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Binary choice games with externalities, as those described by Schelling (1973, 1978), have been
recently modelled as discrete dynamical systems (Bischi and Merlone, 2009). In this paper we
discuss the dynamic behavior in the case in which agents are impulsive; that is; they decide to
switch their choices even when the difference between payoffs is extremely small. This particular
case can be seen as a limiting case of the original model and can be formalized as a piecewise
linear discontinuous map. We analyze the dynamic behavior of this map, characterized by the
presence of stable periodic cycles of any period that appear and disappear through border-collision
bifurcations. After a numerical exploration, we study the conditions for the creation and the
destruction of periodic cycles, as well as the analytic expressions of the bifurcation curves.
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1. Introduction

In many situations the consequences of the choices of an actor are affected by the actions
of other actors, that is, the population of agents that form the social system as a whole.
Systems characterized by such a trade-off between individual choices and collective behavior
are ubiquitous and have been studied extensively in different fields. Among the different
contributions the seminal work by Schelling [1] stands out on its own as it provides a simple
model which can qualitatively explain a wealth of everyday life situations. Indeed, the model
proposed in Schelling [1], and in the successive generalizations, is general enough to include
several games, such as the well known n-players prisoner’s dilemma or the minority games
(e.g., [2]).

As remarked by Granovetter [3], Schelling [1] does not specify explicitly the time
sequence, even if a dynamic adjustment is implicitly assumed in order to both analyze
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the time evolution of the fraction of agents that make a binary choice, and provides
arguments about existence and stability of equilibrium values. However, this implicit
dynamic adjustment fails in describing some important phenomena observed in many
real situations, such as oscillations caused by overshooting (or overreaction) of the actors
involved in choices repeated over time, as well as problems of equilibrium selection when
nonmonotonic payoff curves lead to the presence of several stable equilibria.

Recently Bischi and Merlone [4] presented an explicit discrete-time dynamic model
which is based on the qualitative properties described by Schelling [1] and simulates an
adaptive adjustment process of repeated binary choices of boundedly rational agents with
social externalities. This permitted them to study the effects on the dynamic behavior of
different kinds of payoff functions as well as the qualitative changes of the asymptotic
dynamics induced by variations of the main parameters of the model. Moreover, even with
monotonic payoff functions, their model allows them to detect the occurrence of oscillatory
time series (periodic or chaotic), an outcome often observed in real economic and social
systems (see, e.g., [5]).

In Bischi and Merlone [4], the adaptive process by which agents switch their decisions
depends on the difference observed between their own payoffs and those associated with the
opposite choice in the previous turn, and the switching intensity is modulated by a parameter
λ representing the speed of reaction of agents—small values of λ imply more inertia, while,
on the contrary, larger values of λ imply more reactive agents.

In this paper we reconsider the model presented in Bischi and Merlone [4] in
order to study the dynamics when λ tends to infinity, that is, agents immediately switch
their strategies even when the difference between payoffs is extremely small. This may be
interpreted by saying that agents are impulsive (see, e.g., [6] for the meaning of impulsivity in
the psychological and psychiatric literature) or it may be referred to the case of an automatic
device used to determine a sudden switching, between two different kinds of behavior,
according to a discrepancy observed between payoff functions, whatever is the measure of
such a discrepancy.

From the point of view of the mathematical properties of the model, the limiting
case obtained by setting the parameter λ to infinity corresponds to a change of the iterated
map from continuous to discontinuous. This gives us the opportunity to investigate some
particular properties of discontinuous dynamical systems. In this paper we numerically show
the gradual changes induced by increasing values of λ, and in the limiting case we show that
the asymptotic dynamics is characterized by the existence of periodic cycles of any period.
Moreover, we explain how the periods observed depend on the values of the parameters
according to analytically determined regions of the parameters’ space, called regions of
periodicity, or “periodicity tongues”, in literature. These tongues are infinitely many, and
their boundaries can be described by analytic equations obtained through the study of border
collision bifurcations that cause the creation and destruction of periodic orbits.

The structure of the paper is the following. In Section 2 we summarize the formal
dynamic model and its properties when the payoff functions have one single intersection.
In Section 3 we analyze the system dynamics as the speed of reaction increases, as the
dynamic behavior changes from regular (periodic) to chaotic, and give a formal analysis
of the bifurcation curves in the asymptotic case. In Section 4 we analyze the system in the
limiting case and provide the analytic expression of the bifurcation curves that bound the
periodicity tongues. In fact we will see that whichever are the parameter values only one
invariant attracting set can exist: a stable cycle, whose period may be any integer number, and
also several different cycles with the same periods can exist. We will show that the analysis
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of the limiting case (a discontinuous function) is very informative also of the dynamics
occurring in the original piecewise continuous model. The last section is devoted to some
concluding remarks.

2. The Dynamic Model

Following Schelling [1], Bischi and Merlone [4] propose a model where a population of
players is assumed to be engaged in a game where they have to choose between two
strategies, say A and B, respectively. They assume that the set of players is normalized to
the interval [0, 1] and denote by the real variable x ∈ [0, 1] the fraction of players that choose
strategy A. Then the payoffs are functions of x, say A : [0, 1] → R, B : [0, 1] → R, where
A(x) and B(x) represent the payoff associated to strategies A and B, respectively. Obviously,
since binary choices are considered, when fraction x is playingA, then fraction 1−x is playing
B. As a consequence x = 0 means that the whole population of players is playing B and
x = 1 means that all the agents are playing A. The basic assumption modeling the dynamic
adjustment is the following: x will increase whenever A(x) > B(x) whereas it will decrease when
the opposite inequality holds.

Consistently with Schelling [1], this assumption, together with the constraint x ∈
[0, 1], implies that equilibria are located either in the points x = x∗ such that A(x∗) = B(x∗),
or in x = 0 (provided that A(0) < B(0)) or in x = 1 (provided that A(1) > B(1)). In the
process of repeated binary choices which is considered in Bischi and Merlone [4], the agents
update their binary choice at each time period t = 0, 1, 2, . . ., and xt represents the number
of players playing strategy A at time period t. They assume that at time (t + 1) xt becomes
common knowledge, hence each agent is able to compute (or observe) payoffs B(xt) and
A(xt). Finally, agents are homogeneous and myopic, that is, each of them is interested to
increase its own next period payoff. In this discrete-time model, if at time t xt players are
playing strategy A and A(xt) > B(xt) then a fraction of the (1 − xt) agents that are playing B
will switch to strategy A in the following turn; analogously, if A(xt) < B(xt) then a fraction of
the xt players that are playing A will switch to strategy B. In other words, at any time period
t agents decide their action for period t + 1 comparing B(xt) and A(xt) according to

xt+1 = f(xt) =

⎧
⎨

⎩

xt + δAg[λ(A(xt) − B(xt))](1 − xt), if A(xt) ≥ B(xt),

xt − δBg[λ(B(xt) −A(xt))]xt, if A(xt) < B(xt),
(2.1)

where δA, δB ∈ [0, 1] are propensities to switch to the other strategy; g : R+ → [0, 1] is a
continuous and increasing function such that g(0) = 0 and limz→∞g(z) = 1, λ is a positive
real number. The function g modulates how the fraction of switching agents depends on
the difference between the previous turn payoffs; the parameters δA and δB represent how
many agents may switch to A and B, respectively (when δA = δB, there are no differences
in the propensity to switch to either strategies) and the parameter λ represents the switching
intensity (or speed of reaction) of agents as a consequence of the difference between payoffs.
In other words, small values of λ imply more inertia, that is, anchoring attitude, of the actors
involved, while, on the contrary, larger values of λ can be interpreted in terms of impulsivity.
In fact, according to the Clinical Psychology literature [7] impulsivity can be separated in
different components such as acting on the spur of the moment and lack of planning.
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Figure 1: (a) Payoff functions A(x) = 1.5x and B(x) = 0.25 + 0.5x. (b) Function f obtained with the same
payoff functions as in (a) and parameters δA = 0.3, δB = 0.7, λ = 20 with switching function g(·) =
(2/π) arctan (·).

Notice that if both the payoff functions are continuous, then also the map f is
continuous in the whole interval [0,1], and its graph is contained in the strip bounded by
two lines, being (1 − δB)x � f(x) � (1 − δA)x + δA. However, even if B(x) and A(x) are
smooth functions, the map f in general is not smooth in the considered interval, since f is
not differentiable where the payoff functions intersect. When studying the dynamics, this
does not allow us to use the usual approach which relies on the first derivative value in the
equilibrium points. As a consequence an approach based on the left and right side slopes in
the neighborhood of any interior fixed point is needed.

In this paper we consider payoff functions A(x) and B(x) with one and only one
internal intersection x∗ ∈ (0, 1) such that A(x∗) = B(x∗). Assume, first, that the strategy A
is preferred at the right of x∗and B is preferred at the left, as in Figure 1(a). This situation
is discussed in Schelling [1] where a vivid example is also provided by assuming that B
stands for carrying a visible weapon, A for going unarmed. One may prefer to be armed if
everybody else is, but not if the rest is not (individuals may also be nations). According to
the relative position of the two payoff curves, Schelling [1] concludes that there exist two
stable equilibria, namely x = 0 and x = 1, where everybody is choosing B and everybody is
choosing A respectively, whereas the inner equilibrium x∗ is unstable. The reasons given by
Schelling to prove these statements are based on the following arguments: at the equilibrium
x = 0, where everybody is choosing B, nobody is motivated to choose A because A(x) < B(x)
in a right neighborhood of 0, and analogously at x = 1, where everybody is choosing A,
nobody is motivated to choose B being B(x) < A(x) in a left neighborhood of 1; instead,
starting from the inner equilibrium x∗, where both choices coexist, if x is displaced in a right
neighborhood of x∗ by an exogenous force, there A(x) > B(x) and a further increase of x
will be generated by endogenous dynamics, whereas if x is displaced in a left neighborhood
of x∗, where A(x) < B(x), then a further decrease of x will be observed. These qualitative
arguments of Schelling are confirmed by the following proposition, proved in Bischi and
Merlone,[4] (see, also Figure 1(b)).



Discrete Dynamics in Nature and Society 5

A

A

B

B

x∗

0 1
x

(a)

f

0 1
x

(b)

0

1

x

0 70
λ

(c)

Figure 2: (a) Payoff functions A(x) = 1.5x, B(x) = 0.25 + 0.5x. (b) Function f obtained with g(·) =
(2/π) arctan(·), the same payoffs as in (a) and parameters δA = δB = 0.5, λ = 35. The interior equilibrium
is unstable and the generic trajectory converges to the attractor shown around x∗. (c) Bifurcation diagram
obtained with the same values of parameters δ and payoff functions as in (b) and bifurcation parameter
λ ∈ (0, 70).

Proposition 2.1. Assume that A : [0, 1] → R and B : [0, 1] → R are continuous functions such
that

(i) A(0) < B(0),

(ii) A(1) > B(1),

(iii) there exists a unique x∗ ∈ (0, 1) such that A(x∗) = B(x∗),

then the dynamical system (2.1) has three fixed points, x = 0, x = x∗, and x = 1, where x∗ is unstable
and constitutes the boundary that separates the basins of attraction of the stable fixed points 0 and
1. All the dynamics generated by (2.1) converge to one of the two stable fixed points monotonically,
decreasing if x0 < x

∗, increasing if x0 > x
∗.

The situation is quite different when the payoff functions are switched, that is, A(0) >
B(0), and A(1) < B(1), so that A is preferred at the left of the unique intersection x∗ and B is
preferred at the right (see, Figure 2(a)). In this case we have a unique equilibrium, given by
the interior fixed point x∗.

Schelling [1] describes this case as well, and provides some real-life examples of
collective binary choices with this kind of payoff functions. Among these examples one
concerns the binary choice about whether using the car or not, depending to the traffic
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Figure 3: Same payoff functions as in Figure 2 (a) δA = 0.8, δB = 0.2, λ = 30, f ′−(x
∗) < −1 and 0 < f ′+(x

∗) <
1. (b) δA = 0.8, δB = 0.5, λ = 17, f ′−(x

∗) < −1 and f ′+(x
∗) < 0 such that f ′−(x

∗)f ′+(x
∗) > 1.

congestion. Let A represent the strategy “staying at home” and B “using the car”. If many
individuals choose B (i.e., x is small), then A is preferred because of traffic congestion,
whereas if many choose A (i.e., x is large), then B is preferred as the roads are empty. This
situation can be represented with payoff functions as those depicted in Figure 2(a). Schelling
[1] gives a qualitative analysis of this scenario and classifies it as being characterized by global
stability of the unique equilibrium point. Using the words of Schelling [1, page 401] “If we
suppose any kind of damped adjustment, we have a stable equilibrium at the intersection”.
His argument is based on the fact that A(x) > B(x) on the left of x∗ (hence increasing x
whenever x < x∗) and A(x) < B(x) on the right of x∗ (hence decreasing x whenever x > x∗).
While this statement of global stability is true when assuming a continuous time scale, in our
discrete-time model we can observe oscillations of xt.

This is shown in Figure 2(b), obtained with B(x) = 1.5x, A(x) = 0.25 + 0.5x, g(·) =
(2/π) arctan(·), δB = δA = 0.5, λ = 35. In this case, x increases in the right neighborhood
of 0, and decreases in the left neighborhood of 1, nevertheless, the unique equilibrium x∗ is
unstable, and persistent oscillations, periodic or chaotic, are observed around it. The wide
spectrum of asymptotic dynamic behaviors that characterize this model is summarized in
the bifurcation diagram depicted in Figure 2(c), which is obtained with the same values
of parameters δ and payoff functions as in Figure 2(b) and by considering the parameter
λ that varies in the range (0, 70). However, Figure 2(c) also shows that for high values
of the parameter λ the asymptotic dynamics settle on a given periodic cycle (of period
3 in this case) according to the values of the parameters δB and δA. This can be easily
forecasted from the study of the limiting map (3.1), as shown in Section 4. The occurrence
of oscillations is typical of a discrete-time process, and is caused when individual players
overshoot, or overreact. For example, in the model of binary choice in car usage described
above, overshooting occurs for sufficiently large values of λ (high speed of reaction). This
means that whenever traffic congestion is reported, on the following day many people will
stay at home; vice versa when no traffic congestion is reported most all of the people will
use their car. This kind of reactions generates a typical oscillatory time pattern which is a
common situation observed in everyday life (for a discussion about the chaos and complexity
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in sociology the reader may refer to [8]). This sort of realistic situation would be completely
ruled out when adopting a continuous time one-dimensional dynamic model. However,
several of the examples proposed in literature are characterized by decisions that cannot
be continuously revised, and lags between observations and decisions are often finite. As
a consequence decision processes typically occur in a discrete-time setting. The reader may
also refer to Schelling [1, chapter 3] for several qualitative descriptions of overshooting and
cyclic phenomena in social systems.

Concerning the condition for stability of the unique equilibrium x∗, when considering
the discrete-time dynamic model (2.1) we realize that the slope of the function f at the
steady state may be positive or negative. More precisely, assuming that A(x) and B(x) are
differentiable functions, since B′(x∗) ≥ A′(x∗), both the left and right tangents f ′−(x

∗) and
f ′+(x

∗) are less than 1:

f ′−(x
∗) = 1 + δA

{
g ′[λ(A(x∗) − B(x∗))]λ

(
A′−(x

∗) − B′−(x∗)
)}

(1 − x∗)

= 1 + δAλg ′[0]
(
A′−(x

∗) − B′−(x∗)
)
(1 − x∗) < 1,

f ′+(x
∗) = 1 − δB

{
g ′[λ(A(x∗) − B(x∗))]λ

(
A′−(x

∗) − B′−(x∗)
)}
x∗

= 1 − δB
[
g ′(0)λ

(
B′+(x

∗) −A′+(x∗)
)]
x∗ < 1.

(2.2)

Hence x∗ is stable (indeed, globally stable) as far as f ′−(x
∗) > −1 and f ′+(x

∗) > −1, and it
may become unstable when at least one of these slopes decrease below −1 (see, e.g., [9, 10]).
However, if f ′−(x

∗) < −1 and f ′+(x
∗) > 0, then the fixed point is still globally stable, because in

this case any initial condition taken on the right of x∗ generates a decreasing trajectory that
converges to x∗, whereas an initial condition x0 taken on the left of x∗ has the rank-1 image
f(x0) > x∗, after which convergence to x∗ follows (see, Figure 3(a)). The same argument
holds, just reversing left and right, if 0 < f ′−(x

∗) < 1 and f ′+(x
∗) < −1. Instead, if f ′−(x

∗) < −1
and f ′+(x

∗) < 0 then the stability of x∗ depends on the product f ′−(x
∗)f ′+(x

∗), being it stable if
f ′−(x

∗)f ′+(x
∗) ≤ 1, otherwise it is unstable with a stable cycle (or a chaotic attractor) around it

(see, Figure 3(b)).
The results of our discussion can be summarized as follows.

Proposition 2.2. If A : [0, 1] → A and B : [0, 1] → A are differentiable functions such that

(i) A(0) > B(0),

(ii) A(1) < B(1),

(iii) there exists a unique x∗ ∈ (0, 1) such that A(x∗) = B(x∗),

then the dynamical system (2.1) has only one fixed point at x = x∗, which is stable if f ′−(x
∗)f ′+(x

∗) ≤ 1.

It is worth to note that both the slopes f ′−(x
∗) and f ′+(x

∗) decrease as λ or δB or δA
increase, that is, if the impulsivity of the agents and/or their propensity to switch to the
opposite choice increase.

3. Impulsivity in Agents’ Reaction

In this section we examine what happens when the parameter λ increases, because this
corresponds to the case in which agents are impulsive. Indeed, impulsivity is an important
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Figure 4: The map f for different values of parameter λ and in the limiting case λ =∞.

construct in the psychological and psychiatric literature (see, [6]) and, as a matter of fact, is
directly mentioned in the DSM IV diagnostic criteria. ( The Fourth edition of the Diagnostic
and Statistical Manual of Mental Disorders presents the descriptions of diagnostic categories
of mental disorders coded on different axes. It is used in the United States and around the
world by clinicians researchers health insurance companies and policy markers). In order to
obtain an insight on the effect of increasing values of λ, in the following we study the limiting
case obtained as λ → +∞. This is equivalent to consider g(x) = 1 if x /= 0 and g(x) = 0 if
x = 0, as a consequence the switching rate only depends on the sign of the difference between
payoffs, no matter how much they differ. In this case the dynamical system assumes the
following form

xt+1 = f∞(xt) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − δA)xt + δA, if B(xt) < A(xt),

xt, if B(xt) = A(xt),

(1 − δB)xt, if B(xt) > A(xt).

(3.1)

Such a limiting situation may appear as rather extreme, because the map f∞ becomes
discontinuous at the internal equilibria defined by the equation B(x) = A(x). However, a
study of the global properties of f∞(xt) gives some insight into the asymptotic properties of
the continuos map (2.1) for high values of λ and emphasizes the role of the parameters δA
and δB.

For example, when the payoff functions satisfy the assumptions of Proposition 2.2,
increasing values of λ cause the loss of stability of the equilibrium via a flip bifurcation
that opens the usual route to chaos through a period doubling cascade. However, as shown
in the bifurcation diagram of Figure 2(c), such a chaotic behavior can only be observed
for intermediate values of the parameter λ, as the asymptotic dynamics settles on a stable
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Figure 5: Bifurcation diagrams in the parameters’ plane (δA, δB), with (a) λ = 20 (b) λ = 60 (c) λ = 500.
Initial condition: x = .28; transient = 4000, iterations = 2000.

periodic cycle for sufficiently high values of λ. This can be numerically observed for many
different values of the parameters δA and δB, the only difference being the period of the
stable cycle that prevails at high values of λ. In order to have a complete understanding of
the dependence on δA and δB of the periodicity that characterizes the asymptotic dynamics
of impulsive agents, we will study the discontinuous map (3.1), to which the continuous
map (2.1) gradually approaches for increasing values of λ, see Figure 4. It is also interesting
to observe how the corresponding two-dimensional bifurcation diagram in the parameters’
plane (δA, δB) evolves as λ increases. The different colors shown in the three pictures of
Figure 5, obtained with λ = 20, λ = 60, λ = 500 respectively, represent the kind of asymptotic
behavior numerically observed: convergence to the stable fixed point or a stable periodic
cycle of low period when the parameters are chosen in the blue regions (with different blue
shades representing different periods) or the convergence to a chaotic attractor, or periodic
cycle of very high period, when the parameters are chosen in the red regions. It can be seen
that chaotic behavior becomes quite common at intermediate values of λ whereas periodic
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Figure 6: Discontinuous limiting map T1 with mL = 1 − δA = 0.6, mR = 1 − δB = 0.3, d = 0.4.

cycles of low period prevail for very high values of λ. However, it is worth to remark that
the set of parameters’ values corresponding to chaotic attractors is given by the union of one-
dimensional subsets in the two-dimensional space of parameters shown in Figure 5, whereas
the regions related to attracting cycles of different periods are open two-dimensional subsets.

3.1. The Analysis of the Impulsive Agents Limit Case

Let us consider the discontinuous limiting map (3.1) in the two cases of payoff curves that
intersect in a unique interior point, as described in Propositions 2.1 and 2.2, given by

x′ = T1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − δA)x, if x < d,

x, if x = d,

(1 − δB)x + δB, if x > d,

x′ = T2(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − δA)x + δA, if x < d

x, if x = d,

(1 − δB)x, if x > d,

(3.2)

respectively, where the parameter d ∈ (0, 1) represents the discontinuity point located at the
interior equilibrium, that is, d = x∗, and the parameters δA, δB are subject to the constraints
0 ≤ δA ≤ 1, 0 ≤ δB ≤ 1. It is worth noticing that the value of the map in the discontinuity
point, x = d, is not important for the analysis which follows, therefore it will often be omitted.

Let us first consider the map T1(x). It has a discontinuity in the point d with an
“increasing” jump, that is, T1(d−) < T1(d+), see Figure 6. In this case, whichever is the position
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Figure 7: Discontinuous limiting map T2 with mL = 1 − δA = 0.6, mR = 1 − δB = 0.3, d = 0.4.
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Figure 8: Discontinuous limiting map T2 with (a) mL = 1 − δA = 0.4, mR = 1 − δB = 0.8, d = 0.5; (b)
mL = 1 − δA = 0.8, mR = 1 − δB = 0.4, d = 0.5.

of the discontinuity point d, the dynamics are very simple: there are two stable fixed points,
the boundary steady states x = 0 and x = 1, with basins of attraction separated by the
discontinuity point: any initial condition x0 ∈ (0, d) will converge to the fixed point x = 0
while any initial condition x0 ∈ (d, 1) will generate a trajectory that converges to the fixed
point x = 1.

Quite different is the situation for the map T2(x), where the discontinuity point has a
“decreasing” jump, that is, T2(d−) > T2(d+). In this case we will see that periodic cycles of any
period may occur. A first example is shown in Figure 7, where a stable cycle of period 2 is
shown.
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Figure 9: (a) Bifurcation diagrams in the parameters’ plane (δA, δB) with d = 0.5. The regions of periodicity
are represented by different colors; (b) Bifurcation diagram obtained with a fixed value of δA = 0.7 and
mR = 1 − δB anging from 0.4 up to 1.

In Figure 8 we show another example to illustrate that several different cycle of the
same period may exist: in Figure 8(a), a 7-cycle (cycle of period 7) has 2 points in the left
branch and 5 in the right one, while in Figure 8(b) (obtained with different values of δA and
δB) another 7-cycle has 5 periodic points in the left branch and 2 in the right branch. We will
see that it is even easy to find 7-cycles having 3 points on the left branch and 4 in the right
one, or 4 points on the left and 3 in the right as well. Indeed, for any given period, all the
possible combinations may occur depending on the values of the parameters δA and δB.

We will also prove that, given δA and δB, and consequently the slopes of the left
branch mL = (1 − δA) and the right branch mR = (1 − δB) respectively, the map has only
one attractor, a stable cycle of some period k, and any initial condition x0 ∈ [0, 1] gives a
trajectory converging to such k-cycle. Before giving a proof of this statement, we prefer to
show first a numerical computation of a two-dimensional bifurcation diagram, in the plane
of the parameters δA and δB, by using different colors to denote the regions where stable
cycles of different periods characterize the asymptotic dynamics. The analytic computation
of the bifurcation curves that bound these regions will be given later.

In Figure 9(a) we show the parameter plane (δA, δB) covered by regions of different
colors, often called “periodicity tongues” (due to their particular shape), each characterized
by a different period (indicated by a number in some of the tongues, only the larger ones).
Figure 9(a) has been obtained fixing the discontinuity point at d = 0.5 and changing the
parameter δA and δB between 0 and 1. Figure 9(b) shows a bifurcation diagram which gives
the asymptotic behavior of the state variable x as the parameter δA is fixed at the value
δA = 0.7, whereas the parameter δB decreases from 0.6 to 0, that is, the parametermR increases
from 0.4 up to 1. It can be seen that between a cycle of period 2 and a cycle of period 3
there is a region where a cycle of period 5 exists. Moreover, zooming in the scale of the
horizontal axis it is possible to see that between the regions of the 2-cycle and the 3-cycle,
there exist infinitely many other intervals of existence of cycles of period 2n + 3m for any
integer n ≥ 1 and any integer m ≥ 1. The reason for this will be clarified later. The analytic
study of the different regions of periodicity in the parameters’ plane (δA, δB) is the goal of
the next sections. However, let us first remark that the existence of the cycles of any period
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Figure 10: Bifurcation diagrams in the parameters’ plane (δA, δB) obtained with different values of the
discontinuity point (a) d = 0.3; (b) d = 0.8.

is not substantially influenced by the position of the discontinuity point, in the sense that
all the bifurcation curves continue to exist for different values of the discontinuity as well,
only showing slight modifications of their shape. For example, in Figure 10 we show the
periodicity tongues numerically obtained for d = 0.3 and for d = 0.8 respectively. Notice that
the colors of the periodicity tongues are practically the same, and are also similar to those
shown in Figure 9, obtained with d = 0.5.

3.2. Analytic Expressions of the Boundaries of the Periodicity Tongues

The study of the dynamic properties of iterated piecewise linear maps with one or more
discontinuity points has been rising increasing interest in recent years, as witnessed by the
high number of papers and books devoted to this topic, both in the mathematical literature
(see e.g., [11–16]) and in applications to electrical and mechanical engineering ([17–26]) or
to social sciences ([27–31]).

The bifurcations involved in discontinuous maps are often described in terms of the so
called border-collision bifurcations,that can be defined as due to contacts between an invariant
set of a map with the border of its region of definition. The term border-collision bifurcation was
introduced for the first time by Nusse and Yorke [32] (see also [33]) and it is now widely used
in this context. However the study and description of such bifurcations was started several
years before by Leonov [34, 35], who described several bifurcations of that kind and gave
a recursive relation to find the analytic expression of the sequence of bifurcations occurring
in a one-dimensional piecewise linear map with one discontinuity point. His results are also
described and used by Mira [36, 37]. Analogously, important results in this field have been
obtained by Feigen in 1978, as reported in di Bernardo et al. [14].

We now apply the methods suggested by Leonov [34, 35], see also Mira [36, 37] to the
map T2, in order to show that it is possible to give the analytical equation of the bifurcation
curves that we have seen in Figures 9 and 10. As we will see, the boundaries that separate
two adjacent periodicity tongues are characterized by the occurrence of a border-collision,
involving the contact between a periodic point of the cycles existing inside the regions and
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Figure 11: (a) Starting condition for a cycle of period 3 (b) closing condition for the same cycle, both related
to border-collision boundaries of the corresponding periodicity tongue in the space of parameters.

the discontinuity point. To better formalize and explain our results it is suitable to label the
two components of our map x′ = T2(x) as follows:

x′ = T2(x)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TL(x) = mLx + (1 −mL), if x < d,

x, if x = d,

TR(x) = mRx, if x > d,

(3.3)

where mL = (1 − δA) and mR = (1 − δB) are the slopes of the two linear branch on the left and
on the right of the discontinuity point x = d respectively.

First of all, notice that all the possible cycles of the map T2 of period k > 1 are always
stable. In fact, the stability of a k-cycle is given by the slope (or eigenvalue) of the function
Tk2 = T2 ◦ · · · ◦ T2 (k times) in the periodic points of the cycle, which are fixed points for the
map Tk2 , so that, considering a cycle with p points on the left side of the discontinuity and

(k − p) on the right side, the eigenvalue is given by m
p

Lm
(k−p)
R which, in our assumptions, is

always positive and less than 1.
To study the conditions for the existence of the periodic cycles we limit our analysis

to the bifurcation curves of the so-called “principal tongues”, or “main tongues” ([14, 17–
19, 21, 22]) or “tongues of first degree” ([34–37]), which are the cycles of period k having
one point on one side of the discontinuity point and (k − 1) points on the other side (for
any integer k > 1). Let us begin with the conditions to determine the existence of a cycle
of period k having one point on the left side L and (k − 1) points on the right side R. The
condition (i.e., the bifurcation) that marks its creation is that the discontinuity point x = d is a
periodic point to which we apply, in the sequence, the maps TL, TR, . . . , TR. In the qualitative picture
shown in Figure 11(a) we show the condition for the creation of a 3-cycle, that is, k = 3,
given by, TR ◦ TR ◦ TL(d) = d. Then the k-cycle with periodic points x1, . . . , xk, numbered
with the first point on the left side, satisfies x2 = TL(x1), x3 = TR(x2), . . . , x1 = TR(xk), and
this cycle ends to exist when the last point (xk) merges with the discontinuity point, that
is, xk = d which may be stated as the point x = d is a periodic point to which we apply, in the
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Figure 12: (a) For d = 0.5, bifurcation curves of the principal tongues of period k, with k = 2, . . . , 15 in the
plane (δA, δB), δA = (1−mL), δB = (1−mR); (b) corresponding bifurcation diagrams in the plane (δA, δB)
with colors obtained numerically according to the different periods observed.

sequence, the maps TR, TL, TR, . . . , TR. In the qualitative picture in Figure 11(b) we show the
closing condition related with the 3-cycle, that is, TR ◦ TL ◦ TR(d) = d. Notice that both these
conditions express the occurrence of a border collision bifurcation, being related to a contact
between a periodic point and the boundary (or border) of the region of differentiability of
the corresponding branch of the map. Of course, at the bifurcation the discontinuity point,
which is a fixed point according to the definition of the map, represents a stable equilibrium
as any trajectory converging to the stable cycle is definitely captured by the fixed point
x = d as it coincides with a periodic point at the bifurcation. However, this only happens
at the bifurcation points, that is, it represents a structurally unstable situation, as any slight
changes of a parameter with respect to the bifurcation value, that is, just before or just after
a bifurcation situation, the fixed point x = d is unstable. So, as previously stated, we can
neglect such nongeneric stability conditions of the fixed point that only represent bifurcation
situations. In general, for a cycle of period k > 1, the equation of one boundary of the
corresponding region of periodicity is

mL = mLi =
m

(k−1)
R − d

(1 − d)m(k−1)
R

, (3.4)

while the other boundary, that is, the closure of the periodicity tongue of the same cycle, is
given by

mL = mLf =
m

(k−2)
R − d

(1 −mRd)m
(k−2)
R

. (3.5)
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The proof of these two equations is reported in the appendix. Thus the k-cycle exists for
mk−2
R > d and mL in the range

mLi ≤ mL ≤ mLf , (3.6)

and the periodic points of the k-cycle, say (x∗1, x
∗
2, . . . , x

∗
k
) where x∗1 < d and x∗i > d for i > 1,

can be obtained explicitly as:

x∗1 =
m

(k−1)
R (1 −mL)

1 −mLm
(k−1)
R

,

x∗2 = TL
(
x∗1
)
= mLx

∗
1 + 1 −mL,

x∗3 = TR
(
x∗2
)
= mR

(
mLx

∗
1 + 1 −mL

)
,

x∗4 = TR
(
x∗3
)
= m2

R

(
mLx

∗
1 + 1 −mL

)
,

· · ·

x∗k = TR
(
x∗k−1

)
= m(k−2)

R

(
mLx

∗
1 + 1 −mL

)
.

(3.7)

It is plain that we can reason symmetrically for the other kind of cycles (with 1 periodic point
in the R branch and k − 1 in the L branch) just swapping L and R. So, we can easily get the
following expressions for the bifurcation curves that mark the creation of a k-cycle:

mR = mRi =
d − 1 +m(k−1)

L

dm
(k−1)
L

, (3.8)

while the closure of the same periodicity tongue is given by the following expression:

mR = mRf =
d − 1 +m(k−2)

L

m
(k−2)
L (mLd + 1 −mL)

. (3.9)

So, the k-cycle exists for mk−1
L > (1 − d) and mR in the range

mRi ≤ mR ≤ mRf . (3.10)
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Figure 13: Bifurcation curves of the principal tongues of period k, with k = 2, . . . , 15 (a) d = 0.3; (b) d = 0.8.

Moreover, the periodic points of the k-cycle, (x∗1, x
∗
2, . . . , x

∗
k
) where x∗1 > d and x∗i < d for

i > 1, are obtained from the existence condition, so that we have:

x∗1 =
1 −m(k−1)

L

1 −mRm
(k−1)
L

,

x∗2 = TR
(
x∗1
)
= mRx

∗
1,

x∗3 = TL
(
x∗2
)
= mLmRx

∗
1 + 1 −mL,

x∗4 = TL
(
x∗3
)
= m2

LmRx
∗
1 +mL(1 −mL) + (1 −mL),

· · ·

x∗k = TL
(
x∗k−1

)
= m(k−2)

L mRx
∗
1 +

(
1 −m(k−2)

L

)
.

(3.11)

It is easy to see that for k = 2 the formulas in (3.4) and in (3.8) give the same bifurcation
curves, and similarly for k = 2 the formulas in (3.5) and in (3.9) give the same equations.
Instead, for k = 3, . . . , 15 with the formulas in (3.4) and in (3.5) we get all the bifurcation
curves in Figure 12(a), below the main diagonal, and with those in (3.8) and (3.9) we get all the
bifurcation curves in Figure 12(a), above the main diagonal.

Note that the formulas given in (3.4) and in (3.8) are generic, and hold whichever is
the position of the discontinuity point x = d. In Figure 13 we show the bifurcation curves for
k = 2, . . . , 15 in the case d = 0.3 and d = 0.8 respectively. It is worth noticing that following
the same arguments it is possible to find the boundaries of the other bifurcation curves as
well. In fact, besides the regions associated with the “tongues of first degree” ([34–37]) there
are infinitely many other periodicity tongues, with periods that can be obtained from the
property that between any two tongues having periods k1 and k2 there exists also a tongue
having period k1 + k2 (see e.g., the periods indicated in Figure 9).
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To be more specific, in the description of the periodicity tongues we can associate
a number to each region, which may be called “rotation number”, in order to classify all
the periodicity tongues. In this notation a periodic orbit of period k is characterized not
only by the period but also by the number of points in the two branches separated by the
discontinuity point (denoted by TL and TR resp.,). So, we can say that a cycle has a rotation
number p/k if a k-cycle has p points on the L side and the other (k − p) on the R side.
Then between any pair of periodicity regions associated with the “rotation number” p1/k1

and p2/k2 there exists also the periodicity tongue associated with the “rotation number”
p1/k1 ⊕ p2/k2 = (p1 + p2)/(k1 + k2) (also called Farey composition rule ⊕, see e.g., [38]).

Then, following Leonov [34, 35] (see also [36, 37]), between any pair of contiguous
“tongues of first degree”, say 1/k1 and 1/(k1 + 1), we can construct two infinite families of
periodicity tongues, called “tongues of second degree” by the sequence obtained by adding
with the Farey composition rule ⊕ iteratively the first one or the second one, that is, 1/k1 ⊕
1/(k1 + 1) = 2/(2k1 + 1), 2/(2k1 + 1) ⊕ 1/k1 = 3/(3k1 + 1), . . . and so on, that is:

n

nk1 + 1
for any n > 1, (3.12)

and 1/k1 ⊕ 1/(k1 + 1) = 2/(2k1 + 1), 2/(2k1 + 1) ⊕ 1/(k1 + 1) = 3/(3k1 + 2), 3/(3k1 + 2) ⊕
1/(k1 + 1) = 4/(4k1 + 3) . . . , that is:

n

nk1 + n − 1
for any n > 1 (3.13)

which give two sequences of tongues accumulating on the boundary of the two starting
tongues.

Clearly, this mechanisms can be repeated: between any pair of contiguous “tongues of
second degree”, for example n/(nk1+1) and (n+1)/((n+1)k1+1),we can construct two infinite
families of periodicity tongues, called “tongues of third degree” by the sequence obtained by
adding with the composition rule ⊕ iteratively the first one or the second one. And so on.
All the rational numbers are obtained in this way, giving all the infinitely many periodicity
tongues.

Besides the notation used above, called method of the rotation numbers, we may also
follow a different approach, related with the symbolic sequence associated to a cycle. In
this notation, considering the principal tongue of a periodic orbit of period k constituted
by one point on the L side and (k − 1) on the R side, we associate to the cycle the symbolic
sequence LR · · · (k − 1 times) · R. Then the composition of two consecutive cycles is given by:

LR · · · (k − 1 times) · R ⊕ LR · · · (k times) · R = LR · · · (k − 1 times) · RLR · · · (k times) · R
(3.14)

that is, the two sequences are just put together in file (and indeed this sequence of bifurcations
is also called “boxes in files” in [37]), and the sequence of maps to apply in order to get the



Discrete Dynamics in Nature and Society 19

cycle are listed from left to right. More generally, it is true that given a periodicity tongue
associated with a symbolic sequence σ (consisting of letters L and R, giving the cycle from
left to right) and a second one with a symbolic sequence τ, then also the composition of the
two sequences exists, associated with a periodicity tongue with symbolic sequence στ :

σ ⊕ τ = στ. (3.15)

Finally, we notice that all the tongues are disjoint, that is, they never overlap, and this
implies that coexistence of different periodic cycles is not possible. In other words, we can
have only a single attractor for each pair of parameters δA and δB.

4. Conclusions

In this paper we have considered an adaptive discrete-time dynamic model of a binary
game with externalities proposed by Bischi and Merlone [4] and based on the qualitative
description of binary choice processes given by Schelling [1]. We focused on the case of
a switching intensity that tends to infinity, a limiting that may be interpreted as agents’
impulsivity, that is, actors that decide to switch the strategy choice even when the discrepancy
between the payoffs observed in the previous period is extremely small. This may even be
interpreted as the automatic change of an electrical or mechanical device that changes its
state according to a measured difference between two indexes of performance.

In this limiting case the dynamical system is represented by the iteration of a one-
dimensional piecewise linear discontinuous map that depends on three parameters, and
whose dynamic properties and the analytically computed border collision bifurcations
allowed us to give a quite complete description of existence, uniqueness and stability of
periodic cycles of any period. In fact, for this piecewise continuous map with only one
discontinuity point we could combine and usefully apply some geometric and analytic
methods taken from the recent literature, as well as some results proposed several years ago
but not sufficiently known in our opinion. How close the bifurcation curves of the limiting
case are to those of the original continuous model, with a high value of the parameter λ, can
be deduced comparing Figure 5(c) with Figure 9(a).

We have obtained the analytic expression of the border collision bifurcation curves
that bound the periodicity tongues of first degree in the parameters’ plane.

The results obtained show that the limiting case of impulsive agents is always
characterized by convergence to a fixed point or to a periodic cycle, whereas for intermediate
values of the switching parameters chaotic motion can be easily observed as well.

The methods followed to obtain such analytic expressions are quite general and can
be easily generalized to cases with several discontinuities and with slopes different from the
ones considered in the model studied in this paper. Indeed, in Schelling [1] also the case with
two intersections between the payoff curves has been discussed, see also Granovetter, [3].
This gives rise to a model with two discontinuity points in the limiting case of impulsive
agents. The bifurcation diagrams obtained in this case are studied in the paper Bischi et al.
[39], and the same arguments can be applied in order to extend the discussion to the case
where even more intersections (hence more discontinuities) occur.
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Appendix

The condition of existence of a k-cycle with periodic points x1, . . . , xk, having one point
on the L side and (k − 1) points in the R side (also called principal orbits), is obtained by
considering the fact that a periodic cycle is created in the form of a critical orbit, that is with
a periodic point in the discontinuity point, for example, x1 = d and then x2 = TL(x1), x3 =
TR(x2), . . . , x1 = TR(xk). From this condition we get:

x1 = d,

x2 = TL(x1) = mLd + 1 −mL,

x3 = TR(x2) = mR(mLd + 1 −mL),

· · ·

xk+1 = TR(xk) = m
(k−1)
R (mLd + 1 −mL),

(A.1)

and the condition for a k-cycle is given by:

xk+1 = d = m(k−1)
R (mLd + 1 −mL). (A.2)

Rearranging we obtain (for any k > 1):

mLi =
m

(k−1)
R − d

(1 − d)m(k−1)
R

. (A.3)

The cycle exists until a periodic point has a contact with the discontinuity point, x = d, at
which we apply, in the sequence, the maps TR, TL, TR, . . . , TR. Thus we obtain the following
expressions:

x1 = d,

x2 = TR(x1) = mRd,

x3 = TL(x2) = mLmRd + 1 −mL,

x4 = TR(x3) = mR(mLmRd + 1 −mL),

· · ·

xk+1 = TR(xk) = m
(k−2)
R (mLmRd + 1 −mL)

(A.4)

and the condition for a k-cycle is:

xk+1 = d = m(k−2)
R (mLmRd + 1 −mL) (A.5)
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which, rearranged, gives (for any k > 1)

mLf =
m

(k−2)
R − d

(1 −mRd)m
(k−2)
R

. (A.6)
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