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Summary. Molecular instruments are the most accurate methods in organisms’ identification
and characterization. Biologists are often involved in studies where the main goal is to iden-
tify relationships among individuals. In this framework, it is very important to know and apply
the most robust approaches to infer correctly these relationships, allowing the right conclu-
sions about phylogeny. In this review, we will introduce the reader to the most used statistical
methods in phylogenetic analyses, the Maximum Likelihood and the Bayesian approaches,
considering for simplicity only analyses regarding DNA sequences. Several studies will be
showed as examples in order to demonstrate how the correct phylogenetic inference can lead
the scientists to highlight very peculiar features in pathogens biology and evolution.

1. Preface

Molecular instruments are the most accurate methods in organisms’ identification and char-
acterization. Biologists are often involved in studies where information about genetic fea-
tures of organisms is fundamental and where the main goal is to identify relationships
among individuals. In this framework, it is very important to know and apply the most
robust approaches to infer correctly these relationships, allowing the right conclusions about
phylogeny.

Together with the establishment of new molecular techniques, scientists developed a large
number of different methods to compare individuals basing on differences among them. In
his book, Joseph Felsenstein (2004) provides a very good and deep explanation of these
techniques, together with a detailed description of phylogenetic tree building methods.

This review will introduce the reader to the most used statistical methods in phylogenetic
analyses, the Maximum Likelihood and the Bayesian approaches, considering for simplicity
only analyses regarding DNA sequences.

In the first section we will introduce the concept of the Maximum Likelihood and we
will apply it the phylogenetic trees, including models of molecular evolution and explaining
how to draw a tree. In the next section we will move on Bayesian statistics applied to
phylogenetic inferences: we will introduce the a posteriori concept and we will describe how
to create tree topology using the Metropolis Markov chains Montecarlo algoriths. Finally,
we will show several examples of studies conducted to infer about the evolution of pathogens.
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Table 1. Substitution probability matrix.
A C G T

A pAA pAC pAG pAT

C pCA pCC pCG pCT

G pGA pGC pGG pGT

T pTA pTC pTG pTT

2. Likelihood Methods

Proposed by R. A. Fisher (1912), the most common method used to infer phylogeny is the
maximum likelihood (ML). In this section a brief introduction to ML estimation shall be
provided and its application to identify the best tree topology will be described.

Considering that the majority of biologists does not exactly know likelihood, it is very
important to introduce here some basic concepts. Given some data D and a hypothesis H,
the likelihood of that data is given by

LD = P (D|H) (1)

which is the probability of obtaining D given H. In the context of molecular phylogenetic,
D is the set of sequences being compared and H is the tree topology. Thus, the problem
becomes to find the likelihood of obtaining the observed sequences given a particular tree,
and the goal to find the most probable outcome or, in other words, the tree showing the
maximum likelihood. Maximum likelihood estimation requires three elements: a model of
sequence evolution, a tree and the sequences. Briefly, model of molecular evolution are
basically substitution probability matrices that indicate the probability of change from a
state i to a state j at given site. In other words, considering genetic sequences, models of
molecular evolution must define the probability, at a nucleotide position, from a nucleotide
to mutate into another nucleotide (see Table 1).

Note that a phylogenetic tree (see Figure 1) depicts both the topology (order of nodes
and branches) and the branch lengths. The ML approach must solve two problems: first, for
a given topology, what set of branch lengths makes the observed data most likely. Second,
which tree among all possible trees has the greatest likelihood.

Fig. 1. Example tree with branch lengths and data at a single site.

Assuming that the evolution in different sites on a given tree is independent, the likeli-
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hood can be decomposed into the product of the probabilities at each site:

L = P (D|H) =

m
∏

i=1

P (Di|τ) (2)

where Di is the data at the ith site and τ is the tree topology. Given a tree topology, the
likelihood of that tree for a site is the sum, over all possible nucleotides that may have
existed at the internal nodes of the tree, of the probabilities of each scenario of events. As
example, given the topology reported in Figure 1, the likelihood of each site Di of the tree
is given by:

P (Di|τ) =
∑

x

∑

y

∑

z

P (A,C,G, T, x, y, z|τ) (3)

where x, y and z are the internal nodes. Assuming that differences among lineages are
independent, equation 3 can be decomposed into the following product of terms:

P (Di|τ) = P (z)P (x|z, t5)P (A|x, t1)P (C|z, t2)P (y|z, t6)P (T |y, t3)P (T |y, t5) (4)

with tα (α = 1, 2, . . . , 5) being the branch lengths.
Given a model of sequence evolution, the expression still looks difficult to compute, even

if single probabilities are not hard to calculate. Problems can arise when we consider real
data, where a large number of sequences, including a large number of sites, are considered.
For each site, 43 = 64 terms have to be considered, but on a tree with n individuals there
are n−1 internal nodes. So we need 4n−1 terms: for n = 10 this is 262,144, while for n = 20
it is 274,877,906,944.

It easy to understand that the exhaustive application of this method is very hard: there
are several methods (Felsenstein (1973, 1981); Gonnet et al. (1996)) to economize the com-
putational effort but they will be not faced in this paper.

3. Bayesian Approach to Phylogeny

Bayesian methods are closely related to likelihood methods, differing only in the use of a
prior distribution of the variables to infer on, which would typically be the tree. In this way
it is possible to interpret the results as the distributions of the variable values given the
data. The use of Markov Chains Monte Carlo (MCMC) methods has recently made possible
the application of Bayes’ theorem Barnard and Bayes (1958); Price (1763) to phylogenetic
analyses. In this section a brief introduction to Bayes’ theorem will be proposed, together
with its application to the search of the best tree topology, using Metropolis algorithms and
MCMC methods.

3.1. Bayes’ Theorem
In a very simplified version, Bayes’ theorem states how the probability of event A given an
event B depends not only on the relationship between A and B but also on the absolute
probability of A independent of B. In more technical terms, the posterior probability of the
hypothesis H given data D is:

P (H |D) =
P (D|H)P (H)

P (D)
(5)
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where

• P (D|H) is the conditional probability of D given H (likelihood);

• P (H) is the prior probability or marginal probability of the hypothesis; it is prior’ in
the sense that it does not take into account any information about the data;

• P (D) is the prior or marginal probability of the data.

In Bayes’ theorem simplest form, the denominator is the sum of the numerator over all
possible hypotheses H, the quantity that is need to normalize them.

P (H |D) =
P (D|H)P (H)

∑

H P (D|H)P (H)
(6)

3.2. Markov Chains Monte Carlo, Metropolis Algorithm and Bayes’ Theorem for Phyloge-
nies

In Bayesian inference, the denominator of equation 6 is very difficult to compute, considering
that it includes all possible hypothesesH , i.e. all possible trees in the case of phylogenies. To
avoid this problem, Bayesian inference is involves a Markov Chains Monte Carlo (MCMC)
Metropolis algorithm in the evaluation of a random sample of trees from the their posterior
distribution in order to find the best candidate topology. The Metropolis-Hastings algorithm
(Metropolis et al. (1953); Hastings (1970); Green (1995)), a variant of MCMC, works as
follows:

(a) Consider the tree Ti as the staring tree.
(b) The tree Tj is a neighbor tree of Ti.
(c) Compute R, the ratio of the probabilities (or probability density functions) of Tj and

Ti :

R = min



1,
f(Tj)

f(Ti)
=

P (D|Tj)P (Tj)∑
T
P (D|T )P (T )

P (D|Ti)P (Ti)∑
T
P (D|T )P (T )

=
P (D|Tj)P (Tj)

P (D|Ti)P (Ti)



 (7)

(d) Generate a random variable U that is uniformly distributed on the interval (0, 1); if U
is smaller than R, then accept the proposed tree as current tree, otherwise, continue
with the previous tree.

(e) Return to step 2.

The algorithm clearly never terminates. It is a Markov Chain since the next state in
the random process depends only on the current state and not previous ones.

The basic point is that, in this stochastic process, we do not need to know the function
of Ti and Tj. In particular, we can avoid to calculate their denominators. In the acceptance
of R, knowing only the numerators, we can carry out the algorithm.

Basically, the acceptance ratio reported in equation 7 is the ratio of priors probabilities
of the proposed and the new tree, multiplied by the likelihoods of these trees.

The main problem becomes to identify and to chose the exact prior distribution: a
proposal distribution that ‘jumps’ too far too often will result in most proposed new trees
being rejected. In contrast, a distribution that moves timidly may fail to get far enough to
explore the tree space.
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Tree distribution has multiple peaks, separated by low valleys, representing best and
worse topology: in this kind of landscape the Markov chain may have difficulty in moving
from one peak to another. As a result, the chain may get stuck on one peak and the resulting
samples will not approximate the posterior density correctly.

This is a serious practical concern for phylogeny reconstruction, as multiple local peaks
are known to exist in the tree space during heuristic tree search under maximum parsimony
(MP), maximum likelihood (ML), and minimum evolution (ME) criteria, and the same can
be expected for stochastic tree search using MCMC. Many strategies have been proposed
to improve mixing of Markov chains in presence of multiple local peaks for the posterior
density. One of the most successful algorithms is the Metropolis-coupled MCMC (MC3)
(Geyer (1992)).

In this algorithm several chains are run in parallel, with different distributions. The first
chain (the cold one) is the target density, while the other ones (the heated chains) are used
to improve mixing. This approach allows heated chains to be more ‘tolerant’ to valleys ; in
this way, the algorithm can jump deeply through the tree space and can find new peaks to
explore. Successfully swapping states allows a chain that is otherwise stuck on one peak in
the landscape of trees to explore other peaks. For example, if the cold chain is stuck on
a peak in the posterior distribution of trees, swapping states with another (heated) chain
allows the new cold chain to jump to another peak in a single cycle. As a result, the cold
chain can more easily traverse the space of trees.

4. Bayesian Approach in Evolution Inference

In biology and in epidemiology, the main goals are the identification and the characterization
of individuals. Molecular epidemiology studies are conducted to infer the origin of these
individuals and researchers have found in the Bayesian approach a very useful tool.

Indeed the application of these methods ranges from the identification of pathogens to
the inference about spatio-temporal origins of a viral population.

Several different studies have been conducted simply looking for the best phylogenetic
tree, in order to clearly classify a pathogen: in our experience, Bayesian methods have
been a robust approach to characterize new vector borne bacterial genospecies (Grego et al.
(2007)), or to demonstrate the circulation of potentially pathogenic viral strains in the inves-
tigated study areas (Carpi et al. (2009)). We also described the evolutionary relationships
among West Nile virus isolates collected in the United States of America, and Bayesian trees
reveled the continuous evolution and differentiation of this virus through time (Bertolotti
et al. (2007, 2008), see Fig. 2). In this kind of studies, large datasets of sequences are ana-
lyzed using Bayesian approaches in order to identify the most correct topology and to infer
the evolutionary relationship among viral strains, considering a range of geographical scale.
Bayesian approaches allowed to highlight that WNV in the USA is a geographically pan-
mictic viral population that is nevertheless evolving and diversifying at a rate comparable
to that of other positive sense RNA viral pathogens, and according to a pattern of drift and
purifying selection characteristic of other arboviruses (Bertolotti et al. (2007)). Regardless
of the underlying mechanisms, our results clearly demonstrate that WNV varies genetically
over geographic and temporal scales that are finer than has previously been appreciated.
Our study also demonstrates that fine-scale variation in habitat characteristics within an
urban setting contributes to the generation and maintenance of viral diversity (Bertolotti
et al. (2008); Amore et al. (in press)).
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Fig. 2. Phylogenetic tree constructed by Bayesian analysis of 132 WNV envelope gene sequences.
Reprinted from Virology, Volume 360, Issue 1, Luigi Bertolotti Uriel Kitron and Tony L. Goldberg,
Diversity and evolution of West Nile virus in Illinois and the United States, 2002-2005, Pages 143-
149, Copyright 2007, with permission from Elsevier.

In more complex analyses, Bayesian statistics are used to provide inferences on the
evolutionary rates and origins of individuals.

Indeed, recent studies used Bayesian tools in order to investigate viral geographical
origins and viral dispersal patterns, describing how Bayesian phylogeography compares
with previous parsimony analysis in the investigation of the H5N1 influenza A origin and
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epidemiological linkage among sampling localities (Lemey et al. (2009); Fusaro et al. (2010)).
In this kind of analyses, trees are hard to interpret, because of the large number of

included sequences. Moreover, trees are often misinterpreted, with meaning mistakenly as-
cribed to the vertical proximity of taxa or clades. In cases where the vertical ordering of
taxa on phylogenetic trees is flexible, the opportunity exists to ascribe biological meaning to
this dimension (Maddison (1989)). In order to make unresolved trees more informative, we
recently proposed the use of Evolutionary Algorithms (EAs) to find the best graphical tree
representation that includes vertical information (Cerutti et al. (2010b,a)). EAs (Eiben and
Smith (2003); Tettamanzi and Tomassini (2001)) are a broad class of heuristic optimisation
algorithms, inspired by those biological processes that allow populations of organisms (ten-
tative solutions of the problem to be optimized) to adapt to their surrounding environment
(the problem itself): genetic inheritance and survival of the fittest. The heuristic procedure
is used to find. trees that group samples with similar features in the vertical direction, and
it generates at each time step a new tentative solution by rotating internal nodes. Sample
order was searched in order to minimize relative distances according to their genetic dis-
tances, but this approach could be implemented using distance matrices created from other
taxon features, such as temporal or geographical data.

5. Conclusions

Molecular epidemiology is a branch of Science that focuses on the genetic features, identified
at the molecular level, of pathogens. In order to correctly infer about pathogen relation-
ships, several statistical methods have been developed. Among them, approaches based on
posterior probability are often used to describe phylogeny and evolutionary features. To-
gether with new sequencing techniques, that can provide extremely large dataset of genetic
sequences, Bayesian methods in phylogenetic analyses are a very useful tools in molecular
epidemiology investigations. In this framework the development of new algorithms applied
to phylogeny, or more in general to sequence analyses, will be necessary in order to obtain
needed information on pathogens, such as their genetic and evolutionary features, as well
as their distribution and diffusion.
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