressure metamorphism in the Argentera Massif proves that subduction preceded 38 

anatexis by less than 20 Ma. The new data allow a first-order comparison with the 39 

Bohemian Massif, which is located at the eastern termination of the Variscan orogen. 40 

Similarities in evolution at either end of the orogen support a Himalayan-type 41 

tectonic model for the entire European Variscides. 42 

Keywords HP granulites, U-Pb geochronology, zircon, Variscan belt.   43 

 44 
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1. Introduction 46 

The Variscan orogeny (~380-300 Ma) is the geological event most largely 47 

represented in the basement of the European continent. It was assembled between 48 

Ordovician and Carboniferous from the larger collision of Gondwana with the 49 

northern plate of Laurentia-Baltica, which involved the microplates of Avalonia and 50 

Armorica (Matte, 2001). Variscan units extend from southern Spain (the Ibero-51 

Armorican termination) to Poland (the Bohemian Massif). Large remnants of Variscan 52 

basement are preserved in the southern Variscides, within the Alpine chain, where 53 

they are located in external positions. In the Western and Central Alps, such 54 

remnants are identified as External Crystalline Massifs, which record the general 55 

evolution common to all Pangean Europe (von Raumer et al., 2009).  56 

A series of tectonic models have been proposed for the assembly of this vast 57 

orogen. Early models favour Himalayan-style collision with subduction of a small 58 

ocean rapidly followed by intense continent-continent collision leading to Barrovian 59 

metamorphism and extensive crustal anatexis in the Late Carboniferous (summary in 60 

O'Brien, 2000). More recently, Andean-style tectonics has been proposed, at least for 61 

the eastern termination of Variscan Europe (Bohemian Massif). The Andean model 62 

prefers a long lasting subduction process with development of blueschist terranes, 63 

extensive arc magmatism in the upper plate and formation of back-arc basins 64 

(Schulmann et al., 2009).  65 

One crucial piece of information that is necessary in order to better define a 66 

suitable geodynamic model for the Variscan orogen is the absolute and relative ages 67 

of subduction (as seen in relicts of eclogites) versus the onset of regional anatexis. 68 

Whereas the latter event is reasonably well constrained across the western European 69 

Variscan basement at around 320-310 Ma (e.g. Demoux et al., 2008; Rubatto et al., 70 

2001), the scarcity of eclogite facies rocks and their poor preservation have 71 
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hampered robust dating of Variscan high-pressure (HP) assemblages. Some 72 

constraints exist for the eastern part of the orogen (Bohemian Massif, Kröner et al., 73 

2000; Schulmann et al., 2005), but ages of HP assemblages are lacking in the 74 

western part. This contribution presents the first geochronological constraints 75 

(SHRIMP U-Pb dating of zircon) on HP assemblages recently described in the 76 

Argentera Massif. This is a crucial record for the External Crystalline Massifs and for 77 

most of the western portion of the European Variscan orogen.   78 

 79 

2. Geological background and previous geochronology 80 

The Argentera Massif is located in NW Italy, on the border with France. It is the 81 

southernmost of the External Crystalline Massifs, which are a series of large crustal 82 

bodies aligned on the external part of the western and central Alpine chain (Fig. 1a). 83 

They are generally composed of a complex Variscan basement intruded by Permian 84 

granitoids. Alpine overprint in these Massifs is weak and commonly limited to shear 85 

zones. The exhumation of the External Crystalline Massifs from below the Alpine 86 

sediments initiated in the Miocene (e.g. Bigot-Cormier et al., 2006), at the end of the 87 

Alpine orogeny.  88 

The Argentera Massif is largely composed of Variscan migmatites with abundant 89 

relicts of pre-anatectic rock types. At the centre of the Massif, a post-Variscan 90 

granite (the Central Granite, Fig. 1b) cuts across the foliation. The Massif is 91 

subdivided into two major complexes on the basis of different lithological 92 

associations: the Gesso-Stura Terrain in the NE, and the Tinée Terrain in the SW. A 93 

large shear zone, the Ferriere-Mollières Line, separates the two Terrains. The studied 94 

Frisson Lakes area is located at the eastern tip of the Gesso-Stura Terrain, which is 95 
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mainly composed of migmatitic ortho- and para-gneisses, with various intrusive 96 

bodies from mafic (Bousset-Valmasque Complex) to granitic in composition. 97 

A Late- to Mid-Carboniferous age (≤323± 12 Ma) of migmatisation in the 98 

Argentera Massif has been proposed on the basis of a zircon lower intercept age 99 

obtained for the Meris eclogite (Rubatto et al., 2001), the only relict of fresh eclogite 100 

so far dated. Migmatisation in the Gesso-Stura Terrain must have occurred after the 101 

intrusion of monzonites (332±3 Ma, Rubatto et al., 2001), which show signs of 102 

partial melting, and before the intrusion of the Central Granite (~285-293 Ma, 103 

Ferrara and Malaroda, 1969). For the Tinée Terrain, an earlier age (~350 Ma) of 104 

metamorphism has been proposed on the basis of scattering Ar-Ar ages of muscovite 105 

from gneisses (Monié and Maluski, 1983). Alpine low-grade overprint along shear 106 

zones occurred in or before the Early Miocene (Corsini et al., 2004).  107 

Additional constraints on Variscan migmatisation come from the nearby massif of 108 

Tanneron (Fig. 1a), SE France, where migmatitic rocks contain monazites dated 109 

between ~317 and 309 Ma (Demoux et al., 2008). In contrast, in Variscan Corsica, a 110 

few zircon rims in a migmatitic paragneiss yielded an age of 338±4 Ma (Giacomini et 111 

al., 2008), interpreted as dating “incipient migmatisation”.  112 

Geochronology of pre-anatectic events in the Argentera Massif is scarce and 113 

mainly limited to magmatic activity. U-Pb zircon dating has returned the age of Late 114 

Ordovician bimodal magmatism (~440 and 460 Ma) and of Carboniferous monzonites 115 

(Rubatto et al., 2001). Previous attempts to date metamorphic rocks either returned 116 

contrasting results (Paquette et al., 1989) or failed to date metamorphism (Rubatto 117 

et al., 2001).  118 

 119 

3. Analytical methods 120 
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Whole-rock major- and trace-element compositions were analysed at the Chemex 121 

Laboratories (Canada) using ICP-AES (major elements) and ICP-MS (trace elements). 122 

The precision for the analyses is better than 1% for major elements and better than 123 

5% for trace elements. Zircons were prepared as mineral separates mounted in 124 

epoxy and polished down to expose the grain centres. Cathodoluminescence (CL) 125 

imaging was carried out at the Electron Microscope Unit, The Australian National 126 

University with a HITACHI S2250-N scanning electron microscope working at 15 kV, 127 

~60 µA and ~20 mm working distance.  128 

U-Pb analyses were performed using a sensitive, high-resolution ion microprobe 129 

(SHRIMP II) at the Research School of Earth Sciences. Instrumental conditions and 130 

data acquisition were generally as described by Williams (1998). The data were 131 

collected in sets of six scans throughout the masses. The measured 206Pb/238U ratio 132 

was corrected using reference zircon (417 Ma, Black et al., 2003). Due to the 133 

generally low Th/U in the analysed zircons, data were corrected for common Pb on 134 

the basis of the measured 208Pb/206Pb ratio and assuming concordance, as described 135 

in Williams (1998). Age calculation was done using the software Isoplot/Ex (Ludwig, 136 

2003) and assuming the common Pb composition predicted by Stacey and Kramers 137 

(1975). U-Pb data were collected over a single analytical session with a calibration 138 

error of 1.6 % (2 sigma). Finally, whenever the error of an average age was less 139 

than the calibration error, an error of 1 sigma % was added in quadratic. Average 140 

ages are quoted at 95% confidence level (c.l.). 141 

Trace element analyses of zircon were performed on the grain mount with a Laser 142 

Ablation – ICP-MS at the Research School of Earth Sciences, using a pulsed 193 nm 143 

ArF Excimer laser with 100 mJ energy at a repetition rate of 5 Hz (Eggins et al., 144 

1998) coupled to an Agilent 7500 quadrupole ICP-MS. A spot size of 24 or 54 µm 145 

was used according to the dimension of the growth zone of interest. External 146 
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calibration was performed relative to NIST 612 glass and internal standardisation 147 

was based on stoichiometry silica. Accuracy of the analyses was evaluated with a 148 

BCR-2G secondary glass standard and is always better than 15%. During the time-149 

resolved analysis, contamination resulting from inclusions, fractures and zones of 150 

different composition was monitored for several elements and only the relevant part 151 

of the signal was integrated.  152 

 153 

4. Sample description and chemistry  154 

The two samples investigated are part of a mafic sequence, with mylonitic 155 

structure, which conists of alternating layers (up to about 10 cm thick) of Pl-poor and 156 

Pl-rich HP granulite, and of minor mafic boudins of Pl-poor HP granulite (Fig. 2 and 157 

3a). The sequence is exposed at Frisson Lakes along the ridge between Val Grande 158 

di Vernante and Val Gesso, N of Passo della Mena; in the small hill W of the lower 159 

Frisson Lake (2055 m a.s.l.); along the polished outcrops S of the lower Frisson 160 

Lake; and in the small hill E of the lower Frisson Lake (Fig. 2). In the field, the mafic 161 

sequence constitutes an E-W band, about 200 m thick and 500 m long, surrounded 162 

by Variscan migmatitic granitoid gneiss (‘‘biotite anatexite’’ of Malaroda et al., 1970), 163 

i.e. the dominant rock type in the area and across the entire Gesso-Stura Terrane. 164 

The mafic sequence is elongated in a direction roughly parallel to the general trend 165 

of the regional foliation in the Frisson area. However, at the outcrop scale, the 166 

mylonitic foliation of the HP granulite is cut by the “igneous” fabric of the migmatitic 167 

granitoid gneiss. Notably, no sign of melting is observed within the mafic sequence.  168 

 169 

The two samples dated have similar assemblages, but different proportions of 170 

major minerals. The Pl-rich HP granulite (sample A1553, Fig 3a) has a banded 171 

structure and contains plagioclase (35 vol.%), garnet (30 vol.%), quartz (20 vol.%), 172 
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and minor clinopyroxene, amphibole and biotite (15 vol.%). The mylonitic foliation 173 

wraps around large garnet porphyroblasts (0.5-1 cm across) and smaller garnet 174 

grains are found in the foliation (Fig. 3b). The Pl-poor HP granulite (sample A1554, 175 

Fig 3c) occurs as a 10-15 cm thick mafic boudin (Fig. 3a). It mainly consists of 176 

garnet (55 vol.%), clinopyroxene (20 vol.%) and amphibole (15 vol.%), whereas 177 

plagioclase, biotite and quartz are rare (10 vol.%). The samples were part of the 178 

petrographical and petrological study of Ferrando et al. (2008) and we report here 179 

only a brief summary of their conclusions.  180 

Both rock types contain several generations of minerals which, coupled with 181 

thermobarometric data, allow four metamorphic stages to be defined (Fig. 4). The 182 

granulite-facies HP-HT peak (stage A: 735±15°C, ~1.38 GPa) is characterised by the 183 

growth of the core of porphyroclastic garnet, and omphacite in stable association 184 

with plagioclase, rutile ± amphibole ± quartz. The first decompression (stage B 185 

~710°C and 1.10 GPa) corresponds to the growth of the rim of porphyroclastic 186 

garnet and omphacite in equilibrium with a second generation of plagioclase, rutile ± 187 

amphibole ± quartz. Mylonitisation (stage C) was characterised by the growth of 188 

neoblastic garnet, diopside, plagioclase, titanite ± amphibole ± quartz, and occurred 189 

at amphibolite-facies conditions, i.e pressures of 0.85 GPa and still relatively HT 190 

(665±15°C). Finally, during stage D (500 < T< 625 °C; P < 0.59 GPa) plagioclase 191 

and amphibole symplectites replaced the rims of garnet and clinopyroxene. No 192 

evidence was found for the involvement of the mafic sequence in the anatexis 193 

responsible for the Argentera migmatites. Lack of migmatisation of the mafic 194 

sequence is attributed to its more refractive composition when compared to the 195 

surrounding migmatites (Ferrando et al. 2008). 196 

This P-T evolution was further supported by pseudosections, which, for the 197 

chosen composition, predict mineral assemblages that are consistent with those 198 
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observed (Ferrando et al., 2008). This evolution and the peak metamorphic 199 

conditions are similar to those recorded by relict eclogites within the Argentera 200 

Massif (Val Meris eclogite, Colombo, 1996; Rubatto et al., 2001). This and other 201 

arguments prompted Ferrando et al. (2008) to conclude that the Frisson Lakes HP 202 

granulites and the Meris eclogites underwent the same metamorphism and that the 203 

two rock types preserve different peak assemblages because of their different bulk 204 

composition.   205 

 206 

A mafic boudin (the Pl-poor HP granulite of sample A1554) and three layers of the 207 

banded HP granulite sequence were analysed for bulk rock chemical composition 208 

(Table 1). Major element chemistry indicates a common calc-alkaline composition for 209 

all four samples. SiO2 varies between 46 and 56 wt% according to the different 210 

proportion of plagioclase+quartz to pyroxene+garnet in the chosen level. The mafic 211 

boudin is enriched in Ca, Fe and Mg and depleted in Si and Na with respect to the 212 

mafic and intermediate layers (similar to the Pl-rich HP granulite of sample A1553) 213 

within the banded HP granulite sequence. As for trace elements, the four samples 214 

have similar trends, with the mafic boudin (A1554) being lower in most elements. 215 

Normalized patters (Fig. 5) are around 10 times primitive mantle for the HREE and 216 

rise to 100 times for Rb and Ba, with Ce reaching 200-500 times primitive mantle.  A 217 

marked positive anomaly for Pb and K, and negative anomaly for Th and Ti are 218 

present.  219 

Relative to each other, the intermediate layer is the richest in incompatible 220 

elements and thus likely to be more similar to a melt composition. The mafic boudin 221 

is enriched in compatible elements such as Cr and Ni, and contains a similar amount 222 

of HREE as the intermediate layer.  223 

 224 
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5. Zircon U-Pb geochronology and trace element geochemistry  225 

The Pl-rich HP granulite (A1553) contains abundant zircon crystals which are 226 

clear, colourless to light pink and generally euhedral, with dimension varying from 227 

100 to 500 µm in length. The zircon internal structure is characterised by large cores 228 

containing composite growth domains. Microstructurally, the youngest components in 229 

the cores are large areas with broad-banded oscillatory-zoning (Fig. 6). Cores with 230 

low CL emission and patchy zoning, likely to indicate metamictization, are also 231 

present. The zircon cores commonly contain sealed fractures or deformation 232 

structures as described in mylonitic rocks (Kaczmarek et al., 2008; Reddy et al., 233 

2006). Thin, unzoned rims are present in numerous crystals but only occasionally 234 

reach a size that is suitable for SHRIMP analysis (20µm).  235 

SHRIMP analyses were concentrated on the texturally younger parts of the cores 236 

and on the unzoned rims. Core apparent ages scatter along Concordia between ~500 237 

and 350 Ma with a consistent group of the five oldest analyses defining a Concordia 238 

age of 486±7 Ma (Fig. 7).  239 

The 18 analyses on rims yielded Caboniferous ages (Table 2) that, with the 240 

exception of two, define a Concordia age of 340.7±4.2 Ma (Fig. 7). Two analyses are 241 

statistically younger and are suspected of Pb loss. Notably, the youngest analysis on 242 

a zircon core is within error of the age of the rims.   243 

Core and rim domains are distinct on the basis of their chemical composition 244 

(Tables 2 and 3). There is significant overlapping in U contents between the two 245 

domains, but the cores are generally richer in Th, resulting in higher Th/U (>0.3). 246 

Cores are richer in REE and have a strong enrichment in HREE, whereas the rims 247 

have a generally flat HREE pattern at 10-100 times chondrite (Fig. 8). Rims also have 248 

a small negative or absent Eu anomaly, whereas the cores have a marked negative 249 

Eu anomaly (Eu/Eu* < 0.4).  250 
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Ti contents in the cores vary between 5 and 17 ppm (Table 3), which translate in 251 

temperatures between 690-790 °C (Watson and Harrison, 2005). Zircon rims show 252 

restricted variations in Ti content with respective temperatures of 710-770 °C. Such 253 

temperatures are assuming rutile to be the buffering Ti phase, whereas T would be 254 

~50 °C higher if zircon grew in a titanite or ilmenite-bearing assemblage. In this 255 

sample, rutile is the stable Ti-phase during HP metamorphism (stage A-B of Fig. 4, 256 

Ferrando et al., 2008), and reacted to form titanite and then ilmenite during 257 

decompression (stage C-D of Fig. 4, Ferrando et al., 2008).  258 

The zircon cores in this Pl-rich HP granulite contain inclusions of plagioclase, 259 

biotite, amphibole with composition similar to that found in basic layers (Ferrando et 260 

al., 2008), and chlorite, phengite, apatite, quartz, rare rutile and K-feldspar. 261 

However, these mineral inclusions are only contained in the cores and commonly 262 

along fractures (Fig. 6).  We interpret the inclusion assemblages as the combination 263 

of inherited and secondary minerals that offer no insight on the condition of zircon 264 

crystallization. Notably, no inclusion is contained in the ~ 340 Ma rims. 265 

 266 

The Pl-poor HP granulite is relatively poor in zircon compared to its Pl-rich 267 

counterpart. The zircons are clear, pink to light red in colour, and commonly have a 268 

rounded shape. Their size is comparable to the other sample with diameters of 100-269 

500 µm.  The internal structure is somewhat simpler, with most grains having 270 

concentric broad-banded and sector zoning (Fig. 6). Fractures and deformation 271 

features are present in about 50% of the grains. In several grains, thin bright rims 272 

surround the cores, but only in a few cases their size allowed location of the ion 273 

beam.  274 

The zircon cores with sector zoning yielded ages between ~346 and 320 Ma, with 275 

three rim analyses returning ages in the middle of this range. Cumulatively these 276 
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analyses define a Concordia age of 336.3±4.1 Ma, excluding two statistically younger 277 

analyses (Fig. 7). Out of the few texturally older cores, which have a different CL 278 

zoning pattern, a single one was analysed and yielded a discordant 206Pb/238U age of 279 

378±6 Ma (Table 2).  280 

The zircons contain amounts of U variable over more than an order of magnitude, 281 

with the rims having the lowest concentrations. Th is generally low and Th/U <0.15. 282 

For the cores, REE patterns are enriched in HREE with respect to the LREE and show 283 

a moderate negative Eu anomaly (0.5-0.6, Fig. 8). In comparison, the zircon rims are 284 

distinguished because they have the lowest REE concentrations, limited HREE 285 

enrichment and a weak negative Eu anomaly (0.7-0.9).  286 

Ti contents are between 6 and 11 ppm, with no measurable difference between 287 

cores and rims (Table 3). Ti-in-zircon thermometry (Watson and Harrison, 2005) 288 

returns T of 700-750°C. This is again assuming formation in a rutile-bearing 289 

assemblage with T ~50°C higher if zircon grew during decompression when ilmenite 290 

was likely to be stable (Ferrando et al., 2008). Since the sample contains only rare 291 

quartz the activity of SiO2 may have been <1. Lower SiO2 activity will shift calculated 292 

temperatures toward lower values (N. Tailby, personal communication).  293 

Mineral inclusions of biotite and plagioclase are present in zircon grains that have 294 

disturbed CL patterns with patchy alteration and fractures, or in cores of possible 295 

inherited nature. This suggests that the inclusions are mainly secondary or inherited 296 

and thus do not offer significant information for the age interpretation.  297 

 298 

6. Discussion 299 

6.1. Chemistry and age of the protolith  300 
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The bulk rock chemistry of the different layers varies significantly, indicating that 301 

the layers either represent different stages of melt evolution or are due to cumulus. 302 

The relative enrichment in the basic boudin of compatible elements such as Cr and 303 

Ni, despite similar enrichment in incompatible elements, indicates that it is likely to 304 

be a cumulate rather than a more primitive melt. Similarly, with respect to the Pl-305 

poor boudin, the Pl-rich layer is enriched in Si and Sr, but relatively low in 306 

incompatible elements with respect to the intermediate layer, suggesting that its 307 

protolith was a plagioclase cumulate rather than a more evolved melt. The 308 

intermediate layer is taken as most similar to the initial liquid composition because of 309 

its enrichment in incompatible elements and moderate Si content. The protolith of 310 

this layer was likely to be between gabbro, for its Si content, and diorite for its 311 

relatively high Al and low Mg, Fe and Ca. When compared to continental crust and 312 

arc magmas (Fig. 5) the intermediate layer shares several trace element features 313 

(strong Cs enrichment, Pb and K positive anomaly, Nb and Ta depletion, Zr and Hf 314 

relative enrichment and Ti negative anomaly) with the continental crust.  315 

In summary, the Frisson Lakes mafic sequence is likely derived from a mafic, 316 

layered intrusion with Pl-rich and Pl-poor (Cpx-rich) cumulus layers. The parental 317 

magma was gabbroic to dioritic in composition with a strong crustal component. The 318 

presence of inherited magmatic zircon is in line with a mafic parental magma with 319 

crustal affinity.  320 

 321 

The zircon cores offer some insight into the age of the protolith of the HP 322 

granulites. The texturally younger growth zone in the zircon cores shows oscillatory 323 

zoning, it has uniform chemical composition (Fig. 8) but variable U-Pb ages. These 324 

domains have signs of deformation and intense fracturing (Fig. 6), which have been 325 

previously demonstrated to favour Pb loss (e.g. Reddy et al., 1999). During the 326 
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intense deformation, Pb could have easily diffused out of the crystal, whereas trace 327 

elements, which are more compatible in zircon, were retained. This decoupling of Pb 328 

and other elements has been extensively documented, for example, in inherited 329 

zircons within ultra-HP rocks of the Dabie-Sulu terrain (Xia et al., 2009). The 330 

relatively high Th/U ratio, the steep HREE pattern and the marked negative Eu-331 

anomaly measured in the zircon cores are common features of magmatic zircons 332 

(Hoskin and Schaltegger, 2003; Rubatto, 2002). We thus suggest that the texturally 333 

younger, and volumetrically dominant part of the zircon cores formed during 334 

magmatic crystallization of the protolith. The U-Pb system of these cores was partly 335 

reset during the intense deformation associated with Variscan metamorphism (see 336 

Section 6.2.). In such a scenario, the minimum age for the crystallization of the 337 

magmatic zircon cores is constrained by the oldest ages measured in such domains, 338 

i.e. 486±7 Ma. The presence of metamorphic mineral inclusions in the zircon cores 339 

(e.g. rutile) apparently contradicts this conclusion. However, the fact that such 340 

inclusions occur mainly along fractures and deformation features makes their 341 

petrological significance dubious.     342 

Mafic magmas of Cambro-Ordovician age are reported across the External 343 

Crystalline Massifs. The most prominent in size is the Chamrousse ophiolite 344 

(Belledonne Massif, ~150 km NNW of the Argentera Massif), which formed at 496±6 345 

Ma in a back-arc basin (Ménot et al., 1988). The Chamrousse ophiolite is largely 346 

composed of ocean floor tholeiites that are only marginally enriched in LREE and lack 347 

the prominent crustal signature seen in the Frisson Lakes rocks (Bodinier et al., 348 

1982). Other Ordovician mafic rocks are disseminated within the External Crystalline 349 

Massifs (Guillot and Menot, 2009; Ménot and Paquette, 1993; Rubatto et al., 2001), 350 

occur as relatively small bodies within the crustal basement, are often associated 351 

with Si-rich magmas, and are generally overprinted by high-grade metamorphism. 352 
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Their age varies between ~480 and 460 Ma and, similarly to the Frisson Lakes mafic 353 

sequence, they show high degree of crustal contamination. This Ordovician bimodal 354 

magmatism related to rifting is also known in the Massif Central (e.g. Pin and Marini, 355 

1993) and is widespread in the Bohemian Massif, where it appears to be somewhat 356 

older (~500 Ma, e.g. Turniak et al., 2000). In our opinion, the chemical features of 357 

the Frisson Lakes mafic sequence can be better reconciled with those of this 358 

Ordovician bimodal magmatism (Bodinier et al., 1982; Guillot and Menot, 2009), of 359 

which the Frisson Lakes sequence would represent an early stage.   360 

 361 

6.2. Age and conditions of metamorphism  362 

Zircon rims in the Pl-rich HP granulite and sector zoned domains in the Pl-poor HP 363 

granulite yielded indistinguishable Carboniferous ages at ~340 Ma (340.7±4.2 and 364 

336.3±4.1 Ma, respectively). The low Th/U of the zircon rims in the Pl-rich HP 365 

granulite is a common feature of metamorphic zircon and can be ascribed to the 366 

formation of a Th-rich phase such as monazite, which is abundant in this sample. 367 

The HREE depletion in the zircon rims is in line with formation, before or during 368 

zircon crystallization, of metamorphic garnet that sequestrated HREE from the 369 

reactive rock bulk (Rubatto, 2002). The zircon rims lack a significant negative Eu 370 

anomaly, which is also absent in the other metamorphic minerals such as omphacite, 371 

garnet and plagioclase (own unpublished data). Ti-in zircon thermometry indicates 372 

temperatures of at least 700-770°C, which are within that reported for the HP peak 373 

(735±15 °C, Ferrando et al., 2008) but generally higher than those of the first 374 

retrogression stage (709±2°C, Ferrando et al., 2008). All these chemical features are 375 

interpreted to indicate zircon rim formation during HP granulite-facies 376 

metamorphism.  377 
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Notably, the calculated Y and HREE partitioning between the ~340 zircon rims 378 

and garnet, which has little zoning, returns values far lower than any published 379 

equilibrium partitioning (Rubatto and Hermann, 2007). This suggests that the dated 380 

zircon rims, despite having formed in an environment depleted in HREE by garnet 381 

growth, are not in chemical equilibrium with the garnet now present in the rock. In 382 

fact, textural relationships and chemical data (Ferrando et al., 2008) indicate that, 383 

particularly in the Pl-rich granulite, garnet completely re-equilibrated during mylonitic 384 

deformation (stage C in Fig. 4). Thus, the trace element disequilibrium between 385 

zircon and mylonitic garnet supports zircon formation before the mylonitic overprint. 386 

This example demands caution when applying partition coefficients in poorly 387 

equilibrated and complex assemblages.  388 

The zircons from the Pl-poor HP granulite A1554 have sector zoning that is not 389 

particularly diagnostic: similar zoning has been described for granulite-facies zircon 390 

(e.g. Vavra et al., 1996) as well as for gabbroic zircon (e.g. Rubatto and Gebauer, 391 

2000). Despite their low Th/U, the REE patterns of the zircon from the Pl-poor HP 392 

granulite resemble that of the magmatic zircon cores in the Pl-rich HP granulite (e.g. 393 

HREE enrichment). HREE depletion would be expected in metamorphic zircon formed 394 

in such a garnet-rich rock. Garnet in the sample has, in fact, a flat HREE pattern at 395 

50-100 chondrite (own unpublished data). The few unzoned zircon rims in the Pl-396 

poor HP granulite that could be analysed show a distinctly lower HREE content, but 397 

their age is undistinguishable, at this level of precision, from that of the cores. This 398 

leads to the suggestion that the lack of HREE depletion in most of the metamorphic 399 

zircons may be explained by delay in the growth of garnet in this rock. The 400 

undistinguishable age between the zircon cores in the Pl-poor HP granulite and the 401 

metamorphic zircon rims in the Pl-rich HP granulite forces a common interpretation, 402 
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i.e. they are both metamorphic despite the inconclusive features of the Pl-poor HP 403 

granulite zircons.  404 

In the four-stage evolution reconstructed by Ferrando et al. (2008) for the Frisson 405 

Lakes HP granulites (Fig. 4), it is concluded that the zircon rims formed before stage 406 

C (mylonitisation at 665±15°C and 0.85±0.15 GPa). This conclusion is based on the 407 

intense deformation recorded by zircons and on the temperature given by the Ti-in-408 

zircon thermometry for the Pl-rich sample. The regional anatexis post-dates both the 409 

mylonitic stage and the intrusion of monzonites dated at 332±3 Ma, which 410 

underwent partial melting (Rubatto et al., 2001). This evolution is testified by the 411 

discordant relationships between the mylonitic foliation of the HP granulite and the 412 

hosting migmatitic granitoid gneiss, which preserves relicts of igneous fabric. This 413 

leaves a window at ~800-700°C and  ~1.4-1.0 GPa between the metamorphic peak 414 

and the first decompression stage for the growth of the ~340 Ma zircon (Fig. 4).  415 

The Frisson Lakes HP granulites essentially underwent the same metamorphic 416 

evolution as the Meris eclogite (Ferrando et al., 2008), which recorded a different 417 

assemblage simply because of its composition. We can therefore infer that ~340 Ma 418 

also dates the metamorphic peak or early decompression in the eclogite. This 419 

represents the first geochronological data on HP metamorphism in the Argentera 420 

Massif and in the External Crystalline Massifs.  421 

 422 

6.3. Carboniferous HP metamorphism in the Variscan belt  423 

There are few and weak constraints on the age on HP metamorphism across the 424 

European Variscan basement, particularly in its western part. This is largely due to 425 

the poor preservation of HP assemblages, which were extensively retrogressed 426 

during late-Variscan HT metamorphism and anatexis (von Raumer et al., 2009). The 427 

pioneering zircon isotope-dilution TIMS work of Paquette et al. (1989) analysed mafic 428 
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rocks with variably preserved HP assemblages from eclogites (Belledonne and 429 

Aiguilles Rouges Massifs) to garnet amphibolites (Argentera Massif). They obtained 430 

mainly discordant data, whose upper and lower intercepts are of difficult 431 

interpretation. In most samples, no age constraints on the HP metamorphism were 432 

obtained, but for the Argentera Massif a lower intercept of 424±4 Ma from an 433 

amphibolite was proposed as the age of HP metamorphism. Notably, a second mafic 434 

rock from the same area returned an upper intercept at ~350 Ma with a meaningless 435 

lower intercept.  436 

In Sardinia, at the southern end of the Variscan belt, a recent detailed study of 437 

zircon from retrogressed eclogites failed to constrain the age of HP metamorphism, 438 

but proposed an age of 352±3 Ma for amphibolite-facies decompression after HP 439 

metamorphism (Giacomini et al., 2005). An age of ~400 Ma has been speculated by 440 

many authors for the Sardinia eclogites on the basis of poorly constrained zircon 441 

data, whose relationship to HP metamorphism has, however, not been proven 442 

(Cortesogno et al., 2004; Palmeri et al., 2004).   443 

No other modern geochronology of eclogites has been carried out on the 444 

Southern European Variscan belt and the age of Variscan eclogites remains unclear 445 

in the western part of the Variscan orogeny. In the central Variscan, a hypothetical 446 

460-470 Ma HP metamorphism was postulated on the basis of U-Pb and Sm-Nd 447 

geochronology (Gebauer, 1993) in the Gotthard Massif. Further to the east, Sm-Nd 448 

geochronology of eclogitic assemblages from the Eastern Alps returned younger ages 449 

around 360-350 Ma for the Ötztal eclogites (Miller and Thöni, 1995) and ~330 Ma for 450 

the HP rocks in the Ulten zone (Tumiati et al., 2003). Such ages are closer to the 451 

more robust constraints on the age of Variscan HP metamorphism, which comes 452 

from the Bohemian Massif, including the Polish Sudetes (Bröcker et al., 2009; Kröner 453 

et al., 2000; Schulmann et al., 2005). SHRIMP U-Pb analyses on zircon within an HP 454 
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paragenesis returned ages of ~340 Ma (Kröner et al., 2000). This age was later 455 

confirmed with Pb-evaporation analysis of zircon from an HP granulite (Schulmann et 456 

al., 2005) and recent SHRIMP dating of zircon within a mafic eclogite of the Sudetes 457 

(Bröcker et al., 2009).  458 

 459 

From regional reviews (Franke and Stein, 2000; O'Brien, 2000) it appears that, 460 

across the dismantled European Variscan orogen and excluding the anomalous data 461 

from the Gotthard Massif, there are relicts of two eclogitic events: an early one in the 462 

Devonian (~400 Ma) and a later one in the Carboniferous ~350-340 Ma. O’Brien 463 

(2000) concluded that the Devonian HP rocks are remnants of medium-temperatures 464 

(eclogites and blueschists) subduction of an oceanic sequence, whose products were 465 

then already exhumed by Late Devonian. A later subduction cycle involved different, 466 

mostly continental rock associations that reached higher temperatures (900-1000°C) 467 

and produced extensive felsic granulites (Tajcmanova et al., 2006). For this second 468 

Variscan subduction, O’Brien (2000) reported a likely age of ~340 Ma, based on data 469 

from the Bohemian Massif.  Subduction was followed by rapid exhumation and cross 470 

cutting granite intrusions at 315–325 Ma, both contributing to the high thermal 471 

gradient that led to widespread Variscan Barrovian metamorphism dated between 472 

340 and 310 Ma in different regions (see below).  473 

The continental nature of the protolith, the metamorphic grade, the rapid 474 

decompression and age of the Frisson Lakes HP granulites ascribe these rocks to the 475 

second subduction cycle. To our knowledge there is no relict of the Devonian, 476 

medium temperature eclogites in the Argentera Massif or any of the External 477 

Crystalline Massifs.  478 

 479 
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6.4. Comparison with the Bohemian Massif and implications for 480 

tectonic style  481 

These new results combined with previous data constrain the evolution of the 482 

Gesso-Stura Terrain within the Argentera Massif before and during the Variscan 483 

orogeny. Such evolution is likely to be largely comparable to that of other External 484 

Crystalline Massifs, which show similar lithostratigraphy and metamorphic 485 

assemblages (von Raumer et al., 2009).  486 

Bimodal magmatism occurred in Ordovician to Silurian times with intrusion of 487 

dacite and gabbros (Rubatto et al., 2001) in an already metamorphosed basement. 488 

The crustal contamination in the Frisson Lakes mafic sequence supports an 489 

extensional setting in agreement with what proposed for the External Crystalline 490 

Massifs (Guillot and Menot, 2009; Ménot and Paquette, 1993). HP metamorphism at 491 

the granulite-eclogite facies boundary occurred during the Carboniferous (~340-336 492 

Ma) at conditions that could be compatible with subduction during continental 493 

collision (e.g. O'Brien, 2000). The HP event was followed by limited magmatism of 494 

likely extensional nature (intrusion of K-rich monzonites, Rubatto et al., 2001), with 495 

extension being a likely cause of fast exhumation of the HP rocks. Shortly after, the 496 

Massif underwent pervasive LP-HT metamorphism and anatexis (330-310 Ma Rubatto 497 

et al., 2001). Carboniferous HP metamorphism in the Argentera Massif occurred only 498 

some 10-20 Ma before the widespread migmatisation documented not only in the 499 

Massif but also elsewhere in the Variscan basement of Western Europe. The tight 500 

succession of HP and LP-HT metamorphism suggests that the two stages are part of 501 

the same metamorphic cycle where intense melting occurred upon decompression 502 

and advective heat transfer. The final exhumation of the Massif is marked by the 503 

unconformable deposition of Stephanian sediments (299-298 Ma, Faure-Muret, 504 

1955).  505 
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 506 

In order to investigate the evolution of the Variscan orogen on a larger scale, a 507 

comparison is attempted here with the Bohemian Massif, which is one of the largest 508 

remnants of Variscan basement and occupies a strategic position at the eastern end 509 

of Variscan Europe. This comparison is aided by the detailed tectonic and 510 

geochronological constraints available for the Bohemian Massif, in comparison to 511 

other portions of Variscan Europe.  512 

The evolution of the Argentera Massif is similar, but not directly comparable in 513 

age and metamorphic grade, to the evolution proposed for the Bohemian 514 

counterpart (Kröner et al., 2000; Schulmann et al., 2009; Schulmann et al., 2005; 515 

Tajcmanová et al., 2006). A significant difference is the presence in the Bohemian 516 

Massif of medium temperature eclogites of presumably older age (~400-390 Ma) 517 

that are taken to constrain Devonian subduction (see a review in O'Brien, 2000; 518 

Schulmann et al., 2009). No evidence of such assemblages is present in the western 519 

part of the Variscan orogen. The Sardinian eclogite of presumed ~400 Ma age 520 

followed a high temperature path more similar to the Argentera HP granulite rocks.  521 

Carboniferous collision in the Bohemian Massif produced thick continental roots. 522 

Within this scenario, the Carboniferous HP assemblages in the felsic granulites 523 

recorded higher metamorphic conditions of >15 kbar and >850-900 °C (Kröner et 524 

al., 2000; Tajcmanová et al., 2006), which are not reported for the western Variscan 525 

orogen. Two different geotherms have been proposed to explain contrasting, but 526 

coeval metamorphic conditions recorded by felsic granulites and mafic eclogites in 527 

the Bohemian Massif, (e.g. Konopásek and Schulmann, 2005; Štípská et al., 2006). 528 

On the contrary, the Frisson Lakes HP-granulites and the Meris mafic eclogite within 529 

the Argentera Massif record similar peak and exhumation conditions, as discussed in 530 

detail by Ferrando et al. (2008). To our knowledge, no such duality of Carboniferous 531 
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HP metamorphism has been documented in other Variscan massifs. For the 532 

Bohemian Massif, HP and ultra-HP metamorphism are generally attributed to 533 

subduction, but an alternative model of accretionary prism above an underthrusted 534 

continental crust has been proposed for the HP granulites (e.g. Schulmann and 535 

Gayer, 2000). This latter model is supported by the high geothermal gradient and 536 

rapid progression to anatexis (Stípská et al., 2006). Such alternative settings remain 537 

unexplored for the Argentera Massif. 538 

A significant difference between the western and eastern Variscan is the age of 539 

anatexis. In the south-east anatexis must be younger than ~330 Ma (Rubatto et al., 540 

2001) and likely between 320 and 310 Ma (Demoux et al., 2008; Rubatto et al., 541 

2001), and therefore delayed of 10-20 Ma after HP metamorphism. In the Bohemian 542 

Massif, this time gap is not present as migmatisation occurred at ~340 Ma (e.g. 543 

Anczkiewicz et al., 2007; Bröcker et al., 2009; Schulmann et al., 2005) during fast 544 

decompression of the HP rock.  545 

The differences between the eastern and western Variscan, which may be partly 546 

attributed to poor preservation and limited data for the western units, are 547 

nevertheless significant and attest to variation in timing and metamorphic conditions 548 

along the axis of the vast Variscan orogen. Despite such differences, the eastern and 549 

western portions of Variscan Europe show many intriguing similarities in their P-T-550 

time evolution (cf. P-T-time in this work and Tajcmanová et al., 2006).  551 

The evolution proposed here for the Argentera Massif (Fig. 4) does not support an 552 

Andean-style model as proposed by Schulmann et al. (2009) for the Bohemian 553 

Massif. The major difference with the Andean model being the lack of both low-554 

medium temperature high-pressure rocks, and significant arc-related magmatism 555 

during or after Carboniferous subduction. In the Argentera Massif, Carboniferous 556 

alkaline magmas are small in volume and likely related to extension (monzonite at 557 



 23 

332 Ma, Rubatto et al., 2001), with the possible exclusion of the mafics in the 558 

Bousset-Valmasque Complex, which age is however unconstrained.  559 

The new data also support the hypothesis that the overall evolution of the 560 

Variscan belt resembles that of the Himalayan chain. Whereas this comparison has 561 

been proposed for the eastern Variscan (Massonne and O'Brien, 2003; O'Brien, 2000; 562 

Stípská et al., 2006), with the new data presented here it is possible to extend it to 563 

the western Variscan. Similarities between the Variscan and the Himalayan orogenies 564 

include the conditions of HP granulite-facies metamorphism, and the rapid 565 

succession (within <20 Ma) of HP conditions, fast exhumation and widespread 566 

anatexis.  567 
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 783 

Fig. 1. a) Map of the European Variscan orogen (modified from O'Brien, 2000; 784 

Stampfli et al., 2002; von Raumer and Bussy, 2004). C: Corsica; MT: Maures-785 

Tanneron Massif; RH: Rheno-Hercynian; S: Sardinia; SW: Schwarzwald; V: Vosges. 786 

The Argentera Massif is shown in the box. b) Geological sketch of the Argentera 787 

Massif. The samples were collected at Frisson Lakes, indicated with a star.    788 

 789 

Fig. 2. Geological sketch-map of the Frisson Lakes area (modified after 790 

Colombo et al., 1994).  791 

 792 

Fig. 3. a) Field occurrence of the Frisson Lakes mafic sequence with alternating 793 

layers of Pl-poor and Pl-rich (similar to sample A1553) HP granulites. Sample A1554 794 

correspond to the dark boudin. b) Scan of a thin section of Pl-rich HP granulite 795 

A1553 illustrating the mylonitic texture with relict garnet porphyroclasts. Field of 796 

view: 2.0x1.75 cm. c) Scan of a thin section of Pl-poor HP granulite (sample A1554) 797 

with a cataclastic texture defined by large garnet crystals within a matrix mainly 798 

composed of clinopyroxene, amphibole and minor plagioclase. Field of view: 2.3x1.9 799 

cm.  800 

 801 
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Fig. 4. P-T-time evolution of the Gesso-Stura Terrain. Phase relations for 802 

Al2SiO5 are after Holdaway & Mukhopadhyay (1993) and the wet granite solidus is 803 

after Aranovich & Newton (Aranovich and Newton, 1996). P-T conditions for stages 804 

A-D (ellipses) are from Ferrando et al. (2008) and for the anatexis (cross) are from 805 

Bierbrauer (1995). Geochronological data are from this work, (1) Rubatto et al. 806 

(2001) and (2) Faure-Muret (1955).  807 

 808 

Fig. 5. Primitive mantle normalized diagram of bulk rock chemical 809 

compositions. Normalizing values according to McDonough and Sun (1995). Mariana 810 

Arc composition from Kelemen et al. (2004) and upper crust composition from 811 

Rudnick and Gao (2004).  812 

 813 

Fig. 6. Cathodoluminescence images of zircon crystals from the two samples. 814 

Dotted circles indicate LA-ICP-MS analyses for trace elements, and small circles 815 

indicate SHRIMP analyses for U-Pb. For each SHRIMP analysis, ages are given in 816 

Ma±1 sigma. Scale bar represents 100 µm. Note the large inherited cores in the Pl-817 

rich HP granulite A1553, which yield scattering ages. The linear features cutting 818 

across the crystal are due to deformation. See text for discussion.   819 

 820 

Fig. 7. Concordia plots for SHRIMP U-Pb analyses. Data were corrected for 821 

common Pb.  Ellipses are 2 sigma errors. Dotted ellipses are excluded from the 822 

Concordia age calculation. See text for discussion.  823 

 824 

Fig. 8. Chondrite normalized trace element pattern of zircons from the dated 825 

samples (A1553 and A1554). Normalizing values according to McDonough and Sun 826 

(1995). See text for discussion.  827 
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TABLE 1. XRF bulk rock analyses. 

A1553a A1553c A1553b A1554

wt % felsic layer
intermediate 

layer basic layer mafic boudin 
SiO2 56.10 51.70 49.50 45.80
Al2O3 17.95 18.25 16.35 16.45

FeO 5.13 6.62 8.84 8.31
Fe2O3 1.30 1.64 1.87 3.26

CaO 5.89 6.69 7.48 10.25
MgO 3.95 4.94 5.86 9.43
Na2O 5.88 4.50 3.39 2.48
K2O 1.02 1.29 0.80 0.82
Cr2O3 0.01 0.02 0.02 0.04
TiO2 0.81 1.29 1.62 1.21

MnO 0.10 0.13 0.19 0.19
P2O5 0.16 0.32 0.33 0.12

SrO 0.05 0.06 0.05 0.02
BaO 0.04 0.04 0.02 0.02
LOI 1.10 1.67 1.45 1.32
Total 100.00 99.90 98.80 100.50

Mg# 0.435 0.427 0.399 0.532
ppm

Ag <1 <1 <1 <1
Ba 341 333 218 147.5
Ce 25.2 43.1 33.6 12.8
Co 20.0 26.3 35.4 46.5
Cr 120 120 150 290
Cs 4.59 8.05 7.50 9.48
Cu 23.0 29.0 39.0 43.0
Dy 3.48 5.17 6.64 5.06
Er 2.30 3.14 4.14 3.14
Eu 1.00 1.56 1.62 1.30
Ga 19.5 23.8 22.2 18.9
Gd 3.32 5.58 5.68 4.36
Hf 3.00 6.40 4.30 2.40
Ho 0.69 1.04 1.34 1.02
La 11.2 19.8 15.1 4.3
Lu 0.35 0.44 0.54 0.41
Mo <2 <2 <2 <2
Nb 8.40 11.6 10.8 4.90
Nd 13.9 23.2 20.0 11.0
Ni 41.0 47.0 54.0 116
Pb 17.0 21.0 12.0 7.0
Pr 3.01 5.24 4.23 1.88
Rb 31.7 45.8 33.2 27.5
Sm 3.29 5.54 5.09 3.72
Sn 2.0 4.0 3.0 3.0
Sr 440 486 399 163
Ta 0.6 0.7 0.7 0.3
Tb 0.55 0.91 1.04 0.8
Th 0.67 1.9 0.92 0.18
Tl <0.5 <0.5 <0.5 <0.5
Tm 0.30 0.44 0.55 0.43
U 0.57 0.85 0.83 0.12
V 116 160 222 243
W 1.0 1.0 2.0 2.0
Y 22.0 31.3 38.1 29.0
Yb 2.15 3.06 3.74 3.04
Zn 85 112 129 122
Zr 119 244 172 77



Table 2. SHRIMP U-Pb analyses of zircons. 

Label CL domain Pbc % U (ppm) Th (ppm) Th/U
206Pb/238U

Age ±1 sigma 206Pb/238U ±1 sigma 207Pb/235U
% error      

(1 sigma) 206Pb/238U
% error      

(1 sigma)
error

correlation

Felsic granulite (A1553)
A1553-9.1 rim 0.06 470 9 0.02 319.5 2.8 0.05081 0.00046 0.3699 1.70 0.05081 0.90 0.526
A1553-7.1 rim 0.00 94 54 0.59 327.9 4.1 0.05219 0.00067 0.3945 3.12 0.05219 1.14 0.366
A1553-1.1 rim 0.11 111 5 0.05 332.7 4.2 0.05296 0.00069 0.3913 3.10 0.05296 1.30 0.419
A1553-11.1 rim light 0.13 54 19 0.36 333.5 4.8 0.05309 0.00078 0.4047 4.31 0.05309 1.38 0.319
A1553-15.1 rim light 0.95 31 18 0.60 333.5 6.4 0.05310 0.00105 0.3791 6.74 0.05310 1.72 0.255
A1553-16.1 rim 0.10 121 7 0.06 334.3 3.7 0.05322 0.00060 0.3779 3.12 0.05322 1.12 0.359
A1553-19.1 rim 0.01 292 11 0.04 334.3 3.3 0.05322 0.00054 0.3860 2.09 0.05322 1.01 0.486
A1553-10.1 rim 0.00 72 44 0.63 336.7 4.8 0.05362 0.00078 0.4063 3.62 0.05362 1.25 0.345
A1553-18.3 rim 0.00 408 14 0.04 339.4 3.0 0.05407 0.00050 0.3912 1.80 0.05407 0.91 0.508
A1553-1.3 rim 0.09 154 7 0.05 339.5 3.5 0.05407 0.00057 0.3912 2.68 0.05407 1.04 0.390
A1553-21.2 rim 0.15 76 14 0.19 339.9 4.5 0.05414 0.00073 0.4275 4.34 0.05414 1.30 0.299
A1553-4.1 rim 0.00 311 170 0.56 341.4 3.7 0.05439 0.00061 0.4115 1.94 0.05439 1.01 0.522
A1553-18.1 rim 2.49 86 8 0.09 344.0 4.4 0.05481 0.00073 0.3552 7.14 0.05481 1.24 0.174
A1553-7.2 rim 0.08 118 21 0.19 345.0 5.0 0.05498 0.00082 0.3906 3.11 0.05498 1.45 0.465
A1553-12.1 rim 0.01 241 9 0.04 345.7 3.5 0.05510 0.00057 0.4116 2.18 0.05510 1.04 0.476
A1553-20.1 rim 0.06 305 10 0.03 346.2 3.2 0.05517 0.00053 0.3995 2.05 0.05517 0.96 0.468
A1553-13.1 rim 2.54 92 20 0.22 347.5 4.5 0.05539 0.00074 0.3841 8.21 0.05539 1.19 0.145
A1553-8.1 rim 0.00 813 18 0.02 348.9 2.9 0.05562 0.00048 0.4107 1.33 0.05562 0.86 0.647
A1553-6.1 core 0.14 193 86 0.46 351.7 6.6 0.05608 0.00108 0.4144 2.95 0.05608 1.78 0.602
A1553-9.2 core 0.39 237 103 0.45 395.7 4.1 0.06331 0.00067 0.4490 2.30 0.06331 0.97 0.424
A1553-20.2 core 0.00 231 141 0.63 412.0 4.4 0.06600 0.00073 0.5305 2.50 0.06600 0.99 0.395
A1553-18.2 core 0.03 202 99 0.51 422.0 4.5 0.06766 0.00074 0.5337 3.03 0.06766 1.00 0.331
A1553-22.1 core 0.36 232 119 0.53 430.5 4.6 0.06906 0.00077 0.5517 2.20 0.06906 1.01 0.462
A1553-17.1 core 0.00 209 116 0.57 435.5 5.7 0.06989 0.00094 0.5728 2.19 0.06989 1.22 0.558
A1553-8.2 core 0.14 109 33 0.31 440.0 8.2 0.07063 0.00137 0.5527 3.14 0.07063 1.84 0.584
A1553-14.1 core 0.00 296 166 0.58 447.9 5.0 0.07194 0.00082 0.5647 1.83 0.07194 1.04 0.568
A1553-1.2 core fractured 0.01 146 36 0.25 450.2 5.0 0.07234 0.00084 0.5732 2.29 0.07234 1.11 0.486
A1553-3.1 core 0.07 351 200 0.59 459.3 4.5 0.07385 0.00074 0.5924 1.61 0.07385 0.91 0.568
A1553-2.1 core 0.00 39 15 0.39 472.6 7.0 0.07607 0.00118 0.6432 4.34 0.07607 1.44 0.332
A1553-13.2 core 0.00 301 142 0.49 480.3 5.4 0.07735 0.00091 0.6090 1.80 0.07735 1.09 0.603
A1553-19.2 core 0.00 246 91 0.38 484.3 4.8 0.07802 0.00080 0.6195 1.90 0.07802 0.97 0.510
A1553-5.1 core 0.00 142 66 0.48 486.7 5.3 0.07842 0.00088 0.6320 2.28 0.07842 1.03 0.453
A1553-21.1 core 0.00 179 80 0.46 498.2 5.5 0.08035 0.00092 0.6447 2.18 0.08035 1.06 0.488

Mafic granulite (A1554) 
A1554-11.1 sector 0.08 339 24 0.07 320.4 3.0 0.05097 0.00048 0.3725 2.00 0.05097 0.94 0.469
A1554-5.1 0.01 1258 69 0.06 323.7 2.7 0.05150 0.00045 0.3745 1.27 0.05150 0.86 0.675
A1554-12.1 0.07 606 43 0.07 329.3 2.9 0.05241 0.00047 0.3904 1.61 0.05241 0.89 0.552
A1554-4.1 rim light 0.11 163 16 0.10 331.8 3.4 0.05281 0.00055 0.3857 2.52 0.05281 1.03 0.408
A1554-6.1 rim light 0.06 211 5 0.02 332.7 3.2 0.05296 0.00052 0.3880 2.30 0.05296 0.99 0.429
A1554-9.1 0.10 354 31 0.09 332.8 3.4 0.05298 0.00056 0.3981 1.95 0.05298 1.04 0.535
A1554-7.1 0.12 360 27 0.08 333.0 3.0 0.05301 0.00049 0.3988 2.29 0.05301 0.92 0.400
A1554-10.1 rim light 0.14 80 11 0.14 335.3 4.2 0.05339 0.00068 0.3794 3.75 0.05339 1.24 0.331
A1554-1.1 0.04 589 47 0.08 336.2 3.3 0.05354 0.00054 0.3907 1.59 0.05354 1.00 0.627
A1554-12.2 0.00 482 62 0.13 336.4 3.2 0.05357 0.00052 0.3907 1.76 0.05357 0.95 0.539
A1554-2.1 0.01 854 57 0.07 337.0 2.9 0.05367 0.00047 0.3848 1.33 0.05367 0.87 0.651
A1554-13.1 0.04 254 16 0.07 337.5 3.2 0.05374 0.00053 0.4121 2.20 0.05374 0.98 0.443
A1554-8.1 0.02 826 49 0.06 339.8 2.9 0.05413 0.00047 0.3977 1.35 0.05413 0.86 0.636
A1554-13.2 0.05 764 49 0.07 340.6 3.3 0.05426 0.00054 0.3923 1.54 0.05426 0.98 0.639
A1554-14.1 0.00 747 56 0.08 344.6 3.3 0.05490 0.00054 0.3997 1.56 0.05490 0.97 0.618
A1554-3.2 0.00 445 36 0.08 346.2 4.1 0.05517 0.00067 0.4076 1.87 0.05517 1.20 0.643
A1554-13.3 inherited core 0.26 82 28 0.35 377.7 6.2 0.06034 0.00103 0.4384 4.12 0.06034 1.60 0.387
Pbc % = percent of common Pb 



Table 3. LA-ICPMS analyses of zircons.

A1554-
2core

A1554-
7core

A1554-
8core

A1554-
1core

A1554-
12core

A1554-
12a

A1554-
14core

A1554-
6rim

A1554-
3rim

A1554-
10rim

A1553-
1core

A1553-
4core

A1553-
3core

A1553-
6core

A1553-
21core

A1553-
20core

A1553-
19core

A1553-
1rim 

A1553-
11rim

A1553-
21rim

A1553-
13rim 

A1553-
15rim 

A1553-
16rim

P 89 85 107 106 94 178 130 65 66 70 84 190 361 286 264 255 208 50 90 49 43 119 42
Ca bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.01 bdl 0.00 bdl bdl bdl bdl
Ti 7.4 6.1 7.8 9.0 6.2 6.5 7.7 5.6 11 10.0 5.4 8.6 16.9 8.2 8.1 9.7 30 7.1 14 10.0 6.4 14 6.3
Sr 0.20 0.16 0.23 0.17 0.14 0.20 0.21 0.08 0.13 0.22 0.16 0.50 1.25 0.48 0.42 0.59 0.59 0.08 0.06 0.16 0.08 0.07 0.09
Y 380 286 564 311 180 452 444 86 49 68 185 1543 3403 1291 1673 1857 835 48 32 29 45 68 49
Nb 0.76 0.60 0.72 0.86 0.77 0.81 0.96 0.22 0.16 0.17 0.50 0.87 1.6 1.7 2.8 1.0 1.9 0.49 0.25 0.12 0.26 0.24 0.24
La 0.003 bdl 0.004 0.004 0.031 0.004 0.005 0.026 bdl 0.20 0.024 0.018 0.21 0.037 0.007 0.053 0.23 0.002 0.032 bdl bdl 0.014 bdl
Ce 3.8 2.9 4.6 4.3 3.4 6.5 4.9 3.5 2.8 5.6 6.5 11.8 14.4 9.8 7.2 9.4 5.7 1.5 8.0 4.8 1.4 8.2 3.2
Pr 0.01 0.01 0.05 0.01 0.02 0.03 0.02 0.06 0.03 0.12 0.02 0.09 0.27 0.05 0.10 0.17 0.08 0.004 0.05 0.04 bdl 0.07 bdl
Nd 0.25 0.20 0.98 0.24 0.22 0.52 0.47 0.74 0.49 1.15 0.28 1.93 4.6 1.03 2.00 3.02 0.96 0.09 0.69 0.48 0.08 1.01 0.31
Sm 0.66 0.60 2.31 0.64 0.38 1.3 1.1 1.1 0.92 1.04 0.60 4.0 12 2.6 4.7 6.7 2.1 0.15 0.89 0.84 0.22 1.65 0.45
Eu 0.42 0.34 1.1 0.37 0.20 0.68 0.58 0.62 0.44 0.46 0.25 1.1 2.7 0.66 0.76 1.7 0.32 0.11 0.36 0.36 0.14 0.46 0.24
Gd 4.3 3.5 10.6 4.0 2.1 7.0 6.2 4.3 3.1 2.3 3.3 22 74 19 30 38.0 13.3 0.8 2.5 2.1 1.2 4.7 1.7
Tb 1.87 1.49 3.82 1.71 0.91 2.73 2.49 1.21 0.85 0.58 1.21 8.74 28 7.91 12 14 5.4 0.34 0.57 0.58 0.43 1.09 0.54
Dy 26 21 47 23 13 35 33 11 6.6 5.8 15 118 334 109 154 171 73 3.95 4.55 3.84 4.50 8.99 5.39
Ho 12 8.8 18 9.6 5.4 14 14 3.0 1.7 2.2 5.7 50 122 43 61 63 29 1.4 1.1 1.0 1.4 2.3 1.6
Er 63 46 87 50 29 74 72 11 5.4 10 28 250 524 211 269 287 136 5.7 3.3 2.8 5.3 7.1 5.8
Tm 17 12 21 13 7.7 18 18 1.9 0.9 2.5 7.1 60 109 48 60 63 31 1.2 0.6 0.47 1.1 1.3 1.0
Yb 212 148 247 155 93 215 223 16 7.7 29 84 638 1043 499 590 635 317 13 4.4 4.1 10 10 10
Lu 44 30 48 31 19 41 44 2.4 1.2 5.8 16 110 161 85 94 103 54 2.1 0.59 0.84 1.8 1.4 1.5
Hf 11827 11509 10880 10662 11313 10143 10640 9745 10810 8545 10472 9526 7779 8321 7913 8127 8766 10566 8394 8610 9760 7550 8853
Ta 0.53 0.44 0.59 0.53 0.70 0.35 0.54 0.05 0.02 0.04 0.25 0.35 0.60 0.63 0.90 0.38 0.97 0.15 0.05 0.03 0.08 0.04 0.08
Pb 2.0 1.1 3.1 1.4 1.3 1.7 1.8 0.10 0.37 0.50 1.5 5.8 6.9 3.4 3.3 4.3 2.2 0.20 0.62 0.52 0.15 0.63 0.38
Th 66 37 107 46 45 58 62 3.5 11 15 41 196 194 108 86 127 57 5.5 21 15 4.5 19 11
U 926 435 931 557 590 468 669 192 25 64 190 345 331 234 196 207 343 93 55 80 135 29 103
Th/U 0.07 0.09 0.12 0.08 0.08 0.12 0.09 0.02 0.46 0.24 0.21 0.57 0.59 0.46 0.44 0.61 0.16 0.06 0.38 0.18 0.03 0.66 0.11
(Lu/Gd)N 82.7 69.6 36.7 62.4 71.1 47.8 58.2 4.6 3.1 20.7 39.9 39.5 17.6 36.4 25.6 21.9 32.6 20.0 1.9 3.2 12.2 2.4 7.0
(Eu/Eu*)N 0.58 0.56 0.59 0.54 0.53 0.55 0.53 0.75 0.72 0.88 0.43 0.28 0.21 0.21 0.15 0.26 0.14 0.77 0.67 0.79 0.67 0.48 0.73

bdl = below detection limit 
Eu*= (Gd+Sm)/2
The subscript "N" indicates values normalised to chondrite
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