
This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is
posted here by agreement between Elsevier and the University of Turin. Changes resulting
from the publishing process - such as editing, corrections, structural formatting, and other
quality control mechanisms - may not be reflected in this version of the text. The definitive
version of the text was subsequently published in THEORETICAL COMPUTER
SCIENCE, 411(37), 2010, 10.1016/j.tcs.2010.05.002.

You may download, copy and otherwise use the AAM for non-commercial purposes
provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the
CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and
publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en),
10.1016/j.tcs.2010.05.002

The definitive version is available at:
http://linkinghub.elsevier.com/retrieve/pii/S0304397510002720

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301864492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://linkinghub.elsevier.com/retrieve/pii/S0304397510002720

Contract-based discovery of Web services

modulo simple orchestrators

Luca Padovani

Istituto di Scienze e Tecnologie dell’Informazione, Università di Urbino
Piazza della Repubblica 13, 61029 Urbino, Italy

Abstract

Web services are distributed processes with a public description of their behavior, or
contract. The availability of repositories of Web service descriptions enables inter-
esting forms of dynamic Web service discovery, such as searching for Web services
exposing a specified contract. This calls for a formal notion of contract equivalence
satisfying two contrasting goals: being as coarse as possible so as to favor Web
services reuse, and guaranteeing successful client/service interaction.

We study an equivalence relation that achieves both goals under the assumption
that client/service interactions may be mediated by simple orchestrators. In the
framework we develop, orchestrators play the role of proofs (in the Curry-Howard
sense) justifying an equivalence relation between contracts. This makes it possible
to automatically synthesize orchestrators out of Web services contracts.

Key words: Web service discovery, behavioral contracts, orchestration, ccs,
testing semantics

1 Introduction

Web services are distributed processes equipped with a public description of
their interface. Such description typically includes the type – or schema –
of messages exchanged with the service, the operations provided by the ser-
vice [13], and also the behavior – or contract – supported by the service [3, 1].
The description is made public by registering the service in one or more Web
service repositories [4, 15, 6, 38] that can be queried for discovering services
providing a particular contract. This calls for a formalization of the contract

Email address: padovani@sti.uniurb.it (Luca Padovani).

Preprint submitted to Elsevier 2 September 2008

language and of a characterization of the contract equivalence relation. In-
deed, naive notions of contract equivalence, including syntactic or structural
equivalences, are too strict to be useful in this context. The aim of this paper
is the definition of a notion of contract equivalence – and more specifically
of a subcontract relation – that can be proficiently used for the discovery of
all and only those Web services that can satisfy a given client. Here, “only”
means that Web services whose contracts are deemed equivalent should be
compatible, namely they should satisfy the same clients; “all” means that
the equivalence relation should be as coarse as possible, so a to maximize the
search space and favor Web service reuse; “can” means that we should tolerate
a certain amount of incompatibility between Web services whose contracts are
deemed equivalent, provided that there is a sufficiently simple (i.e. automatic)
way of avoiding such incompatibilities.

We express contracts using a fragment of ccs [18] with two choice operators (+
for external choice and ⊕ for internal choice) without relabeling, restriction,
and parallel composition. For instance, the contract σ = a.c.(b⊕ d) describes
a service that accepts two messages a and c (in this order) and then internally
decides whether to send back either b or d. The contract ρ = a.c.(b.e + d.e)
describes a client that sends two messages a and c (in this order), then waits
for either the message b or the message d, and finally terminates (e denotes
successful termination). The compliance relation ρ a σ tells us that the client
ρ is satisfied by the service σ, because every possible interaction between ρ
and σ leads to the client terminating successfully. This is not true for ρ and
σ′ = a.c.(b⊕ c), because the service with contract σ′ may internally decide to
send a message c that the client is never willing to accept, hence ρ 6a σ′. The
subcontract relation σ � τ , where τ = a.c.b, tells us that every client satisfied
by σ (including ρ) is also satisfied by τ . This is because τ is more deterministic
than σ.

Formal notions of compliance and subcontract relation may be used for im-
plementing contract-based query engines. The query for services that satisfy
ρ is answered with the set Q1(ρ) = {σ | ρ a σ}. The complexity of running
this query grows with the number of services stored in the repository. A better
strategy is to compute the dual contract of ρ, denoted by ρ⊥, which represents
the canonical service satisfying ρ (that is ρ a ρ⊥) and then answering the
query with the set Q2(ρ) = {σ | ρ⊥ � σ}. If ρ⊥ is the �-smallest service that
satisfies ρ, we have Q1(ρ) = Q2(ρ), namely we are guaranteed that no service
is mistakenly excluded. The advantage of this approach is that � can be pre-
computed when services are registered in the repository, and the query engine
needs only scan through the �-minimal contracts. Furthermore, the definition
of a formal theory of contracts and of a notion of contract equivalence finds
useful applications also outside the scope of Web service discovery: it may
help and drive the development of new Web services, as well as supporting
maintenance and refactoring of existing ones.

2

When looking for a suitable theory defining a and �, the testing frame-
work [17, 26] and the must preorder seem particularly appealing: clients are
tests, compliance encodes the passing of a test, and the subcontract relation is
the liveness-preserving preorder induced by the compliance relation. Among
the characterizing laws of the must preorder is σ⊕ τ � σ, namely it is always
safe to replace a (service with) contract σ ⊕ τ with a more deterministic one.
Unfortunately, the must preorder excludes many other relations that are de-
sirable in the context of Web service discovery. For example, a service with
contract a + b cannot replace a service with contract a despite the fact that,
intuitively, a+ b offers more options than just a. The reason is that the client
ρ′ = a.e+ b.c.e complies with a simply because no interaction on b is possible,
whereas it can get stuck when interacting with a+ b because such service does
not offer c after b. The relation a � a + b characterizes so-called extension
or implementation refinements [21] and it is a well-known fact that it is gen-
erally unsafe (it may cause deadlocks). In the context of search engines it is
natural to allow this kind of refinement, since it enables the retrieval of more
precise services from partial specifications (after all, this is the main task of
every modern search engine, even textual ones). As another example of refine-
ment that is not allowed by the must preorder, the client ρ′′ = c.a.(b.e + d.e)
fails to interact successfully with σ above because it sends the messages a
and c in the wrong order. The rationale for enabling this kind of refinements
is the same that has driven the research on type isomorphisms for function
libraries [36, 20], where permutation of arguments and currification are the
main characterizing morphisms. In our context, it makes sense to retrieve ser-
vices whose contract differs from the searched one solely because messages are
exchanged in a different order that does not disrupt message dependencies.

In order to accommodate all of the above desiderata, we propose an extension
of the classical testing framework where we assume that client and service in-
teract under the supervision of an orchestrator. In the Web services domain, an
orchestrator coordinates in a centralized way two (or more) interacting parties
so as to achieve a specific goal, in our case to guarantee client satisfaction. The
orchestrator cannot affect the internal decisions of client and service, but it can
affect the way they try to synchronize with each other. In our framework an
orchestrator is a bounded, directional, controlled buffer : the buffer is bounded
in that it can store a finite amount of messages; the buffer is directional in that
it distinguishes messages sent to the client from messages sent to the service;
the buffer is controlled by orchestration actions. Asynchronous actions have
either the form 〈α, ε〉 or 〈ε, α〉: an action 〈a, ε〉 indicates that the orchestrator
accepts a message a from the client, without delivering it to the service; dually,
〈a, ε〉 indicates that the orchestrator sends a message a (previously received
from the service) to the client; an action of the form 〈ε, α〉 indicates a similar
capability on the service side. Synchronous actions have the form 〈a, a〉: they
indicate that the orchestrator accepts a message a from the client, provided
that the service can receive a; dually for 〈a, a〉. The orchestrator f = 〈a, a〉

3

makes the client ρ′ above compliant with a+ b, because it disallows any inter-
action on b; the orchestrator g = 〈c, ε〉.〈a, ε〉.〈ε, a〉.〈ε, c〉.(〈b, b〉+ 〈d, d〉) makes
the client ρ′′ above compliant with σ, because the orchestrator accepts c fol-
lowed by a from the client, and then delivers them in the order expected by
the service. Orchestrators can be interpreted as morphisms transforming ser-
vice contracts: the relation f : a � a + b states that every client satisfied
by a is also satisfied by a + b by means of the orchestrator f ; the relation
g : c.a.(b ⊕ d) � a.c.(b ⊕ d) states that every client that sends c before a
and then waits for either b or d can also be satisfied by a.c.(b ⊕ d), provided
that g orchestrates its interaction with the service. On the other hand, no or-
chestrator is able to make ρ interact successfully with σ′, because the internal
decisions taken by σ′ cannot be controlled.

The reminder of the paper is structured as follows. In §2 we define syntax and
semantics of the contract language and we define strong variants of the com-
pliance and subcontract relations. These relations, which correspond directly
to analogous notions in the standard testing framework, are too strict for the
purposes of Web service discovery, as we have informally argued above. In §3
we define weak variants of compliance and subcontract relation, correspond-
ing to the scenario where client and services interact while being mediated
by a simple orchestrator. We proceed by studying simple orchestrators and
the fundamental properties of the weak relations they induce, including their
connection with the corresponding strong variants. §4 shows how to compute
the dual contract in the presence of simple orchestrators and in §5 we provide
an algorithm for synthesizing orchestrators by comparing service contracts.
In §6 we show the algorithm at work on two less trivial examples and in
§7 we informally overview some interesting subclasses of simple orchestrators
that allow for efficient and particularly simple implementations. We conclude
with an in-depth discussion of related work (§8) and a summary of the main
contributions of this work (§9).

2 Contracts

The syntax of contracts makes use of a denumerable set N of names ranged
over by a, b, . . . and of a denumerable set of variables ranged over by x, y, . . . ;
we write N for the set of co-names a, where a ∈ N . Names represent input
actions, while co-names represent output actions; we let α, β, . . . range over
actions; we let ϕ, ϕ′, . . . range over strings of actions, ε being the empty string
as usual; we let r, s, . . . range over finite sets of actions; we let α = α and
r = {α | α ∈ r} and ϕ be the sequence obtained by changing every action α in
ϕ with its corresponding co-action α. The meaning of names is left unspecified:
they can stand for ports, operations, message types, and so forth. Contracts are

4

ranged over by ρ, σ, τ, . . . and their syntax is given by the following grammar:

σ ::= 0 | α.σ | σ + σ | σ ⊕ σ | rec x.σ | x

The notions of free and bound variables in contracts are standard, being rec x
the only binder. In the following we write σ{τ/x} for the contract that is the
same as σ except that every free occurrence of x has been replaced by τ . We
assume variables to be guarded : every free occurrence of x in a term rec x.σ
must be found in a subterm of σ having the form α.σ′. The null contract 0

describes the idle process that offers no action (we will omit trailing 0’s); the
contract α.σ describes a process that offers the action α and then behaves as
σ; the contract σ+ τ is the external choice of σ and τ and describes a process
that can either behave as σ or as τ depending on the party it is interacting
with; the contract σ ⊕ τ is the internal choice of σ and τ and describes a
process that autonomously decides to behave as either σ or τ ; the contract
rec x.σ describes a process that behaves as σ{rec x.σ/x}.

Overall contracts are finite representations of possibly infinite regular trees
generated by the 0, the prefix and the choice operators [16]. Recall that a
regular tree always contains a finite number of different subtrees. The regular
tree denoted by a contract is intuitively obtained by repeatedly unfolding
every subterm rec x.σ to σ{rec x.σ/x}. The guardedness condition stated
above ensures that every infinite branch of the possibly infinite tree obtained
by unfolding a contract contains infinite occurrences of the prefix operator. It
excludes terms of the form rec x.x or rec x.x + x or rec x.x ⊕ x. All these
terms usually represent diverging processes that we exclude from this work
(the interested reader may refer to [31] for a treatment of divergence in the
context of Web services).

The transition relation of contracts is inductively defined by the following
rules (symmetric rules for + and ⊕ are omitted):

α.σ
α−→ σ σ ⊕ τ −→ σ rec x.σ −→ σ{rec x.σ/x}

σ −→ σ′

σ + τ −→ σ′ + τ

σ
α−→ σ′

σ + τ
α−→ σ′

The relation −→ denotes internal, invisible transitions, while
α−→ denotes

visible transitions labeled with an action α. The transition relation is the
same as that of ccs without τ’s [18]. In particular, the fact that + stands for
an external choice is clear from the fourth rule, where the internal transition
σ −→ σ′ does not preempt the τ branch. The guardedness assumption we
made earlier ensures that the number of consecutive internal transitions in
any derivation of a contract is finite (strong convergence). We write =⇒ for
the reflexive, transitive closure of −→; let

α
=⇒ be =⇒ α−→=⇒; we write σ

α−→

5

if there exists σ′ such that σ
α−→ σ′, and similarly for σ

α
=⇒; let init(σ)

def
=

{α | σ α
=⇒}.

Definition 2.1 (strong compliance). A system is a pair ρ ‖ σ of a (client)
contract ρ and a (service) contract σ interacting with each other. Let −→ be
the least relation between systems inductively defined as follows:

ρ −→ ρ′

ρ ‖ σ −→ ρ′ ‖ σ
σ −→ σ′

ρ ‖ σ −→ ρ ‖ σ′
ρ

α−→ ρ′ σ
α−→ σ′

ρ ‖ σ −→ ρ′ ‖ σ′

We write =⇒ for the reflexive, transitive closure of −→; we write ρ ‖ σ X−→ if
there exist no ρ′ and σ′ such that ρ ‖ σ −→ ρ′ ‖ σ′. We say that ρ is strongly
compliant with σ, notation ρ a σ, if ρ ‖ σ =⇒ ρ′ ‖ σ′ X−→ implies ρ

e−→.

The first two rules in the definition of −→ for systems indicate that client and
service may evolve independently of each other by means of internal moves.
The last rule describes a synchronization between client and service performing
complementary actions. A client ρ is strongly compliant with a service σ if
every computation of the system ρ ‖ σ reaching a stable state ρ′ ‖ σ′ is such
that ρ′

e−→, which denotes the successful termination of the client. For instance
a.e + b.e a a ⊕ b and a.e ⊕ b.e a a + b, but a.e ⊕ b.e 6a a ⊕ b because of the
computation a.e⊕ b.e ‖ a⊕ b =⇒ a.e ‖ b X−→.

The (strong) compliance relation provides us with the most natural equiva-
lence for comparing services: the (service) contract σ is “smaller than” the
(service) contract τ if every client that is compliant with σ is also compliant
with τ .

Definition 2.2 (strong subcontract). We say that σ is a strong subcontract
of τ , notation σ v τ , if ρ a σ implies ρ a τ for every ρ. We write ' for the
equivalence relation induced by v, that is ' = v ∩w.

For instance, we have a ⊕ b v a because every client that is satisfied by a
service that may decide to offer either a or b is also satisfied by a service
that systematically offers a. On the other hand a.(b + d) 6v a.b + a.d since
a.b.e a a.(b+ d) but a.b.e 6a a.b+ a.d because of the computation a.b.e ‖ a.b+
a.d −→ b.e‖d X−→. In the last example a client of a.(b+d) can decide whether
to receive b or d after sending a, whereas in a.b+ a.d only one of these actions
is available, according to the branch taken by the service. In fact it is possible
to prove that a.b+ a.d ' a.(b⊕ d).

The set-theoretic definition of the preorder above admits another, more intu-
itive characterization which is also propedeutic to the alternative character-
ization of the weak subcontract relation in §3. In order to define it we need
two auxiliary notions, that of contract continuation and of ready set.

6

The transition relation of contracts describes the evolution of a contract from
the point of view of the process exposing, or implementing, the contract. The
notion of contract continuation, which we are to define next, considers the
point of view of the process it is interacting with.

Definition 2.3 (contract continuation). Let σ
α

=⇒. The continuation of σ

with respect to α, notation σ(α), is defined as σ(α)
def
=

⊕
σ=⇒ α−→σ′ σ

′. We
generalize the notion of continuation to finite sequences of actions so that
σ(ε) = σ and σ(αϕ) = σ(α)(ϕ).

For example, a.b+ a.d
a−→ b (the process knows which branch has been taken

after an action a) but (a.b+a.d)(a) = b⊕d (the party interacting with a.b+a.d
does not know which branch has been taken after seeing an a action, hence it
considers both). Because of the guardedness condition there is a finite number
of residuals σ′ such that σ =⇒ α−→ σ′, hence σ(α) is well defined. We can state
an even stronger property which we will implicitly use throughout the paper
for asserting the well-foundedness of several definitions.

Proposition 2.4. Let D(σ)
def
= {σ(ϕ) | σ ϕ

=⇒}. Then D(σ) is finite for
every σ.

Proof. It is sufficient to observe that σ(ϕ) is the internal choice of some sub-
trees in the regular tree resulting from the unfolding of σ. Since a regular
tree has finite different subtrees, there is a finite number of terms σ(ϕ). An
alternative, direct proof can be found in [32].

The ready sets of a contract tell us about its internal nondeterminism.

Definition 2.5 (ready set). We say that σ has ready set r, written σ ⇓ r, if
σ =⇒ σ′ X−→ and r = init(σ′).

Intuitively, σ ⇓ r means that σ can independently evolve, by means of internal
transitions, to a stable contract σ′ which only offers the actions in r. For
example, {a, b} is the only ready set of a+b (both a and b are always available),
whereas the ready sets of a ⊕ b are {a} and {b} (the contract a ⊕ b may
evolve into a state where only a is available, or into a state where only b is
available). Similarly, a+ (b⊕ c) has two ready sets {a, b} and {a, c}. Namely,
the availability of action a is always guaranteed (it can be chosen externally,
see “+” in the contract), but only one of b or c will be available (the choice
of which is made internally, see “⊕” in the contract).

We are now ready to define an alternative characterization of v.

Definition 2.6 (coinductive strong subcontract). We say that S is a coin-
ductive strong subcontract relation if (σ, τ) ∈ S implies

7

(1) τ ⇓ s implies σ ⇓ r and r ⊆ s for some r, and
(2) τ

α
=⇒ implies σ

α
=⇒ and (σ(α), τ(α)) ∈ S .

Condition (1) requires τ to be more deterministic than σ (every ready set of τ
has a corresponding one of σ that offers fewer actions). Condition (2) requires
τ to offer no more actions than those offered by σ, and every continuation
after an action offered by both σ and τ to be in the subcontract relation.
We conclude this section with a summary of the most important properties
enjoyed by v.

Proposition 2.7. The following properties hold:

(1) v is the largest coinductive subcontract relation;
(2) v coincides with the must preorder [18, 17, 26] for strongly convergent

processes;
(3) v is a precongruence with respect to all the operators of the contract

language.

Proof. We only prove item (1). A proof of item (2) can be found in [31] and
precongruence proofs for the must preorder can be found in [26].

First of all we prove that v is a coinductive strong subcontract relation. Let
σ v τ . As regards condition (1) in Definition 2.6, let {r1, . . . ,rn} be the
ready sets of σ and assume by contradiction that there exists s such that
τ ⇓ s and ri 6⊆ s for every 1 ≤ i ≤ n. Namely, for every 1 ≤ i ≤ n there

exists αi ∈ ri \ s. Consider ρ
def
=
∑

1≤i≤n αi.e. Then ρ a σ but ρ 6a τ , which

is absurd by hypothesis. As regards condition (2), let τ
α

=⇒ and assume by

contradiction that σ Y α=⇒. Consider ρ
def
= e + α. Then ρ a σ but ρ 6a τ , which

is absurd by hypothesis. Let ρ′ be a client contract such that ρ′ a σ(α) and

consider ρ
def
= e+α.ρ′. Then ρ a σ, from which we derive ρ a τ , hence ρ′ a τ(α).

We conclude σ(α) v τ(α) because ρ′ is arbitrary.

Then we prove that v is the largest among all the coinductive strong subcon-
tract relations. To this aim it is sufficient to show that any coinductive strong
subcontract relation S is included in v. Let (σ, τ) ∈ S and assume ρ a σ.
Consider now a maximal computation ρ ‖ τ =⇒ ρ′ ‖ τ ′ X−→. We can “unzip”

this derivation into two derivations ρ
ϕ

=⇒ ρ′ X−→ and τ
ϕ

=⇒ τ ′ X−→ for some
string ϕ of actions. From condition (2) of Definition 2.6 and by induction on

ϕ we derive that σ
ϕ

=⇒ and (σ(ϕ), τ(ϕ)) ∈ S . From τ(ϕ) ⇓ init(τ ′) and con-
dition (1) of Definition 2.6 we derive that there exists r ⊆ init(τ ′) such that
σ(ϕ) ⇓ r. By definition of ready set we obtain that there exists σ′ such that

σ
ϕ

=⇒ σ′ X−→ and init(σ′) ⊆ init(τ ′). We can now “zip” the two derivations
starting from ρ and σ and obtain a derivation ρ ‖ σ =⇒ ρ′ ‖ σ′. We observe
that ρ′ ‖ σ′ X−→ since ρ′ X−→ and σ′ X−→ and init(σ′) ⊆ init(τ ′). From ρ a σ

8

we conclude ρ′
e−→.

Property (1) states the correctness of Definition 2.6 as an alternative charac-
terization for v. Property (2) connects v with the well-known must testing
preorder. This result is not entirely obvious because the notion of “passing a
test” we use differs from that used in the standard testing framework (see [31]
for more details). Finally, property (3) states that v is well behaved and that
it can be used for modular refinement. The weak variant of the subcontract
relation that we will define in §3 does not enjoy this property in general, but
not without reason as we will see.

3 Simple orchestrators

The strong compliance relation (Definition 2.1) is based on interactions where
at each synchronization progress is always guaranteed for both client and ser-
vice. We relax this requirement and assume that an orchestrator mediates the
interaction of a client and a service. The orchestrator ensures that at each
synchronization progress is guaranteed for at least one of the interacting par-
ties. The orchestrator must be fair, in the sense that client and service must
have equal opportunities to make progress. In other words, the orchestrator
should not indefinitely guarantee progress to only one of the two parties. Also,
the orchestrator must not disrupt the communication flow between client and
service: it cannot bounce a message back to the same party that sent it.

3.1 Weak compliance and subcontract relations

Orchestration actions are described by the following grammar:

µ ::= 〈α, ε〉 | 〈ε, α〉 | 〈a, a〉 | 〈a, a〉

The action 〈α, ε〉 means that the orchestrator offers α to the client; the action
〈ε, α〉 means that the orchestrator offers α to the service; the action 〈α, α〉
means that the orchestrator simultaneously offers α to the client and α to the
service. Actions 〈α, ε〉 and 〈ε, α〉 are called asynchronous orchestration actions
because, if executed, they guarantee progress to only one party among client
and service. On the other hand, 〈α, α〉 are synchronous orchestration actions
because, if executed, they guarantee simultaneous progress to both client and
service. We let µ, µ′, . . . range over orchestration actions and a,a′, . . . range
over sets of orchestrator actions.

A directional buffer is a map {◦, •}×N → Z associating pairs (r, a) with the

9

number of a messages stored in the buffer and available for delivery to the role
r, where r can be ◦ for “client” or • for “service”; we let B,B′, . . . range over
buffers. Directionality is ensured by distinguishing messages to be delivered to
the client from messages to be delivered to the service. For technical reasons
we allow cod(B) – the codomain of B – to range over Z, although every well-
formed buffer will always contain a nonnegative number of messages. We write
∅̃ for the empty buffer, the one having {0} as codomain; we write B[(r, a) 7→ n]
for the buffer B′ which is the same as B except that (r, a) is associated with
n; we write Bµ for the buffer B updated after the orchestration action µ:

B〈a, ε〉 = B[(•, a) 7→ B(•, a) + 1] (accept a from the client)
B〈a, ε〉 = B[(◦, a) 7→ B(◦, a)− 1] (send a to the client)
B〈ε, a〉 = B[(◦, a) 7→ B(◦, a) + 1] (accept a from the service)
B〈ε, a〉 = B[(•, a) 7→ B(•, a)− 1] (send a to the service)
B〈α, α〉 = B (synchronize client and service)

We say that B has rank k, or is a k-buffer, if cod(B) ⊆ [0, k]; we say that the
k-buffer B enables the orchestration action µ, notation B `k µ, if Bµ is still
a k-buffer. For instance ∅̃ `1 〈a, ε〉 but ∅̃ 0k 〈a, ε〉 because −1 ∈ cod(∅̃〈a, ε〉).
We extend the notion to sets of actions so that B `k a if B enables every
action in a. Synchronization actions are enabled regardless of the rank of the
buffer, because they leave the buffer unchanged.

The language of simple orchestrators is defined by the following grammar:

f ::= 0 | µ.f | f ∨ f | f ∧ f | rec x.f | x

We let f, g, h, . . . range over orchestrators. The orchestrator 0 offers no action
(we will omit trailing 0’s); the orchestrator µ.f offers the action µ and then
continues as f ; the orchestrator f ∨ g offers the actions offered by either f
or g; the orchestrator f ∧g offers the actions offered by both f and g; recursive
orchestrators can be expressed by means of rec x.f and recursion variables
in the usual way. As for contracts, we make the assumption that recursion
variables must be guarded by at least one orchestration action.

Simple orchestrators do not exhibit internal nondeterminism. This calls for
an operational semantics merely expressing which orchestration actions are
available (symmetric rule for ∨ omitted):

µ.f
µ−→ f

f
µ−→ f ′

f ∨ g µ−→ f ′
f

µ−→ f ′ g
µ−→ g′

f ∧ g µ−→ f ′ ∧ g′
f{rec x.f/x}

µ−→ f ′

rec x.f
µ−→ f ′

In practice we will identify orchestrators with the set JfK of strings of orches-
tration actions they offer, namely

JfK def
= {µ1 · · ·µn | ∃g : f

µ1−→ · · · µn−→ g}

10

Observe that JfK is a non-empty, prefix-closed, regular set of strings of or-

chestration actions. We write f
µ7−→ g if JgK = {µ1 · · ·µn | µµ1 · · ·µn ∈ JfK},

namely g is the residual of f after the action µ. Note that f
µ7−→ f ′ and

f
µ7−→ f ′′ implies Jf ′K = Jf ′′K. We write f

µ1···µn7−−−−→ if µ1 · · ·µn ∈ JfK; we write

f X µ7−→ if µ 6∈ JfK; let init(f)
def
= {µ | f µ7−→}. We say that f is a valid orches-

trator of rank k, or is a k-orchestrator, if f
µ1···µn7−−−−→ implies that ∅̃µ1 · · ·µn is

a k-buffer. Not every term f denotes a valid orchestrator of finite rank. For
instance rec x.〈a, ε〉.x is invalid because it accepts an unbounded number of
messages from the client; 〈a, ε〉 is invalid because it tries to deliver a mes-
sage that it has not received; 〈ε, a〉.〈a, ε〉 is a valid orchestrator of rank 1 (or
greater). In the following we will always work with valid orchestrators of finite
rank.

A better intuition of the semantics of orchestrator can be given by inspecting
directly the weak variant of the compliance relation, where client and service
interact under the supervision of an orchestrator.

Definition 3.1 (weak compliance relation). An orchestrated system is a triple
ρ ‖f σ of a (client) contract ρ and a (service) contract σ interacting with each
other while being supervised by an orchestrator f . Let −→ be the least relation
between orchestrated systems inductively defined as follows:

ρ −→ ρ′

ρ ‖f σ −→ ρ′ ‖f σ
σ −→ σ′

ρ ‖f σ −→ ρ ‖f σ′
ρ

α−→ ρ′ f
〈α,α〉7−→ f ′ σ

α−→ σ′

ρ ‖f σ −→ ρ′ ‖f ′ σ′

ρ
α−→ ρ′ f

〈α,ε〉7−→ f ′

ρ ‖f σ −→ ρ′ ‖f ′ σ
f
〈ε,α〉7−→ f ′ σ

α−→ σ′

ρ ‖f σ −→ ρ ‖f ′ σ′

We write =⇒ for the reflexive, transitive closure of −→; we write ρ ‖f σ X−→ if
there exist no ρ′, f ′, and σ′ such that ρ ‖f σ −→ ρ′ ‖f ′ σ′. We write f : ρ a | σ
if ρ ‖f σ =⇒ ρ′ ‖f ′ σ′ X−→ implies ρ′

e−→. We say that ρ is weakly k-compliant
with σ, notation ρ a |k σ, if there exists a k-orchestrator f such that f : ρ a | σ.

The first two rules in the definition of −→ for orchestrated systems are ba-
sically the same as for the strong compliance relation. In particular the or-
chestrator has no way to affect the internal moves of client and service. The
third rule expresses the fact that client and service can synchronize with each
other, but only if the orchestrator permits it (the action 〈α, α〉 “connects”
the action α performed by the client with the action α performed by the ser-
vice). The last two rules express the fact that client and service may interact
with the orchestrator, independently of the other partner, if the orchestrator
provides suitable asynchronous actions. Observe that in each rule progress is
guaranteed for at least one of the interacting parties.

11

As an example of weak compliance we have a.e + b.d.e a |0 a + b.c because
the orchestrator 〈a, a〉 disallows the interaction on b at the first step while
permitting the interaction on a. On the other hand a.e⊕b.d.e 6a |0 a+b.c because
no orchestrator can prevent the client from autonomously evolving to b.d.e.
At this point, even if the synchronization on b is possible, client and service
will get stuck at the next step. As another example, we have a.c.b.e a |1 c.a.b,
by means of the orchestrator 〈a, ε〉.〈c, ε〉.〈ε, c〉.〈ε, a〉.〈b, b〉 which accepts the
messages in the order required by the client, but delivers them in the order
expected by the service.

Weak compliance induces the weak subcontract relation as follows:

Definition 3.2 (weak subcontract). We say that σ is a weak k-subcontract of
τ , notation σ �k τ , if ρ a σ implies ρ a |k τ for every ρ.

Namely, σ �k τ implies that a service with contract τ can replace a service
with contract σ because every client satisfied by σ (that is ρ a σ) can also
be satisfied by τ (that is ρ a |k τ) by means of some k-orchestrator f . In the
following we will drop the index k from a |k and �k when immaterial.

Whether or not � is the subcontract relation we are looking for is hard to
tell from Definition 3.2. In part this is because it is very reasonable to expect
that the k-orchestrator f may depend on the particular client ρ that we are
considering. In addition, it is not even obvious that � is transitive, which is
required if we plan to use � as stated in the introduction. We will thus devote
the following subsections to the study of � and of its main properties.

3.2 Basic properties of the weak subcontract relation

Among all the orchestrators involved in a relation σ � τ , we can restrict our
interest to a relatively small class of relevant ones.

Definition 3.3 (relevant orchestrator). Let σ �k τ and f be a k-orchestrator

such that f : ρ a | τ . We say that f is relevant for σ �k τ if σ
ϕ1···ϕn====⇒ and

f
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉〈ϕ,ϕ′〉7−−−−−−−−−−−−−→ and τ

ϕ′1···ϕ
′
n

====⇒ imply σ(ϕ1 · · ·ϕn)
ϕ

=⇒ and τ(ϕ′1 · · ·ϕ′n)
ϕ′

=⇒.

An orchestrator that is relevant for σ � τ never offers orchestration actions
that do not correspond to actions offered by σ and that would never be enabled
by τ . The fact that it is always possible to find a relevant orchestrator that is
able to satisfy a particular client is a first step towards a theory of contracts
that is client-independent. The proof of this fact is not entirely obvious. It is
clear that actions of the form 〈α, α〉 and 〈ε, α〉 can be safely removed if τ does
not offer corresponding co-actions. However, asynchronous actions of the form
〈α, ε〉 may actually be necessary for the orchestrator to satisfy the client, even

12

if σ never offers α actions. For instance, a.e+ b.e+ c.a.e a a⊕ b and a⊕ b � a
and 〈c, ε〉.〈a, a〉 : a.e+ b.e+ c.a.e a | a. Simply removing the 〈c, ε〉 action (and
the corresponding continuation) would produce the null orchestrator, which
clearly cannot satisfy the client.

Proposition 3.4. Let σ �k τ and ρ a σ and f be a k-orchestrator such that
f : ρ a | τ . Then there exists a k-orchestrator g relevant for σ �k τ such that
g : ρ a | τ .

Proof. We say that a subterm α.ρ′ of ρ is useless if ρ
ϕ

=⇒ α−→ ρ′ and σ
ϕ

=⇒
implies σ(ϕ) Y α=⇒. Let ρr be the (client) contract obtained from ρ by replacing
every useless subterm α.ρ′ with α.0. Clearly ρr a σ since no synchronization
will ever occur on those α actions that guard useless subterms of ρ. From the
hypothesis σ �k τ there exists a k-orchestrator g such that g : ρr a | τ . Let

R(g, σ, τ)
def
=

∨
g
〈ϕ,ϕ′〉7−−−→g′,σ

ϕ
=⇒,τ ϕ′

=⇒

〈ϕ, ϕ′〉.R(g′, σ(ϕ), τ(ϕ′))

and let gr
def
= R(g, σ, τ). Observe that gr is well defined because σ, τ , and g are

regular. Observe also that gr is relevant for σ �k τ by its own definition and
gr : ρr a | τ because every derivation starting from ρr ‖gr τ is also a possible
derivation starting from ρr‖gτ . We prove that gr : ρ a | τ . Consider a derivation
ρ ‖gr τ =⇒ ρ′ ‖g′r τ ′ X−→. Then there exist ϕ1, . . . , ϕn and ϕ′1, . . . , ϕ

′
n such that

ρ
ϕ1···ϕn====⇒ ρ′ X−→ and gr

〈ϕ1,ϕ
′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ g′r and τ

ϕ′1···ϕ
′
n

====⇒ τ ′ X−→. None of the
ϕi can be an α guarding a useless subterm of ρ, by construction of gr. By

definition of ρr, there exists ρ′r such that ρr
ϕ1···ϕn====⇒ ρ′r and init(ρ′r) = init(ρ′)

(in fact it is possible to find a ρ′r that is the same as ρ′ except that useless
subterms α.ρ′′ have been replaced by α.0). By zipping the derivations starting
from ρr, gr, and τ we obtain ρr‖gr τ =⇒ ρ′r‖g′r τ ′ and we notice that ρ′r‖g′r τ ′ X−→
since init(ρ′r) = init(ρ′). From gr : ρr a | τ we deduce ρ′r

e−→, hence we
conclude ρ′

e−→.

The relation σ � τ means that every client ρ satisfied by σ is weakly compliant
with τ by means of some orchestrator which, in principle, may depend on
ρ. The next result shows that it is always possible to find an orchestrator
that makes τ work seamlessly with every client satisfied by σ. We call such
orchestrator “universal”, since it is independent of a particular client.

Definition 3.5 (universal orchestrator). We say that f is a universal orches-
trator proving σ �k τ , notation f : σ �k τ , if f is a k-orchestrator and ρ a σ
implies f : ρ a | τ for every ρ.

On the theoretical side, the existence of the universal orchestrator allows us
to study the properties of � independently of specific clients. On the practical

13

side, it makes it possible to precompute not only the subcontract relation �
but also the orchestrator that proves it, regardless of the client performing the
query.

Proposition 3.6. σ �k τ if and only if there exists a k-orchestrator f such
that ρ a σ implies f : ρ a | τ for every ρ.

Proof. The “if” part is trivial. As regards the “only if” part, the intuition is
that if we are able to find the “most demanding” client satisfied by σ, then its
corresponding orchestrator is universal. The most demanding client satisfied
by σ, denoted by σ>, can be defined thus:

σ>
def
=
∑
σ⇓r

e if r = ∅⊕
α∈r α.σ(α)> otherwise

Well-foundedness of this definition follows from the regularity of σ. It is trivial
to verify that σ> a σ. Let f be a k-orchestrator such that f : σ> a | τ and
assume, without loss of generality, that f is relevant for σ �k τ . We prove that
f : σ �k τ by contradiction. Assume that there exists ρ such that ρ a σ and
f : ρ 6a | τ . Then there exists a derivation ρ‖f τ =⇒ ρ′‖f ′τ ′ X−→ such that ρ′ X e−→.

Consequently there exist ϕ1, . . . , ϕn and ϕ′1, . . . , ϕ
′
n such that ρ

ϕ1···ϕn====⇒ ρ′ X−→
and τ

ϕ′1···ϕ
′
n

====⇒ τ ′ X−→ and f
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′. Since f is relevant, it is easy

to deduce, by induction on n, that σ
ϕ1···ϕn=⇒ . From ρ′ ‖f ′ τ ′ X−→ we deduce

that ρ′
α−→ implies f ′ X〈α,ε〉7−→ and f ′

〈α,α〉7−→ implies τ ′ X α−→. Let r1, . . . ,rm be
the ready sets of σ(ϕ1 · · ·ϕn). From ρ a σ and ρ′ X e−→ we deduce that for

every 1 ≤ i ≤ n there exists αi ∈ ri and ρ′
αi−→. By definition of most

demanding client we have σ(ϕ1 · · ·ϕn)> ⇓ {α1, . . . , αm}, because each ready
set of σ(ϕ1 · · ·ϕn)> is obtained by taking one action from every non-empty

ready set of σ(ϕ1 · · ·ϕn). Hence there exists ρ′′ such that σ>
ϕ1···ϕn====⇒ ρ′′ X−→

and init(ρ′′) = {α1, . . . , αm} ⊆ init(ρ′). By zipping the derivations starting
from σ>, f , and τ we obtain a derivation σ> ‖f τ =⇒ ρ′′ ‖f ′ τ ′ X−→ where
ρ′′ X e−→. This is absurd, for f : σ> a | τ by hypothesis.

3.3 Coinductive characterization of weak subcontract

In order to provide an alternative characterization of �, which will also guide
us in defining the algorithm for deciding � in §5, we need to know the effect
of orchestration actions on the ready sets of client and service as perceived
by the corresponding partner. When an orchestrator mediates the interaction
between a client and a service, it proposes at each interaction step a set of
orchestration actions a. If r is a client ready set and s is a service ready set,

14

then a ◦ s denotes the service ready set perceived by the client and r • a
denotes the client ready set perceived by the service:

a ◦ s
def
= {α | 〈α, ε〉 ∈ a} ∪ {α ∈ s | 〈α, α〉 ∈ a}

r • a
def
= {α | 〈ε, α〉 ∈ a} ∪ {α ∈ r | 〈α, α〉 ∈ a}

Namely, the client sees an action α if either that action is provided asyn-
chronously by the orchestrator (〈α, ε〉 ∈ a), or if it is provided by the service
(α ∈ s) and the orchestrator does not hide it (〈α, α〉 ∈ a); symmetrically for
the service.

With these notions we can now define the coinductive characterization of weak
subcontract relation, in a similar manner as for the strong variant.

Definition 3.7 (coinductive weak subcontract). We say that Wk is a coinduc-
tive weak k-subcontract relation if (B, σ, τ) ∈ Wk implies that B is a k-buffer
and there exists a set of orchestration actions a such that B `k a and

(1) τ ⇓ s implies either (σ ⇓ r and r ⊆ a ◦ s for some r) or (∅ • a) ∩ s 6= ∅,
and

(2) τ
ϕ′

=⇒ and 〈ϕ, ϕ′〉 ∈ a implies σ
ϕ

=⇒ and (B〈ϕ, ϕ′〉, σ(ϕ), τ(ϕ′)) ∈ Wk.

We write σ �c τ if there exists Wk such that (∅̃, σ, τ) ∈ Wk.

Condition (1) requires that either τ can be made more deterministic than σ by
means of the orchestrator (the ready set a◦ s of the orchestrated service has a
corresponding one of σ that offers fewer actions), or that τ can be satisfied by
the orchestrator without any help from the client ((∅ •a)∩ s 6= ∅ implies that
〈ε, α〉 ∈ a and α ∈ s for some α). Condition (2) poses the usual requirement
that the continuations must be in the subcontract relation.

The two definitions of weak subcontract are equivalent:

Theorem 3.8. � = �c.

Proof. (�k ⊆ �c
k) Let f : σ �k τ and assume, without loss of generality, that

f is relevant for σ �k τ . It is sufficient to prove that

Wk
def
= {(∅̃〈ϕ1, ϕ

′
1〉 · · · 〈ϕn, ϕ′n〉, σ(ϕ1 · · ·ϕn), τ(ϕ′1 · · ·ϕ′n)) | f 〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→}

is a coinductive k-subcontract relation. Let (B, σ′, τ ′) ∈ Wk. Then there ex-

ist ϕ1, . . . , ϕn and ϕ′1, . . . , ϕ
′
n and f ′ such that f

〈ϕ1,ϕ
′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′, B =

∅̃〈ϕ1, ϕ
′
1〉 · · · 〈ϕn, ϕ′n〉, σ′ = σ(ϕ1 · · ·ϕn), and τ ′ = τ(ϕ′1 · · ·ϕ′n). Since f is a

k-orchestrator we have that B is a k-buffer. Let a
def
= init(f ′). As regards

condition (1) of Definition 3.7, let r1, . . . ,rm be the ready sets of σ′. Assume

15

by contradiction that there exists s such that τ ′ ⇓ s and ri 6⊆ a ◦ s for every
1 ≤ i ≤ m and (∅ • a) ∩ s = ∅. Then there exists αi ∈ ri \ a ◦ s for every

1 ≤ i ≤ m. Let ρ
def
=
∑

1≤i≤m αi.e. We have ρ a σ′ but f ′ : ρ 6a | τ ′, which is ab-

surd. As regards condition (2) of Definition 3.7, assume τ ′
ϕ′

=⇒ and 〈ϕ, ϕ′〉 ∈ a.

Since f is relevant we have σ′
ϕ

=⇒. We conclude (B〈ϕ, ϕ′〉, σ′(ϕ), τ ′(ϕ′)) ∈ Wk

by definition of Wk.

(�c
k ⊆ �k) Let Wk be a coinductive weak k-subcontract relation such that

(∅̃, σ, τ) ∈ Wk and assume ρ a σ. Let a(B, σ′, τ ′) stand for the set a of orches-
tration actions satisfying conditions (1) and (2) of Definition 3.7 whenever
(B, σ′, τ ′) ∈ Wk. Let

f(B, σ′, τ ′) def
=

∨
〈ϕ,ϕ′〉∈a(B,σ′,τ ′)

〈ϕ, ϕ′〉.f(B〈ϕ, ϕ′〉, σ′(ϕ), τ ′(ϕ′))

and let f
def
= f(∅̃, σ, τ). Observe that f is well defined by regularity of σ and

τ and that it is a k-orchestrator. We prove f : ρ a | τ . Consider a derivation
ρ‖fτ =⇒ ρ′‖f ′τ ′ X−→. By “unzipping” this derivation we obtain that there exist

ϕ1, . . . , ϕn and ϕ′1, . . . , ϕ
′
n such that ρ

ϕ1···ϕn====⇒ ρ′ X−→ and f
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′

and τ
ϕ′1···ϕ

′
n

====⇒ τ ′ X−→. By condition (2) of Definition 3.7 and by induction on n

we derive that σ
ϕ1···ϕn====⇒ and (∅̃〈ϕ1, ϕ

′
1〉 · · · 〈ϕn, ϕ′n〉, σ(ϕ1 · · ·ϕn), τ(ϕ′1 · · ·ϕ′n)) ∈

Wk. Observe that τ(ϕ′1 · · ·ϕ′n) ⇓ init(τ ′). By condition (1) of Definition 3.7 we
have that either there exists r such that σ(ϕ1 · · ·ϕn) ⇓ r and r ⊆ init(f ′) ◦
init(τ ′) or (∅•init(f ′))∩init(τ ′) 6= ∅. However from ρ′ ‖f ′ τ ′ X−→ we derive

(∅ • init(f ′)) ∩ init(τ ′) = ∅, hence there exists σ′ such that σ
ϕ1···ϕn====⇒ σ′

and init(σ′) ⊆ init(f ′) ◦ init(τ ′). By “zipping” the derivations starting
from ρ and σ we obtain ρ ‖ σ =⇒ ρ′ ‖ σ′. Furthermore ρ′ ‖ σ′ X−→ because
init(σ′) ⊆ init(f ′) ◦ init(τ ′). From ρ a σ we conclude ρ′

e−→.

3.4 Orchestrators as morphisms

When f : σ � τ every client that is strongly compliant with σ is also weakly
compliant with τ by means of the orchestrator f . In a sense, it is as if the or-
chestrator f transforms the service with contract τ into a service with contract
σ. The function determined by an orchestrator can be effectively computed as
by the following definition.

Definition 3.9 (orchestrator application). The application of the orchestrator

16

f to the (service) contract σ, notation f(σ), is defined as

f(σ)
def
=
⊕
σ⇓r

∑
f
〈α,ε〉
7−→ f ′

α.f ′(σ) +
∑
f
〈α,α〉
7−→ f ′,α∈r

α.f ′(σ(α))

if (∅ • init(f)) ∩ r = ∅((∑
f
〈α,ε〉
7−→ f ′

α.f ′(σ) +
∑
f
〈α,α〉
7−→ f ′,α∈r

α.f ′(σ(α))
)
⊕ 0

)
+
⊕
f
〈ε,α〉
7−→ f ′,α∈r

f ′(σ(α)) otherwise

The equation reminds of the expansion law for the parallel operator in full
ccs [26], but describing the interaction of the orchestrator and the service.
The first line defines the behavior of the orchestrated service when no synchro-
nization between orchestrator and service occurs ((∅ • init(f)) ∩ r = ∅): all
the asynchronous orchestration actions are available, in addition to all the syn-
chronous orchestration actions that are enabled by the service contract when
in state r. In the second line there is at least one asynchronous orchestration
action that can synchronize with the service in state r ((∅•init(f))∩r 6= ∅).
In this case the client perceives an appropriate combination of actions among
those that are available before and after the synchronization occurs. The in-
ternal choice with the null summand indicates that actions available before
the synchronization are not guaranteed (if the synchronization does actually
occur), whereas all the actions after the synchronization are (the client can
just wait for the orchestrator and the service to reach a stable state). As an

example consider f
def
= 〈a, ε〉.〈c, ε〉.(〈ε, a〉.〈b, b〉 ∨ 〈ε, c〉.〈d, d〉). Then:

• f(a.b) = a.c.b;
• f(a.b+ c.d) = a.c.(b⊕ d);
• f(a.b⊕ c.d) = a.c.(0⊕ b⊕ d).

In general we have 〈α, α〉.f(α.σ) = α.f(σ) and 〈α, ε〉.f(σ) = α.f(σ) and
〈ε, α〉.f(α.σ) = f(σ).

Well-foundedness of Definition 3.9 is a direct consequence of the regularity
of f and σ. Indeed, one should think of f(σ) as a label associated with the
contract on the r.h.s. of the definition. Then, we see that f(σ) depends on a

finite number of f ′(σ(α)) where f
µ7−→ f ′ and each of these, in turn, depends

on a finite number of f ′′(σ(α)(β)) where f ′
µ′7−→ f ′′. Regularity of f and σ and

Proposition 2.4 assure us that we only need a finite number of labels f(σ) that
one can then fold using recursive terms in the usual way.

The next result proves that f(σ) is indeed the contract of the orchestrated
service, namely it satisfies the same clients that are weakly compliant with σ
by means of f :

Theorem 3.10. f : ρ a | σ if and only if ρ a f(σ).

17

Proof. (⇒) Assume f : ρ a | σ and consider a derivation ρ ‖ f(σ) =⇒ ρ′ ‖
τ X−→. Then there exist ϕ, ϕ′, and f ′ such that ρ

ϕ
=⇒ ρ′ X−→ and f(σ)

ϕ
=⇒

f ′(σ(ϕ′)) =⇒ τ X−→. By definition of f(σ) there exist ϕ1, . . . , ϕn and ϕ′1, . . . , ϕ
′
n

such that ϕ = ϕ1 · · ·ϕn and ϕ′ = ϕ′1 · · ·ϕ′n and f
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′. From

ρ′ ‖τ X−→ we deduce init(ρ′)∩init(τ) = ∅. From f ′(σ(ϕ′)) =⇒ τ X−→ and by
definition of f ′(σ(ϕ′)) we deduce that there exist α1, . . . , αm and σ′ and f ′′ such

that σ
ϕ′α1···αm=====⇒ σ′ X−→ and f ′

〈ε,α1〉···〈ε,αm〉7−−−−−−−−→ f ′′ and (∅•init(f ′′))∩init(σ′) = ∅
and init(f ′′)•init(σ′) ⊆ init(τ). By zipping the derivations starting from ρ,
f , and σ we obtain ρ‖f σ =⇒ ρ′‖f ′′σ′. Furthermore ρ′‖f ′′σ′ X−→ because ρ′ X−→
and σ′ X−→ and init(ρ′) ∩ (init(f ′′) • init(σ′)) ⊆ init(ρ′) ∩ init(τ) = ∅.
From f : ρ a | σ we conclude ρ′

e−→.

(⇐) Assume ρ a f(σ) and consider a derivation ρ ‖f σ =⇒ ρ′ ‖f ′ σ′ X−→. By
“unzipping” this derivation we have that there exist ϕ1, . . . , ϕn and ϕ′1, . . . , ϕ

′
n

such that ρ
ϕ1···ϕn====⇒ ρ′ X−→ and f

〈ϕ1,ϕ
′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′ and σ

ϕ′1···ϕ
′
n

====⇒ σ′ X−→.
Furthermore from ρ′ ‖f ′ σ′ X−→ we derive init(ρ′)∩ (init(f ′) • init(σ′)) = ∅.
By definition of f(σ) there exists τ such that f(σ)

ϕ1···ϕn====⇒ τ X−→ and init(τ) =
init(f ′) • init(σ′). By zipping the derivations starting from ρ and f(σ) we
obtain ρ ‖ f(σ) =⇒ ρ′ ‖ τ . Furthermore ρ′ ‖ τ X−→ because ρ′ X−→, τ X−→, and
init(ρ′) ∩ init(τ) = init(ρ′) ∩ (init(f ′) • init(σ′)) = ∅. From ρ a f(σ) we
conclude ρ′

e−→.

We are now able to connect the strong and weak subcontract relations.

Corollary 3.11. f : σ � τ if and only if σ v f(τ).

Proof. By Theorem 3.10 f : σ � τ if and only if ρ a σ implies f : ρ a | τ if and
only if ρ a σ implies ρ a f(σ) if and only if σ v f(τ).

Corollary 3.11 also provides us with a handy tool for studying the properties
of � since we can reduce the weak subcontract relation � to the more familiar
strong subcontract relation v. For example, we can reduce checking f : σ � τ
to checking σ v f(τ) by computing f(τ). The next few examples show that �
includes v, that � permits width and depth extensions and, to some extent,
permutation of actions:

• a⊕ b � a since a⊕ b v a = 〈a, a〉(a);
• a � a+ b since a = 〈a, a〉(a+ b);
• a � a.b since a = 〈a, a〉(a.b);
• a.c.b � c.a.b since a.c.b = 〈ε, c〉.〈a, a〉.〈c, ε〉.〈b, b〉(c.a.b);
• a.c.b � c.a.b since a.c.b = 〈a, ε〉.〈c, c〉.〈ε, a〉.〈b, b〉(c.a.b).

As regards permutations, it is possible in general to postpone input actions.

18

For instance we have a.β.σ � β.a.σ where the service on the r.h.s. of � is able
to perform the β action without having performed a first. On the other hand,
we have a.b.σ 6� b.a.σ because no valid orchestrator is capable of sending an a
message to the client, without having received it in advance from the service.
The fact that this relation does not hold is reasonable since a client of the
service on the l.h.s. may need the information contained in the a message
before sending the b message back to the service.

The morphism induced by an orchestrator f is monotone with respect to the
strong subcontract relation and is well behaved with respect to the choice
operators.

Proposition 3.12. The following properties hold:

(1) σ v τ implies f(σ) v f(τ);
(2) f(σ) + f(τ) v f(σ + τ);
(3) f(σ)⊕ f(τ) ' f(σ ⊕ τ).

Proof. We prove item (1); items (2) and (3) are similar. By Theorem 3.10 it
is sufficient to prove that f : ρ a | σ implies f : ρ a | τ for every ρ, under the
hypothesis σ v τ . Consider a derivation ρ‖f τ =⇒ ρ′‖f ′τ ′ X−→. Then there exist

ϕ1, . . . , ϕn and ϕ′1, . . . , ϕ
′
n such that ρ

ϕ1···ϕn====⇒ ρ′ X−→ and f
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′

and τ
ϕ′1···ϕ

′
n

====⇒ τ ′ X−→. Furthermore, from ρ′ ‖f ′ τ ′ X−→ we deduce init(ρ′) ∩
(init(f ′) • init(τ ′)) = ∅. From σ v τ we derive that there exists σ′ such

that σ
ϕ′1···ϕ

′
n

====⇒ σ′ X−→ and init(σ′) ⊆ init(τ ′). By zipping the derivations
starting from ρ, f , and σ we obtain ρ‖f σ =⇒ ρ′‖f ′σ′. Furthermore, init(ρ′)∩
(init(f ′)•init(σ′)) ⊆ init(ρ′)∩(init(f ′)•init(τ ′)) = ∅, hence ρ′‖f ′σ′ X−→.
From f : ρ a | σ we conclude ρ′

e−→.

Observe that f(σ) + f(τ) ' f(σ + τ) does not hold in general, because of
the asynchronous actions that f may offer to the client side. Consider for

example f
def
= 〈a, ε〉.(〈b, b〉+ 〈d, d〉). Then f(b) +f(d) = a.b+a.d ' a.(b⊕d) v

a.(b+ d) = f(b+ d) but f(b+ d) 6v f(b) + f(d). Nonetheless Proposition 3.12,
in conjunction with Proposition 2.7, allows us to prove an interesting property
of �: if σ v f(σ′) and τ v f(τ ′), then σ+τ v f(σ′+τ ′) and σ⊕τ v f(σ′⊕τ ′).
This means that if σ � σ′ and τ � τ ′ and the two relations are witnessed by
the same orchestrator, then σ+τ � σ′+τ ′ and σ⊕τ � σ′⊕τ ′. In other words, a
sufficient condition for being able to orchestrate σ′+τ ′ is that the orchestrator
must be independent of the branch (either σ′ or τ ′) taken by the service, which
is in fact the minimum requirement we could expect. In general however � is
not a precongruence: a � a+ b.c but a+ b.d 6� a+ b.c+ b.d ' a+ b.(c⊕ d).

19

3.5 Composition of orchestrators

Transitivity of the weak subcontract relation is not granted by the definition
of �, because σ � τ means that every client that is strongly compliant with
σ is also weakly compliant with τ . So it is not clear whether σ � τ and τ � σ′

implies σ � σ′. Observe that transitivity of � is necessary in order to enhance
Web service discovery as described in §1.

Let us start from the hypotheses f : σ � τ and g : τ � σ′. By Corollary 3.11
we know that σ v f(τ) and τ v g(σ′). Furthermore, by Proposition 3.12(1)
and transitivity of v we deduce that σ v f(τ) v f(g(σ′)). Thus we can con-
clude σ � σ′ provided that for any two orchestrators f and g their functional
composition f ◦ g is still an orchestrator. This is not the case in general. To
see why, consider for example

f
def
= 〈a, ε〉.〈c, ε〉.(〈ε, a〉.〈b, b〉∨〈ε, c〉.〈d, d〉) and g

def
= 〈a, ε〉.〈b, b〉∨〈c, ε〉.〈d, d〉

and apply them to the contract σ
def
= b+ d. We obtain

f(g(σ)) ' f(a.b+ c.d) ' a.c.(b⊕ d)

The subsequent applications of g first and then f introduce some nondeter-
minism due to the uncertainty as to which synchronization (on a or on c)
will occur. This uncertainty yields the internal choice b ⊕ d in the resulting
contract. No single orchestrator can turn b+d into a.c.(b⊕d) for orchestrators
do not manifest internal nondeterminism. The problem could be addressed by
adding internal nondeterminism to the orchestration language, but this seems
quite artificial and, as a matter of facts, is unnecessary. If we are able to find
an orchestrator f · g such that (f ◦ g)(σ′) v (f · g)(σ′), then σ v (f · g)(σ′)
follows by transitivity of v.

Definition 3.13 (orchestrator composition). The composition of two orches-
trators f and g, notation f · g, is defined as:

f · g def
=

∨
f
〈α,ε〉
7−→ f ′

〈α, ε〉.(f ′ · g) ∨
∨

g
〈ε,α〉
7−→ g′

〈ε, α〉.(f · g′)

∨
∨

f
〈ϕ,α〉
7−→ f ′,g

〈α,ϕ′〉
7−→ g′,ϕϕ′ 6=ε

〈ϕ, ϕ′〉.(f ′ · g′) ∨
∨

f
〈ε,α〉
7−→ f ′,g

〈α,ε〉
7−→ g′

(f ′ · g′)

The first two subterms in the definition of f · g indicate that all the asyn-
chronous actions offered by f (respectively, g) to the client (respectively, ser-
vice) are available. The third subterm turns synchronous actions into asyn-
chronous ones: for example, 〈α, α〉 ·〈α, ε〉 = 〈α, ε〉 and 〈ε, α〉 ·〈α, α〉 = 〈ε, α〉.

20

The last subterm accounts for the “synchronizations” occurring within the or-
chestrator, when f and g exchange a message and the two actions annihilate
each other. If we consider the orchestrators f and g defined above, we obtain
f · g = 〈a, ε〉.〈c, ε〉.(〈b, b〉 ∨ 〈d, d〉) and we observe (f · g)(b+ d) = a.c.(b+ d).

Well-foundedness of f · g can be determined in a similar way as has been done
for f(σ). The proof that f · g is the orchestrator we are looking for needs the
following technical result, which tells us about the “unzipping” of compound
orchestrators.

Lemma 3.14. f · g 〈ψ1,ψ
′
1〉···〈ψm,ψ

′
m〉7−−−−−−−−−−→ h implies that there exist ϕ1, . . . , ϕn and

ϕ′1, . . . , ϕ
′
n and ϕ′′1, . . . , ϕ

′′
n such that f

〈ϕ1,ϕ
′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′ and g

〈ϕ′1,ϕ
′′
1 〉···〈ϕ′n,ϕ

′′
n〉7−−−−−−−−−−→

g′ and ψ1 · · ·ψm = ϕ1 · · ·ϕn and ψ′1 · · ·ψ′m = ϕ′′1 · · ·ϕ′′n and init(f ′ · g′) ⊆
init(h).

Proof. In this proof we adopt the following notation: we write f
〈α1···αn,ε〉
↪−−−−−−→ f ′

if f
〈α1,ε〉···〈αn,ε〉7−−−−−−−−→ f ′ and f

〈ε,α1···αn〉
↪−−−−−−→ f ′ if f

〈ε,α1〉···〈ε,αn〉7−−−−−−−−→ f ′. We admit n = 0,

in which case we have f
〈ε,ε〉
↪−−→ f . We prove the result for m = 1. The general

statement follows by a simple induction on m. Assume f · g 〈ψ,ψ
′〉7−−−→ h. Then

h =
∨

f
〈ε,ϕ〉
↪−−→f ′

g
〈ϕ,ε〉
↪−−→g′

(∨
f ′
〈ψ,ε〉
7−→ f ′′

ψ′=ε

f ′′ · g′ ∨
∨

g′
〈ε,ψ′〉
7−→ g′′

ψ=ε

f ′ · g′′ ∨
∨

f ′
〈ψ,α〉
7−→ f ′′

g′
〈α,ψ′〉
7−→ g′′

f ′′ · g′′
)

namely h accounts for all the possible continuations of the action 〈ψ, ψ′〉 con-
sidering all the possible “synchronizations” occurring within f · g. All these

synchronizations are captured by iterating over all ϕ such that f
〈ε,ϕ〉
↪−−→ f ′

and g
〈ϕ,ε〉
↪−−→ g′. There is a finite number of them because f and g are valid

orchestrators of finite rank. We deduce that there exist ϕ′1, . . . , ϕ
′
n such that

f
〈ε,ϕ′1〉···〈ε,ϕ

′
n−1〉〈ψ,ϕ

′
n〉7−−−−−−−−−−−−−→ f ′ and g

〈ϕ′1,ε〉···〈ϕ
′
n−1,ε〉〈ϕ

′
n,ψ
′〉

7−−−−−−−−−−−−−→ g′

and we conclude by taking ϕ1 = · · · = ϕn−1 = ϕ′′1 = · · · = ϕ′′n−1 = ε and
ϕn = ψ and ϕ′′n = ψ′. The fact that init(f ′ · g′) ⊆ init(h) is an immediate
consequence of the fact that f ′ · g′ is a summand occurring in h.

The next result proves that f · g is correct and, as a corollary, that � is a
preorder:

Theorem 3.15. f(g(σ)) v (f · g)(σ).

21

Proof. Let ρ a f(g(σ)). By Theorem 3.10 it is sufficient to show that f · g :
ρ a | σ, so consider a derivation ρ ‖f · g σ =⇒ ρ′ ‖h σ′ X−→. By unzipping
this derivation we deduce that there exist ψ1, . . . , ψm and ψ′1, . . . , ψ

′
m such

that ρ
ψ1···ψm====⇒ ρ′ X−→ and f · g 〈ψ1,ψ

′
1〉···〈ψm,ψ

′
m〉7−−−−−−−−−−→ h and σ

ψ′1···ψ
′
m

====⇒ σ′ X−→. From
ρ′ ‖h σ′ X−→ we deduce init(ρ′) ∩ (init(h) • init(σ′)) = ∅. By Lemma 3.14
we derive that there exist ϕ1, . . . , ϕn, ϕ′1, . . . , ϕ

′
n, and ϕ′′1, . . . , ϕ

′′
n such that

f
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ f ′ and g

〈ϕ′1,ϕ
′′
1 〉···〈ϕ′n,ϕ

′′
n〉7−−−−−−−−−−→ g′ and ψ1 · · ·ψm = ϕ1 · · ·ϕn and

ψ′1 · · ·ψ′m = ϕ′′1 · · ·ϕ′′n and init(f ′ · g′) ⊆ init(h). Since f and g are valid

orchestrators of finite rank, there exist f ′′, g′′, and ϕ such that f ′
〈ε,ϕ〉
↪−−→ f ′′ and

g′
〈ϕ,ε〉
↪−−→ g′′ and f ′′

〈ε,α〉7−→ implies g′′ X〈α,ε〉7−→. Namely f ′′ and g′′ are two residual or-
chestrators that do not “synchronize” with each other. By definition of orches-
trator composition, observe that init(f ′′ · g′′) ⊆ init(f ′ · g′) because f ′′ · g′′
is a summand within f ′ · g′. By definition of orchestrator application we have

g(σ)
ϕ′1···ϕ

′
n

====⇒ g′(σ(ϕ′′1 · · ·ϕ′′n)) =⇒ g′(σ′)
ϕ

=⇒ g′′(σ′). Furthermore ∅◦init(g′′) ⊆
∅ ◦ init(f ′′ · g′′) ⊆ ∅ ◦ init(f ′ · g′) ⊆ ∅ ◦ init(h) hence (∅ ◦ init(g′′)) ∩
init(σ′) = ∅ and g′′(σ′) X−→ and init(g′′(σ)) = init(g′′) • init(σ′). By defi-

nition of orchestrator application we have f(g(σ))
ϕ1···ϕn====⇒ f ′(g(σ)(ϕ′1 · · ·ϕ′n)) =

f ′(g′(σ(ϕ′′1 · · ·ϕ′′n))) =⇒ f ′(g′(σ′)) =⇒ f ′′(g′′(σ′)). Now we want to show that
(∅ ◦ init(f ′′)) ∩ init(g′′(σ′)) = ∅. From init(g′′(σ′)) = init(g′′) • init(σ′)
we derive that (∅ ◦ init(f ′′)) ∩ init(g′′(σ′)) 6= ∅ if and only if there exists

α such that f ′′
〈ε,α〉7−→ and either g′′

〈α,ε〉7−→ or (g′′
〈α,α〉7−→ and σ′

α−→). However, by

the way f ′′ and g′′ have been chosen we have that f ′′
〈ε,α〉7−→ implies g′′ X〈α,ε〉7−→.

Furthermore, if f ′′
〈ε,α〉7−→ and g′′

〈α,α〉7−→, then 〈ε, α〉 ∈ init(f ′′ · g′′) ⊆ init(h).
Then σ′ X α−→ because ρ′ ‖h σ′ X−→. Hence (∅ ◦ init(f ′′))∩ init(g′′(σ′)) = ∅, so
f ′′(g′′(σ′)) X−→ and init(f ′′(g′′(σ′))) = init(f ′′) • init(g′′(σ′)) = init(f ′′) •
init(g′′) • init(σ′) = init(f ′′ · g′′) • init(σ′) ⊆ init(h) • init(σ′). By zip-
ping the derivations starting from ρ and f(g(σ)) we obtain ρ ‖ f(g(σ)) =⇒
ρ′ ‖ f ′′(g′′(σ′)) X−→, hence we conclude ρ′

e−→.

It may be argued that f · g is somewhat “more powerful” than f ◦ g, because
(f ◦ g)(σ) v (f · g)(σ) but (f ◦ g)(σ) 6' (f · g)(σ) in general. Against this
objection it is sufficient to observe that if f and g are k-orchestrators, then
f · g is a 2k-orchestrator. Thus, f · g is really nothing more than some proper
combination of f and g, as expected.

4 Contract duality with orchestration

We tackle the problem of finding the dual contract ρ⊥ of a given client contract
ρ. Recall that ρ⊥ should be the smallest (according to �) contract such that
ρ is compliant with ρ⊥.

22

Before proceeding, we must face the fact that some clients cannot by satisfied
by any service. For instance, there is no service that satisfies (the client) 0; sim-
ilarly, there is no service that satisfies a.(0⊕b.e) since this client, after sending
a, may internally evolve into the state 0. We thus need a characterization of
those (client) contracts that can be satisfied:

Definition 4.1 (viable contract). A (client) contract ρ is viable, notation
viable(ρ), if there exists σ such that ρ a σ.

It is quite easy to provide an alternative, coinductive characterization of viable
contracts.

Definition 4.2 (coinductive viability). We say that the predicate V is a
coinductive viability if ρ ∈ V and ρ ⇓ r implies either e ∈ r or ρ(α) ∈ V for
some α ∈ r.

This characterization mandates that no viable client contract can expose an
empty ready set: every ready set must contain either the special action e

denoting the client’s ability to terminate successfully, or at least one action α
whose continuation is itself a viable contract. So e is the simplest viable client
contract, whereas (a+ b.e)⊕ a.c is not viable because its continuation after a
is 0⊕ c that has an empty ready set.

Proposition 4.3. viable(·) is the largest coinductive viability.

Proof. First we prove that viable(·) is a coinductive viability. Let viable(ρ)
and ρ ⇓ r. Then there exists σ such that ρ a σ and ρ′ such that ρ =⇒ ρ′ X−→
and r = init(ρ′). If ρ′

e−→ there is nothing to prove, so assume ρ′ X e−→
and σ =⇒ σ′ X−→. We have ρ ‖ σ =⇒ ρ′ ‖ σ′ and from ρ a σ we deduce
that ρ′ ‖ σ′ −→ ρ′′ ‖ σ′′ for some ρ′′ and σ′′. Hence there exists α such that

ρ =⇒ ρ′
α−→ ρ′′ and σ =⇒ σ′

α−→ σ′′. It is trivial to see that from ρ a σ and

ρ
α

=⇒ and σ
α−→ we have ρ(α) a σ(α), hence we conclude viable(ρ(α)).

To show that viable(·) is indeed the largest coinductive viability, we show
that any coinductive viability is included in viable(·). To do this, assume that
ρ ∈ V for some coinductive viability V . We must be able to find a service
S(ρ) such that ρ a S(ρ). We define S(ρ) thus

S(ρ)
def
=

∑
ρ⇓r,α∈r\{e},ρ(α)∈V

α.S(ρ(α))

and we leave the easy proof that ρ a S(ρ) to the reader.

Now that we have a notion of viability, we are ready to define the dual contract.

23

Definition 4.4 (dual contract). Let ρ be a viable client contract. The dual
contract of ρ, denoted by ρ⊥, is defined as:

ρ⊥
def
=

∑
ρ⇓r,e6∈r

⊕
α∈r,viable(ρ(α))

α.ρ(α)⊥

The idea of the dual operator is to consider every state r of the client in
which the client cannot terminate successfully (e 6∈ r). For every such state
the service must provide at least one way for the client to proceed, and the
least service that guarantees this is given by the internal choice of all the co-
actions in r that have viable continuations (note that there must be at least
one of such actions because the client is viable by hypothesis). A few examples
of dual contracts follow:

• (a.e)⊥ = (a.e⊕ e)⊥ = a (the service must provide a);
• (a.e + e)⊥ = 0 (the service need not provide anything because the client

can terminate immediately);
• (a.e + b.e)⊥ = a⊕ b (the service can decide whether to provide a or b);
• (a.e⊕ b.e)⊥ = a+ b (the service must provide both a and b);
• (rec x.a.x)⊥ ' rec x.a.x (the service must provide an infinite sequence of
a’s).

Theorem 4.5 (duality). Let ρ be a viable client contract. Then

(1) ρ a ρ⊥;
(2) ρ a σ implies ρ⊥ � σ.

Proof. As regards item (1), consider a derivation ρ ‖ ρ⊥ =⇒ ρ′ ‖ σ X−→ and
assume by contradiction that ρ′ X e−→. By unzipping this derivation we obtain

that there exists ϕ such that ρ
ϕ

=⇒ ρ′ X−→ and ρ⊥
ϕ

=⇒ σ X−→. In particular,

by definition of ρ⊥ we can rewrite this latter derivation as ρ⊥
ϕ

=⇒ ρ(ϕ)⊥ =⇒
σ X−→. From ρ′ ‖ σ X−→ we deduce init(ρ′) ∩ init(σ) = ∅. Let r1, . . . ,rn
be the ready sets of ρ(ϕ) not containing e (there must be at least one since
ρ′ X e−→). From the fact that ρ is viable and by definition of ρ⊥ we know that
every ready set of ρ(ϕ)⊥ contains one co-action from every ready set of ρ(ϕ)
that does not contain e and whose continuation is viable. Hence, init(σ) =
{α1, . . . , αn} where αi ∈ ri and ρ(ϕαi) is viable. From ρ(ϕ) =⇒ ρ′ X−→ we

deduce that init(ρ′) = rk for some k ∈ {1, . . . , n}. Now ρ′
αk−→ and σ

αk−→,
which contradicts init(ρ′) ∩ init(σ) = ∅.

As regards item (2), it is sufficient to prove that W
def
= {(∅̃, ρ(ϕ)⊥, σ(ϕ)) |

ρ
ϕ

=⇒, σ ϕ
=⇒} is a coinductive weak 0-subcontract relation, because (∅̃, ρ⊥, σ) ∈

W . Let (∅̃, ρ′, σ′) ∈ W . Then there exists ϕ such that ρ′ = ρ(ϕ)⊥ and

σ′ = σ(ϕ). Consider a
def
= {〈α, α〉 | ρ′ α

=⇒} and observe that ∅̃ `0 a. As

24

(a1)

ar = {〈ϕ,ϕ′〉 | σ ϕ
=⇒, τ ϕ′

=⇒,B `k 〈ϕ,ϕ′〉}
a = {〈ϕ,ϕ′〉 ∈ ar | Γ ∪ {(B, σ, τ) 7→ x},B〈ϕ,ϕ′〉 `k f〈ϕ,ϕ′〉 : σ(ϕ) �a τ(ϕ′)}

τ ⇓ s⇒ (∃r : σ ⇓ r ∧ r ⊆ a ◦ s) ∨ (∅ • a) ∩ s 6= ∅ x fresh
Γ,B `k rec x.

∨
µ∈a µ.fµ : σ �a τ

(a2)
Γ(B, σ, τ) = x

Γ,B `k x : σ �a τ

Table 1
Algorithm for deciding �.

regards condition (1) in Definition 2.2, let {r1, . . . ,rn} = {r | ρ ⇓ r, e 6∈ r}
be the ready sets of ρ(ϕ) not containing e. From the hypothesis ρ a σ we
derive ρ(ϕ) a σ(ϕ), hence ri ∩ s 6= ∅ for every 1 ≤ i ≤ n. Namely, for ev-
ery 1 ≤ i ≤ n there exists αi ∈ ri ∩ s. By definition of dual contract we
have ρ(ϕ)⊥ ⇓ {α1, . . . , αn}. We conclude {α1, . . . , αn} ⊆ a ◦ s. As regards

condition (2), assume σ(ϕ)
α

=⇒ and 〈α, α〉 ∈ a. Then σ
ϕα

=⇒ and ρ(ϕ)⊥
α

=⇒
hence ρ

ϕα
=⇒. By definition of W we conclude that (∅̃, ρ(ϕ)⊥(α), σ(ϕ)(α)) ∈ W

because ρ(ϕ)⊥(α) = ρ(ϕα)⊥ and σ(ϕ)(α) = σ(ϕα).

The assumption of using orchestrators is essential as far as duality is con-
cerned: (a.e + e)⊥ = 0 but 0 is not the smallest (according to v) contract
satisfying a.e+e. For example, 0⊕ b v 0 and a.e+e a 0⊕ b. On the contrary,
0 is the least element of � and it can be used in place of any service contract
that exposes an empty ready set. A notion a duality without orchestrators
can only be achieved if the subcontract relation being considered provides a
least element. This is possible for v if we extend the theory with diverging
processes, as done in [31], although the duality operator turns out to be much
more involved.

5 Synthesizing orchestrators

In this section we devise an algorithm for computing the k-orchestrator wit-
nessing σ � τ , provided there is one. Actually, we have already seen that there
can be more than one orchestrator proving a relation σ � τ , so when devising
the algorithm we need a criterion for choosing a particular orchestrator as the
“right” one. We know that orchestrators are closed under union, namely if
f : σ � τ and g : σ � τ , then f ∨ g : σ � τ . So we may naively attempt
to define an algorithm that synthesizes the largest orchestrator, according to
their trace semantics:

Definition 5.1 (orchestrator ordering). We say that the orchestrator f is

25

smaller than g, notation f 6 g, if JfK ⊆ JgK.

This approach is not effective since the largest orchestrator proving σ � τ
involves an infinite number of different names, and thus is not representable
as a proper orchestrator. The idea is that, by means of Proposition 3.4, we
may restrict our interest to the subclass of the orchestrators that are relevant
for σ � τ .

Definition 5.2 (best relevant orchestrator). We say that f is the best relevant
k-orchestrator such that f : σ �k τ if g : σ �k τ and g is a relevant k-
orchestrator implies g 6 f .

The algorithm that synthesizes the best relevant orchestrator proving σ � τ ,
provided there is one, is defined inductively by the rules in Table 1. A judgment
of the form Γ,B `k f : σ �a τ means that f is a k-orchestrator proving
that σ � τ when the buffer of the orchestrator is in state B. The context Γ
memoizes triples (B, σ, τ) so as to guarantee termination. The k-buffer B keeps
track of the past history of the orchestrator (which messages the orchestrator

has accepted and not yet delivered). We write f : σ �a
k τ if ∅, ∅̃ `k f : σ �a τ .

Let us comment on the rules of the algorithm. Although rule (a1) looks
formidable, it embeds the conditions in Definition 2.6 in a straightforward
way. Recall that the purpose of the algorithm is to find the best relevant
orchestrator f such that every client strongly compliant with σ is weakly
compliant with τ when this service is orchestrated by f , assuming that the
buffer of the orchestrator is B. Since B is a k-buffer, the number of enabled
asynchronous orchestration actions is finite: an action 〈a, ε〉 is enabled only
if B(◦, a) > 0; an action 〈a, ε〉 is enabled only if the buffer has not reached
its capacity, namely if B(•, a) < k; symmetrically for asynchronous service
actions. Also, it is pointless to consider any orchestration action that would
not cause any synchronization to occur. Hence, the set ar of relevant, enabled
orchestration actions in the first premise of the rule is finite. Of all the actions
in this set, the algorithm considers only those in some subset a such that
the execution of any orchestration action in a does not lead to a deadlock
later on during the interaction. This is guaranteed if for every 〈ϕ, ϕ′〉 ∈ a
we are able to find an orchestrator f〈ϕ,ϕ′〉 that proves τ(ϕ′) � σ(ϕ) (second
premise of the rule). When checking the continuations, the memoization con-
text Γ is augmented associating the triple (B, σ, τ) with a fresh orchestrator
variable x, and the buffer is updated to account for the orchestration action
just occurred. If the set a is large enough so as to satisfy the third premise of
the rule, which is exactly condition (1) of Definition 3.7, then σ and τ can be
related. The orchestrator computed in the conclusion of rule (a1) offers the
union of all the relevant, enabled orchestration actions µ, each one followed
by the corresponding continuation fµ.

26

Rule (a2) is used when the algorithm needs to check whether there exists f
such that Γ,B `k f : σ �a τ and (B, σ, τ) ∈ dom(Γ). In this case Γ(B, σ, τ)
is a variable that represents the orchestrator that the algorithm has already
determined for proving σ � τ .

The algorithm described above is correct and complete and it always termi-
nates.

Theorem 5.3. The following properties hold:

(1) (termination) it is decidable to check whether there exists f such that
f : σ �a

k τ ;
(2) (correctness) f : σ �a

k τ implies that f has rank k and f : σ �k τ ;
(3) (completeness) f : σ �k τ and f is relevant for σ �k τ implies g : σ �a

k τ
for some g such that f 6 g.

The proof of correctness requires a cut-elimination result established by the
following Lemma.

Lemma 5.4. If Γ ∪ {(B, σ, τ) 7→ x},B′ `k f ′ : σ′ �a τ ′ and Γ,B `k rec x.f :
σ �a τ , then Γ,B′ `k f ′{rec x.f/x} : σ′ �a τ ′.

Proof. First of all observe that Γ ⊆ Γ′ and Γ,B `k f : σ �a τ implies Γ′,B `k
f : σ �a τ . Consider the proof tree of Γ ∪ {(B, σ, τ) 7→ x},B′ `k f ′ : σ′ �a τ ′.
Such proof tree will contain P1, . . . , Pn subtrees whose conclusion is Γi,B `k x :
σ �a τ resulting from the application of rule (a2). We have Γ ⊆ Γi for every
1 ≤ i ≤ n, hence we can replace each subtree Pi with an instance of the proof
tree of Γ,B `k rec x.f : σ �a τ , where every context is appropriately updated
with Γi. We obtain a proof tree for Γ,B′ `k f ′{rec x.f/x} : σ′ �a τ ′.

We conclude this section with the proof of Theorem 5.3.

Proof of Theorem 5.3. As regards item (1), it is sufficient to show that there
is a finite number of triples (B, σ, τ) that can be stored in the environment Γ.

As regards the σ and τ components of the triple, this reduces to showing

that the set {(σ(ϕ), τ(ϕ′)) | σ ϕ
=⇒, τ ϕ′

=⇒} is always finite and this is a direct
consequence of Proposition 2.4. As regards the B component, let n be the
number of different names occurring in either σ or τ . The number of different
configurations of a k-buffer can be in, while proving that σ � τ , is 2kn. Indeed
for every name occurring in either σ or τ there can be at most k messages
waiting to be delivered to the client and k messages waiting to be delivered
to the service.

27

As regards item (2), by a simple structural induction it is easy to establish
that, given a derivation for ∅,B `k f : σ �a τ where B is a k-buffer, every
buffer B′ in every judgment occurring in the derivation is also a k-buffer. It is

sufficient to show that W
def
= {(B, σ, τ) | ∅,B `k f : σ �a τ} is a coinductive

weak k-subcontract relation. Let (B, σ, τ) ∈ W . Then ∅,B `k f : σ �a τ is
derivable and furthermore the last rule applied must have been (a1) because

the context Γ is empty. Let a
def
= init(f) and observe that B `k a. As regards

condition (1) in Definition 3.2, there is nothing to prove because it exactly
coincides with the third premise in rule (a1). As regards condition (2), assume

τ
ϕ′

=⇒ and 〈ϕ, ϕ′〉 ∈ a. From the first premise of rule (a1) we derive σ
ϕ

=⇒.
From the second premise we know that {(B, σ, τ) 7→ x)},B〈ϕ, ϕ′〉 `k f〈ϕ,ϕ′〉 :
σ(ϕ) �a τ(ϕ′) is derivable. Since ∅,B `k f : σ �a τ is derivable by hypothesis,
by Lemma 5.4 we obtain that ∅,B〈ϕ, ϕ′〉 `k f〈ϕ,ϕ′〉{f/x}σ(ϕ) �a τ(ϕ′) is also
derivable. We conclude (B〈ϕ, ϕ′〉, σ(ϕ), τ(ϕ′)) ∈ W by definition of W .

As regards item (3), from g : σ � τ we derive that

Wk
def
= {(∅̃〈ϕ1, ϕ

′
1〉 · · · 〈ϕn, ϕ′n〉, σ(ϕ1 · · ·ϕn), τ(ϕ′1 · · ·ϕ′n)) | g 〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→}

is a weak k-subcontract relation. Note that since g is relevant, we have that

g
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ implies σ

ϕ1···ϕn====⇒ and τ
ϕ′1···ϕ

′
n

====⇒. By Proposition 2.4 and the
fact that there is a finite number of configurations for k-buffer with finite
domain we observe that Wk is finite. We prove that, if (B, σ, τ) ∈ Wk, then
Γ,B `k f : σ �a τ is derivable by induction on Wk \ dom(Γ). The statement of
the theorem follows by letting Γ = ∅.

The base case is when (B, σ′, τ ′) ∈ dom(Γ), in which case there exists x
such that Γ(B, σ′, τ ′) = x and we conclude immediately by rule (a2). In
the inductive case, assume (B, σ′, τ ′) 6∈ dom(Γ). From (B, σ′, τ ′) ∈ Wk and by
definition of Wk we deduce that there exist ϕ1, . . . , ϕn, ϕ′1, . . . , ϕ

′
n such that

g
〈ϕ1,ϕ

′
1〉···〈ϕn,ϕ

′
n〉7−−−−−−−−−−→ g′ and B = ∅̃〈ϕ1, ϕ

′
1〉 · · · 〈ϕn, ϕ′n〉 and σ′ = σ(ϕ1 · · ·ϕn) and

τ ′ = τ(ϕ′1 · · ·ϕ′n). Since g is relevant for σ � τ and has rank k, we deduce
that init(g′) ⊆ ar in the first premise of rule (a1). Let 〈ϕ, ϕ′〉 ∈ init(g′)
and let x be a fresh orchestrator variable. By definition of coinductive weak
k-subcontract relation and from the fact that g is relevant we know that

(B〈ϕ, ϕ′〉, σ′(ϕ), τ ′(ϕ′)) ∈ Wk. Let Γ′
def
= Γ ∪ {(B〈ϕ, ϕ′〉, σ′, τ ′) 7→ x}. Since

Γ (Γ′, by induction hypothesis we obtain that there exists f〈ϕ,ϕ′〉 such that
B〈ϕ, ϕ′〉 `k f〈ϕ,ϕ′〉 : σ′(ϕ) �a τ ′(ϕ′). Hence init(g′) ⊆ a in the second premise
of rule (a1). Since g proves σ � τ , we have that init(g′) satisfies condition (1)
of Definition 3.7, which coincides with the third premise of rule (a1). From
init(g′) ⊆ a we deduce that a also satisfies the third premise of rule (a1).
Hence we can apply rule (a1) and conclude Γ,B `k rec x.

∨
µ∈a fµ : σ′ �a τ ′.

The fact that the algorithm computes the best relevant orchestrator proving
σ � τ is an immediate consequence of init(g′) ⊆ a, as shown earlier.

28

6 An example: orchestrated dining philosophers

Consider a variant of the problem of the dining philosophers in which a ser-
vice provider hires two philosophers for sending philosophical thoughts to the
clients that provide two forks. Each philosopher is modeled by the following
contract:

Pi
def
= rec x.fork i.fork i.thought .fork .fork .x

where the fork i actions model the philosopher’s request of two forks, thought
models the generation of a thought, and the fork actions model the fact that
the philosophers return both forks after having generated a thought. We deco-
rate fork i actions with an index i for distinguishing fork requests coming from
different philosophers. Also, we need some way for describing the contract of
two philosophers running in parallel. To this aim we make use of a parallel
composition operator over contracts so that σ | τ stands for the interleaving
of all the actions in σ and τ . Assuming that σ and τ never synchronize with
each other, which is the case in this example, the | operator can be expressed
using a simplified form of expansion law [26]:

σ | τ def
=

⊕
σ⇓r,τ⇓s

(∑
α∈r

α.(σ(α) | τ) +
∑
α∈s

α.(σ | τ(α))
)

where once again the well-foundedness of this definition is a consequence of
Proposition 2.4.

The client modeled by the contract

C
def
= rec x.

∑
i=1..2

fork i.
∑
i=1..2

fork i.thought .fork .fork .x

expects to receive an unbound number of thoughts, without ever getting stuck.
The problem of this sloppy client is that it does not care that the two forks
it provides end up to the same philosopher and this may cause the system to
deadlock. To see whether such client can be made compliant with P1 | P2 we
compute its dual contract

C⊥ ' rec x.
⊕
i=1..2

fork i.
⊕
i=1..2

fork i.thought .fork .fork .x

and then we check whether C⊥ � P1 | P2 using the algorithm. If we consider
the sequence of actions fork 1fork 2 we reduce to checking

thought .fork .fork .C⊥ � P1(fork 1) | P2(fork 2)

The contract P1(fork 1) | P2(fork 2) has only the ready set {fork 1, fork 2}, while
the residual of the client’s dual contract has only the ready set {thought}. A
similar situation occurs when considering the sequence of actions fork 2fork 1.

29

There is no orchestration action that can let the algorithm make some progress
from these states.

In a sense the algorithm finds out that the two forks sent by the client must
be delivered to the same philosopher, and this is testified by the resulting
orchestrator

f
def
= rec x.

∨
i=1..2

〈fork i, fork i〉.〈fork i, fork i〉.〈thought , thought〉.

〈fork , fork〉.〈fork , fork〉.x

Suppose now that the service provider is forced to update the service with
two new philosophers who, according to their habit, produce their thoughts
only after having returned the forks. Their behavior can be described by the
contract

Qi
def
= rec x.fork i.fork i.fork .fork .thought .x

The service provider may wonder whether the clients of the old service will
still be satisfied by the new one. The problem can be formulated as checking
whether P1 |P2 � Q1 |Q2 and the interesting step is when the algorithm even-
tually checks P1(fork 1fork 1) | P2 � Q1(fork 1fork 1) | Q2 (symmetrically for P2

and the sequence of actions fork 2fork 2). At this stage P1(fork 1fork 1) | P2 has
just the ready set {thought , fork 2}, whereas the contract Q1(fork 1fork 1) | Q2

has just the ready set {fork , fork 2}. By accepting the two fork messages asyn-
chronously we reduce to checking whether P1(fork 1fork 1)|P2 � thought .Q1|Q2,
which holds by allowing the thought action to occur, followed by the asyn-
chronous sending of the two buffered fork messages. Overall the relation is
proved by the orchestrator

g
def
= rec x.

∨
i=1..2

〈fork i, fork i〉.
∨

i=1..2

〈fork i, fork i〉.

〈ε, fork〉.〈ε, fork〉.〈thought , thought〉.〈fork , ε〉.〈fork , ε〉.x

and now the sloppy C client will be satisfied by the service Q1 |Q2 by means
of the orchestrator

f · g = rec x.
∨

i=1..2

〈fork i, fork i〉.〈fork i, fork i〉.〈ε, fork〉.〈ε, fork〉.

〈thought , thought〉.〈fork , ε〉.x

7 On the implementation of simple orchestrators

Simple orchestrators represent little more than just a strategy for satisfying
the client: they constraint the actions of client and service so that interaction

30

is safe, or they prescribe messages that must be buffered and possibly delivered
at a later stage of the interaction. Moreover, they are oblivious to the internal
choices of client and service, so that the constraints they pose can only affect
external choices. The consequence is that an orchestration-aware client or
service can internally implement in a very easy way a simple orchestrator
by following the corresponding strategy, which amounts at filtering out some
actions (among those that are available) and buffering some messages, without
otherwise interfering with the internal decisions of the process.

In this section we investigate three easily identifiable subclasses of simple or-
chestrators that can also be efficiently implemented externally, namely without
any awareness from the client and from the service that any actual orchestra-
tion is being carried on. We start by defining the subclasses of synchronous
and asynchronous orchestrators. As the name suggests, the former ones are
simple orchestrators exclusively made of synchronous orchestration actions,
whereas the latter ones are simple orchestrators exclusively made of asyn-
chronous orchestration actions.

7.1 Virtual synchronous orchestrators

Let I (σ) be the canonical synchronous orchestrator for σ defined thus:

I (σ)
def
=

∨
σ
α

=⇒

〈α, α〉.I (σ(α))

Namely, I (σ) is the orchestrator made of synchronous actions corresponding
to the traces of σ. We write f for the orchestrator which has the same structure
as f , but all the actions occurring in f have been turned into the corresponding
co-actions.

Assume f : σ � τ for some synchronous orchestrator f and I (τ) 6 f .
This means that the orchestrator f includes the whole set of traces of τ ,
modulo the fact that f is made of orchestration actions and τ of plain actions.
Namely, no action of τ is ever hidden by the orchestrator. It is easy to verify
that under these circumstances conditions (1) and (2) of Definition 3.7 (weak
subcontract) respectively reduce to conditions (1) and (2) of Definition 2.6
(strong subcontract). In other words, if f : σ � τ and I (τ) 6 f , then σ v τ ,
hence every client that is satisfied by σ is also satisfied by τ . In this sense f is
a virtual orchestrator, in that it does not carry on any actual orchestration.

Now assume f : σ � τ for some synchronous orchestrator f and ρ a σ
and I (ρ) ∧ I (τ) 6 f . Then the orchestrator f includes all the traces on
which ρ and τ can synchronize. In other words, any synchronization between
ρ and τ occurs also between ρ and σ and, once again, f never has to actually

31

hide any action from τ when the client is ρ. So, the particular client ρ is
strongly compliant with τ (ρ a τ). For example, we have 〈a, a〉 : a � a + b
and a.e a a. Since I (a.e) = 〈a, a〉.〈e, e〉 and I (a + b) = 〈a, a〉 ∨ 〈b, b〉 and
〈a, a〉.〈e, e〉∧(〈a, a〉∨〈b, b〉) = 〈a, a〉, we may conclude a.e a a+b. Note however

that a 6v a + b: for instance, the client ρ
def
= a.e + b is such that ρ a a but

ρ 6a a+b. Indeed, I (a.e + b) = 〈a, a〉.〈e, e〉∨〈b, b〉 and I (a.e + b)∧I (a+b) =
I (a+ b) 66 〈a, a〉.

The subcontract relation of [31] is a special case of this kind of virtual orches-
tration, where the client never uses action names that were not included in
the smaller contract.

7.2 Asynchronous orchestrators

According to the intuition behind orchestration, it should be possible to write a
process that sits in between client and service and that somewhat implements
the orchestrator. More formally, given a relation f : σ � τ we should be
able to find a ccs context Cf such that Cf [τ] is indistinguishable from (is a
strong supercontract of) σ. The problem is that this context is not expressible
in pure ccs, at least in the general case. To see why, consider the relation
〈a, a〉.〈c, c〉 ∨ 〈c, c〉 : a.c⊕ c � a.c⊕ c. In this example the orchestrator proves
the reflexivity of � on the service contract a.c ⊕ c. Observe that the given
orchestrator is relevant and that any strictly smaller orchestrator does not
suffice for proving the relation. We might try to implement the orchestrator
in this particular case as the ccs context

C
def
= (a.a′.c′.c+ c′.c | [][a′/a, c′/c]) \ {a′, c′}

where as usual [] denotes a hole in the context C which is meant to be replaced
by (the service implementing) the contract a⊕c. The service is composed with
a forwarder process a.a′.c′.c+c′.c whose only purpose is to pass messages from
the client to the service and vice versa. To avoid confusion, the names a and
c of the original service have been renamed to a′ and c′ respectively and the
whole context has been restricted over these new names. Observe once again
that the forwarder process does not try to add any new behavior, it simply
interfaces client and service. The problem of this implementation is that the
synchronization between client and service, which is atomic according to the
interaction rules of Definition 2.1, has been encoded as two compound actions
a.a′ and c′.c. This encoding enables computations that lead the client to a

deadlock. For instance, if we consider the client ρ
def
= a.c.e + c.e, we have

ρ ‖C[τ] −→ c.e ‖ (a′.c′.c | a′.c′ ⊕ c′) \ {a′, c′} −→ c.e ‖ (a′.c′.c | c′) \ {a′, c′} X−→

32

The problem lies in the fact that the synchronization semantics between client
and service embedded in Definition 2.1 operates at the meta level of the calcu-
lus and cannot be modeled within the calculus itself. However, if we restrict the
encoding to asynchronous orchestrators, everything works fine because client
and service never synchronize directly with each other, but only indirectly
with the mediation of the orchestrator.

More precisely, let f : σ � τ and be f an asynchronous orchestrator. Then
the context Cf can be defined as

Cf
def
= (F (f) ‖ [][a′/a | a ∈ names(τ)]) \ {a′ | a ∈ names(τ)}

where F (f), the forwarder process corresponding to the orchestrator f , is
defined as

F (f)
def
=

∑
f
〈α,ε〉
7−→ g

α.F (g) +
∑

f
〈ε,α〉
7−→ g

α′.F (g)

It can be shown that ρ a σ implies ρ a Cf [τ], namely that σ v Cf [τ].

As a concluding remark for this section, it should be noted that the algo-
rithm presented in §5 can be trivially adapted so as to make it synthesize an
asynchronous orchestrator proving a given relation, provided there is one. It
is sufficient to restrict the set a in the first premise of rule (a1) (see Table 1)
to asynchronous orchestration actions. In case a synchronous orchestrator is
required, it is sufficient to run the algorithm with k = 0.

8 Related work

This work originated by revisiting ccs without τ’s [18] in the context of Web
services. Contracts are in fact just a concrete representation of acceptance
trees [25, 26]. Early attempts to define a reasonable subcontract relation [10]
have eventually led to the conclusion that some control over actions is neces-
sary: [31] proposes a static form of control that makes use of explicit contract
interfaces whereas [11] proposes a dynamic form of control by means of so-
called filters. The present work elaborates on the idea of [11] by adding asyn-
chrony and buffering to filters: this apparently simple addition significantly
increases the technicalities of the resulting theory, both because of the very na-
ture of asynchrony and also because orchestrator composition and conjunction
no longer coincide. The subcontract relation presented in this work, because of
its liveness-preserving property, has connections with and extends the subtyp-
ing relation on session types [27, 23] and stuck-free conformance relation [22].
A more detailed comparison with these works can be found in [11]. [21] pro-
vides a very clear and interesting comparison of several refinement relations
among which reduction refinement, which corresponds to the must preorder

33

and to our notion of strong subcontract (see §2), and implementation refine-
ment, which roughly corresponds to the subcontract relation defined in [10]
and that can be traced back to the lotos language [9]. The authors of [21]
emphasize the importance of implementation refinement, which enables width
and depth extensions of partial specifications, but also its lack of transitivity,
which hinders its application in practice. The present work (as well as [11]) can
be seen as a solution to the lack of transitivity of this (and similar) refinement
relations, by the introduction of suitable coercions/orchestrators/connectors.

A closely related work regarding contracts for Web services is [8]. The main
conceptual difference between [8] and the present work regards the destination
usage of the contract language: [8] defines a subcontract relation for reason-
ing on the modular refinement of Web services within coreographies, whereas
here we focus on Web service discovery. As a consequence, the subcontract
relation defined in [8] is a precongruence with respect to the parallel compo-
sition operator but it is stricter than � in the present work. In this sense it
is closer to the strong subcontract relation in this work (§2), and is actually a
fair, partially asynchronous variant of it. From a technical point of view there
are several differences: in [8] the contract language is basically a full process
calculus, whereas we focus on just two basic choice operators since we only
care about the external, observable behavior of a Web service and not of its
implementation; also, repeated behavior is modeled in [8] using the Kleene
star operator, while we use recursion. In a nondeterministic setting it is well
known that the Kleene star operator is unable to capture some behaviors that
are expressible by means of recursion [19, 2], but it is unclear to which extent
this limitation of the Kleene operator makes a difference in practice. Finally,
[8] adopts a less abstract communication model based on partial asynchrony,
whereby output actions cannot be negotiated by the receiver, but they do have
a continuation. This allows the subcontract relation to enjoy width extensions
of input actions without the intervention of any orchestrator, if the context
never provides corresponding output actions. We have seen in §7 that this
feature is subsumed by our subcontract relation, whereby width extensions
are safe (without orchestration) for those clients that never try to synchronize
on the new actions of the extended contract.

ws-bpel [1] is often presented as an orchestration language for Web services.
Remarkably ws-bpel features boil down to storing incoming messages into
variables (buffering) and controlling the interactions of other parties. Our or-
chestrators can be seen as streamlined ws-bpel orchestrators in which all the
internal nondeterminism of the orchestrator itself is abstracted away. orc [33]
is perhaps the most notable example of orchestration-oriented, algebraic lan-
guage. The peculiar operators� and where of orc represent different forms
of pipelining and can be seen as orchestration actions in conjunction with the
composition operator · of simple orchestrators (§3).

34

There has been extensive research on the automatic synthesis of connectors
both in the domain of software architectures (see for example [29]) and also
in the more specific domain of Web services [37, 5, 28, 35, 24]. In these con-
texts the problem consists in finding a connector component (if there is one)
which coordinates n given components (associated with corresponding behav-
iors) so as to accomplish a specific goal (for example, adhering to a target
behavior). There is a clear analogy with the present work in that a compo-
nent of the system (which we call orchestrator) is synthesized so as to make
other components interact in some restricted way. We can highlight four main
differences between the two scenarios: (1) there is a conceptual difference in
that we focus on finding an existing service with a desired behavior, whereas
Web service composition tries to synthesize a desired behavior starting from
n given services. (2) The nature of simple orchestrators is driven by a no-
tion of safe replacement for Web services (the subcontract relation). Although
they play an essential role, simple orchestrators are just a tool for reasoning
on service equivalence, which is the real main concern in this work. (3) The
connector resulting from the automatic composition of Web services is ad hoc
for the particular set of services that have been composed. In our case, it is
possible to synthesize a universal orchestrator that satisfies all the clients of
a desired service. The tight relationship between the subcontract relation and
orchestrators provides us with an efficient way of composing connectors, which
is not possible in the more complex scenario of Web service composition. (4)
The automatic composition of Web services can only generate stub connectors
whose low-level details must still be filled in by programmers. This is due to
the fact that in most cases the behavioral description of the Web services is
not detailed enough (or is too complex) to fully automate the code generat-
ing process. In our restricted scenario, the orchestrators are simple enough to
admit a fully automatic code generation.

The present paper corrects and improves [34] in several ways. The main
changes, other than the presence of the proofs for all the results stated in
the paper and a more thorough comparison with related work, are the follow-
ing: first and foremost we use direct characterizations of compliance where [34]
used coinductive ones. The current presentation provides a better intuition be-
hind the notions of compliance, especially for orchestrated systems, and results
in the simplification of some proofs. The downside is that the orchestration
language must be introduced since the very beginning of §3, whereas in [34] it
emerges from the very notion of (weak) compliance. Second, we generalize the
dual operator to so-called viable contracts. Third, we present a deterministic
variant of the synthesis algorithm that is proved to generate the best orches-
trator for a given relation, in the same spirit as has been done in [11]. Fourth,
we discuss some important subclasses of orchestrators which admit efficient
implementations and thus we show how the presented algorithm can be easily
modified for running specialized queries.

35

9 Discussion

We can identify two main contributions of this work. On the theoretical side,
we have adapted the testing framework [17, 26] by assuming that orchestra-
tors can mediate the interaction between a client and a service. Clients are
tests and services are processes to be tested. The notion of passing a test is
captured by the compliance relations: strong compliance denotes successful
interaction without the help of an orchestrator, whereas weak compliance de-
notes successful interaction with the help of an orchestrator. This approach
solves the lack of transitivity in existing refinement relations [21] by means of
simple adapters that we call orchestrators. Orchestrators can be interpreted
as morphisms (or explicit behavioral coercions) transforming service contracts
(§3.4). The morphism induced by an orchestrator enjoys nice and useful prop-
erties and tightly links the strong and weak compliance relations. We have
provided different characterizations for the subcontract relations: the seman-
tic, set-theoretic ones are based on the corresponding compliance relation,
whereas the coinductive ones are more amenable for investigation and im-
plementation. While coinductive characterizations of the strong subcontract
relation and proper subsets of the weak subcontract relation are known in the
literature (see [31, 11] but also [14]), the coinductive characterization for a
testing relation involving asynchrony is original to the best of the author’s
knowledge.

On the practical side, we have defined a decidable, liveness-preserving sub-
contract relation for discovering Web services by means of their contract. The
subcontract relation is coarser than and subsumes the existing ones, thus en-
larging the set of services satisfying a given client and favoring service reuse.
Orchestrators are pivotal in this respect. The existence of a universal orchestra-
tor that is independent of the client allows us to precompute the orchestrator
proving a given relation between service contracts and to cache it in the Web
service registry. The algorithm for � can be easily specialized for deciding
relations that are stricter than � and that permit efficient orchestrator im-
plementations. While we have focused on Web services discovery by means of
contracts, the subcontract relation as it stands can also be proficiently used
in different contexts, such as Web service static verification, implementation
and refactoring, where a notion of Web service equivalence is required.

The synthesis algorithm is computationally expensive. It is well known that
deciding v is pspace-complete [30] although common practice suggests that
worst cases occur seldom [14]. In our setting more complexity is added for syn-
thesizing the orchestrator, although it is not evident to which extent this makes
a difference in practice. It is also unclear whether it is possible to enhance the
running cost of the algorithm by means of heuristics or other programming
techniques, since previous work dealing with connector synthesis [5, 24] seems

36

to suggest that the problem is intrinsically hard. Furthermore, the algorithm
is parameterized by an index k that roughly indicates the amount of buffer-
ing that is permitted. This index might be set to a constant (specified or
determined by the entity that is in charge of the orchestration) for limiting
orchestration costs, or it may be an argument of the query sent by the client.
While it is reasonable to expect that relatively small values for k are sufficient
for significantly improving the flexibility given by �, it would also be interest-
ing to be able to compute, if it exists, the orchestrator with lowest rank that
proves a given relation σ � τ . Intuitively it should be possible to determine
an upper bound using the regularity of σ and τ , although a precise result is
still lacking.

Asynchronous variants of the classical testing preorders [12, 7] are notoriously
more involved than their synchronous counterparts and they are usually de-
fined assuming that self-synchronization is possible and that output messages
are allowed to float around in unbounded buffers. Since these assumptions
do not reflect the practice of Web services, our development can be seen as a
practical variant of the classical asynchronous testing theories. In particular, it
might be interesting to try to reduce the asynchronous must preorder without
self-synchronization to our subcontract relation by analyzing the structure of
orchestrators proving the relation (an orchestrator that always enables all of
its asynchronous input and output actions acts like an unbounded buffer).

References

[1] Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Barreto, et al. Web
Services Business Process Execution Language Version 2.0, 2007.

[2] Jos C. M. Baeten, Flavio Corradini, and Clemens A. Grabmayer. A char-
acterization of regular expressions under bisimulation. J. ACM, 54(2):6,
2007.

[3] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh
Chopella, et al. Web Services Conversation Language (wscl) 1.0, 2002.

[4] Tom Bellwood, Steve Capell, Luc Clement, John Colgrave, et al.
uddi Version 3.0.2, 2005. OASIS Standard, http://uddi.org/pubs/

uddi-v3.0.2-20041019.htm.
[5] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-

erini, and Massimo Mecella. Automatic composition of e-services that
export their behavior. In In Proc. 1st Int. Conf. on Service Oriented
Computing (ICSOC), volume 2910 of LNCS, pages 43–58. Springer, 2003.

[6] Dorothea Beringer, Harumi Kuno, and Mike Lemon. Using wscl in a
uddi Registry 1.0, 2001.

[7] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Trace and test-

37

ing equivalence on asynchronous processes. Information and Computa-
tion, 172(2):139–164, 2002.

[8] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for
choreography conformance and contract compliance. In Proc. of the 6th
Intl. Symposium on Software Composition. Springer, 2007.

[9] Ed Brinksma, Giuseppe Scollo, and Chris Steenbergen. lotos specifi-
cations, their implementations and their tests. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1995.

[10] Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca
Padovani. A formal account of contracts for Web Services. In WS-FM’06,
number 4184 in LNCS, pages 148–162. Springer, 2006.

[11] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of con-
tracts for Web services. In Proceedings of POPL’08, pages 261–272. ACM,
2008.

[12] Ilaria Castellani and Matthew Hennessy. Testing theories for asyn-
chronous languages. In Proceedings of Foundations of Software Tech-
nology and Theoretical Computer Science, number 1530 in LNCS, pages
90–101. Springer, 1998.

[13] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva
Weerawarana. Web Services Description Language (wsdl) Version 2.0
Part 1: Core Language, 2007.

[14] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisim-
ulation equivalence. Formal Aspects of Computing, 5(1):1–20, 1993.

[15] John Colgrave and Karsten Januszewski. Using wsdl in a uddi registry,
version 2.0.2. Technical note, OASIS, 2004.

[16] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, 25:95–169, 1983.

[17] Rocco De Nicola and Matthew Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34:83–133, 1984.

[18] Rocco De Nicola and Matthew Hennessy. ccs without τ ’s. In TAP-
SOFT’87/CAAP’87, number 249 in LNCS, pages 138–152. Springer,
1987.

[19] Rocco De Nicola and Anna Labella. Nondeterministic regular expressions
as solutions of equational systems. Theor. Comput. Sci., 302(1-3):179–
189, 2003.

[20] Roberto Di Cosmo. Isomorphisms of Types: from Lambda Calculus to
Information Retrieval and Language Design. Birkhauser, 1995.

[21] Rik Eshuis and Maarten M. Fokkinga. Comparing refinements for failure
and bisimulation semantics. Fundamenta Informaticae, 52(4):297–321,
2002.

[22] Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof.
Stuck-free conformance. Technical Report MSR-TR-2004-69, Microsoft
Research, 2004.

[23] Simon Gay and Malcolm Hole. Subtyping for session types in the π-
calculus. Acta Informatica, 42(2-3):191–225, 2005.

38

[24] Giuseppe De Giacomo and Sebastian Sardiña. Automatic synthesis of
new behaviors from a library of available behaviors. In IJCAI, pages
1866–1871, 2007.

[25] Matthew Hennessy. Acceptance trees. JACM: Journal of the ACM,
32(4):896–928, 1985.

[26] Matthew Hennessy. Algebraic Theory of Processes. Foundation of Com-
puting. MIT Press, 1988.

[27] Kohei Honda. Types for dyadic interaction. In CONCUR’93, number 715
in LNCS, pages 509–523, 1993.

[28] Richard Hull, Michael Benedikt, Vassilis Christophides, and Jianwen Su.
E-services: a look behind the curtain. In PODS ’03: Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 1–14, New York, NY, USA, 2003. ACM.

[29] Paola Inverardi and Massimo Tivoli. Software architecture for correct
components assembly. In SFM’03, pages 92–121, 2003.

[30] Paris C. Kanellakis and Scott A. Smolka. ccs expressions, finite state
processes, and three problems of equivalence. Information and Compu-
tation, 86(1):43–68, 1990.

[31] Cosimo Laneve and Luca Padovani. The must preorder revisited – an
algebraic theory for web services contracts. In CONCUR’07, number
4703 in LNCS, pages 212–225. Springer, 2007.

[32] Cosimo Laneve and Luca Padovani. The pairing of contracts and session
types. In Festschrift for Ugo Montanari on the Occasion of his 65th
Birthday, number 5065 in LNCS, pages 681–700. Springer, 2008.

[33] Jayadev Misra and William R. Cook. Computation orchestration – a basis
for wide-area computing. Software and Systems Modeling, 6(1):83–0110,
2007.

[34] Luca Padovani. Contract-directed synthesis of simple orchestrators. In
CONCUR’08, number 5201 in LNCS, pages 131–146. Springer, 2008.

[35] Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Mar-
coni. Automated synthesis of composite bpel4ws web services. In ICWS
’05: Proceedings of the IEEE International Conference on Web Services,
pages 293–301, Washington, DC, USA, 2005. IEEE Computer Society.

[36] Mikael Rittri. Retrieving library functions by unifying types modulo
linear isomorphism. RAIRO Theoretical Informatics and Applications,
27(6):523–540, 1993.

[37] Paolo Traverso and Marco Pistore. Automated composition of semantic
web services into executable processes. In International Semantic Web
Conference, pages 380–394, 2004.

[38] Claus von Riegen and Ivana Trickovic. Using bpel4ws in a uddi registry.
Technical note, OASIS, 2004.

39

